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Concentration estimates for random subspaces of a tensor

product, and application to Quantum Information Theory

Benoît Collins, Félix Parraud

Abstract

Given a random subspace Hn chosen uniformly in a tensor product of Hilbert spaces Vn ⊗W , we
consider the collection Kn of all singular values of all norm one elements of Hn with respect to the
tensor structure. A law of large numbers has been obtained for this random set in the context of W
fixed and the dimension of Hn, Vn tending to infinity at the same speed in [3].

In this paper, we provide measure concentration estimates in this context. The probabilistic
study of Kn was motivated by important questions in Quantum Information Theory, and allowed to
provide the smallest known dimension (184) for the dimension an an ancilla space allowing Minimum
Output Entropy (MOE) violation. With our estimates, we are able, as an application, to provide
actual bounds for the dimension of spaces where violation of MOE occurs.

1 Introduction

One of the most important questions in Quantum Information Theory (QIT) was to figure out whether
one can find two quantum channels Φ1 and Φ2 such that

Hmin(Φ1 ⊗ Φ2) < Hmin(Φ1) +Hmin(Φ2),

where Hmin is the Minimum Output Entropy (MOE), defined in section 4. This problem was solved by
[14], with important preliminary work by [13] (see also references therein). This was especially important
in QIT, since there was hope it would be true and in this case, it would give a systematic way to compute
the classical capacity of a quantum channel. For more explanation we refer to [7].

All proofs available so far are not constructive in the sense that constructions rely on the probabilistic
method. After the initial construction of [14], the probabilistic tools involved in the proof have been found
to have deep relation with random matrix theory in many respects, including large deviation principle
[2], Free probability [4], convex geometry [1] and Operator Algebra [9]. The last two probably give the
most conceptual proofs, and in particular convex geometry gives explicit numbers. Free probability gives
the best numbers for the output dimension [4] but was unable to give estimates for the input dimension
so far. More generally, the optimal violation obtained in [4] relates to a LLN obtained in [3] whose speed
of convergence was not explicit, and in turn, did not give any estimate on the smallest dimension of
the input space. In order to obtain explicit parameters, measure concentration estimates, ideally large
deviation estimates, are required. And from a theoretical point of view, this is the goal of this paper.
The main result is as follows:

Theorem 1.1 (For the precise statement, see Theorem 2.2). Given the output space Kn,k,t of our
quantum model and its limit Kk,t (see Equation (2) for a definition), for n ≥ 34×229× ln2(kn)×k3ε−4,

P (Kn,k,t 6⊂ Kk,t + ε) ≤ ek
2(ln(3k2ε−1))−n

k
× ε2

576 .

They are based on the far reaching approach of [15] – see as well [6]. As a corollary, we obtain the
following important application in Quantum Information Theory:

Theorem 1.2 (For the precise statement, see Theorem 4.3). There exists a quantum channel from
M184×1051 (C) to M184(C) that yields violation of MOE.
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The paper is organized as follows. After this introduction, section 2 is devoted to introducing nec-
essary notations and state the main theorem. Section 3 contains the proof of the main theorem, and
section 4 contains application to Quantum Information Theory.

Acknowledgements: B.C. was supported by JSPS KAKENHI 17K18734, 17H04823 and 20K20882.
F.P. was supported by a JASSO fellowship and Labex Milyon (ANR-10-LABX-0070) of Université de
Lyon. This work was initiated while the second author was doing his MSc under the supervision of Alice
Guionnet and he would like to thank her for insightful comments and suggestions on this work.

2 Notation and main theorem

We denote by H a Hilbert space, which we assume to be finite dimensional. B(H) is the set of
bounded linear operators on H , and D(H) ⊂ B(H) is the collection of trace 1, positive operators –
known as density matrices. In the case of matrices, we denote it by Dk ⊂ Mk(C).

Let d, k, n ∈ N, let U be distributed according to the Haar measure on the unitary group of Mkn(C),
let Pn be the canonical projection from C

d to C
kn, that is the matrix with kn lines and d columns with

1 on the diagonal and 0 elsewhere. With Trn the trace on Mn(C), we define the following random linear
map,

Φn : X ∈ Md(C) 7→ idk ⊗ Trn(UPnXP ∗
nU

∗) ∈ Mk(C). (1)

This map is trace preserving, linear and completely positive and as such, it is known as a quantum
channel. Let t ∈ [0, 1]. We fix d be an integer sequence (depending on n) such that d ∼ tkn, and define

Kn,k,t = Φn(Dd). (2)

There is a much more geometric definition of Kn,k,t thanks to the following proposition.

Proposition 2.1. We have,

Kn,k,t = {X ∈ Dk | ∀A ∈ Dk,Trk(XA) ≤ ‖P ∗
nU

∗A⊗ InUPn‖}. (3)

Besides for any A ∈ Dk, {X ∈ Kn,k,t | Trk(XA) = ‖P ∗
nU

∗A⊗ InUPn‖} is non-empty.

Proof. Let Y ∈ Dd, A ∈ Dk, then

Trk(Φn(Y )A) = Trkn(UPnY P ∗
nU

∗ ·A⊗ In)

= Trd(
√
Y P ∗

nU
∗ ·A⊗ In · UPn

√
Y )

≤ Trd(Y ) ‖P ∗
nU

∗ · A⊗ In · UPn‖
= ‖P ∗

nU
∗ ·A⊗ In · UPn‖ .

