
HAL Id: ensl-03080768
https://ens-lyon.hal.science/ensl-03080768

Submitted on 21 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

On the overfly algorithm in deep learning of neural
networks

Alexei Tsygvintsev

To cite this version:
Alexei Tsygvintsev. On the overfly algorithm in deep learning of neural networks. Applied Mathe-
matics and Computation, 2019, 349, pp.348-358. �10.1016/j.amc.2018.12.055�. �ensl-03080768�

https://ens-lyon.hal.science/ensl-03080768
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

.

ON THE OVERFLY ALGORITHM IN DEEP LEARNING OF NEURAL
NETWORKS

ALEXEI TSYGVINTSEV

Abstract. In this paper we investigate the supervised backpropagation training of mul-

tilayer neural networks from a dynamical systems point of view. We discuss some links

with the qualitative theory of differential equations and introduce the overfly algorithm

to tackle the local minima problem. Our approach is based on the existence of first

integrals of the generalised gradient system with build–in dissipation.

1. Introduction. The dynamics of gradient flow. Neural networks and

backpropagation.

Let F : U → R be a smooth function in some open domain U ⊂ Rn. We equip U

with the topology induced by the standard Euclidean norm || · || defined by the canonical

scalar product < x, y >=
∑
xiyi. The gradient vector field defined in U by F is given by

V (x) = −∇F = −(∂F
∂x1
, . . . , ∂F

∂xn
)T , where x = (x1, . . . , xn)T are canonical coordinates in

U . The critical points of F are the solutions of V (x) = 0, x ∈ U . Let K be the set of all

critical points of F in U (which can be unbounded and/or contain non–isolated points).

The following theorem [10], [19] is a classical result describing the asymptotic behaviour

of solutions of the gradient differential system:

x′ = V (x), x ∈ U . (1.1)

Theorem 1.1. Let x0 ∈ U be the initial condition of (1.1). Then every solution t 7→ x(t),

x(0) = x0 either leaves all compact subsets of U or approaches as t→ +∞ the critical set

K i.e

lim
t→+∞

inf
y∈K
||x(t)− y|| = 0 . (1.2)

In particular, at regular points, the trajectories of (1.1) cross the level surfaces of F

orthogonally and isolated minima of F (which is a Lyapunov function [14]) are asymp-

totically equilibrium points.

Under the additional analyticity condition the above convergence result can be made

stronger:

Key words and phrases. deep learning, neural networks, dynamical systems, gradient descent.

1

© 2018 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0096300318311160
Manuscript_1a6b86d450787961f8f60828183cc1c8

http://www.elsevier.com/open-access/userlicense/1.0/
https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0096300318311160
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S0096300318311160

2 ALEXEI TSYGVINTSEV

Theorem 1.2. (Absila,Kurdyka, [3]) Let F be real analytic in U . Then y ∈ K is a local

minimum of F iff it is asymptotically stable equilibrium point of (1.1).

It should be noticed that the gradient system (1.1) can not have any non–constant

periodic or recurrent solutions, homoclinic orbits or heteroclitic cycles. Thus, trajectories

of gradient dynamical systems have quite simple asymptotic behaviour.

Nevertheless, the localisation of basin of attraction of any equilibrium point (stable or

saddle one) belonging to K is a non trivial problem.

Supervised machine learning in multi–layered neural networks can be considered as

application of gradient descent method in a non–convex optimization problem. The cor-

responding cost (or error) functions are of the general form

E =
1

2

∑
(pi − f(W,Ai)2 , (1.3)

with data set (Ai, pi) and a certain highly non–linear function f containing the weights

W . The main problem of the machine learning is to minimize the cost function E with a

suitable choice of weights W . A gradient method, described above and called backpropa-

gation in the context of neural network training, can get stuck in local minima or take very

long time to run in order to optimize E. This is due to the fact that general properties

of the cost surface are usually unknown and only the trial and error numerical methods

are available (see [4], [12], [16], [9], [17], [18], [5])). No theoretical approach is known to

provide the exact initial weights in backpropagation with guaranteed convergence to the

global minima of E. One of most powerful techniques used in backpropagation is the

adaptive learning rate selection [8] where the step size of iterations is gradually raised in

order to escape a local minimum. Another approach is based on random initialization

[15] of weights in order to fortunately select them to be close to the values that give the

global minimum of the cost function. The deterministic approach, called global descent,

was proposed in [7] where optimization was formulated in terms of the flow of a special

deterministic dynamical system.

The present work seeks to integrate the ideas from the theory of ordinary differential

equations to enrich the theoretical framework and assist in better understanding the

nature of convergence in the training of multi–layered neural networks. The principal

contribution is to propose the natural extension of classical gradient descent method by

adding new degrees of freedom and reformulating the problem in the new extended phase

space of higher dimension. We argue that this brings a deeper insight into the convergence

problem since new equation become simpler algebraically and admit a family of known

first integrals. While this proposal may seem radical, we believe that it offers a number of

ON THE OVERFLY ALGORITHM IN DEEP LEARNING OF NEURAL NETWORKS 3

advantages on both theoretical and as numerical levels as our experiments clearly show.

