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Abstract

We classify completely the infinite, planar triangulations satisfying a weak spatial Markov
property, without assuming one-endedness nor finiteness of vertex degrees. In particular, the
Uniform Infinite Planar Triangulation (UIPT) is the only such triangulation with average
degree 6. As a consequence, we prove that the convergence of uniform triangulations of the
sphere to the UIPT is robust, in the sense that it is preserved under various perturbations
of the uniform measure. As another application, we obtain large deviation estimates for the
number of occurencies of a pattern in uniform triangulations.

Introduction

Local limits of random triangulations. Local limits of random planar maps have been
the object of extensive study in the last fifteen years. The starting point of this theory was
the convergence of large uniform triangulations to the Uniform Infinite Planar Triangulation
(UIPT) proved by Angel and Schramm [4]. Since then, similar results have been proved for
many other classes of maps such as quadrangulations [9], or maps with Boltzmann weights on
the face degrees ([5] in the bipartite case and [22] in the general case). See also [15] for a complete
survey. All these results rely heavily on a very good understanding of the combinatorics of finite
maps. More precisely, the proofs use either exact enumeration results going back to Tutte such
as [24], or bijections with simpler objects such as labelled trees [13].

Spatial Markov property. The UIPT exhibits fractal-like properties (e.g. volume growth in
r4) whose study was started by Angel in [2], relying on an exploration procedure called peeling.
The key feature of the UIPT allowing to perform such explorations is its spatial Markov property :
the probability to observe a finite triangulation t as a neighbourhood of the root in the UIPT
only depends on the perimeter and volume of t, and not on its geometry. This guarantees that
during an exploration of the UIPT, the perimeter and volume of the explored region follow a
Markov chain, which reduces the study of the UIPT to the analysis of an explicit Markov chain
with values in N2. Moreover, the spatial Markov property is easy to observe on many natural
finite models (such as uniform triangulations of the sphere with a fixed size) and passes well to
local limits. We can therefore expect the limits of many natural finite map models to exhibit
the spatial Markov property.
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Planar Stochastic Hyperbolic Triangulations. Partly motivated by this remark, Curien
introduced1 in [14] a family of random infinite triangulations of the plane called Planar Stochastic
Hyperbolic Triangulations (PSHT) (see also [3] for similar objects in a half-plane setting). The
PSHT form a one-parameter2 family (Tλ)0≤λ≤λc , where λc = 1

12
√

3
and Tλc is just the UIPT.

They are characterized by the following stronger version of the spatial Markov property: if t is
a triangulation with one hole of perimeter p and inner volume v, then

P (t ⊂ Tλ) = Cp(λ)× λv,

where t ⊂ T means that t is a neighbourhood of the root in T , and the constants Cp(λ) are
explicit. For λ < λc, the PSHT Tλ exhibit a hyperbolic behaviour contrasting sharply with the
UIPT (e.g. exponential volume growth, positive speed of the simple random walk) [14]. The
PSHT were proved in [7] to be the local limits of uniform triangulations with genus proportional
to their sizes.

Characterizing Markovian triangulations. An important step of the argument of [7] was
the following characterization.

Proposition 1. [7, Theorem 2] Let T be a random, infinite, one-ended planar triangulation
with finite vertex degrees. If T satisfies the spatial Markov property, then T is a mixture of
PSHT, i.e. T is of the form TΛ, where Λ is a random variable with values in (0, λc].

Indeed, once tightness and planarity and one-endedness of the limits are established, this
result ensures that any subsequential limit is a mixture of PSHT. However, although [7] does
not rely on precise combinatorial asymptotics on the finite models, checking the assumptions of
one-endedness and planarity on subsequential limits still required a strong combinatorial input,
namely the Goulden–Jackson recursion of [18]. The goal of the present work is to remove the
assumptions of one-endedness and finite vertex degrees in Proposition 1, and therefore to make
the strategy of [7] less reliant on the combinatorial understanding of the models.

Triangulations with infinite vertex degrees. In this work, an infinite triangulation will
be a connected, planar gluing of a countable collection of triangles along their vertices and
edges (see Section 1.1 for a more formal definition). We allow loops and multiple edges and,
importantly, we do not require the vertex degrees to be finite, which is quite unusual in the
literature. The point of this extended definition will be to allow us to "skip" the tightness step
in the proofs of local convergence results. In particular, given two corners c1 and c2 incident to
the same vertex v, it may be necessary to cross infinitely many edges to go from c1 to c2 in a
small neighbourhood of v (see the right part of Figure 1).

In the context of multi-ended triangulations, we need to extend the definition of the spatial
Markov property. We say that a random infinite, planar triangulation T is Markovian if for any
finite triangulation t with holes, the probability P (t ⊂ T ) only depends on the perimeters of the
holes of t and on its total number of faces.

1The PSHT defined in [14] are the type-II PSHT, i.e. where multiple edges are allowed but self-loops are
forbidden. The adaptation to the type-I case (with both multiple edges and self-loops) was done in [6].

2In [14, 6], the construction is only given for λ ∈ (0, λc]. The extension to the case λ = 0, where vertices have
infinite degrees, will be done carefully in the present work, see Section 1.
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Figure 1: The beginning of the construction of T0 (on the left) and T? (on the right). Note that
these are two different triangulations: T0 has infinitely many vertices whereas T? has only one.

We finally introduce two important examples of "degenerate" planar triangulations T0 and
T? with infinite vertex degrees. We denote by T0 the triangulation obtained by gluing the edges
of the triangles along the structure of a complete binary tree (as on the left of Figure 1). This is
also the natural way to extend the PSHT Tλ to the case λ = 0. On the other hand T? (on the
right of Figure 1) is the only infinite, planar triangulation with only one vertex: it is obtained
by forming a triangle with three loops, and then recursively adding two loops inside of each
loop to form new triangles. We highlight that our definition considers T0 and T? as two distinct
objects, even if they have the same dual. Indeed, the vertices are not glued in the same way in
T0 and in T?. We are now able to state our main theorem.