Let us write E for the right member of the equation (3), we just showed that Kn,k,t = Φn(Dd) ⊂ E.
Besides if Px is the orthogonal projection on the vector x, we have that

‖P ∗
nU

∗ · A⊗ In · UPn‖ = max
x∈Cd

Trd(P
∗
nU

∗ · A⊗ In · UPnPx) = max
x∈Cd

Trk(A Φn(Px)).

Thus, for every ε > 0 and A ∈ Dk, we can find an element of Kn,k,t in {X ∈ Dk | Trk(XA) ≥
‖P ∗

nU
∗A⊗ InUPn‖ − ε}. By compacity of Kk,n,t, we can even find an element of Kn,k,t in {X ∈

Dk | Trk(XA) = ‖P ∗
nU

∗A⊗ InUPn‖}.
If we see E as a convex set of Mk(C)sa, let X ∈ E be an exposed point of E, that is there exists

A ∈ Mk(C)sa and C such that the intersection of E and {Y ∈ Mk(C)sa | Trk(AY ) = C} is reduced to
{X} and that E is included in {Y ∈ Mk(C)sa | Trk(AY ) ≤ C}. We have the following equality for λ
large enough since if Y ∈ Dk, Trk(Y ) = 1,

{Y ∈ Dk | Trk(AY ) = C} =

{
Y ∈ Dk | Trk

(
A+ λIk

Trk(A+ λIk)
Y

)
=

C + λ

Trk(A+ λIk)

}
.

Thus, we can find B ∈ Dk and c such that such that the intersection of E and {Y ∈ Dk | Trk(BY ) = c}
is reduced to {X} and that E is included in {Y ∈ Dk | Trk(BY ) ≤ c}. To summarize:
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• The intersection of Kn,k,t and {Y ∈ Dk | Trk(BY ) = ‖P ∗
nU

∗ · B ⊗ In · UPn‖} is non-empty.

• Kn,k,t ⊂ E, so the intersection of E and {Y ∈ Dk | Trk(BY ) = ‖P ∗
nU

∗ ·B ⊗ In · UPn‖} is non-
empty.

• The intersection of E and {Y ∈ Dk | Trk(BY ) = c} is a exactly {X}.

• E is included in both {Y ∈ Dk | Trk(BY ) ≤ c} and {Y ∈ Dk | Trk(BY ) ≤ ‖P ∗
nU

∗ ·B ⊗ In · UPn‖}.

Hence it implies that c = ‖P ∗
nU

∗B ⊗ InUPn‖ and that X ∈ Kn,k,t. Thus we showed that the exposed
point of E belongs to Kn,k,t. By a result of Straszewicz ([8],theorem 18.6) the set of exposed points is
dense in the set of extremal points, so the set of extremal points of E is included in Kn,k,t. Since Kn,k,t

is convex, E is included in Kn,k,t.

Thanks to Theorem 1.4 of [10], we know that ‖P ∗
nU

∗ ·A⊗ In · UPn‖ converges almost surely to-
wards a limit ‖A‖(t), which we now describe in terms of free probability (for the interested reader

we refer to [17], but a non expert reader can take limn ‖P ∗
nU

∗ ·A⊗ In · UPn‖ as the definition of
‖A‖(t) without loss of generality). We view B(L2([0, 1])) as the C∗-algebra endowed with the state

τ(u) = 〈u(1[0,1]),1[0,1]〉L2([0,1]. The endomorphism pt : f 7→ 1[0,t]f is a self-adjoint projection of rank t,
that is τ(pt) = t. We consider A the C∗-algebra generated by pt, restricted to A, τ is a faithful tracial
state. Hence thanks to Teorem 7.9 from [18], we can consider the free product of A and Mk(C). For
A ∈ Mk(C), we introduce the following quantity, called the (t)-norm:

‖A‖(t) := ‖ptApt‖ , (4)

where on the right side we took the operator norm in the free product of A and Mk(C). We naturally
define the asymptotic limit of Kn,k,t by

Kk,t = {X ∈ Dk | ∀A ∈ Dk,Trk(XA) ≤ ‖A‖(t)}. (5)

The main result of this paper is a measure concentration estimate and can be stated as follows:

Theorem 2.2. If we endow Mk(C) with the norm M 7→
√
Trk(M∗M), and that we assume d ≤ tkn,

then for n ≥ 34 × 229 × ln2(kn)× k3ε−4,

P (Kn,k,t 6⊂ Kk,t + ε) ≤ ek
2(ln(3k2ε−1))−n

k
× ε2

576 .

The convergence of Kn,k,t towards Kk,t for the Hausdorff distance has already been proved in [3],
Theorem 5.2. More precisely the authors proved that given a random subspace of size d, Fn,k,t the
collection of singular values of unit vectors in this subspace converges for the Hausdorff distance towards
a deterministic set Fk,t. It turns out that Kn,k,t (respectively Kk,t) is the convex hull of the self-adjoint
matrices whose eigenvalues are in Fn,k,t (respectively Fk,t). However our paper is self-contained and we
do not use this theorem.

3 Proof of main theorem

We will combine this geometrical description with the following lemma to get an estimate.

Proposition 3.1. If we endow Mk(C)sa with the norm ‖.‖2 which comes from the scalar product
(U, V ) 7→ Trk(UV ), then the following implication is true,

∀A ∈ Dk, ‖P ∗
nU

∗A⊗ InUPn‖ ≤ ‖A‖(t) +
ε

k
=⇒ Kn,k,t ⊂ Kk,t + ε.

Before proving it, we need a small lemma on the structure of Kk,t.

Lemma 3.2. Let A ∈ Dk, then {X ∈ Kk,t | Trk(XA) = ‖A‖(t)} is non-empty.