Common sense suggests that embedding the dynamics of a gradient flow in a more general

phase space of a new more general dynamical system is always advantageous since it can

bring new possibilities to improve the convergence and escape local minima by embedding

the cost surface into the higher dimensional phase space.

The study is divided into three parts. In Section 2 we begin by reminding how the

gradient descent method is applied to train the simplest possible neural network with only

output layer. That corresponds to the conventional backpropagation algorithm known for

its simplicity and which is frequently used in deep learning. Next we introduce a natural

extension of the gradient system which is done by replacing the weights of individual

neurones within the output layer by their nonlinear outputs. That brings more complexity

to the iterative method, since the number of parameters rises considerably, but at the

same time, the training data becomes built up into network in a quite natural way. The

so obtained generalised gradient system is later converted to the observer one (see [6]).

The aim is to turn the constant level of known first integrals into the attractor set. We

will explain how the Euler iterative method, applied to the observer system, and called

overfly algorithm, is involved in achieving of convergence to the global minimum of the

cost function. Sections 3 and 4 discuss the applications of this algorithm in training of

1–layer and multilayer networks. The objective is to put forward an explanation of how

to expand the backpropagation algorithm to its overfly version via modifying the weights

updating procedure only for the first network’s layer. In Section 5 we provide concrete

numerical examples to illustrate the efficacy of the overfly algorithm in training of some

particular neural networks.

2. Neural network without hidden layers

In this section we give an elementary algebraic description of the simplest no hidden

layer neural network called also a perceptron (see [11]).

We define the sigmoid function

σ(t) =
1

1 + e−t
, t ∈ R , (2.1)

as a particular solution of the logistic algebraic differential equation:

σ′(t) = σ(t)(1− σ(t)) . (2.2)

In particular, σ : R→ (0, 1) is increasing and rapidly convergent map as t→ ±∞.

4 ALEXEI TSYGVINTSEV

Let X ∈ Rn and A ∈ Rn be two vectors called respectively weight and input ones . The

analytic map f : Rn → (0, 1) defined by

fX : A 7→ σ(< A,X >) , (2.3)

is called a no hidden layer neural network.

Let

(Ai, pi), 1 ≤ i ≤ N , (2.4)

be the training set of (2.3) containing N input data vectors Ai ∈ Rn and corresponding

scalar output values pi ∈ (0, 1). We want to determine the weight vector X so that the N

values fX(Ai) match outputs pi as better as possible. That can be achieved by minimising

the so called cost function

E(X) =
1

2

N∑
k=1

(pk − fX(Ak))2 , (2.5)

or, after the substitution of (2.3):

E(X) =
1

2

N∑
k=1

(pk − σ(< Ak, X >))2 . (2.6)

In general, E : Rn → (0, 1) is not coercive and not necessarily convex map.

To apply the gradient descent method one considers the following system of differential

equations

X ′ = −∇E(X) . (2.7)

Since E is always decreasing along the trajectories of (2.7), it is natural to solve it starting

from some initial point X0 ∈ Rn and use X(t), X(0) = X0 to minimise E. The solution

X can converge (in the ideal case) to the global minimum of E or, in the less favourable

case, ||X(t)|| → +∞ or X converges to local minima or saddle points.

The backpropagation method [11] for a neural network can be viewed as the Euler

numerical method [13] of solving of a gradient system (2.7).

Here one approximates the time derivative by its discrete version

X ′(t) ≈ X(t+ h)−X(t)

h
, (2.8)

for some small step h > 0 so that the approximative solution of (2.7) X̄k ≈ X(tk) at time

tk = kh can be obtained by iterations:

X̄k+1 = X̄k − h∇E(X̄k), X̄0 = X0, k ≥ 0 . (2.9)

We write (2.7) in a more simple algebraic form by introducing the additional variables

Mi = σ(< Ai, X >), i = 1, . . . , N , (2.10)

ON THE OVERFLY ALGORITHM IN DEEP LEARNING OF NEURAL NETWORKS 5

representing the nonlinear outputs of the network for N given inputs Ai of the training

set. Using the equations (2.7) to compute the derivatives M ′
i , one obtains the following

system of N differential equations

M ′
i = Mi(1−Mi)

N∑
j=1

(pj −Mj)Mj(1−Mj)Gi,j , (2.11)

with G = Gi,j =< Ai, Aj > – the N × N symmetric Gram matrix. We call (2.11) the

generalised gradient system.

Let D be n×N matrix defined by D = (A1, . . . , AN). Then G = DTD and, as known

from the elementary linear algebra: rank(G) = rank(D) and Ker(G) = Ker(D). Since

the number of training vectors N usually exceeds the total number of weights n of the

network, we can assume that N > n.

Thus, since rank(G) ≤ n, we have dim(Ker(G)) ≥ N − n > 0.

