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Abstract

The class of Divergence-free symmetric tensors is ubiquitous in Continuum Mechanics. We

show its invariance under projective transformations of the independent variables. This action,

which preserves the positiveness, extends Sophus Lie’s group analysis of Newtonian dynamics.

When applied to models of gas dynamics – such as Euler system or Boltzmann equation, –

in combination with Compensated Integrability, this yields new dispersive estimates. The most

accurate one is obtained for mono-atomic gases. Then the space-time integral of tρ
1
d p is bounded

in terms of the total mass and moment of inertia alone.
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Notations. The transpose of a rectangular matrix Q is QT . If u and v are vectors, we denote u⊗v =
uvT . The unit sphere of R1+d is Sd . The Euclidian norm in Rn is | · |. A tensor is a matrix-valued map

S(x) defined over some open domain of Rn. If S is m× n and its entries are distributions, one may

take its divergence row-wise, which we denote DivS with a capital letter D; it is an m-vector valued

distribution. The tensor is Divergence-free if DivS = 0.

1 Introduction

In a series of articles [9, 10, 11, 12], we studied the class of Divergence-free symmetric Tensors.

These objects are ubiquitous in Continuum Mechanics, where they encode either the conservation of

mass and momentum (classical mechanics) or energy and momentum (special relativity). The appli-

cations concern a vast list of models such as Euler or Navier-Stokes equations in compressible fluid

dynamics, linear and nonlinear versions of the Maxwell’s equations, kinetic (Boltzman) equations
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and mean-field (Vlasov-Poisson) models for plasmas or galaxies. They can also be employed for the

study of scalar conservation laws [13], or for systems of particles, such as hard spheres dynamics.

From a mathematical perspective, an interesting phenomenon happens whenever such a tensor

is positive semi-definite, a property that results from the hypothesis that particles repel each other

according to a radial force. For instance this applies to inviscid compressible gases, hard spheres dy-

namics or plasmas, but it doesn’t to viscous gases (because the stress tensor is indefinite), to electro-

magnetism (the magnetic component of the force is not radial) or to galaxies (gravity is attractive).

Positive semi-definiteness, plus the control of the Divergence in the space of (not necessarily vani-

shing) bounded measures imply a gain of integrability (see [9, 10]). Say that the ambiant space is an

open domain of Rn, so that the tensor S is n× n. Then the expression (detS)
1
n , which is naturally a

locally bounded measure, is actually a measurable function of class L
n

n−1 . This qualitative side, cal-

led Compensated Integrability, allows us to speak of the function (detS)
1

n−1 . The quantitative side is

an estimate of the latter in the form of a new functional inequality. For instance, if S is compactly

supported in Rn, then

(1)

∥∥∥(detS)
1
n

∥∥∥
n

n−1

6Cn‖DivS‖M ,

where the right-hand side involves the total mass of the measure |DivS|. The absolute constant Cn

is sharp, as (1) becomes an equality when S(x) equals the identity matrix in a ball, and vanishes

elsewhere. Inequality (1) is a far-reaching extension of the isoperimetric inequality, as well as of

the Gagliardo inequality. An alternate situation concerns Divergence-free positive tensors that are

periodic with respect to a lattice ; if Γ is a fundamental domain, then one has

(2) −

∫
Γ
(detS(z))

1
n−1 dz 6

(
det−

∫
Γ

S(z)dz

) 1
n−1

.

We emphasize that map S 7→ (detS)
1

n−1 is not concave, so that (2) does not follow from Jensen’s

inequality for the non-concave, as it would do if the exponent 1
n−1

was replaced by 1
n

in both the

left/right-hand sides.

The present paper is devoted to a new aspect of the theory. It has been known from the beginning

that the class of Divergence-free symmetric tensors is stable under the action of the linear group

through congruences,

S 7−→ SP(z) := PS(P−1z)PT , P ∈ GLn(R).

We establish here that this class is actually stable under the action of the bigger group of projective

transformations (Propositions 2.1 and 2.4). Still, this action preserves the positiveness of tensors.

The applications to Continuum Mechanics involve the fact that physical models are described by a

system of PDEs in the form of a Divergence-free symmetric tensor, together with one or several alge-

braic closure relations. In general the latter are not preserved under the projective action and therefore

the model, whatever it be (Euler, Boltzman, etc), is not projectively invariant. It may happens however
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that special closure relations are preserved, so that some exceptional models enjoy this invariance, as

observed already by Bobilev & Ibragimov [1], Bobylev & Vilasi [2] and by Illner [5] :

– Isentropic Euler system (ρ,u,p are the mass density, the velocity field and the pressure)

∂tρ+divx(ρu) = 0, (t,x) ∈ R1+d ,

∂t(ρu)+Divx(ρu⊗u)+∇xp = 0

for a mono-atomic gas:

p ≡ Aρ1+ 2
d

where A > 0 is a constant.

– Non-isentropic Euler system, with the conservation law of energy (e the specific internal energy)

∂t

(
1

2
ρ|u|2+ρe

)
+divx(

(
1

2
ρ|u|2+ρe+ p

)
u) = 0

and now

p ≡
2

d
ρe.