Theorem 1. Let T be a Markovian infinite, planar triangulation. Then T is of the form TΛ,
where Λ is a random variable with values in [0, λc] ∪ {?}.

In particular, this result means that there is no natural notion of "uniform" multi-ended
planar triangulation. This was already observed by Linxiao Chen for a much stronger version
of the Markov property [10].

Applications to the convergence of "perturbed" models to the UIPT. As explained
above, the main motivation behind this result is to be able to prove the convergence of finite
models to the UIPT without to need a good control on the combinatorics of these models. Indeed,
a corollary of Theorem 1 is that the UIPT is the only Markovian infinite planar triangulation
with average vertex degree 6. This characterization of the UIPT involves only properties that
are usually easy to observe on finite models, and is therefore useful to prove the convergence of
such models. Roughly speaking, the "meta-theorem" is that any "almost-uniform" triangulation
model with an additional structure which is "small compared to the size" converges to the UIPT.
As an illustration, we present three particular cases: triangulations with defects, with moderate
genus, and with a very high temperature Ising model. Note that our approach is robust enough
to treat a model where these three perturbations would be combined.

Triangulations with defects. We first consider "triangulations with defects", i.e. where a
small proportion of the faces are not triangles. More precisely, for f = (fj)j≥1 such that

∑
j≥1 jfj

is an even integer, we denote by Mf a uniform rooted planar map among all those with exactly
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fj faces of degree j for all j ≥ 1. We write |f | = 1
2

∑
j≥1 jfj for the number of edges of such a

map.

Corollary 2. Let fn for n ≥ 1 be face degree sequences such that |fn| → +∞ when n→ +∞.
We assume that

∑
j 6=3 jfj = o (|fn|). Then the random maps Mfn converge locally to the UIPT

as n→ +∞.

We note that the combinatorics of maps with prescribed face degrees are only fully under-
stood when we consider bipartite maps [21], which is not the case here. On the other hand,
the case where the non-triangular faces are simple and face-disjoint was completely treated by
Krikun [19]. This Corollary was one of the motivations for this work, and will be used in a
forthcoming work of Curien, Kortchemski and Marzouk on mesoscopic limits of uniform planar
maps with fixed numbers of edges, faces and vertices [16].

Triangulations with moderate genus. For n ≥ 1 and 0 ≤ g ≤ n
2 , we denote by Tn,g a

uniform rooted triangulation with 2n faces and genus g. Note that the condition g ≤ n
2 is

necessary for such a triangulation to exist. Using Theorem 1, we can recover the following
particular case of the main result of [7].

Corollary 3. Let (gn) be a sequence such that gn
n → 0 as n → +∞. Then Tn,gn converges

locally to the UIPT as n→ +∞.

Compared to [7], the proof is now much shorter, and does not rely on any combinatorics of
high genus maps.

Very high temperature Ising model. Our last application deals with the Ising model on
random triangulations. If t is a triangulation of the sphere and σ is a colouring of the faces of
t in black and white, we denote by H(t, σ) the number of edges e of t such that both sides of
e have the same colour. For β ∈ R and n ≥ 1, we denote by Tn[β] the random face-coloured
triangulation of the sphere with 2n faces such that for all (t, σ) the probability that Tn[β] = (t, σ)

is proportional to eβH(t,σ).

Corollary 4. Let (βn) be a sequence of real numbers such that βn → 0 as n → +∞. Then
Tn[βn] converges locally as n→ +∞ to the UIPT equipped with Bernoulli face percolation with
parameter 1

2 .

We note that the case where the Ising model lives on the vertices and the inverse temperature
β > 0 is fixed was treated in [1]. We also refer to [11, 12, 23] for local convergence results on
Ising triangulations with a boundary, once again for β fixed.

Large deviations for pattern occurences in uniform triangulations. We conclude the
consequences of Theorem 1 with a last application to the counting of patterns in uniform trian-
gulations. Let t0 be a fixed, finite triangulation with one or several holes. For every triangulation
t of the sphere, we denote by occt0(t) the number of occurences of t0 in t (that is, the num-
ber of oriented edges of t around which t0 appears). We recall that Tn stands for a uniform
triangulation of the sphere with 2n faces, and Tλc for the UIPT.
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Theorem 2. For every finite triangulation with holes t0 and every ε > 0, the probability

P
(∣∣∣∣occt0(Tn)

6n
− P (t0 ⊂ Tλc)

∣∣∣∣ > ε

)
decays exponentially in n.

Note that the local convergence of Tn to Tλc only gives the convergence of the expectation
of occt0 (Tn)

6n to P (t0 ⊂ Tλc). Convergence in probability was proved in [17] in the more general
context of planar maps with Boltzmann weights on the face degrees. The proof of Theorem 2
consists of showing using Theorem 1 that if βn → 0, then Tn biased by exp(βn occt0(Tn)) still
converges to the UIPT. This means that perturbating the uniform measure by subexponential
factors does not affect occt0(Tn) in a significant way, so triangulations where occt0(Tn) deviates
from its mean must be exponentially rare.

Sketch of proof of the main theorem. The starting point of the proof of Theorem 1 is
roughly the same as the proof of [7, Theorem 2]: using linear equations between the probabilities
P (t ⊂ T ) and the Hausdorff moment problem, we express the probabilities P (t ⊂ T ) as the
moments of a pair (Λ,Γ) of random variables. Here Λ and Γ can roughly be interpretated as
Boltzmann weights on respectively the number of vertices and the number of ends. The PSHT
Tλ for λ ∈ [0, λc] corresponds to the case (Λ,Γ) = (λ, 0), whereas the degenerate triangulation
T? corresponds to (Λ,Γ) = (0, 1). We then use the explicit generating function of triangulations
with a boundary to prove that one of the probabilities P (t ⊂ T ) is negative, unless almost surely
Γ = 0 or (Λ,Γ) = (0, 1). Finally, we refer to Section 5 for a discussion on extensions of Theorem 1
and a conjecture in the nonplanar case.