Let C = (C1, . . . , CN)T ∈ Ker(G) be a non–zero vector from the null space of G and

IN = (0, 1)N = (0, 1)×· · ·×(0, 1) ⊂ RN . As seen from the equations (2.11), IN is invariant

under the flow of the system. Indeed, Mi = 0 and Mi = 1 are invariant hypersurfaces.

Theorem 2.1. The function

IC =
N∑
k=1

Ck ln

(
Mk

1−Mk

)
, M = (M1, . . . ,MN)T ∈ IN , (2.12)

is a real analytic first integral of the system (2.11).

There exists p = N − dim(Ker(D)) > 0 functionally independent first integrals of the

above form.

Proof. The first statement can be checked straightforwardly by derivation of (2.12) using

(2.11). We notice that if 0 < Mi < 1 then Mi/(1 −Mi) > 0. Thus, one has the real

analyticity property of IC . The linearity and functional independency of IC , C ∈ Ker(D)

follow directly from the definition (2.12). �

In the rest of the paper we will always assume that rank(D) = n i.e the set D contains

sufficiently many independent vectors.

Let C1, . . . , Cp, p = N − n be the basis of Ker(D). Using the vector notation

F (M) =

(
ln

(
M1

1−M1

)
, . . . , ln

(
MN

1−MN

))T
, M = (M1, . . . ,MN)T , (2.13)

the family of the first integrals given by Theorem 2.1 can be written simply as

ICi(M) =< Ci, F (M) >, i = 1, . . . , p . (2.14)

6 ALEXEI TSYGVINTSEV

Let H : IN → Rp , IN = (0, 1)N = (0, 1)× · · · × (0, 1) ⊂ RN be the map defined by

H(M) = (IC1(M), . . . , ICp(M))T . (2.15)

Lemma 2.1. H : IN → Rp is a submersion.

Proof. This follows directly from the fact that C1, . . . , Cp are linearly independent vectors

and (2.14). �

Thus, for all y ∈ Rp the set Γy = IN ∩ H−1(y) is a n–dimensional invariant manifold

for the system (2.11).

Lemma 2.2. Γ0 is diffeomorphic to Rn.

Proof. Let X ∈ Rn. We define the map Φ : Rn → RN by

Φ(X) = (σ(< A1, X >), . . . , σ(< AN , X >)T . (2.16)

Then, ICi(Φ(X)) =
N∑
j=1

Cij < Aj, X >=<
N∑
j=1

Cij A
j, X >= 0 and so Φ : Rn → Γ0.

To show that φ is invertible, let us fix M ∈ Γ0. Since σ : R→ (0, 1) is one to one, there

exists unique vector Z = (Z1, . . . , ZN)T ∈ RN , such that Mi = σ(Zi), for i = 1, . . . , N

and

< Ci, Z >= 0, i = 1, . . . , p , (2.17)

because F (M) = Z by substitution into (2.13).

We are looking now for the solution X ∈ Rn of the linear system < Ai, X >= Zi,

i = 1, . . . , N which can be written in the vector form as ATX = Z . The linear map

φ : Rn → RN , φ(X) = ATX has rank(φ) = n. Moreover, Im(φ) = Ker(D)⊥ where

orthogonality is defined by the scalar product <,>. Indeed, Im(φ) ⊂ Ker(D)⊥, by the

direct verification, and dim(Im(φ)) = dim(Ker(D)⊥) by the rank–nullity theorem. Hence,

the map φ : Rn → Ker(D⊥) is a linear bijection and the linear equation ATX = Z ⇐⇒
φ(X) = Z admits the unique solution X since Z ∈ Ker(D)⊥ as follows from (2.17). The

proof is done. �

The system (2.11) can be written in the vector form as M ′ = V (M) where V is a

complete in IN vector field (IN is a bounded open invariant set). Let ε > 0 and

Uε = {M ∈ IN : r(M) = ||H(M)|| ≤ ε} , (2.18)

be the ε–neighbourhood of Γ0. Together with (2.11), consider the following observer

system

M ′ = W (M) = V (M) + P (M), M ∈ IN , (2.19)

ON THE OVERFLY ALGORITHM IN DEEP LEARNING OF NEURAL NETWORKS 7

where

P (M) = −kΠ(M)R̃F (M), R̃ = ΘR−1Θt, R = ΘtΘ . (2.20)

. Here, Θ = (C1, . . . , Cp), Θ ∈Mp,N(R) and

Π(M) = diag (M1(1−M1), . . . ,MN(1−MN)) . (2.21)

The matrix R is invertible and positive definite since rank(Θ) = N − n . Thus, the

vector field P is well defined in IN .

Theorem 2.2. Let M0 ∈ IN and t→M(t) be the solution of the observer system (2.19)

with the initial condition M(0) = M0. Then

r(M(t)) = r(M0)e−kt, t ≥ 0 , (2.22)

with r defined in (2.18). In particular lim
t→+∞

r(M(t)) = 0 and Uε is invariant set containing

Γ0 as attractor.

Proof. Firstly, we write the H introduced in (2.15) in the compact matrix form

H(M) = ΘtF (M) .