– Vlasov equation

(∂t + v ·∇x +F ·∇v) f = 0, (t,x,v) ∈ R1+d+d

in the unknown density f (t,x,v)≥ 0, where the force F(t,x) derives from a potential

F =−∇xU [ρ], ρ(t,x) :=
∫
Rd

f (t,x,v)dv

and the particles interact through the Calogero–Moser potential A|x|−2,

U [ρ](t,x) = A

∫
Rd

ρ(t,y)

|x− y|2
dy.

– Boltzman equation (see Section 4) when, again, the particles interact through the Calogero–

Moser potential.

When it applies, this additional invariance is always associated with an extra conservation law, which

involves the moment of inertia.

Whether a model is projectively invariant or not, the use of projective transformations, combined

with Compensated Integrability, provides us with a one-parameter family of estimates, much richer

than the single one established in [9]. Optimizing the choice of the parameter, we obtain a new esti-

mate, whose interest is two-fold. On the one hand, it is significantly sharper for large times, giving

a better dispersion of the mass as t → +∞. On the other hand, it highlights the symmetry played by

the total mechanical energy and the moment of inertia. This confirms that the assumptions about the

initial data, in the theory of renormalized solutions for the Boltzman equation, are natural.
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Let us illustrate all this by a single example, taken from the dynamics of a mono-atomic gas in

space dimension d (Theorem 3.2) : the density ρ and the pressure p are estimated by

∫ tmax

0
t dt

∫
Rd

ρ
1
d pdx 6 cdM

1
d

(
1

4

∫
Rd

∫
Rd

ρ0(x)ρ0(x
′)|x′− x|2dxdx′

) 1
2

,

where M is the total mass and ρ0 the mass density at time t = 0. The constant cd does not depend upon

the solution or the time interval: when the flow is global-in-time, the estimate is valid with tmax =+∞.

Amazingly, this estimate involves only the distribution of mass at initial time, but not the prescribed

initial velocity field and temperature, in spite of the coupling during the evolution ! This sheds another

light upon the source solutions of the Euler system, those for which ρ0 is a Dirac mass.

Plan of the paper. The abstract analysis is done in Section 2. A first application, to either isen-

tropic or non-isentropic gas dynamics, is given in Section 3. After a short account of the theory of

Compensated Integrability, we carry the calculations for ideal gases, which culminate with Theorem

3.2. Section 4 is dedicated to the Boltzman equation, for which similar results hold true.

Warning. The results stated in Sections 3 and 4 concern flows in the entire space Rd . Our admissi-

bility criterion is that not only the total mass M, mechanical energy E(t) and moment of inertia I(t)
are finite, but M is constant, t 7→ E(t) is non-increasing, and the differential inequality (10) is valid.

In particular, we exclude the wild solutions constructed by De Lellis & Székelyhidi [3].

Acknowledgement. I am indebted to Reinhard Illner (Univ. of Victoria, CA) for driving my atten-

tion towards important references.

2 Projective transformations and Divergence-free symmetric ten-

sors

2.1 State of the art

A conservation law in d +1 space-time dimension,

(3) ∂tρ+divxm = 0,

expresses that some differential form ω of degree d is closed. Performing an smooth change of va-

riables (s,y) = φ(t,x), we rewrite (3) as another conservation law

(4) ∂sρ̄+divym̄ = 0,

where (ρ̄,m̄) are obtained from (ρ,m) through a linear transformation with variable coefficients.

Distributional solutions of (3) yield distributional solutions of (4) because they both express the same

property dω = 0, though in different coordinates.
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Let us give an example, which turns out to be fundamental in the applications. The space-time

domain being (0,tmax)×Rd , we choose a projective transformation

(5) s =
t

1+ tα
, y =

x

1+ tα

where α > 0 is some constant parameter. Then the dependent variables are transformed according to

ρ̄ := (1+ tα)dρ, m̄ = (1+ tα)d+1m−α(1+ tα)dρx,

where we point out that 1+ tα = (1− sα)−1. When ρ is positive, and thus plays the role of a mass

density, it is meaningful to introduce a ‘velocity’ field by u := m
ρ . Then the new ‘momentum’ m̄ is

given as ρ̄v, where the new velocity is defined by v = (1+ tα)u−αx.

Projective transformations such as (5) are meaningful in Classical dynamics too. They leave the

simplest ODE

d2x

dt2
= 0

invariant, just because they transform lines of the (t,x)-space into lines of the (s,y)-space. Amazingly

enough, the nonlinear ODE

d2x

dt2
=−∇xU(|x|), U(r) :=

cst

r2
,

where U is the so-called Calogero–Moser potential, is also invariant under the action of (5).

A.V. Bobylev, with either N. Kh. Ibragimov [1] or G. Valesi [2], studied in a systematic way the

action of projective transformations upon PDEs from Mathematical Physics. They observed that the

Euler system of a mono-atomic gas is left invariant (see also [8]), as well as the Boltzman equa-

tion when the particles interact through the Calogero–Moser potential. R. Illner [5] proved the same

properties for the Vlasov equation with the C.-M. potential. In all cases, this additional symmetry is

associated with an extra conservation law, a property which corroborates Nœther’s Theorem.

2.2 A universal structure in Continuum Mechanics

Several models of Continuum Mechanics can be decomposed into two parts. On the one hand,

they share a couple of fundamental conservation laws, that of mass and linear momentum. These are

expressed as a linear system of PDEs

(6) Divt,xS = 0,

where S is a symmetric tensor whose entries are distributions, and the divergence is taken row-wise:

∀i = 0, . . . ,d, (Divt,x S)i := ∂tsi0 +
d

∑
j=1

∂x j
si j = 0.
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Typically

S =

(
ρ mT

m m⊗m
ρ +σ

)

where ρ,m,σ are the mass density, the linear momentum and the stress tensor. Several examples were

described in [9, 10]. On the other hand, each model is closed by algebraic, or differential-algebraic

closure relations. Remark that from this point of view, the conservation of energy (when it applies)

stands as a closure relation.