Proof. Thanks to Proposition 2.1 we know that for any n, {X ∈ Kn,k,t | Trk(XA) = ‖P ∗
nU

∗A⊗ InUPn‖}
is non-empty. Hence there exists Xn such that:
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• Trk(XnA) = ‖P ∗
nU

∗A⊗ InUPn‖},

• ∀B ∈ Dk, Trk(XnB) ≤ ‖P ∗
nU

∗B ⊗ InUPn‖}.

By compacity of Dk, we can assume that Xn converges towards a limit X . But then as we said in the
previous section, thanks to Theorem 1.4 from [10], ‖P ∗

nU
∗B ⊗ InUPn‖ converges towards ‖B‖(t). Thus

X is such that:

• Trk(XA) = ‖A‖(t)},

• ∀B ∈ Dk, Trk(XB) ≤ ‖B‖(t)}.

That is, X belongs to {X ∈ Kk,t | Trk(XA) = ‖A‖(t)}.

We can now prove Proposition 3.1.

Proof of Proposition 3.1. We assume that Kn,k,t 6⊂ Kk,t + ε, then thanks to the compacity of Kn,k,t and
Kk,t, we can find X ∈ Kk,t and Y ∈ Kn,k,t such that ‖X − Y ‖2 ≥ ε, and Kk,t∩B(Y, ‖X − Y ‖2) is empty.
We set U = Y−X

‖Y−X‖2
, A = 1

k (U + Ik), then A ∈ Dk. We are going to show that ‖P ∗
nU

∗A⊗ InUPn‖ >

‖A‖(t) + ε
k . To do so we define

PC =

{
B ∈ Kk,t

∣∣∣∣ Trk(AB) =
C + 1

k

}
= {B ∈ Kk,t | Trk (UB) = C} .

Let us assume that for C > Trk(UX), PC is not empty, then let S ∈ PC . We can write C = Trk(U(X +
tU)) for some t > 0, thus Trk(US) = Trk(U(X + tU)), that is Trk((Y −X)(X − S)) = −t ‖Y −X‖2.
Hence the following estimate:

‖Y − (αX + (1 − α)S)‖22 = Trk

((
Y −X + (1− α)(X − S)

)2)

= ‖Y −X‖22 − 2t(1− α) ‖Y −X‖2 +©((1 − α)2).

Consequently since Kk,t is convex, for any α, αX + (1− α)S ∈ Kk,t, thus for 1− α small enough we
could find an element of Kk,t in B(Y, ‖X − Y ‖2). Hence the contradiction. Thus for C > Trk(UX), PC

is empty. By Lemma 3.2, we get that Trk(UX)+1
k ≥ ‖A‖(t). Next we define

QC =

{
B ∈ Kn,k,t

∣∣∣∣ Trk(AB) =
C + 1

k

}
= {B ∈ Kn,k,t | Trk (UB) = C} .

Then clearly for C = Trk(UY ), QC is non-empty since Y ∈ QTrk(UY ). Hence thanks to the geometric

definition (3) of Kn,k,t, we have that Trk(UY )+1
k ≤ ‖P ∗

nU
∗ ·A⊗ In · UPn‖. Thus we have,

‖P ∗
nU

∗A⊗ InUPn‖ ≥ Trk(U(Y −X))

k
+ ‖A‖(t) =

‖Y −X‖2
k

+ ‖a‖(t) ≥
ε

k
+ ‖A‖(t) .

Actually with a very similar proof, we could even show that almost surely there exist A ∈ Dk such
that

dH(Kn,k,t,Kk,t) = k ×
∣∣∣‖P ∗

nU
∗ · A⊗ In · UPn‖ − ‖A‖(t)

∣∣∣ ,

where dH is the Hausdorff distance associated to the norm ‖.‖2 which comes from the scalar product
(U, V ) 7→ Trk(UV ). However this result will not be useful in this paper since the absolute value would
be detrimental for the computation of our estimate. The following lemma is a rather direct consequence
of the previous proposition.

Lemma 3.3. Let u > 0, let Su = {uM | M ∈ Mk(C)sa, ∀i ≥ j, ℜ(mi,j) ∈
{
N+ 1

2

}
∩ [0, ⌈u−1⌉], ∀i >

j, ℑ(mi,j) ∈
{
N+ 1

2

}
∩ [0, ⌈u−1⌉] }, let PDk

be the convex projection on Dk. Then with u =
√
2ε

3k2 ,

P (Kn,k,t 6⊂ Kk,t + ε) ≤
∑

M∈Su

P

(
‖P ∗

nU
∗(PDk

M ⊗ In)UPn‖ > ‖PDk
M‖(t) +

ε

3k

)
.
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Proof. We immediately get from proposition 3.1 that

P (Kn,k,t 6⊂ Kk,t + ε) ≤ P

(
∃A ∈ Dk, ‖P ∗

nU
∗ ·A⊗ In · UPn‖ > ‖A‖(t) +

ε

k

)
.

Now, let A ∈ Dk, by construction of Su, there exists M ∈ Su such that the real part and the imaginary
part of the coefficients of M are u/2-close from those of A. Thus we have ‖A−M‖2 ≤ ku√

2
. Hence if we

fix u =
√
2ε

3k2 , then we can always find M ∈ Su such that ‖A−M‖2 ≤ ε
3k . Besides we have,

∣∣∣‖A‖(t) − ‖PDk
M‖(t)

∣∣∣ ≤ ‖A− PDk
M‖ ≤ ‖A− PDk

M‖2 ,
∣∣∣ ‖P ∗

nU
∗A⊗ InUPn‖ − ‖P ∗

nU
∗(PDk

M ⊗ In)UPn‖
∣∣∣ ≤ ‖A− PDk

M‖ ≤ ‖A− PDk
M‖2 .