We follow now the idea of the proof of Main Lemma from [6], p. 377. and derive r2 with

respect to time along the solution of (2.19) to obtain a simple differential equation:

dr2(M(t))

dt
= −2kr2(M(t)), r2(M(0)) = r(M0) , (2.23)

which can be easily solved to get (2.22). �

We notice that our choice of the term P in (2.19) is different from one proposed in [6].

Lemma 2.3. The function

E(M) =
1

2

N∑
i=1

(pi −Mi)
2 , (2.24)

is a Lyapunov one and verifies
dE(M(t))

dt
≤ 0 for every solution t 7→ M(t), M(0) ∈ IN

of (2.11).

Proof. It is sufficient to derive L and to use the positiveness of the Gram matrix G =

DTD. �

Now we shall explain the role of the observer system (2.19) in the problem of minimi-

sation of the cost function (2.5).

Firstly, while using the standard gradient descent method, instead of dealing with the

system (2.7), one can solve the observer equations (2.19) with some initial condition

8 ALEXEI TSYGVINTSEV

M(0) ∈ Γ0 and use then Lemma 2.2 to compute X as corresponding to M(t) for some

sufficiently large t > 0. It is well known that applying the Euler method (2.8) to solve

(2.7), i.e following the conventional backpropagation algorithm, leads to accumulation of

a global error proportional to the step size h. At the same time, the numerical integration

of the observer system (2.19), as due to the existence of the attractor set Γ0, is much more

stable numerically since the solution is attracted by the integral manifold Γ0 (see [6] for

more details and examples).

Second improvement brought by the observer system (2.19) is more promising. Imagine

we start integration of (2.19) with the perturbed initial condition M(0) ∈ Uε, M(0) 6∈ Γ0

for some ε > 0. Then, according to Theorem 2.2, M(t) → Γ0, t → +∞ and as follows

from Lemma 2.3, t 7→ E(M(t)) will be decreasing function of t > 0 in a neighbourhood

of Γ0 since P = 0 on Γ0. That can be seen as a coexistence of the local dynamics of the

observer system in Uε, pushing M to the equilibrium point Mi = pi, i = 1, . . . , N of (2.7)

and the dynamics of the gradient system (2.7) on Γ0 forcing M to approach the critical

points set (see Figure 3).

One can suggest that this kind of double dynamics increases considerably the chances

of convergence to the global minimum of the cost function (2.5). We call overfly the

training of the neural network (2.3) done by solving the observer system (2.19) with help

of the Euler first–order method starting from some initial point M(0) ∈ Uε \ Γ0.

3. The 1–hidden layer network case

In this section we describe the generalised gradient system of differential equations

appearing in the supervised backpropagation training of a 1–hidden layer network. As in

the previous section, let A ∈ Rn belongs to the training set (2.4). Let Y 1, . . . , Y m ∈ Rn

be m weight vectors of the hidden layer and X ∈ Rm is the weight vector of the output

layer.

The 1–hidden layer neural network is a real analytic map fY,X : Rn → (0, 1) defined

as follows

fY,X(A) = σ(< πY (A), X >) , (3.1)

where πY (A) = (σ(< A, Y 1 >), . . . , σ(< A, Y m >))T are the outputs of the first layer. We

want to minimise the same cost function

E(Y,X) =
1

2

N∑
i=1

(pi − fY,X(Ai))2 , (3.2)

where (Ai, pi), i = 1, . . . , N is the training set. To solve the optimisation problem one can

define the gradient system analogous to (2.7) with respect to the vector variables Y i and

ON THE OVERFLY ALGORITHM IN DEEP LEARNING OF NEURAL NETWORKS 9

X:

Y i′ = −∇Y iE, X ′ = −∇XE, 1 ≤ i ≤ m. (3.3)

Let us introduce the following scalar variables:

Ωjk = σ(< Aj, Y k >) . (3.4)

The function (3.2), expressed in new variables, takes the following form

E(Ω, X) =
1

2

N∑
i=1

(pi − σ(< Ωi, X >))2, Ωi = (Ωi1, . . . ,Ωim)T . (3.5)

The differential equations describing the generalised gradient system for the neural

network (3.1) are obtained by derivation of (3.4) with help of (3.3):
Ω′ik = mik(Ω, X) = Ωik(1− Ωik)Xk

N∑
j=1

(pj − ωj)ωj(1− ωj)Ωjk(1− Ωjk)Gij ,

X ′ = −∇XE =
N∑
i=1

(pi − ωi)ωi(1− ωi)Ωi, ωi = σ(< Ωi, X >) ,

(3.6)

where Gij =< Ai, Aj > is the Gram matrix defined by the training set (2.4).

The next theorem is a generalisation of Theorem 2.1. Let r = dim(Ker(G)) and

Ker(G) = Span(C1, . . . , Cr), Cj = (Cj1, . . . , Cjr)
T .

Theorem 3.1. The generalised gradient system (3.6) admits rm functionally independent

first integrals

ICj ,k(Ω) =
N∑
i=1

Cji ln

(
Ωik

1− Ωik

)
, 1 ≤ j ≤ r, 1 ≤ k ≤ m. (3.7)

The cost function E defined by (3.5) is a Lyapunov function for (3.6)

Proof. One verifies directly that ICj ,k is a first integral of (3.6) by simple derivation.