We wish to focus onto the somehow universal governing equations (6). It turns out that this struc-

ture is projectively invariant.

Proposition 2.1 Let S(t,x) be a Divergence-free symmetric tensor. Let us write it block-

wise

S =

(
ρ mT

m T

)
,

where ρ is scalar and thus T is d ×d and symmetric.

Let α be a positive constant, and consider the change of variables defined by (5). Then

the symmetric tensor S̄, whose blocks are defined by

ρ̄ = (1+ tα)dρ,

m̄ = (1+ tα)d+1m−α(1+ tα)dρx,

T̄ = (1+ tα)d+2T −α(1+ tα)d+1(m⊗ x+ x⊗m)+α2(1+ tα)dρx⊗ x,

is Divergence-free in the (s,y) variables defined by (5):

Divs,yS̄ = 0.

Remarks. 1) The first row is transformed exactly as in our very first example. 2) The proof of the

Proposition is elementary and follows from the formulæ

∂t = (1− sα)2∂s −α(1− sα)y ·∇y, ∇x = (1− sα)∇y.

3) The positivity of symmetric matrices is preserved by the transformations above. We have

S̄ = (1+ tα)dPSPT , P :=

(
1 0

−αx (1+ tα)Id

)
.

A more general result concerns the case where the divergence is non-zero.

Proposition 2.2 With the notations above, but allowing Divt,xS to be a non-zero distri-

bution, we have

〈∂sρ̄+divym̄,φ〉 = 〈∂tρ+divxm,ψ〉,

〈∂sm̄+DivyT̄ ,~A〉 = 〈∂tm+DivxT,(1+αt)~B〉−α〈∂tρ+divxm,x ·~B〉
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where the test functions are related by ψ(t,x) = φ(s,y) and ~B(t,x) = ~A(s,y).

In particular, if Divt,xS is a vector-valued bounded measure, then so is Divs,yS̄ and we

have

‖∂sρ̄+divym̄‖M = ‖∂tρ+divxm‖M ,

‖∂sm̄+DivyT̄‖M 6 ‖(1+αt)(∂tm+DivxT )‖M +α‖|x|(∂tρ+divxm)‖M .

The proof of the differential identities are straightforward and left to the reader. The estimates of

the masses of measures are obtained by taking the supremum over those φ or ~A such that |φ(s,y)| ≤ 1

of |~A(s,y)| ≤ 1 pointwise.

2.3 The action of the projective group

At first glance, the factors (1+tα)d to (1+tα)d+2 in the definition of S̄ might look weird. Besides,

one could ask oneself why the Proposition holds true for the projective transformation (5), but does not

for a general change of variable. The explanation of both facts comes from the following observation.

Proposition 2.3 Let Σ(λ,z) be a symmetric Divergence-free tensor over an open cone

Γ ⊂ R1+n. We assume that Σ is positively homogeneous of degree −n−1. Let us write it

blockwise

Σ(λ,z) = λ−n−1

(
h
(

z
λ

)
Z
(

z
λ

)T

Z
(

z
λ

)
H
(

z
λ

)
)
.

Then the n×n symmetric tensor

H̃(x) = H(x)− x⊗Z(x)−Z(x)⊗ x+h(x)x⊗ x

is Divergence-free: DivxH̃ = 0.

Proof

When expressing Divλ,zΣ = 0, we obtain

divxZ = (x ·∇x)h+(n+1)h, DivxH = (x ·∇x)Z+(n+1)Z.

On the other hand, we always have

Divx(xZT +ZxT ) = (x ·∇x)Z+(divxZ)x+(n+1)Z,

Divx(hxxT ) = (x ·∇xh)x+(n+1)hx.

Making a linear combination of the four identities, we eliminate the zero-order terms and obtain the

desired conclusion.
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Once again, the positivity of symmetric matrices is preserved by the transformation above:

µT H̃µ = (−x ·µ ,µT )Σ

(
−x ·µ

µ

)
, ∀µ ∈ Rn.

The strategy to pass from Proposition 2.3 to Proposition 2.1 is to set n = d +1 and to extend S as

an (n+1)-dimensional tensor by

Ξ(λ,z) = λ−n−1

(
0 0

0 S
(

z
λ

)
)
.

The tensor Ξ is Divergence-free (obvious), homogeneous of degree −n−1. When P ∈ GLn+1(R), a

congruence

Σ(w) = (detP)−1|detP|−
2

n+1 PΞ(P−1w)PT

defines another symmetric Divergence-free tensor (Lemma 1.1 of [9]), still homogeneous. One can

then apply Proposition 2.3 to Σ. An appropriate choice of P yields the transformation treated in

Proposition 2.1.

The procedure S 7→ Ξ 7→ Σ 7→ H̃ defines an action of the linear group GLn+1(R) over the space

of n×n Divergence-free symmetric tensors. Observing that a homothety P = aIn+1 yields Σ = Ξ and

thus H̃ = S, we may pass to the quotient and state

Proposition 2.4 The composition of the linear maps S 7→ Ξ, Ξ 7→ Σ (this one being an

action of GLn+1(R)) and Σ 7→ H̃ defines an action of the projective linear group PGL(n+
1;R) over the space of n×n Divergence-free symmetric tensors.