Acknowledgements. The author thanks Linxiao Chen, Nicolas Curien, Igor Kortchemski
and Cyril Marzouk for useful discussions. We are grateful to the Laboratoire de Mathématiques
d’Orsay, where this work was started, for its hospitality.
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1 Preliminaries

1.1 Basic definitions

Finite triangulations. We recall that a finite planar map is a gluing of a finite number of
finite polygons which is homeomorphic to the sphere. We will always consider rooted maps,
which means that they carry a distinguished oriented edge called the root. We will call root
vertex the starting point of the root edge, and root face the face lying on the left of the root
edge. A triangulation of the sphere is a finite planar map where all the faces have degree 3. We
denote by Tf the set of triangulations of the sphere. Note that in all this work, we will consider
type-I triangulations, which means that we allow self-loops and multiple edges.

A triangulation with holes is a finite, planar map t with marked faces called the holes, such
that:

• all the internal faces (i.e. the faces which are not holes) are triangles;

• every edge is incident to at least one internal face, and the set of internal faces forms a
connected subset of the dual of t.

It will also be important for us to have a notion of volume for triangulations with holes. While
the most usual convention is to use the total number of vertices, we will choose a different one
here, which allows the volume to take any nonnegative value3.

Lemma 5. Let t be a triangulation with k holes of perimeters p1, . . . , pk, and let ṽ be its total
number of vertices. Then we have

v := ṽ − 1−
k∑
i=1

(pi − 1) ≥ 0. (1)

We call this quantity v the inner volume of t.

Proof. We denote by V∂ the set of vertices of t which lie on at least one of the holes. Let t̂ be
the map whose vertices are the holes of t and the vertices of V∂ , and where for each hole h of t
and each vertex v on ∂h, there is one edge linking h to v. Then a cycle in t̂ would disconnect
the set of internal faces, so t̂ is a forest. On the other hand t̂ has k + #V∂ vertices and

∑k
i=1 pi

edges, so

k + #V∂ ≥ 1 +

k∑
i=1

pi,

and finally ṽ ≥ #V∂ ≥ 1 +
∑k

i=1(pi − 1).

On the other hand, let p1, . . . , pk ≥ 1 and v ≥ 0. We note that there is a triangulation
with k holes of perimeters p1, . . . , pk and inner volume v except if v = 0 and either k = 1 and
p1 ∈ {1, 2}, or k = 2 and p1 = p2 = 1. To bridge this gap, we set the following conventions:

3The point of this change is to have a definition of the PSHT which still makes sense for λ = 0, see Section 1.3.
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• the only triangulation with one hole of perimeter 1 and inner volume 0 is the triangulation
t10 consisting of a single vertex and no edge;

• the only triangulation with one hole of perimeter 2 and inner volume 0 is the triangulation
t20 consisting of two vertices linked by a single edge;

• the only triangulation with two holes of perimeter 1 and inner volume 0 is the triangulation
t1,10 consisting of a single vertex and a loop on this vertex.

For p ≥ 1, a finite triangulation of the p-gon is a finite, planar map where the root face has
degree p and is simple, and all the other faces have degree 3. We denote by τn(p) the number of
triangulations of the p-gon with volume n, i.e. with n + 1 vertices overall. This convention for
the volume is designed so that when we use a triangulation of a polygon to fill one of the holes
of a triangulation with holes, their volumes add up.

Sub-triangulations and balls. If T is a triangulation of the sphere and t a triangulation with
holes, we write t ⊂ T if T can be obtained from t by filling each hole of t with a triangulation
of a polygon4. We call t a sub-triangulation of T write t ⊂ T . We now define two families of
sub-triangulations of particular interest.

If T is a triangulation of the sphere and r ≥ 0, we denote by Br(T ) the sub-triangulation
of T consisting of all the faces of T incident to at least one vertex at graph distance at most
r − 1 from the root vertex, together with all the vertices and edges incident to these faces. We
also denote by B∗r (T ) the sub-triangulation consisting of all the faces at distance at most r from
the root face in the dual graph of T , together with all the vertices and edges incident to these
faces. We call Br(T ) (resp. B∗r (T )) the ball of radius r (resp. dual ball of radius r) of T . In
some cases, we will also use the notation Br(T ; e) or B∗r (T ; e) for the ball or dual ball around
the root edge e to emphasize the choice of the root edge.

Local distances and infinite triangulations. We now define two versions of the local topol-
ogy on the set of triangulations. The first one is the one which is used most of the time in the
literature, while the second is a weaker version. We will mostly use the second one in this work,
but we will still obtain convergence results for the first one in the end (Corollaries 2, 3 and 4).
If T, T ′ are two triangulations of the sphere, we write

dloc(T, T
′) =

(
1 + min{r ≥ 0|Br(T ) 6= Br(T

′)}
)−1

,

d∗loc(T, T
′) =

(
1 + min{r ≥ 0|B∗r (T ) 6= B∗r (T ′)}

)−1
.

We call dloc (resp. d∗loc) the local distance (resp. dual local distance) on the set of triangulations.
We denote by T the completion of Tf for d∗loc, and write T∞ = T \Tf . An element of T∞ will
be called an infinite triangulation. Alternatively, an infinite triangulation is a planar, connected
gluing of countably many triangles along some of their vertices and edges, such that all the edges
are glued two by two. Note however that vertex degrees may be infinite. It is also possible that
the neighbourhood of a vertex v becomes disconnected if v is removed (see the right of Figure 1).
However, note that the notion of a dual ball still makes sense in a triangulation T ∈ T∞. As an

4By convention, we always have t10 ⊂ T , we have t20 ⊂ T if and only if the root of T is not a loop, and t1,10 ⊂ T
if and only if the root of T is a loop.
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example, Figure 1 represents B∗3(T0) on the left and B∗1(T?) on the right. The notation t ⊂ T

also makes sense in this context (we say that t ⊂ T if there is r such that t ⊂ B∗r (T )). Finally,
we note that for any r ≥ 0, a dual ball Br(T ∗) has at most 1 + 3 + · · ·+ 3r faces, so it may only
take finitely many values. This implies that T is compact for d∗loc. This will be important in the
proofs of Corollaries 2, 3 and 4.