Hence since PDk
A = A and that PDk

is 1-lipschitz, we have ‖A− PDk
M‖2 ≤ ‖A−M‖2 ≤ ε

3k . Conse-
quently,

{
‖P ∗

nU
∗ · A⊗ In · UPn‖ > ‖A‖(t) +

ε

k

}
⊂
{
‖P ∗

nU
∗(PDk

M ⊗ In)UPn‖ > ‖PDk
M‖(t) +

ε

3k

}
.

Hence,
{
∃A ∈ Dk, ‖P ∗

nU
∗ ·A⊗ In · UPn‖ > ‖A‖(t) +

ε

k

}
⊂

⋃

M∈Su

{
‖P ∗

nU
∗(PDk

M ⊗ In)UPn‖ > ‖PDk
M‖(t) +

ε

3k

}
.

The conclusion follows.

The next lemma shows that there exist a smooth function which verifies some assumptions on the
infinite norm of its derivatives.

Lemma 3.4. There exists g a C6 function which takes value 0 on (−∞, 0] and value 1 on [1,∞), and

in [0, 1] otherwise. Besides for any j ≤ 6,
∥∥g(j)

∥∥
∞ = 2

j(j+1)
2 .

Proof. Firstly we define,

f : t ∈ [0, 1] 7→
{

2t if t ≤ 1/2
2(1− t) if t ≥ 1/2

,

H : C0([0, 1]) → C0([0, 1])

f 7→ t 7→
{

f(2t) if t ≤ 1/2
−f(2t− 1) if t ≥ 1/2

.

Inspired by Taylor’s Theorem, we define

h : x ∈ [0, 1] 7→
∫ x

0

(x − t)5

5!
H5f(t) dt.

It is easy to see that h ∈ C6([0, 1]) with

∀j ≤ 5, h(j) : x ∈ [0, 1] 7→
∫ x

0

(x− t)5−j

(5− j)!
H5f(t) dt, h(6) = H5f.

Thus one can easily extend h by 0 on R− and h remains C6 in 0, as for what happens in 1 it is way less
obvious. In order to build g we want to show that

∀1 ≤ j ≤ 6, h(j)(1) = 0, h(1) > 0.

To do so let w ∈ C0([0, 1]), then for any k ≥ 0,
∫ 1

0

(1− t)kHw(t)dt =

∫ 1/2

0

(1 − t)kw(2t)dt−
∫ 1

1/2

(1− t)kw(2t− 1)dt

=
1

2k+1

∫ 1

0

(
(2− t)

k − (1− t)
k
)
w(t)dt

=
1

2k+1

∫ 1

0

∑

0≤i<k

(
k

i

)
(1 − t)iw(t)dt.
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Thus recursively one can show that ∀1 ≤ j ≤ 6, h(j)(1) = 0. We also get that

h(1) =

∫ x

0

(1− t)5

5!
H5f(t) dt = 2−

∑
2≤i≤6 i

∫ x

0

f(t) dt = 2−21.

Hence we fix g = 221h, further studies show that
∥∥g(j)

∥∥
∞ = 2

j(j+1)
2 .

In the next lemma, we prove a first rough estimate on the deviation of the norm with respect to its
limit. It is the only one where we use that d ≤ tkn.

Lemma 3.5. For any A ∈ Dk, ε > 0,

P

(
‖P ∗

nU
∗A⊗ InUPn‖ ≥ ‖A‖(t) + ε

)
≤ 3× 221 × ln2(kn)

kn
ε−4. (6)

Proof. For a better understanding of the notations and tools used in this proof, such as free stochastic
calculus, we refer to [15]. In particular τkn is the trace on the free product of Mkn(C) with a C∗-algebra
which contains two free unitary Brownian motions, see Definition 2.8 of [15]. As for δ,D and ⊠, see
Definition 2.8 and 2.10, as well as Proposition 2.2 of the same paper. If you are not familiar with
free probability, it is possible to simply admit equation (8) to avoid having to understand the previous
notations.

Since ‖P ∗
nU

∗ ·A⊗ In · UPn‖ = ‖PnP
∗
nU

∗ · A⊗ In · UPnP
∗
n‖, we will rather work with P = PnP

∗
n

since it is a square matrix. To simplify notation, instead of A ⊗ In we simply write A. Thus thanks to
Lemma 4.1 and 4.4 from [15], given a function f such that

∀x ∈ R, f(x) =

∫

R

eixydµ(y), (7)

for some measure µ. Then with ut = Uat and vt = Ubt where at and bt are free unitary Brownian
motions started in 1 and free between each other, we have the following expression,

E

[
1

kn
Trkn

(
f(P U∗A U P )

)]
− τ
(
f(P u∗

T A uT P )
)

=
1

2(kn)2

∫ ∫ T

0

t τkn

(
D ◦ δ1 ◦ D

(
eiyPU∗AUP

)
(ut, u

∗
t , A, P ) ⊠ D ◦ δ2 ◦ D

(
eiyPU∗AUP

)
(vt, v

∗
t , A, P )

)

dt dµ(y).