This action preserves the positive semi-definiteness.

2.4 Special Divergence-free tensors

We recall (see [9]) that among the class of positive Divergence-free tensors (DPTs), one encoun-

ters the (non-linear) class of special DPTs, which are cofactor matrices of Hessians with convex

potentials:

(7) S = D̂2
t,xθ.

Proposition 2.5 Let S be as in (7), where θ is a convex function. Let α> 0 be a parameter.

Then the Divergence-free tensor S̄ defined in Proposition 2.1 is again a special DPT,

S̄ = D̂2
s,yθ̄,

where the new potential, given by

θ̄(s,y) = (1−αs)θ

(
s

1−αs
,

y

1−αs

)
,

is convex.
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Proof

On the one hand, the function θ̄ is convex because θ can be written as the supremum of a collection

of affine functions (t,x) 7→ pt + ξ · x+ c and thus θ̄ is the supremum of the affine functions (s,y) 7→
ps+ξ · y+ c(1−αs).

On the other hand, a cumbersome though elementary calculation gives

D2
s,yθ̄ = (1+αt)QT(D2

t,xθ)Q, Q :=

(
1+αt 0

αy Id

)
.

One concludes by using the formula ÂB = ÂB̂, plus the identity

Q̂ =

(
1 −αyT

0 (1+αt)Id

)
.

2.5 Determinantal masses

Let us recall (see [10]) the rigidity result, that if a Divergence-free positive tensor is homogeneous

of degree −d about a point p = (t0,x0) ∈ R1+d , then it is of the form

S = µ

(
z

|z|

)
z⊗ z

|z|d+2

where z =
(

t
x

)
− p and µ is a non-negative measure over the unit sphere Sd . This was completed in [12]

with the observation that, thanks to Pogorelov’s Theorem (see [7]), S is actually special in the sense

of (7), and its potential θ is positively homogeneous of degree 1. The converse is obviously true: if θ

is positively homogeneous of degree 1, then D̂2θ is Divergence-free and positively homogeneous of

degree −d.

We showed in [12] that in this situation, the expression (detS)
1
d concentrates as a Dirac mass

Dm(S; p)δ(t,x)=p. We identified its weight, called a Determinantal Mass, as the volume of the convex

body surrounded by the image 1 of ∇t,xθ. This generalizes the observation that for smooth potentials,

(
det D̂2θ

) 1
d
= detD2θ

is the Jacobian of the map (t,x) 7→ ∇t,xθ.

This homogeneity of degree one (for the potential) is actually preserved by our projective trans-

formation: Let us start from the Euler identity

(t − t0)∂tθ+(x− x0) ·∇xθ = θ.

1. The gradient is positively homogeneous of degree zero. Its image is a closed hypersurface.
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Combining with the expressions

∂sθ̄ =−αθ+
1

1−αs
∂tθ+

αy

1−αs
·∇xθ, ∇yθ̄ = ∇xθ,

we have first

∂sθ̄ = (1+αt0)∂tθ+αx0 ·∇xθ

and we derive

(s− s0)∂sθ̄+(y− y0) ·∇yθ̄ = θ̄,

where (s0,y0) is the corresponding point in the (s,y) coordinates.

Now, because ∇s,yθ̄(s,y) is the composition of ∇t,xθ(t,x) with the linear map of matrix

A =

(
1+αt0 αxT

0

0 Id

)
,

the volumes surrounded by the image of ∇s,yθ̄ or by that of ∇t,xθ differ from each other by the factor

detA = 1+αt0. Let us summarize this analysis:

Theorem 2.1 Let the symmetric, positive Divergence-free tensor S be homogeneous of

degree −d about a point p = (t0,x0). Then under the projective change of variables, the

tensor S̄ has the same homogeneity about p̄, the image of p, and the determinantal masses

are related through

(8) Dm(S̄; p̄) = (1+αt0)Dm(S; p).

3 Application to gas dynamics

When considering the evolution of a fluid, d is the space dimension and S is the mass-momentum

tensor, with ρ,m being the mass density and linear momentum. The tensor σ = T − mmT

ρ , which is the

Schur complement of ρ in S, is the (opposite of the) stress tensor. In the transformation S 7→ S̄, we

have

σ̄ = (1+ tα)d+2σ.

Remark that for an inviscid gas, where σ = pId (p ≥ 0 the pressure), S is positive semi-definite

(definite whenever ρ > 0 and p > 0), with determinant ρpd .

In general, there is no reason why S̄ should be the mass-momentum tensor of another gas flow.

For a barotropic gas, this happens only if

(1+ tα)d+2p(ρ)≡ p
(
(1+ tα)dρ

)
.

This means that p is homogeneous of degree

γ = γd := 1+
2

d
,
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which corresponds to the so-called mono-atomic gas. The symmetry group of the PDEs has then an

extra dimension.

Proposition 3.1 ([1, 2, 8]) The Euler system for a mono-atomic inviscid barotropic gas

is invariant under the transformation

(x,t,ρ,u) 7→

(
x

1+ tα
,

t

1+ tα
,(1+ tα)dρ,(1+ tα)u−αx

)
.