Finally, also with Corollaries 2, 3 and 4 in sight, we state an easy lemma (see e.g. [7, Lemma
3]) which will bridge the gap between convergence for d∗loc and for dloc.

Lemma 6. Let (Tn) be a sequence of triangulations of T . Assume that

Tn
d∗loc−−−−−→

n→+∞
T,

where T ∈ T has only vertices with finite degrees. Then we also have Tn → T for dloc when
n→ +∞.

1.2 The spatial Markov property

We now define precisely our spatial Markov property for infinite triangulations. We will introduce
two definitions of this property and prove that they are equivalent. The difference between the
two definitions is that the second includes the knowledge of which hole is filled with an infinite
component, while the first one does not. The first definition (Definition 7) is the one that is
easy to observe on finite models and will be used to prove Corollaries 2, 3 and 4. However, in
most of this work, we will use the second one, introduced in Lemma 8, which is more convenient
to deal with infinite models.

Let T be an infinite, planar triangulation, and let t be a finite triangulation with k holes. We
recall that we write t ⊂ T if there is a neighbourhood of the root in T which is isomorphic to t,
or equivalently if T can be obtained by filling each hole of t with a finite or infinite triangulation.
We also write t ⊂∞ T if t ⊂ T and furthermore each of the holes of t contains infinitely many
triangles of T .

Definition 7. Let T be a random infinite planar triangulation. We say that T is Markovian if
there are numbers bp1,...,pk

v for k ≥ 1, p1, . . . , pk ≥ 1 and v ≥ 0 such that, for any triangulation t
with k holes of perimeters p1, . . . , pk and inner volume v:

P (t ⊂ T ) = bp1,...,pk
v .

Lemma 8. A random infinite planar triangulation T is Markovian if and only if the following
condition is satisfied. There are numbers ap1,...,pk

v for k ≥ 1, p1, . . . , pk ≥ 1 and v ≥ 0 such that,
for any triangulation t with k holes of perimeters p1, . . . , pk and inner volume v:

P (t ⊂∞ T ) = ap1,...,pk
v .

Proof. Assume that T satisfies the condition of the lemma, and let (ap1,...,pk
v ) be the associated

constants. Let t be a triangulation with k holes of perimeters p1, . . . , pk and inner volume v.
Then the probability that t ⊂ T can be expressed as a sum over all ways to fill some of the holes
of t (but not all of them) with finite triangulations of the adequate polygons. We obtain

P (t ⊂ T ) =
∑

I⊂{1,...,k}
I 6=∅

∑
vi≥0 for i/∈I

(∏
i/∈I

τvi(pi)

)
a

(pi)i∈I
v+

∑
i/∈I vi

,
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where by i /∈ I we mean i ∈ {1, . . . , k}\I. This only depends on v and the pi, so T is Markovian.
Now let T be a Markovian triangulation. For any ` ≥ 0 and any triangulation t with k ≥ `

holes, we denote by t ⊂`∞ T the event that t ⊂ T and for every i ≤ `, the i-th hole of t contains
infinitely many faces of T . We will prove by induction on ` that P

(
t ⊂`∞ T

)
only depends on

` and the perimeters and inner volume of t. The initialization for ` = 0 holds because T is
Markovian, whereas the case ` = k will prove the lemma. For the induction step, assume the
result holds for some ` ≥ 0, and let t be a triangulation with k ≥ ` + 1 holes of perimeters
p1, . . . , pk. Then the induction follows from the identity

P
(
t ⊂`+1
∞ T

)
= P

(
t ⊂`∞ T

)
−
∑
t′

P
(
t⊕`+1 t

′ ⊂`∞ T
)
,

where the sum is over all finite triangulations t′ of the p`+1-gon, and by t ⊕`+1 t
′ we mean the

triangulation with k − 1 holes obtained by filling the (` + 1)-th hole of t with t′. The set of
values of t′ only depends on p`+1 and each term on the right-hand side only depends on ` and
the perimeters and inner volume of t. Therefore, so does the left-hand side, which proves the
lemma.

1.3 Combinatorics and infinite models

Counting triangulations of polygons. We now recall the exact enumeration of triangula-
tions of polygons. For n ≥ 0 and p ≥ 1, we recall that τn(p) is the number of triangulations of
the p-gon with volume n (i.e. n+ 1 vertices in total). We also write

Zp(λ) =
∑
n≥0

τn(p)λn

for the generating function of triangulations of the p-gon, and finally Zλ(x) =
∑

p≥1 Zp(λ)xp.
By exact enumeration results of Krikun [20], we have Zp(λ) < +∞ if and only if λ ≤ λc := 1

12
√

3
.

Moreover, for λ ∈ [0, λc], we have

Zλ(x) =
1

2

(
−1 + x+

(
1− 1√

1 + 8h
x

)√
1− 4h√

1 + 8h
x

)
, (2)

where h ∈
[
0, 1

4

]
is such that

λ =
h

(1 + 8h)3/2
. (3)

Note that the expression of Z here is slightly different from how it usually appears because of
our different volume convention. Note also that Z0(x) = 0.

The UIPT and the PSHT. We now define precisely the PSHT (Tλ)0≤λ≤λc , where we recall
that λc = 1

12
√

3
. The PSHT were introduced in [14] in the type-II setting, and their definition

was extended to type-I triangulations in [6]. They are random one-ended infinite, planar tri-
angulations, characterized by the following property: for any triangulation t with one hole of
perimeter p and inner volume v, we have

P (t ⊂ Tλ) = CPSHTp (λ)λv. (4)
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Moreover, we have CPSHT1 (λ) = 1 and
(
CPSHTp (λ)

)
p≥1

satisfies the following recursion:

CPSHTp (λ) = CPSHTp+1 (λ) + 2

p−1∑
i=0

Zi+1(λ)CPSHTp−i (λ). (5)

This recursion was obtained in [14] and it was observed in [6] that it yields the exact formula
CPSHTp (λ) = 1

(1+8h)p/2

∑p−1
q=0

(
2q
q

)
hq, where h is given by (3). Note that our formula for CPSHTp (λ)

differs from the one obtained in [6] by a factor λp. This is because v now denotes the inner volume
instead of the total number of vertices, and the reason for this change of convention is that now
each factor in (4) still makes sense for λ = 0 (with the convention of [6], one factor would go to
+∞ and the other to 0).