A rather tedious but elementary calculation shows that E(Ω(t), X(t))′ ≤ 0 along the

solutions of (3.6) (see also Theorem 4.1 for the general proof). �

The observer system, analogous to (2.19), written for the generalised gradient system

(3.6), can be obtained straightforwardly by replacing the first equation of (3.6) with

Ω′ = U(Ω, X) + P (Ω), X ′ = −∇XE, 1 ≤ i ≤ N, 1 ≤ k ≤ m, (3.8)

where the additional term P is defined in similar to (2.20) way with help of the first

integrals defined by Theorem 3.1.

Indeed, let K = (Kij)1≤i≤N,1≤j≤m and S = (Sij)1≤i≤N,1≤j≤m are two matrices defined

by

Kij = Ωij(1− Ωij), Sij = ln

(
Ωij

1− Ωij

)
. (3.9)

10 ALEXEI TSYGVINTSEV

To prove the result similar to Theorem 2.2 one can define P in (3.8) as follows

P = −kK ◦ (R̃S) , (3.10)

where the constant matrix R̃ is the same as in (2.20) and “◦” is the Kronecker matrix

product.

Indeed, the first integrals defined by (3.7) can be written in a matrix form: H(Ω) =

ΘtS(Ω). Then, deriving r2(Ω(t)) = ||H(Ω(t))||22, where || · ||2 is the Frobenius matrix

norm, along a solution t 7→ Ω(t) of (3.8), one gets

dr2(Ω(t))

dt
= −2kr2(Ω(t)) , (3.11)

and so

r(Ω(t)) = r(Ω0)e−kt, t ≥ 0 . (3.12)

The practical implementation of the overfly algorithm in the 1–layer case is analogous

to one described in Section 2. Instead of modifying the weights of the first layer Y i at

every step of the gradient descent, one updates the values of Ωik and X applying the

Euler method to solve the observer equations (3.8).

For the sake of simplicity, we will provide below the explicit matrix form of the system

(3.8) which is better adopted to numerical implementations. We introduce the following

diagonal matrices:

P̂ω = diag((p1 − ω1)ω1(1− ω1), . . . , (pN − ωN)ωN(1− ωN)) ,

X̂ = diag(X1, . . . , Xm) ,
(3.13)

and the N–vector

Pω = ((p1 − ω1)ω1(1− ω1), . . . , (pN − ωN)ωN(1− ωN))T . (3.14)

Let X = (X1, . . . , Xm)t be the m–vector of the output layer. The observer system (3.8)

can be written in the following compact form{
Ω′ = K ◦ (GP̂ωKX̂ − kR̃S)

X ′ = ΩTPω ,
(3.15)

where K = Ω− Ω ◦ Ω.

4. General multilayer case

We want to analyse a general multilayer neuronal network with the architecture n −
l − · · · − 1. Here n is a number of inputs and l is the number of neurones in the very

first layer. The network has only one output and in every layer the same sigmoid function

(2.1) is used. The training set is defined by (2.4). Let Y i ∈ Rn, 1 ≤ i ≤ l be the weight

ON THE OVERFLY ALGORITHM IN DEEP LEARNING OF NEURAL NETWORKS 11

vectors of l neurones of the first layer. We note Z the weights of other network’s layers.

Let A ∈ Rn be the input vector. The generic multilayer neural network can be written as

the composition of two maps:

fY,Z(A) = ΦZ ◦ πY (A) , (4.1)

where ΦZ : Rl → (0, 1), π = (π1, . . . , πl)
T ΦZ7−−→ ΦZ(π) is defined jointly by all layers

different from the first one and

πY (A) = (σ(< A, Y 1 >), . . . , σ(< A, Y l >))T , (4.2)

is the output vector of the first layer.

Using the chain rule one obtains for every k = 1, . . . , l:

∂fY,Z
∂Yki

=

〈
∇ΦZ ,

∂πY
∂Yki

〉
, i = 1, . . . , n , (4.3)

where, according to (4.2),

∂πY
∂Yki

= σ(< A, Y k >)(1− σ(< A, Y k >))(0, . . . , Ai︸ ︷︷ ︸
k

, . . . , 0)T . (4.4)

Thus, combining together (4.3),(4.4) we obtain:

∂fY,Z
∂Yki

= σ(< A, Y k >)(1− σ(< A, Y k >))Ai
∂ΦZ

∂πk
. (4.5)

We can compute now the partial derivatives of the cost function

E(Y, Z) =
1

2

N∑
j=1

(pj − fY,Z(Aj))2 , (4.6)

with respect to the weights of the first layer:

∂E

∂Y k
= −

N∑
j=1

(pj − fY,Z(Aj))σ(< Aj, Y k >)(1− σ(< Aj, Y k >))
∂ΦZ

∂πk
(πY (Aj))Aj . (4.7)

The equation of the gradient system corresponding to the weight vector Y k can be written

as

Y k ′ = −∇Y k E = − ∂E

∂Y k
. (4.8)

Introducing the variables

Ωpk = σ(< Ap, Y k >) , (4.9)

called the splitting weights, and whose derivatives can be found with help of (4.8), we

deduce from (4.7) the following differential equations

Ω′pk = Ωpk(1− Ωpk)
N∑
i=1

(pi − ΦZ(Ωi))Ωik(1− Ωik)
∂ΦZ

∂πk
(Ωi)Gip , (4.10)

12 ALEXEI TSYGVINTSEV

where Ωi = (Ωi1, . . . ,Ωil)
T .