3.1 Full gas dynamics

In full gas dynamics, the flow is described by the triplet (ρ,u,e) where (ρ,u) are as above, and

e is the specific internal energy. It is governed by d + 2 conservation laws, namely those of mass,

momentum and energy. The two first write as Divt,xS = 0 where S is the mass-momentum tensor,

while the last one is

(9) ∂t

(
1

2
ρ|u|2+ρe

)
+divx

((
1

2
ρ|u|2+ρe+ p

)
u

)
= 0.

Under mild integrability assumptions, the total mass, momentum and energy

M =

∫
Rd

ρ(t,x)dx, Q =

∫
Rd
(ρu)(t,x)dx, E =

∫
Rd

(
1

2
ρ|u|2+ρe

)
(t,x)dx

are constants of the motion.

We assume the equation of state of a perfect gas:

p = (γ−1)ρe,

where γ > 1 still denotes the adiabatic constant. Defining

ē = (1+ tα)2e, p̄ = (1+ tα)d+2p

the effect of the projective transformation over (9) is that

(10) ∂s

(
1

2
ρ̄|v|2 + ρ̄ē

)
+divx

((
1

2
ρ̄|v|2 + ρ̄ē+ p̄

)
v

)
=

dα

1− sα
(γd − γ)ρe.

This time, the new field does satisfy the equation of state: p̄ = (γ− 1)ρ̄ ē, but this happens to the

expense of a non-trivial right-hand side in (10) : the field (ρ̄,v,ē) does not satisfy the conservation law

of energy. Once again, the only case where the right-hand side vanishes is for γ = γd .

Proposition 3.2 The Euler system for a mono-atomic inviscid gas is invariant under the

transformation

(x,t,ρ,u,e) 7→

(
x

1+ tα
,

t

1+ tα
,(1+ tα)dρ,(1+ tα)u−αx,(1+ tα)2e

)
.
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3.2 Compensated Integrability

Let us recall Theorem 2.3 of [11]:

Theorem 3.1 Let S be a positive semi-definite Divergence-free symmetric tensor over

Qτ := (0,τ)×Rd, written blockwise

S =

(
ρ mT

m T

)
.

We assume that S is integrable over Qτ, and that its (well-defined) normal traces S~et at

the top (t = τ) and bottom (t = 0) are bounded measures (for instance, integrable over

Rd).

Then (detS)
1

d+1 , which is a priori a bounded measure, actually belongs to L1+ 1
d (Qτ), and

we have

(11)

∫ τ

0
dt

∫
Rd
(detS)

1
d dx 6

1

d

(
2(d+1)

|Sd|

) 1
d

M
1
d (‖m(0,·)‖M +‖m(τ,·)‖M ),

with

M :=
∫
Rd

ρ(t,x)dx

the constant total mass, and |Sd| is the area of the unit sphere of Rd+1.

The constant appearing in the right-hand side of (11) is almost sharp, but its value is not important

for us. In the sequel, upper bounds will involve other constants, depending only upon the space dimen-

sion, which will always be denoted cd . We emphasize that these constants are moderate. Typically,

they satisfy c3 < 10.

When Theorem 3.1 is applied to a gas, we have m = ρu and T = ρu⊗u+ pId , so that detS = ρpd .

Cauchy–Schwarz inequality yields

‖m(t,·)‖2
M

6 M

∫
Rd

ρ|u|2dx = 2MEkin(t)≤ 2ME(t)

where Ekin(t),E(t) denote the kinetic and total mechanical energies at time t. Whether the gas is

isentropic or not, the total energy of an admissible flow is non-increasing or constant. We infer the

estimate

(12)

∫ τ

0
dt

∫
Rd

ρ
1
d pdx 6 cdM

1
d

√
ME(0) ,

first established in [9]. We point out that the right-hand side does not depend upon the length τ of the

time interval. Therefore (12) holds true even when the flow is globally defined:
∫ ∞

0
dt

∫
Rd

ρ
1
d pdx 6 cdM

1
d

√
ME(0) .
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3.3 Mono-atomic gas

Let (ρ,u,e) be an admissible flow of a mono-atomic gas, defined over (0,tmax)×Rd , with finite

mass and energy. It may be either isentropic or not.

Given a constant α > 0, we perform the transformation studied above, in either Proposition 3.1 or

3.2. What matters here is that the transformed field is still a flow, and an admissible one, because of

the mono-atomic assumption. This new flow is defined over Qτ, where

τ = τα :=
tmax

1+ tmaxα
.

It has the same mass as the original one:

∫
Rd

ρ̄(s,y)dy =
∫
Rd
(1+ tα)dρ(t,(1+ tα)y)dy=

∫
Rd

ρ(t,x)dx ≡ M.

Assuming in addition that ρ(0,·) ∈ L1(|x|2dx) – the moment of inertia is finite, – then its total energy

Eα(s) =

∫
Rd

(
1

2
ρ̄ |v|2 + ρ̄ ē

)
dy =

∫
Rd

(
1

2
ρ|(1+ tα)u−αx|2+(1+ tα)2ρe

)
dx

is finite too. Applying (12) to the new flow, we obtain

(13)

∫ τα

0
ds

∫
Rd

ρ̄
1
d p̄dy 6 cdM

1
d

√
MEα(0) .