In particular, the random map Tλc is the UIPT. On the other hand, for λ = 0, we get
CPSHTp (0) = 1 and P (t ⊂ Tλ) = 1v=0. Therefore, the triangulation T0 is the dual of a complete
binary tree (i.e. the triangulation depicted on the left of Figure 1).

The one-vertex triangulation T?. We finally introduce another deterministic example of
degenerate Markovian triangulation. We denote by T? the unique infinite planar triangulation
with only one vertex. One way to construct T? is to start from three loops on the same vertex
forming a triangle, and then recursively add two loops to form a new triangle inside of each loop.

Lemma 9. The triangulation T? is Markovian with

ap1,...,pk
v =

{
1 if p1 = · · · = pk = 1 and v = 0,

0 else.

Proof. First, if t ⊂ T?, all the edges of T? are loops, so all the holes of t must have perimeter 1.
Moreover T? has only one vertex, so the inner volume of t must be 0 by (1). On the other hand,
if t is a triangulation with holes of perimeter 1 and inner volume 0, then it follows from (1) that
t has only one vertex, and all the edges are loops. By planarity, each loop of t separates t in
two, so t consists of loops on the same vertex whose nesting structure is that of a binary tree.
This implies t ⊂ T?.

2 Proof of the main theorem

To prove Theorem 1, we will rely on the characterization of Markovian triangulations given by
Lemma 8. More precisely, let T be a Markovian triangulation and let ap1,...,pk

v = P (t ⊂∞ T ) for a
triangulation t with k holes of perimeters p1, . . . , pk and inner volume v. Then these coefficients
satisfy the following linear equations, that we will call the peeling equations:

ap1,...,pk
v = ap1+1,p2,...,pk

v + 2

p1−1∑
i=0

∑
j≥0

ap1−i,p2,...,pk
v+j × τj(i+ 1) +

p1−1∑
i=0

ai+1,p1−i,p2,...,pk
v .

To obtain this equation, we first note that for v = 0, k = 1 and p1 = 1, the equation consists of
distinguishing whether the root edge is a loop or not, and whether one side of this loop is filled
with a finite region. Note also that a1

0 = 1. In all other cases, consider a triangulation t with k
holes of perimeters p1, . . . , pk and inner volume v, and assume t ⊂ T . We fix an edge e on the
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Figure 2: The three cases appearing in the peeling equations. The case in the middle corresponds
to (i, j) = (2, 4) in the first sum. The case on the right corresponds to i = 3 in the second.

boundary of the first hole of t and explore the triangle f of T\t incident to e (see Figure 2). By
planarity, either the third vertex x of f (other than the two ends of e) does not belong to t, or
x lies on the boundary of the first hole. The first term in the peeling equation corresponds to
the case where x is not in t. The first sum corresponds to the case where f separates T\t into
a finite part with perimeter i+ 1 and j + 1 vertices in total, and an infinite part. The factor 2

comes from the possibility that the finite component lies either on the left or on the right of f .
Finally, the second sum corresponds to the case where f splits the first hole into two holes of
perimeters i+ 1 and p1− i, each of which contains infinitely many triangles of T . This last case
is the one which is new compared to the one-ended case.

The main steps of the proof of Theorem 1 will be as follows: in Section 2.1, we will express the
solutions to the peeling equations in terms of a pair (Λ,Γ) of random variables (Proposition 12).
These two variables can be thought of as Boltzmann weights on respectively the volume and
the number of infinite ends. The PSHT Tλ corresponds to the case Λ = λ and Γ = 0, whereas
T? corresponds to the case Λ = 0 and Γ = 1. In Section 2.2, using the formula obtained
in Proposition 12 and the nonnegativity of the coefficients ap1,...,pk

v , we will prove that almost
surely Λ = 0 or Γ = 0. Finally, in Section 2.3, we will exclude the case 0 < Γ < 1 using a similar
strategy.

2.1 Solving the peeling equations

The ideas used in the first part of the proof will be very similar to the ideas used for the one-ended
case in [7, Section 3]: we will use the Hausdorff moment problem to interpret the coefficients
a1,...,1
v as the moments of certain random variables. We first notice that T is characterized by

these coefficients. We will use the notation k ⊗ 1 for 1, . . . , 1 where 1 appears k times.

Lemma 10. The distribution of T is determined by the numbers ak⊗1
v for v ≥ 0 and k ≥ 1.

Proof. It is sufficient to prove that for all p1, . . . , pk ≥ 1 and v ≥ 0, the coefficient ap1,...,pk
v is

determined by
(
a`⊗1
v

)
`≥1, v≥0

. We prove this by induction on
∑k

i=1(pi − 1). If this sum is zero,
then pi = 1 for all i so the result is immediate.

Moreover, if
∑k

i=1(pi − 1) > 0, assume without loss of generality p1 ≥ 2. Then the peeling
equation can be rewritten

ap1,...,pk
v = ap1−1,p2,...,pk

v − 2

p1−2∑
i=0

∑
j≥0

ap1−1−i,p2,...,pk
v+j τj(i+ 1)−

p1−2∑
i=0

ai+1,p1−1−i,p2,...,pk
v .

11



By the induction hypothesis, all the terms in the right-hand side are determined by
(
a`⊗1
v

)
`≥1, v≥0

,
so this is also true for the left-hand side, which proves the lemma.

The next step, which follows closely [7, Section 3], is to prove that the ak⊗1
v are given by the

moments of a pair of random variables.

Lemma 11. There is a random variable (Λ,Γ) with values in [0, λc] × [0, 1] such that, for all
k ≥ 1 and v ≥ 0, we have:

ak⊗1
v = E

[
ΛvΓk−1

]
. (6)

Proof. We define the discrete derivative operators ∆v and ∆k by

(∆va)p1,...,pk
v = ap1,...,pk

v − ap1,...,pk
v+1

and
(∆ka)p1,...,pk

v = ap1,...,pk
v − ap1,...,pk,1

v .