The above equations can be written also as

Ω′pk = Npk(Ω, Z), 1 ≤ p ≤ N, 1 ≤ k ≤ l . (4.11)

Indeed, fY,Z(Aj) and
∂ΦZ

∂πk
(πY (Aj)) are functions of Ω and Z only. Moreover, the same

holds for the cost function E defined in (4.6) and its gradient ∇ZE = ∂E/∂Z: they can

be written as functions of variables Ω and Z.

Let r = dim(Ker(G)) be the dimension of the null space of the Gram matrix Gi,j =<

Ai, Aj > and Ker(G) = Span(C1, . . . , Cr). We note Ci = (Ci1, . . . , CiN)T .

Theorem 4.1. Let

Ω′ = N(Ω, Z), Z ′ = −∇ZE(Ω, Z) , (4.12)

be the generalised gradient system written for the multilayer network (4.1) with the training

set (Ai, pi), i = 1, . . . , N . Then (4.12) admits rl independent first integrals of the form

ICj ,k(Ω) =
N∑
i=1

Cji ln

(
Ωik

1− Ωik

)
, Ωik = σ(< Ai, Y k >) . (4.13)

The cost function (4.6) E = E(Ω, Z) is a Lyapunov function for (4.12).

Proof. It is straightforward to verify that ICj ,k are functionally independent first integrals

of (4.12). Accordingly to (4.1), (4.2) and (4.9), the cost function (4.6), written in variables

Ω, Z, is given by

E(Ω, Z) =
1

2

N∑
i=1

(pi − ΦZ(Ωi))2, Ωi = (Ωi1, . . . ,Ωil)
T , (4.14)

in view of (4.3),(4.2) and (4.9). Let t 7→ (Ω(t), Z(t)) be a solution of (4.12). Then

d

dt
E(Ω(t), Z(t)) =

〈
∂E

∂Ω
, N

〉
Ω

−
〈
∂E

∂Z
,∇ZE

〉
Z

=

〈
∂E

∂Ω
, N

〉
Ω

− ||∇ZE||2Z , (4.15)

where <,>Ω, <,>Z are the standard scalar products defined respectively in spaces Ra

and Rb where a = pl is the total number of splitting weights Ωpk and b is the total number

of weights Z of the neural network (4.1). One writes with help of (4.11):〈
∂E

∂Ω
, N

〉
Ω

= −
N∑
i=1

l∑
k=1

∂E

∂Ωik

Nik = −
l∑

k=1

(
N∑
i=1

Tik

N∑
j=1

GijTjk

)
, (4.16)

where Tik = (pi − ΦZ(Ωi))
∂ΦZ

∂πk
(Ωi)Ωik(1 − Ωik). Since Gij is a positive matrix, the last

equality implies
〈
∂E
∂Ω
, N
〉

Ω
≤ 0. Together with (4.15) this yields that E is a Lyapunov

function of (4.12). �

ON THE OVERFLY ALGORITHM IN DEEP LEARNING OF NEURAL NETWORKS 13

The observer system, defined by analogy with (2.19) for the generalised gradient system

(4.12), can be written in the following form

Ω′ = N(Ω, Z) + P (Ω), Z ′ = −∇ZE(Ω, Z) , (4.17)

where the vector field P , called the dissipation term, is defined by the first integrals (4.13)

and given by the same formula (3.10).

The overfly algorithm for neural network training, already described in previous sec-

tions, can be easily adopted to the general multilayer case. The only difference from

the conventional backpropagation applied to the network (4.1), consists in replacing the

weights of the first layer Yij by the splitting weights Ωpk, while keeping updating the

weights Z of other layers accordingly to the usual bacpropagation algorithm. At each

iteration step, the evolution of parameters Ωpk, Z is governed by the Euler discretisation

of the observer system (4.17).

5. Conclusion and numerical results

In this section we compare the usual backpropagation and the overfly methods for some

particular neural networks. We start by a simple no hidden layer case (2.3).

We put n = 1 and X = x ∈ R. Let N = 5 and the input input values are defined by

T = [79/100,−9/20, 7/10,−9/50,−19/25] , (5.1)

with the corresponding output vector p:

p = [−1/20,−21/25,−11/100, 61/100,−83/100] . (5.2)

The couple (T, p) defines the training set (2.4).

Analysing the equation E ′(x) = 0, with E defined in (2.5), one calculates, with help

of Maple’s 10 RootFinding routine, two local minima A and B (see Figure1) of the cost

function E in points xA = 2.510, E(xA) = 1.967 and xB = 6.067, E(xB) = 1.966 with B

being the global minimum of E.