We calculate on the one hand
∫ τα

0
ds

∫
Rd

ρ̄
1
d p̄ dy =

∫ tmax

0

dt

(1+ tα)2

∫
Rd
(1+ tα)d+3ρ

1
d p

dx

(1+ tα)d

=
∫ tmax

0
(1+ tα)dt

∫
Rd

ρ
1
d pdx.

On the other hand, we have

Eα(0) =
∫
Rd

(
1

2
ρ(0)|u(0)−αx|2+ρ(0)e(0)

)
dx.

Inserting these into (13), we infer

∫ tmax

0
t dt

∫
Rd

ρ
1
d pdx 6 cdM

1
d

(
inf
α>0

M

α2
Eα(0)

)1
2

.

We can therefore conclude

(14)

∫ tmax

0
t dt

∫
Rd

ρ
1
d pdx 6 cdM

1
d

(
lim

α→+∞

M

α2
Eα(0)

) 1
2

= cdM
1
d

√
MI(0) ,
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where

I(0) =

∫
Rd

ρ(0,x)
|x|2

2
dx

is the moment of inertia at initial time.

Remark that the left-hand side of (14) is translation invariant, while its right-hand side is not.

Choosing a different origin of the physical space, we may replace the quantity MI(0) by

M

∫
Rd

ρ(0,x)
|x− x̂|2

2
dx,

where x̂ ∈ Rd is constant. Taking the infimum as x̂ runs over Rd , we obtain the following statement.

Theorem 3.2 Consider the admissible flow of a mono-atomic gas (either isentropic or

not) in (0,tmax)×Rd with finite mass, energy and moment of inertia at time t = 0. Then

we have

(15)

∫ tmax

0
t dt

∫
Rd

ρ
1
d pdx 6 cdM

1
d

(
1

4

∫
Rd

∫
Rd

ρ(0,x)ρ(0,x′)|x′− x|2dxdx′
) 1

2

.

for some absolute constant cd , where ρ(0,·) is the mass density at inital time.

Comments.

1. At first glance, Estimate (15) suggests that the hypothesis of finite energy might be useless, since

it does not involve the initial velocity field. This is a deadly false impression: Compensated

Integrability is valid only if the mass-momentum tensor is integrable over (0,tmax)×Rd , or at

least over (ε,t∗)×Rd for every 0 < ε < t∗ < tmax. Because of the positivity, this amounts to

saying that its trace is integrable, which means that

∫ t∗

ε
(M+E(t))dt < ∞.

In the non-isentropic case, this is equivalent to assuming E(0)<∞, while in the isentropic case,

where t 7→ E(t) is non-increasing, it says that the total energy is finite whenever t > 0. To avoid

complications, we choose to assume a finite initial energy.

2. Both sides of (15) have the same physical dimension M1+ 1
d L.

3. We already new from (12) that the function

π(t) :=
∫
Rd

ρ
1
d pdx

is integrable over (0,tmax). The main information carried by the new estimate is that, if tmax =
+∞, then tπ(t) is integrable at infinity. This narrows the gap between Estimate (12) and the

decay observed for the global classical solutions constructed in [8].

14



4. As a corollary, we get the well-known fact that ‘source-solutions’, for which the whole mass

concentrates in one point at initial time, must have an infinite energy. A more elementary proof

follows from the quite obvious functional inequality

(16)

(∫
Rd

g(x)dx

)3+ 2
d

6 cd

∫
Rd

∫
Rd

g(x)g(x′)|x′− x|2dxdx′ ·

∫
Rd

g(x)1+ 2
d dx

for non-negative functions (see Appendix), applied to ρ(t,·). It shows that at constant mass, if

either the internal energy or the moment of inertia tends to zero, then the other one tends to

infinity – a kind of uncertainty principle.

5. Estimate (15) completes – though does not improve – the well-known inequality
∫
Rd

pdx ≤
2I(0)

dt2

which follows from the constancy (or the decay in the isentropic case) of

t 7→
∫
Rd

(
1

2
ρ|tu− x|2+ t2 dp

2

)
dx

for the mono-atomic gas.

3.4 Other ideal gases (γ 6= γd)

As noted before, when γ is not equal to γd , the transformation (t,x,ρ,u,e) 7→ (s,y,ρ̄,v,ē) does not

produce a gas flow, because the right-hand-side of (10) does not vanish. Nevertheless S̄ is divergence-

free and we may apply Compensated Integrability to obtain (with Cauchy–Schwarz)

(17)

∫ τ

0
ds

∫
Rd

ρ̄
1
d p̄ dy 6 cdM

1
d (M max(Fα(0),Fα(τ)))

1
2 ,

where

Fα(s) =

∫
Rd

(
1

2
ρ̄|v|2+ ρ̄ē

)
(s,y)dy.

If γ < γd , the integration of (10) yields

dFα

dt
6

dα

(1−αs)
(γd − γ)Fα,

which gives

Fα(s) = O((1−αs)−K) = O((1+ tα)K), K := d(γg − γ).

Combining with (17), we conclude that

Theorem 3.3 For an ideal gas with adiabatic constant γ less than γd , the flows of finite

mass, energy and moment of inertia satisfy
∫ T

0
t dt

∫
Rd

ρ
1
d pdx = O

(
M

1
d

√
M(E(0)+ I(0)) T

γd−γ
γd−1

)
.
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Because of
γd−γ
γd−1

< 1, the estimate above is still an improvement of (12) when T →+∞. For a gas

whose molecules have D freedom degrees (D = 5 and d = 3 for a di-atomic gas), this exponent is

1− d
D

.