Note that
(
∆va

k⊗1
v

)
and

(
∆ka

k⊗1
v

)
are respectively the discrete derivatives of

(
ak⊗1
v

)
with respect

to v and to k. Since a1
0 = 1, by the two-dimensional Hausdorff moment problem, it is sufficient

to prove ∆m
v ∆n

ka
k⊗1
v ≥ 0 for all m,n, v ≥ 0 and k ≥ 1. We will actually prove the following

more general inequality for all m,n, v ≥ 0 and p1, . . . , pk ≥ 1:

∆m
v ∆n

ka
p1,...,pk
v ≥ 0. (7)

We will prove (7) by induction on m+ n. Although we only need the case p1 = · · · = pk = 1 in
the end, handling the general case will be necessary in the induction step.

The case m = n = 0 is immediate since the coefficients ap1,...,pk
v are nonnegative. We now

assume the result holds for (m,n), and prove it for (m,n + 1). Let v ≥ 0 and p1, . . . , pk ≥ 1.
Using the induction hypothesis and writing the peeling equation for ap1,...,pk,k

′⊗1
v+v′ for 0 ≤ v′ ≤ m

and 0 ≤ k′ ≤ n, we have:

0 ≤ ∆m
v ∆n

ka
p1+1,p2,...,pk
v

= ∆m
v ∆n

ka
p1,p2,...,pk
v − 2

p1−1∑
i=0

∑
j≥0

τj(i+ 1)∆m
v ∆n

ka
p1−i,p2,...,pk
v+j −

p1−1∑
i=0

∆m
v ∆n

ka
i+1,p1−1,p2,...,pk
v .

By the induction hypothesis, every term in the two sums is nonnegative. Therefore, the last
inequality remains true if we remove entirely the first sum, and keep only the term i = 0 in the
second one. We obtain

0 ≤ ∆m
v ∆n

ka
p1,p2,...,pk
v −∆m

v ∆n
ka

1,p1,p2,...,pk
v = ∆m

v ∆n+1
k ap1,p2,...,pk

v ,

which proves the result for (m,n + 1). The argument to deduce the result for (m + 1, n) from
(m,n) is the same, but this time we keep only the term i = 0, j = 1 in the first sum and remove
the factor 2, exactly as in [7, Lemma 16]. This proves the claim (7).

Therefore, by the Hausdorff moment problem, there is a random variable (Λ,Γ) with values
in [0, 1]2 such that (6) holds for all k ≥ 1 and v ≥ 0. To conclude, we only need to show Λ ≤ λc
almost surely. For this, by the peeling equation for v = 0, k = 1 and p1 = 1, we must have:

E [Z1(Λ)] =
∑
j≥0

τj(1)E
[
Λj
]

=
∑
j≥0

a1
jτj(1) ≤ a1

0 < +∞.

Hence, we must have Z1(Λ) < +∞ a.s.. By the results of Section 1.3, this means Λ ≤ λc a.s..

12



We note that by (4) and (5), the PSHT Tλ for λ ∈ [0, λc] corresponds to the case where
(Λ,Γ) = (λ, 0) a.s.. On the other hand, by Lemma 9, the Markovian triangulation T? corresponds
to the case (Λ,Γ) = (0, 1) a.s.. Therefore, proving the main theorem is equivalent to showing
that almost surely, we have either Γ = 0 or (Λ,Γ) = (0, 1).

It follows from Lemmas 10 and 11 that the coefficients ap1,...,pk
v are characterized by the law

of (Λ,Γ). Our next step is to give an explicit formula for these coefficients in terms of (Λ,Γ).
We recall from Section 1.3 that Zi(λ) is the partition function of Boltzmann triangulations of

the i-gon with Boltzmann weight λ on the volume. For all (λ, γ) ∈ [0, λc]×[0, 1], let (Cp(λ, γ))p≥1

be the sequence satisfying C1(λ, γ) = 1 and, for all p ≥ 1:

Cp(λ, γ) = Cp+1(λ, γ) + 2

p−1∑
i=0

Zi+1(λ)Cp−i(λ, γ) + γ

p−1∑
i=0

Ci+1(λ, γ)Cp−i(λ, γ). (8)

Note that this formula defines Cp(λ, γ) in a nonambiguous way, since it allows to express Cp+1

using only previous terms. We note that for γ = 0, we recover (5), which means that Cp(λ, 0) =

CPSHTp (λ). We also note right now that, by induction on p, the function Cp(λ, γ) is a continuous
function of (λ, γ) ∈ [0, λc]× [0, 1]. In particular, it is bounded by a constant f(p).

We can now express all the coefficients ap1,...,pk
v in terms of (Λ,Γ).

Proposition 12. For all p1, . . . , pk ≥ 1 and v ≥ 0, we have

ap1,...,pk
v = E

[
ΛvΓk−1

k∏
i=1

Cpi(Λ,Γ)

]
. (9)

In particular, for all p, k ≥ 1 and v ≥ 0, we have

ap,(k−1)⊗1
v = E

[
ΛvΓk−1Cp(Λ,Γ)

]
. (10)

Proof. For all (λ, γ) ∈ [0, λc]× [0, 1], we define

ap1,...,pk
v (λ, γ) = λvγk−1

k∏
i=1

Cpi(λ, γ).

Using (8), it is easy to check that (ap1,...,pk
v (λ, γ)) is a solution to the peeling equations, with

ak⊗1
v (λ, γ) = λvγk−1. By linearity of the peeling equations, it follows that the right-hand side

of (9) is also a solution. Therefore, both sides of (9) are solutions to the peeling equations. By
Lemma 11, they coincide for p1 = · · · = pk = 1. Therefore, by Lemma 10, both sides coincide
everywhere. Finally, (10) is obtained by taking p2 = · · · = pk = 1.

2.2 A Markovian triangulation is either degenerate or one-ended

The next step of the proof is to show that almost surely, either Γ = 0 (which can be interpreted as
T being one-ended), or Λ = 0 (which can be interpreted as T being degenerate, i.e. with infinite
vertex degrees). We will do so by proving that if this is not true, then one of the coefficients
a
p,(k−1)⊗1
v is negative. We first consider the case where (Λ,Γ) is deterministic.