The gradient system (2.7) was solved using the Euler method (2.9) with h = 1 with

the initial point x(0) = 3. After d = 3000 iterations one obtains x = xd = 2.510 with

E(xd) = 1.967 and the backpropagation network converges to the local minimum A.

To calculate the vector M(0), corresponding to x(0), one can apply Lemma 2.2 to find

M(0) = [0.879, 0.244, 0.853, 0.389, 0.129]T (5.3)

14 ALEXEI TSYGVINTSEV

Now, following the overfly approach, we consider the observer system (2.19) with k =

0.002 and initial conditions M(0) + M̃ with the perturbation vector M̃ defined by

M̃ = [0.01, 0.01, 0.01, 0.01, 0.01]T . (5.4)

The Euler method, applied to (2.19) with h = 1 provides after δ = 3000 iterations the

value x = x̃δ = 6.085 with E(x̃δ) = 1.966. Since, x̃δ is sufficiently close to xB we conclude

that the overfly network converges to the global minimum B rather than to the local one

A. So, the benefits of the overfly training are immediately visible.

We have tested numerically the overfly method for a 4− 2− 1 neural network (3.1). It

has 4 inputs and 1 hidden layer with 2 neurones (n = 4,m = 2). Both hidden and output

layer have biases. The input data set has N = 10 entries arranged into the following

4× 10 matrix A = [A1 . . . , A10] :

A =

0.234 −0.316 −0.746 0.064 0.124 0.894 −0.786 −0.076 1.044 −0.436

−0.385 −0.835 0.015 0.365 −0.935 0.135 0.335 0.505 0.495 0.305

0.764 0.594 0.684 −0.946 0.024 −0.196 −0.596 0.534 −0.436 −0.426

−1.014 −0.074 0.346 0.876 −0.354 −0.184 −0.174 −0.254 0.266 0.566

 (5.5)

The columns of A were chosen randomly and have zero mean. The output target vector

p ∈ R10 is of the form

[0.301, 0.30001, 0.30002, 0.30013, 0.30004, 0.30005, 0.30006, 0.30007, 0.30008, 0.30009] , (5.6)

and corresponds to a highly deviated data set. In particular:

p1 − p2

p3 − p2
= 99 and

p6 − p5

p5 − p4
= 1 . (5.7)

Firstly, the standard 4− 2− 1 neural network (3.1) was trained on the above data set using

usual backpropagation method (BM) with randomly chosen in the interval [−1, 1] weights Y

and X. The number of iterations was d = 1500 with the step size h = 0.1.

Then, the overfly algorithm was applied, as described in Section 3, with randomly chosen

initial splitting weights Ωij ∈ (0, 1), same X and the dissipation parameter k = 0.01. The

observer system (3.15) was solved by Euler method with the same step size h = 0.1 and using

the same iteration number d = 1500. At each iteration we computed the cost function value

for both methods: using the formula (3.2) for BM and the expression (3.5) for the overfly

method (OM). The final cost value, after d iterations for BM, was EBM = 0.588 · 10−3 and for

OM it was EOM = 3.499 · 10−7 with the ratio EBM/EOM ≈ 146. Thus the overfly algorithm

significantly outperforms the conventional backpropagation for this particular problem. The

Figure 2 contains graphs of both cost functions in the logarithmic scale. We notice that our

example is quite generic one since our numerical experiments show that statistically OM gives

more precise results than BM for the large deviation output data sets.

ON THE OVERFLY ALGORITHM IN DEEP LEARNING OF NEURAL NETWORKS 15

We notice that there is an obvious resemblance between conventional backpropagation and

overfly approaches. Below we summarise briefly the principal steps of the proposed method.

Step 1: Splitting. Assuming that the training data (Ai, pi) is given, firstly, it is necessary to

compute the generating vectors of the null–space of the matrix D = (A1, . . . , AN) i.e determine

Ker(G). Secondly, one introduces Nl splitting weights (4.9) to replace nl weights of neurones of

the first layer. In practice, the number N of training examples can be considerably larger than

the input size of the network n, so the splitting brings more additional parameters to be stored

in the memory.

Step 2: Dissipation. Using the vectors spanning Ker(G) one creates a procedure computing

the dissipation term P defined by (2.20). The matrix inversion in (2.20) can be done, in the

beginning, using the conjugate gradient algorithm [2] i.e in an iterative way. Indeed, the matrix

R is symmetric and positive definite.

Step 3: Generalised gradient – observer: The first–order Euler iterative method is applied next

to solve the observer system (4.17). The optimal choice of the step h and the constant k depends

on the concrete problem. We suggest to run firstly the usual backpropagation (i.e choosing the

initial value Ω ∈ Γ0) and try to improve the result using several choices of initial values for

Ωik ∈ (0, 1) and of k > 0 in the overfly training. If k = 0 i.e then no dissipation term is present

and starting with Ω 6∈ Γ0 the method can provide only the approximation of the neural network

weights. But it is still worth trying: if initial values of Ω are sufficiently close to Γ0 they will stay

near Γ0 (first integrals (4.13) are conserved) and the algorithm’s complexity is greatly reduced

since no dissipation is added at every iteration (no need to compute P in (4.17) at every step).