Notice that the right-hand side is not homogeneous in terms of physical dimensions. It can be

homogenized by rescaling, as in [9]. The dimensional analysis suggests that the ultimate inequality

be of the form

(18)

∫ T

0
t dt

∫
Rd

ρ
1
d pdx 6 cdM

1
d

√
MI(0)

(
T

√
E(0)

I(0)

) γd−γ
γd−1

.

When γ > γd instead (not a realistic case), s 7→ Fα(s) is non-increasing and we have simply

∫ τ

0
ds

∫
Rd

ρ̄
1
d p̄dy 6 cdM

1
d

√
MFα(0) .

This is exactly the same situation as in the mono-atomic case and we obtain again the estimate (15).

4 Rarefied gases

A mono-atomic rarefied gas is described by the particle distribution f dξdxdt, where ξ is the

velocity of particles. It obeys the Boltzman equation:

(19) ∂t f +ξ ·∇x f = Q( f , f ).

The bilinear operator Q is given by

Q( f , f )(t,x,ξ) =
∫
Rd

∫
Sd−1

B(|ξ1 −ξ|,ω)( f (t,x,ξ′1) f (t,x,ξ′)− f (t,x,ξ1) f (t,x,ξ))dξ1dω,

where as usual

ξ′ = ξ+(ω · (ξ1−ξ))ω, ξ′1 = ξ− (ω · (ξ1 −ξ))ω.

It is thus local in the variables (t,x) but non-local in ξ. The collision kernel B is a non-negative

function. The local conservation of mass, momentum and energy are encoded in the properties

∫
Rd

Q(g,g)dξ = 0,

∫
Rd

Q(g,g)ξdξ = 0,

∫
Rd

Q(g,g)|ξ|2dξ = 0,

for every g = g(ξ) with reasonnable decay at infinity.

One defines classically the mass-momentum tensor

S(t,x) =

(
ρ mT

m T

)
:=

∫
Rd

f (t,x,ξ)

(
1

ξ

)
⊗

(
1

ξ

)
dξ,
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which is obviously symmetric, positive semi-definite. Integrating (19) against dξ and ξdξ, we find

formally that S is Divergence-free. Integrating against 1
2
|ξ|2dξ, we find also the conservation law

(20) ∂tε+divx~q = 0

where

ε :=
∫
Rd

f
|ξ|2

2
dξ, ~q :=

∫
Rd

f
|ξ|2

2
ξdξ

are the energy density and the energy flux.

An existence theorem of renormalized solutions to the Cauchy problem has been established by R.

DiPerna & P.-L. Lions [4] and completed by Lions & N. Masmoudi [6]. Under reasonnable assump-

tions on the collision kernel B, a renormalized solution exists whenever the initial data f0 satisfies

(21)

∫
Rd

∫
Rd

(1+ |ξ|2 + |x|2 + | log f0|) f0dξdx <+∞.

This assumption means that the total mass and energy, as well as the moment of inertia and the total

entropy are finite at initial time.

In spite of the formal integration, one does not know (unless the space dimension equals one)

whether S is Divergence-free for renormalized solutions: according to [6], there exists indeed a d ×d

defect tensor Σ, which is symmetric positive semi-definite, such that the modified mass-momentum

tensor

SB =

(
ρ mT

m T +Σ

)

is Divergence-free:

∂tρ+divxm = 0,

∂tm+Divx(T +Σ) = 0.

The first line implies, after an integration, that the total mass

M =

∫
Rd

∫
Rd

f (t,x,ξ)dξdx

is a constant of the motion. Regarding the conservation of energy, it is also known [6] that the map

t 7−→
∫
Rd

∫
Rd

f (t,x,ξ)
|ξ|2

2
dξdx+

∫
Rd

1

2
Tr Σdx

is constant, equal to the energy at initial time

E(0) :=
∫
Rd

∫
Rd

f0(x,ξ)
|ξ|2

2
dξdx.
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Compensated Integrability and Cauchy–Schwarz give as usual

∫ tmax

0
dt

∫
Rd
(detSB)

1
d dx 6 cdM

1
d

√
ME(0) .

Because of Σ > 0d , which implies 01+d 6 S 6 SB and thus detS 6 detSB, the left-hand side dominates

the integral of (detS)
1
d .

We are now ready to apply our favorite projective transformation

s =
t

1+ tα
, y =

x

1+ tα
.

The new velocity variable is defined by

χ = (1+ tα)ξ−αx.

The new density is therefore

(22) f̄ (s,y,χ) = f

(
s

1− sα
,

y

1− sα
,(1− sα)χ+αy

)
.

We observe that

(∂s +χ ·∇y) f̄ = (1+ tα)2(∂t +ξ ·∇x) f

= (1+ tα)2Q( f , f ) =: Q̄t( f̄ , f̄ ).

For most of kernels B, the function f̄ is not a solution of the Boltzmann equation, because Q̄t

differs from Q. Actually, Q̄t does depend explicitly upon the time variable, unless B(r,ω) is of the

form r2−db(ω). This exponent 2− d in the kinetic collision kernel corresponds to an inter-particles

radial force with inverse power law |x|−3, that is to the Calogero–Moser potential (see [2]).