Then if we set Rt
1 = Pu∗

tAutP and Rt
2 = Pv∗tAvtP , after a tedious computation,

τkn

(
D ◦ δ1 ◦ D

(
eiyPU∗AUP

)
(ut, u

∗
t , A, P ) ⊠ D ◦ δ2 ◦ D

(
eiyPU∗AUP

)
(vt, v

∗
t , A, P )

)
(8)

= 2iy3
∫ 1

0

s τkn

((
eiyR

t
1sPu∗

tAut − u∗
tAutPeiyR

t
1s
)
×
(
eiyR

t
2(1−s)Pv∗tA

2vt − v∗tA
2vtPeiyR

t
2(1−s)

+ iy(1− s)

∫ 1

0

eiyR
t
2(1−s)(1−r)Pv∗tA

2vtPeiyR
t
2(1−s)rv∗tAvt

− v∗tAvte
iyRt

2(1−s)(1−r)Pv∗tA
2vtPeiyR

t
2(1−s)r dr

))
ds

− 2y2
∫ 1

0

τkn

((
iys(Rt

1e
iyRt

1su∗
tAut − u∗

tAute
iyRt

1sRt
1)− u∗

tAutPeiyR
t
1s + eiyR

t
1sPu∗

tAut

)

×
(
iy(1− s)(Rt

2e
iyRt

2(1−s)v∗tAvt − v∗tAvte
iyRt

2(1−s)Rt
2)

− v∗tAvtPeiyR
t
2(1−s) + eiyR

t
2(1−s)Pv∗tAvt

))
ds

6



One have that given f a continuous function, X and Y such that XP = X and PY = Y , then

τkn
(
(f(Rt

1)Pu∗
tAut − u∗

tAutPf(Rt
1))X

)
= τkn

(
Xf(Rt

1)Pu∗
tAut(1 − P )

)
,

τkn
(
(f(Rt

1)Pu∗
tAut − u∗

tAutPf(Rt
1))Y

)
= τkn

(
(P − 1)u∗

tAutPf(Rt
1)Y

)
.

Since the norm of A,P, 1 − P and ut are smaller than 1, we finally get that for any t,

∣∣∣τkn
(
D ◦ δ1 ◦ D

(
eiyPU∗AUP

)
(ut, u

∗
t , A, P ) ⊠ D ◦ δ2 ◦ D

(
eiyPU∗AUP

)
(vt, v

∗
t , A, P )

)∣∣∣

≤ 4y2
∫ 1

0

s|y|(1 + |y|(1− s)) + (1 + |y|s)(|y|(1 − s) + 1)ds

= 4y2 + 6|y|3 + 4

3
y4.

Thanks to Proposition 3.3 from [15], we get that

∣∣∣τ
(
eiyPu∗

TAuT P
)
− τ
(
eiyPu∗AuP

)∣∣∣

=

∣∣∣∣y
∫ 1

0

τ
(
eisyPu∗

TAuTPP (u∗
TAuT − ũ∗

TAũT )P ei(1−s)yP ũ∗
TAũTP

)
ds

∣∣∣∣

≤ 8e2πe−T/2|y|.

Consequently, if the support of f and the spectrum of Pu∗AuP are disjoint, then τ
(
f(P u∗ A⊗In u P )

)
=

0, and

∣∣∣∣E
[
1

kn
Trkn

(
f(P U∗ A⊗ In U P )

)]∣∣∣∣ (9)

≤ 8e2πe−T/2

∫
|y| d|µ|(y) +

(
T

kn

)2 ∫
y2 +

3

2
|y|3 + 1

3
y4 d|µ|(y).

Let g be a C6 function which takes value 0 on (−∞, 0] and value 1 on [1,∞), and in [0, 1] otherwise. We
set fε : t 7→ g(2ε−1(t− α) − 1)g(2ε−1(1− t) + 1) with α = ‖A‖(t). Then the support of f is included in

[‖A‖(t) ,∞), whereas the spectrum of Pu∗AuP is bounded by ‖Pu∗AuP‖ = ‖A‖d(kn)−1 ≤ ‖A‖(t) since

d ≤ tkn. Hence fε satisfies (9). Setting h : t 7→ g(t− 2ε−1α− 1)g(2ε−1+1− t), we have with convention

f̂(x) = (2π)−1
∫
R
f(y)e−ixydy, for 0 ≤ k ≤ 4 and any β > 0,

∫
|y|k|f̂ε(y)| dy =

1

2π

∫
|y|k

∣∣∣∣
∫

g(2ε−1(t− α)− 1)g(2ε−1(1− t) + 1)e−iyt dt

∣∣∣∣ dy

=
1

2π

∫
|y|k

∣∣∣∣
∫

h(βt)e−iyεβt/2 εβ

2
dt

∣∣∣∣ dy

=
1

2π
2kε−kβ−k

∫
|y|k

∣∣∣∣
∫

h(βt)e−iyt dt

∣∣∣∣ dy

≤ 1

2π
2kε−k

∫
1

1 + y2
dy

∫
(|h(k)(βt)|+ β2|h(k+2)(βt)|) dt

≤ 2k−1ε−k
(
β−1

∥∥∥g(k)
∥∥∥
∞

+ β
∥∥∥g(k+2)

∥∥∥
∞

)
.