Thus, the neural network can be trained in alternation with dissipation switched on and off. We

notice as well that the proposed method can be easily adopted to take into account biases by

introducing additional bias nodes.

Clearly, further research and more numerical evidences are necessary to confirm the benefits

of the overfly algorithm. The results of our study suggest a number of new avenues for research

and numerical experiments.

Acknowledgments. The study was supported by the PEPS project Sigmapad, Intelligence

Artificielle et Apprentissage Automatique.

References

[1] Atakulreka A., Sutivong D., Avoiding Local Minima in Feedforward Neural Networks by Simultaneous

Learning, Advances in Artificial Intelligence, Lecture Notes in Computer Science, vol 4830, 2007

[2] Avriel M., Nonlinear Programming: Analysis and Methods, Dover Publishing, 2003

[3] Absila P.-A., Kurdyka K., On the stable equilibrium points of gradient systems, Systems & Control

Letters Volume 55, Issue 7, July 2006, Pages 573-577

16 ALEXEI TSYGVINTSEV

[4] Brierton J. L., Techniques for avoiding local minima in gradient-descent-based ID algorithms, Proc.

SPIE 3066, Radar Sensor Technology II,1997

[5] Burse K., Manoria M., Kirar V.P.S., Improved Back Propagation Algorithm to Avoid Local Minima

in Multiplicative Neuron Model, Communications in Computer and Information Science, vol 147,

2011

[6] Busvelle E., Kharab R., Maciejewski A. J., Strelcyn J.-M., Numerical integration of differential

equations in the presence of first integrals: observer method, Appl. Math., 22, no. 3, 373–418, 1994

[7] Cetin B.C., Burdick J.W., Barhen J., Global Descent Replaces Gradient Descent to Avoid Local

Minima Problem in Learning with Artificial Neural Networks, IEEE International Conference on

Neural Networks 2, 836–842, 1993

[8] Chien-Cheng Yu, Bin-Da Liu, A backpropagation algorithm with adaptive learning rate and mo-

mentum coefficient, Proceedings of the 2002 International Joint Conference on Neural Networks.

IJCNN’02, Honolulu, HI, USA, pp. 1218-1223 vol.2, 2002

[9] Fukuoka Y., Matsuki H., Minamitani H., Akimasa Ishida, A modified back-propagation method to

avoid false local minima, Neural Networks : the Official Journal of the International Neural Network

Society,11(6):1059-1072, 1998

[10] Hirsch M.W., Smale S., Differential equations, dynamical systems, and linear algebra, New York :

Academic Press, 1974

[11] Gallant, S. I., Perceptron-based learning algorithms, IEEE Transactions on Neural Networks, vol. 1,

no. 2, pp. 179–191, 1990

[12] Gori M., Tesi A., On the problem of local minima in backpropagation, IEEE Transactions on Pattern

Analysis and Machine Intelligence, Volume: 14, Issue: 1, 1992

[13] Hairer E., Norsett S.P., Wanner G., Solving Ordinary Differential Equations I: Nonstiff Problems,

Springer Series in Computational Mathematics, 2nd ed., 1993

[14] La Salle J., Lefschetz S., Stability by Liapunov’s Direct Method: With Applications, New York:

Academic Press, 1961

[15] Pavelka A., Proch A., Algorithms for initialization of neural network weights random numbers in

matlab, Proc. Control Eng., vol. 2, pp. 453-459, 2004

[16] Sprinkhuizen-Kuyper, I.G., Boers, E.J.W. The local minima of the error surface of the 2-2-1 XOR

network, Annals of Mathematics and Artificial Intelligence 25: 107-136, 1999

[17] Sontag E.D., Sussmann H.J., Backpropagation Can Give Rise to Spurious Local Minima Even for

Networks without Hidden Layers, Complex Systems 3, 91-106, 1989

[18] Nawi N.M., Khan A., Rehman M.Z., A New Back-Propagation Neural Network Optimized with

Cuckoo Search Algorithm, Lecture Notes in Computer Science, vol 7971, 2013

[19] Wiggins S., Introduction to Applied Nonlinear Dynamical Systems and Chaos, Texts in Applied

Mathematics, vol 2. Springer, New York, NY

U.M.P.A, Ecole Normale Supérieure de Lyon, 46, allée d’Italie, F69364 Lyon Cedex 07

E-mail address: atsygvin@umpa.ens-lyon.fr

ON THE OVERFLY ALGORITHM IN DEEP LEARNING OF NEURAL NETWORKS 17

Figure 1. The graph of the cost function E for the training set (5.1), (5.2)

Figure 2. 4 − 2 − 1 neural network, testing performance of overfly and

backpropagation for the data set (5.5), (5.6)

18 ALEXEI TSYGVINTSEV

Figure 3