What remains true in general is that Q̄t(g,g) is annihilated by integrating against




1

χ
|χ|2


dξ,

because it involves only the expression

f̄ (t,x,χ′
1) f̄ (t,x,χ′)− f̄ (t,x,χ1) f̄ (t,x,χ)

for quadruplets χ′
1,χ

′,χ1,χ compatible with the conservation of linear momentum and kinetic energy.

Therefore f̄ is expected to satisfy the same conservations and decay as f .

When taking the first moments of the density f̄ , we obtain the same quantities as in Proposition

2.1 :

ρ̄ =
∫
Rd

f̄ dχ = (1+ tα)dρ, m̄ =
∫
Rd

f̄ χdχ = (1+ tα)d((1+ tα)m−αρx)
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and

T̄ =

∫
Rd

f̄ χ⊗χdχ = (1+ tα)d+2T −α(1+ tα)d+1(m⊗ x+ x⊗m)+α2(1+ tα)dρx⊗ x.

Proposition 2.1 tells us that the positive tensor

S̄B =

(
ρ̄ m̄T

m̄ T̄ +(1+ tα)d+2Σ

)

is Divergence-free in the coordinates (s,y). Compensated Integrability thus yields

∫ smax

0
ds

∫
Rd
(det S̄)

1
d dy 6

∫ smax

0
ds

∫
Rd
(det S̄B)

1
d dy 6 cdM

1
d sup

s
‖m̄(s,·)‖M .

Since

‖m̄(s,·)‖M 6

(
M

∫
Rd

f̄ |χ|2dχdy

) 1
2

,

and ∫
Rd

∫
Rd

f̄ (s,y,χ)
|χ|2

2
dχdy +

∫
Rd

1

2
Tr Σ̄dy = Eα(0) :=

∫
Rd

∫
Rd

f̄0(y,χ)
|χ|2

2
dχdy,

we obtain ∫ smax

0
ds

∫
Rd
(det S̄)

1
d dy 6 cdM

1
d

√
MEα(0) .

Going back to the original coordinates, where we have det S̄ = (1+ tα)d(d+3)detS, this rewrites as

∫ tmax

0
(1+ tα)dt

∫
Rd
(detS)

1
d dx 6 cdM

1
d

(
M

∫
Rd

∫
Rd

f0(x,ξ)
|ξ−αx|2

2
dξdx

) 1
2

.

We conclude as in Paragraph 3.3 by letting α →+∞, and then by optimizing the choice of the origin

of Rn. We thus obtain the following result.

Theorem 4.1 Let the initial data f0 > 0 satisfy the assumptions (21). Then the renormalized solution

satisfies

(23)

∫ tmax

0
t dt

∫
Rd
(detS)

1
d dx 6 cdM

1
d

(
1

4

∫
Rd

∫
Rd

ρ0(x)ρ0(x
′)|x′− x|2dxdx′

) 1
2

.

for an absolute constant cd that depends only upon the space dimension, and where detS is given in

(24).

As noticed in [9], we may express

(24) detS =
1

(d +1)!

∫
Rd

· · ·
∫
Rd

f (t,x,ξ0) · · · f (t,x,ξd)V (ξ0, . . . ,ξd)
2dξ0 · · ·dξd,
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where V (ξ0, . . . ,ξd) is the volume of the simplex spanned by the vertices ξ0, . . . ,ξd in Rd .

Once again, (23) seems to forbid source solutions of the Boltzman equation. If all the mass is

concentrated at a single point at initial time, then the right-hand side vanishes, and this implies with

(24) that for almost every (t,x),

a.e. (ξ0, . . . ,ξ
d) ∈ (Rd)1+d , (V (ξ0, . . . ,ξd)> 0) =⇒ ( f (t,x,ξ0) · · · f (t,x,ξd) = 0).

In other words, the essential support of f (t,x,·) is contained in an affine hyperplane Πt,x of Rd . We

leave open the question whether such solutions exist besides f ≡ 0. At least, they cannot belong

to the class of renormalized solutions, since f | log f | is not integrable in space and velocity. The

concentration of the support of f (t,x,·) can be interpreted as the fact that the temperature – whatever

this notion means for a flow off equilibrium – vanishes identically.

Appendix: Proof of (16)

Since ∫ ∫
R2d

g(x)g(x′)|x′− x|2dxdx′ = min
x̂∈Rd

2

∫
Rd

g(x)dx ·

∫
Rd

g(x)|x− x̂|2dx,

it is enough to prove

(25)

(∫
Rd

g(x)dx

)2+ 2
d

6 cd

∫
Rd

g(x)|x|2dx ·
∫
Rd

g(x)1+ 2
d dx

Let R > 0 be the radius of a ball BR centered at the origin, to be chosen later. We decompose the

integral of g as the sum of the integrals over BR and its complement. On the one hand, the Hölder

inequality gives

∫
BR

g(x)dx ≤

(∫
Rd

g(x)1+ 2
d dx

) d
d+2

|BR|
2

d+2 =

(∫
Rd

g(x)1+ 2
d dx

) d
d+2

(|B|Rd)
2

d+2 .

On the other hand ∫
Bc

R

g(x)dx ≤
1

R2

∫
Rd

g(x)|x|2dx.

To balance both contributions, we choose

R4 d+1
d+2 =

(∫
Rd

g(x)1+ 2
d dx

)− d
d+2

∫
Rd

g(x)|x|2dx

and we obtained the desired conclusion.
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