In the last line we used the fact that we can always assume that α+ε ≤ 1 (otherwise P(‖P ∗
nU

∗ · A⊗ In · UPn‖
≥ ‖A‖(t) + ε) = 0 and there is no need to do any computation) and thus that the support of t 7→ g(t−

2ε−1α−1) and the derivative of t 7→ g(2ε−1+1−t) are disjoint. Thus by fixing β =
√∥∥g(k)

∥∥
∞
∥∥g(k+2)

∥∥−1

∞
we get

∫
|y|k|f̂ε(y)| dy ≤ 2kε−k

√∥∥g(k)
∥∥
∞
∥∥g(k+2)

∥∥
∞ .
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Consequently, since fε satisfies (7) with dµ(y) = f̂ε(y)dy, by using (9) we get

∣∣∣∣E
[
1

kn
Trkn

(
fε(P U∗ A⊗ In U P )

)]∣∣∣∣

≤ 16e2πe−T/2
√∥∥g(1)

∥∥
∞
∥∥g(3)

∥∥
∞ε−1 +

(
T

kn

)2

4ε−2
√∥∥g(2)

∥∥
∞
∥∥g(4)

∥∥
∞

+

(
T

kn

)2

12ε−3
√∥∥g(3)

∥∥
∞
∥∥g(5)

∥∥
∞ +

(
T

kn

)2
16

3
ε−4
√∥∥g(4)

∥∥
∞
∥∥g(6)

∥∥
∞.

Combined with Lemma 3.4 and fixing T = 4 ln(kn), we get

∣∣∣∣E
[
1

kn
Trkn

(
fε(P U∗ A⊗ In U P )

)]∣∣∣∣

≤ 2
15
2 e2π

ε−1

(kn)2
+ 225/2

(
ln(kn)

kn

)2

ε−2 + 3× 233/2
(
ln(kn)

kn

)2

ε−3 +
247/2

3

(
ln(kn)

kn

)2

ε−4.

Since for any n, almost surely ‖P ∗
nU

∗ ·A⊗ In · UPn‖ ≤ 1, we have

P

(
‖P ∗

nU
∗A⊗ InUPn‖ ≥ ‖A‖(t) + ε

)
= P

(
∃λ ∈ σ(PU∗A⊗ InUP ), fε(λ) = 1

)

≤ P

(
Trkn

(
fε(P

∗U∗A⊗ InUP )
)
≥ 1
)

≤ E

[
Trkn

(
fε(P U∗ A⊗ In U P )

)]

≤ 2
15
2 e2π

ε−1

kn
+

ln2(kn)

kn

(
225/2ε−2 + 3× 233/2ε−3 +

247/2

3
ε−4

)
.

One can always assume that ln2(kn) ≥ 1 since for small value of k and n, (6) is easily verified since the
right member of the inequality is larger than 1. One can also assume that ε < 1 since almost surely
‖P ∗

nU
∗A⊗ InUPn‖ ≤ 1. We get the conclusion by a numerical computation.

We can now refine this inequality by relying on corollary 4.4.28 of [16], we state the part that we will
be using in the next proposition.

Proposition 3.6. We set SUN = {X ∈ UN | det(X) = 1}, let f be a continuous, real-valued function
on UN . We assume that there exists a constant C such that for every X,Y ∈ UN ,

|f(X)− f(Y )| ≤ C ‖X − Y ‖2 (10)

Then if we set νG the law of the Haar measure on G, for all δ > 0:

νUN

(∣∣∣∣f(.)−
∫

f(Y.)dνSUN
(Y )

∣∣∣∣ ≥ δ

)
≤ 2e−

Nδ2

4C2 (11)

Lemma 3.7. For any A ∈ Dk, ε > 0, if kn ≥ 229 × ln2(kn)× ε−4, we have

P

(
‖P ∗

nU
∗ · A⊗ In · UPn‖ ≥ ‖A‖(t) + ε

)
≤ 2e−kn× ε2

64 .

Proof. We set,
f : U 7→ ‖P ∗

nU
∗A⊗ InUPn‖ ,

h : X ∈ Un 7→
∫

f(Y X)dνSUkn
(Y ).

If U1 is a random matrix of law νSUkn
, and α a scalar of law νU1 independent of U1. Then the law of αU1

is νUkn
since its law is invariant by multiplication by a unitary matrix. Consequently for any X ∈ Ukn,

8



h(X) = E[f(U1X)] = E[f(αU1X)] = E[f(αU1)] =

∫
f(Y )dνUkn

(Y ).

The third inequality is true since for any scalar α and X ∈ Ukn, f(X) = f(αX). Besides we also have
that for any U, V ∈ Ukn,

|f(U)− f(V )| ≤ 2 ‖U − V ‖ ≤ 2 ‖U − V ‖2 .
Thus by using Proposition 3.6, we get

P

(∣∣∣‖P ∗
nU

∗ · A⊗ In · UPn‖ − E

[
‖P ∗

nU
∗A⊗ InUPn‖

]∣∣∣ ≥ δ
)
≤ 2e−

knδ2

16 .

Besides if for x ∈ R, we denote x+ = max(0, x), then

P

(
‖P ∗

nU
∗A⊗ InUPn‖ ≥ ‖A‖(t) + ε

)

≤ P

(
‖P ∗

nU
∗A⊗ InUPn‖ − E [‖P ∗

nU
∗A⊗ InUPn‖] ≥ ε− E

[(
‖P ∗

nU
∗A⊗ InUPn‖ − ‖A‖(t)

)
+

])

≤ P

(∣∣∣‖P ∗
nU

∗A⊗ InUPn‖ − E

[
‖P ∗

nU
∗A⊗ InUPn‖

]∣∣∣ ≥ ε− E

[(
‖P ∗

nU
∗A⊗ InUPn‖ − ‖A‖(t)

)
+

])

≤ 2e
−kn

(
ε−E

[(
‖P∗

nU∗A⊗InUPn‖−‖A‖(t)

)
+

])2

/16

.