Proposition 13. If λ ∈ (0, λc] and γ ∈ (0, 1], then there is p ≥ 1 such that Cp(λ, γ) < 0.

13



Proof. We fix λ, γ > 0 throughout the proof and write Cλ,γ(x) =
∑

p≥1Cp(λ, γ)xp. Then the
recursion (8) on Cp becomes

Cλ,γ(x) =
1

x
(Cλ,γ(x)− x) +

2

x
Zλ(x)Cλ,γ(x) +

γ

x
Cλ,γ(x)2, (11)

where Z(x) =
∑

p≥1 Zp(λ)xp is given by (2). After solving the quadratic equation, we find

Cλ,γ(x) =
1

2γ

√(1− x√
1 + 8h

)2(
1− 4h√

1 + 8h
x

)
+ 4γx−

(
1− x√

1 + 8h

)√
1− 4h√

1 + 8h
x

 ,

where h ∈ [0, 1/4] is given by (3).
Now assume that all the Cp(λ, γ) are nonnegative. By the Pringsheim theorem, the radius

of convergence of (Cp(λ, γ)) is equal to the first nonnegative singularity of Cλ,γ . On the other
hand, this function has a singularity at x =

√
1+8h
4h . Moreover, for x <

√
1+8h
4h , the inside of the

first square root is clearly positive, so the radius of convergence of (Cp(λ, γ)) is
√

1+8h
4h . However,

if h < 1/4 (i.e. λ < λc), then we can compute:

lim
x→
√

1+8h
4h

C′λ,γ(x) = −∞,

which is a contradiction. Similarly, in the critical case h = 1/4, the radius of convergence is
√

3

and
lim
x→
√

3
C′′λ,γ(x) = −∞.

Proposition 14. With the notation of Lemma 11, we have almost surely either Λ = 0 or Γ = 0.

Proof. Assume that P (Λ > 0,Γ > 0) > 0. Since the coefficients ap1,...,pk
v must be nonnegative,

by (10), it is sufficient to find p, k ≥ 1 and v ≥ 0 such that

E
[
ΛvΓk−1Cp(Λ,Γ)

]
< 0. (12)

Let K be the compact support of the law of (Λ,Γ). We first claim that there is a coefficient
α ≥ 1 such that the quantity λ× γα has a unique maximizer in K. Indeed, we write

logK = {(log λ, log γ) |λ > 0, γ > 0, (λ, γ) ∈ K} .

This is nonempty by assumption, so the convex hull logK of logK is a nonempty convex subset
of (R−)

2. Its boundary ∂logK contains at most a countable number of nontrivial segments.
Therefore, there is a vector (1, α) with α ≥ 1 such that ∂logK contains no segment orthogonal
to (1, α). This implies that x + αy has a unique maximizer in logK, so λ × γα has a unique
maximizer in K. We denote by (λ0, γ0) this maximizer.

By Proposition 13, there is p0 ≥ 1 such that Cp0(λ0, γ0) < 0. The idea will be that if we take
p = p0 and k = αv and let v go to infinity, then the mass of the expectation (12) is concentrated
close to (Λ,Γ) = (λ0, γ0).

More precisely, we denote by Bε(λ0, γ0) the ball of radius ε around (λ0, γ0) in R2. By
continuity (see the remark just before Proposition 12), we fix ε > 0 such that, for all (λ, γ) ∈
Bε(λ0, γ0), we have

Cp0(λ, γ) ≤ −ε.
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By definition of (λ0, γ0) as a unique maximizer, there is δ > 0 such that, if (λ, γ) ∈ K\Bε(λ0, γ0),
then λγα < λ0γ

α
0 − δ. We can now rewrite the expectation (12) for p = p0 as

E
[
ΛvΓk−1Cp0(Λ,Γ)1ΛΓα≥λ0γα0 −δ

]
+ E

[
ΛvΓk−1Cp0(Λ,Γ)1ΛΓα<λ0γα0 −δ

]
. (13)

By definition of δ, if the inside of the first expectation is nonzero, then (Λ,Γ) ∈ Bε(λ0, γ0), so
Cp0(Λ,Γ) < 0. Therefore, the inside of the first expectation is nonpositive, so we can bound it
from above by

E
[
ΛvΓk−1Cp0(Λ,Γ)1ΛΓα≥λ0γα0 −δ/2

]
.

We now take k = bαvc + 1, so that ΛvΓk−1 ≥ (ΛΓα)v. Then this first term can be bounded
from below by

−ε
(
λ0γ

α
0 −

δ

2

)v
P (ΛΓα ≥ λ0γ

α
0 − δ/2) ,

where the probability is positive by definition of the support K.
We move on to the second term of (13), again with k = bαvc + 1. Since α ≥ 1, we have

ΛvΓbαvc ≤ (ΛΓα)(v−1), so the second term can be bounded by

E
[
(ΛΓα)v−1 |Cp(Λ,Γ)|1ΛΓα<λ0γα0 −δ

]
≤ (λ0γ

α
0 − δ)

v−1 f(p0),

where f(p0) is a bound on |Cp0(λ, γ)| for all λ, γ (see the discussion right before Proposition 12).
Combining the last two displays and letting v → +∞, we get the result.

2.3 End of the proof: degenerate triangulations

Finally, we have to treat the cases Λ = 0 and Γ = 0. The second one corresponds to the one-
ended PSHT, so we need to focus on the first. We will prove that it is not possible to have
Λ = 0 but 0 < Γ < 1. The proof will be very similar to the previous argument (Proposition 14),
with the difference that this time, it is not sufficient to look at the maximum of the support of
Γ, since it is possible that Γ = 1. Therefore, we will first argue that either Γ = 1, or 0 ≤ Γ ≤ 1

2 ,
and then consider the maximum of the support of Γ minus 1. As in Section 2.2, we will start
with the case where (λ, γ) is deterministic.