Besides thanks to our first estimate, i.e. Lemma 3.5, we get that for any r > 0,

E

[(
‖P ∗

nU
∗ ·A⊗ In · UPn‖ − ‖A‖(t)

)
+

]
≤ r + 221 × ln2(kn)

kn

∫ 1

r

3× α−4dα

≤ r + 221 × ln2(kn)

kn
r−3

And after fixing r =
(
221 × ln2(kn)

kn

)1/4
, we get that

E

[(
‖P ∗

nU
∗ · A⊗ In · UPn‖ − ‖A‖(t)

)
+

]
≤
(
225 × ln2(kn)

kn

)1/4

.

Hence if kn ≥ 229 × ln2(kn)× ε−4, we have

P

(
‖P ∗

nU
∗ · A⊗ In · UPn‖ ≥ ‖A‖(t) + ε

)
≤ 2e−kn× ε2

64 .

We can finally prove Theorem 2.2 by using the former lemma in combination with Lemma 3.3.

Proof of Theorem 2.2. If we set u =
√
2ε

3k2 , then with Su = {uM | M ∈ Mk(C)sa, ∀i ≥ j, ℜ(mi,j) ∈{
N+ 1

2

}
∩ [0, ⌈u−1⌉], ∀i > j, ℑ(mi,j) ∈

{
N+ 1

2

}
∩ [0, ⌈u−1⌉] }, Lemma 3.3 tells us that

P (Kn,k,t 6⊂ Kk,t + ε) ≤
∑

M∈Su

P

(
‖P ∗

nU
∗(PDk

M ⊗ In)UPn‖ > ‖PDk
M‖(t) +

ε

3k

)
.

But thanks to Lemma 3.7, we know that for any A ∈ Dk, if n ≥ 34 × 229 × ln2(kn)× k3ε−4, then

P

(
‖P ∗

nU
∗A⊗ InUPn‖ ≥ ‖A‖(t) +

ε

3k

)
≤ 2e−

n
k
× ε2

576 .

Thus since the cardinal of Su can be bounded by (u−1+1)k
2

, we get that for n ≥ 34×229× ln2(kn)×
k3ε−4,

P (Kn,k,t 6⊂ Kk,t + ε) ≤ 2(u−1 + 1)k
2

e−
n
k
× ε2

576 ≤ ek
2(ln(3k2ε−1))−n

k
× ε2

576 .

9



4 Application to Quantum Information Theory

4.1 Preliminaries on entropy

For X ∈ D(H), its von Neumann entropy is defined by functional calculus by H(X) = −Tr(X lnX),
where 0 ln 0 is assumed by continuity to be zero. In other words, H(X) =

∑
λ∈spec(X) −λ lnλ where the

sum is counted with multiplicity. A quantum channel Φ : B(H1) → B(H2) is a completely positive trace
preserving linear map. The Minimum Output Entropy (MOE) of Φ is

Hmin(Φ) = min
X∈D(H1)

H(Φ(X)). (12)

During the last decade, a crucial problem in Quantum Information Theory was to determine whether
one can find two quantum channels

Φi : B(Hji ) → B(Hki
), i = {1, 2},

such that
Hmin(Φ1 ⊗ Φ2) < Hmin(Φ1) +Hmin(Φ2).

Let e1 = (1, 0, . . . , 0) ∈ Rk and let

x∗
t =


||e1||t,

1− ||e1||t
k − 1

, . . . ,
1− ||e1||t
k − 1︸ ︷︷ ︸

k−1 times


 . (13)

If we view x∗
t as a diagonal matrix, then it can be easily checked that x∗

t ∈ Kk,t, and the following is the
main result of [4]:

Theorem 4.1. For any p > 1, the maximum of the lp norm on Kk,t is reached at the point x∗
t .

By letting p → 1 it implies that the minimum of the entropy on Kk,t is reached at the point x∗
t and

this is what we will be using. For the sake of making actual computation, it will be useful to recall the
value of ||e1||t. For this, we use the following notation:

(1j0k−j) = (1, 1, . . . , 1︸ ︷︷ ︸
j times

, 0, 0, . . . , 0︸ ︷︷ ︸
k−j times

) ∈ R
k, (14)

and 1k = (1k00). It was proved in the early days of free probability theory (see [17]) that for j =
1, 2, . . . , k, one has

∥∥(1j0k−j)
∥∥
(t)

= φ(u, t) =

{
t+ u− 2tu+ 2

√
tu(1− t)(1 − u) if t+ u < 1,

1 if t+ u ≥ 1,

where u = j/k.

4.2 Corollary of the main result

The following is a direct consequence of the main theorem in terms of possible entropies of the output
set.

Theorem 4.2. With Sn,k,t = minA∈Kn,k,t
H(A) = Hmin(Φn) and Sk,t = minA∈Kk,t

H(A), if we assume
d ≤ tkn, then for n ≥ 34 × 229 × ln2(kn)× k3ε−4 where 0 < ε ≤ e−1,

P

(
Sn,k,t ≤ Sk,t − 3kε| ln(ε)|

)
≤ ek

2(ln(3k2ε−1))−n
k
× ε2

576 .
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Proof. Let A,B ∈ Dk such that ‖A−B‖2 ≤ ε with ‖M‖2 =
√
Trk(M∗M), with eigenvalues (λi)i and

(µi)i. Then with x̃ = max{ε, x},
∣∣∣|Trk(A ln(A))| − |Trk(B ln(B))|

∣∣∣ =
∣∣∣
∑

i

λi ln(λi)−
∑

i

µi ln(µi)
∣∣∣

≤ 2k sup
x∈[0,ε]

|x ln(x)|+
∣∣∣
∑

i

λ̃i ln(λ̃i)−
∑

i

µ̃i ln(µ̃i)
∣∣∣

≤ 2kε| ln(ε)|+
∑

i

|λi − µi|| ln(ε)|

≤ 2kε| ln(ε)|+ k ‖A−B‖ | ln(ε)|
≤ 3kε| ln(ε)|

Thus if we endow Mk(C) with the norm M 7→
√
Trk(M∗M), then if Kn,k,t ⊂ Kk,t + ε, then Sn,k,t ≥

minA∈Kk,t+ε |Trk(A ln(A))| ≥ Sk,t − 3kε| ln(ε)|. Hence

P

(
Sn,k,t ≤ Sk,t − 3kε| ln(ε)|

)
≤ P (Kn,k,t 6⊂ Kk,t + ε) .

Theorem 2.2 then allows us to conclude.

4.3 Application to violation of the Minimum Output Entropy of Quantum

Channels

In order to obtain violations for the additivity relation of the minimum output entropy, one needs to
obtain upper bounds for the quantity Hmin(Φ ⊗ Ψ) for some quantum channels Φ and Ψ. The idea of
using conjugate channels (Ψ = Φ̄) and bounding the minimum output entropy by the value of the entropy
at the Bell state dates back to Werner, Winter and others (we refer to [13] for references). To date, it
has been proven to be the most successful method of tackling the additivity problem. The following
inequality is elementary and lies at the heart of the method

Hmin(Φ⊗ Φ̄) ≤ H([Φ⊗ Φ̄](Ed)), (15)

where Ed is the maximally entangled state over the input space (Cd)⊗2. More precisely, Ed is the
projection on the Bell vector

Belld =
1√
d

d∑

i=1

ei ⊗ ei, (16)

where {ei}di=1 is a fixed basis of Cd.
For random quantum channels Φ = Φn, the random output matrix [Φn ⊗ Φ̄n](Ed) was thoroughly

studied in [5] in the regime d ∼ tkn; we recall here one of the main results of that paper. There, it
was proved that almost surely, as n tends to infinity, the random matrix [Φn ⊗ Φ̄n](Etkn) ∈ Mk2(C) has
eigenvalues

γ∗
t =


t+

1− t

k2
,
1− t

k2
, . . . ,

1− t

k2︸ ︷︷ ︸
k2−1 times


 . (17)

This result improves on a bound [13] via linear algebra techniques, which states that the largest eigenvalue
of the random matrix [Φn⊗Φ̄n](Ed) is at least d/(kn) ∼ t. Although it might be possible to work directly
with the bound provided by (17) with additional probabilistic consideration, for the sake of concreteness
we will work with the bound of [13]. Thus if the largest eigenvalue of [Φn ⊗ Φ̄n](Ed) is d/(kn), since
Trk ⊗Trk([Φn ⊗ Φ̄n](Ed)) = 1, the entropy is maximized if we take the remaining k2 − 1 eigenvalues

equal to 1−d/(kn)
k2−1 , thus it follows that

Hmin(Φ⊗ Φ̄) ≤ H([Φ⊗ Φ̄](Ed)) ≤ H




d

kn
,
1− d

kn

k2 − 1
, . . . ,

1− d
kn

k2 − 1︸ ︷︷ ︸
k2−1 times



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Therefore, it is enough to find n, k, d, t such that

− d

kn
log

(
d

kn

)
−
(
1− d

kn

)
log

[(
1− d

kn

)
/(k2 − 1)

]
< 2H(x∗

t ). (18)

In [4] it was proved with the assistance of a computer that this can be done for any k ≥ 184, as long
as we take t around 1/10, see figure 1 from [4]. However for k large enough, the difference between the
right and left term of (18) is maximal for t = 1/2. As soon as we take ε such that 3kε| ln(ε)| is less than
the difference, we are done. For example, we obtain the following theorem

Theorem 4.3. For the following values (k, t, n) = (184, 1/10, 1052), (185, 1/10, 2×1051), (200, 1/10, 1047),
(500, 1/10, 4× 1045), (500, 1/2, 6 × 1044) violation of additivity is achieved with probability at least 1 −
exp(−1020).

Proof. We make sure to work with n a multiple of 10 so that we can set d = tkn, then since Hmin(Φn) =
Hmin(Φ̄n),

P

(
Hmin(Φn ⊗ Φ̄n) < Hmin(Φn) +Hmin(Φ̄n)

)

= P

(
Hmin(Φn ⊗ Φ̄n) < 2Hmin(Φn)

)

≤ P

(
− t log(t)− (1− t) log

[
(1− t)/(k2 − 1)

]
< 2Hmin(Φn)

)

= 1− P

(
Hmin(Φn) ≤ − t

2
log(t)− 1− t

2
log

(
1− t

k2 − 1

))

= 1− P (Sn,k,t ≤ Sk,t − δk,t) ,

with

δk,t =
t

2
log(t) +

1− t

2
log

(
1− t

k2 − 1

)
− ‖e1‖(t) log(‖e1‖(t))− (1− ‖e1‖(t)) log

(
1− ‖e1‖(t)

k − 1

)
.

Then we conclude with Theorem 4.2 to compute explicit parameters.

To conclude, since our bound is explicit, we solve the problem of supplying actual input dimensions
for any valid output dimension, for which the violation of MOE will occur. From a point of view of
theoretical probability, this is a step towards a large deviation principle. And although our bound is far
from optimal, our results presumably give the right speed of deviation. However conjecturing a complete
large deviation principle and a rate function seems to be beyond the scope of our techniques.
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