Lemma 15. For all 0 < γ < 1, there is p ≥ 1 such that Cp(0, γ) < 0. Moreover, if 1
2 < γ < 1,

we can take p = 3.

Proof. We first consider the case λ = 0 in the induction (8). Using Zi+1(0) = 0, we obtain

Cp(0, γ) = Cp+1(0, γ) + γ

p−1∑
i=0

Ci+1(0, γ)Cp−i(0, γ).

In particular, using the cases p = 1 and p = 2, since C1(0, γ) = 1, we must have C2(0, γ) = 1−γ
and

C3(0, γ) = (1− γ)(1− 2γ). (14)

In particular, we have C3(0, γ) < 0 as soon as 1
2 < γ < 1, which proves the second point.
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On the other hand, we recall that Cλ,γ(x) =
∑

p≥1Cp(λ, γ)xp. By solving (11) and using
Z0(x) = 0, we get:

C0,γ(x) =

 1
2γ

(√
(1− x)2 + 4γx− (1− x)

)
if γ > 0,

x
1−x if γ = 0.

In particular, the generating function C0,γ has at most two singularities, which are conjugate
complex numbers of modulus 1. Therefore, the radius of convergence of (Cp(0, γ))p≥1 is at least
one.

On the other hand, we can compute the third derivative for 0 < x < 1:∑
p≥3

p(p− 1)(p− 2)Cp(0, γ)xp−3 = C′′′0,γ(x) =
6(1− γ)(1− 2γ − x)

((1− x)2 + 4γx)5/2
.

If 0 < γ < 1 and x is close enough to 1, this is negative, which proves the lemma.

We can now finish the proof.

Proof of Theorem 1. As noted right after the proof of Lemma 11, all we need to prove is
that either Γ = 0 or (Λ,Γ) = (0, 1). Given Proposition 14, all we have left to prove is that
P (0 < Γ < 1) = 0.

Now let p ≥ 1 and k ≥ 1. By (10), we have

ap,k⊗1
0 = E

[
ΓkCp(Λ,Γ)

]
= E

[
ΓkCp(0,Γ)

]
,

where the last equality comes from the fact that if ΓkCp(Λ,Γ) 6= 0, then Γ > 0 so Λ = 0 by
Proposition 14. It is sufficient to prove that if 0 < Γ < 1 with positive probability, then we can
find p, k ≥ 1 such that E

[
ΓkCp(0,Γ)

]
< 0.

For p = 3, by (14) we get

a3,k⊗1
0 = E

[
Γk(1− Γ)(1− 2Γ)

]
.

The quantity in the expectation is negative for 1
2 < Γ < 1 and vanishes for Γ = 1, so if

P
(

1
2 < Γ < 1

)
> 0, then we have a3,k⊗1

0 < 0 for k large enough, which is not possible. Therefore,
the support of Γ is included in

[
0, 1

2

]
∪ {1}.

Finally, we denote by γ0 the maximum of the intersection of the support of Γ with the
interval

[
0, 1

2

]
. If γ0 > 0, by Lemma 15, there is p0 ≥ 1 such that Cp0(0, γ0) < 0. Exactly in the

same way as in the proof of Proposition 14, using the fact that Cp0(0, γ) is a continuous function
of γ, we deduce that E

[
ΓkCp0(0,Γ)

]
< 0 for k large enough. Therefore, we must have γ0 = 0,

which concludes the proof.

3 Applications to the convergence of finite models to the UIPT

3.1 Triangulations with defects

Proof of Corollary 2. We first argue that any subsequential limit ofMfn for d∗loc is almost surely
a triangulation.

16



For this, let mn be a map with face degrees given by fn, and recall that |fn| is the total
number of edges of mn. Let D(mn) be the set of edges of mn incident to a face which is not a
triangle. By our assumption, we have

#D(mn) ≤
∑
j 6=3

jfnj = o (|fn|) .

Moreover, for all r ≥ 0, let Er(mn) be the set of edges e such that B∗r (mn, e) is not a triangulation
with holes. In other words Er(mn) is the set of edges e at dual distance at most r from an edge
of D(mn). If e ∈ Er(mn), let de be the edge of D(mn) which is the closest to e for the dual
distance (if it is not unique, pick one arbitrarily). Let also γe be a shortest dual path from de

to e. By minimality of de, the path γe is a non-backtracking dual path of length at most r + 1

containing only triangles. Hence, for each de, the path γe can take at most 2r+2 values. It
follows that, for all r ≥ 0,

#Er(mn) ≤ 2r+2#D(mn) = o (|fn|) .

Since Mfn is invariant under uniform rerooting, this implies that with probability 1 − o(1), all
the internal faces in B∗r (Mfn) are triangles. This is true for all r ≥ 0, so Mfn is tight for d∗loc

and any subseqential limit is a triangulation.
Now let T be such a subsequential limit. First B∗r (Mfn) is planar for all r, n ≥ 0, so T

must be planar. Moreover |fn| → +∞, so T is infinite. Finally, for any triangulation t with k
holes of perimeters p1, . . . , pk and any n ≥ 0, the probability P (t ⊂Mfn) only depends on n, on
p1, . . . , pk and on the inner volume of t. Indeed, this probability is given by the number of ways
to fill each hole hi of t with a map mi of the pi-gon, in such a way that t ∪

⋃k
i=1mi has face

degrees prescribed by fn. By letting n→ +∞, it follows that T is Markovian, so by Theorem 1
T is of the form TΛ, where Λ is a random variable with values in [0, λc] ∪ {?}.

Finally, we prove Λ = λc almost surely by considering the mean inverse degree: by the Euler
formula, the number of edges and vertices of Mfn are respectively |fn| and 2 +

∑
j≥1(j − 2)fnj .

Let ρn be the root vertex of Mfn . Since Mfn is invariant under rerooting on a uniform oriented
edge, we have

E
[

1

degMfn
(ρn)

]
=

2 +
∑

j≥1(j − 2)fnj
2|fn|

−−−−−→
n→+∞

1

6
.

Moreover, the inverse degree of the root vertex is a bounded, continuous function for d∗loc, so we
must have

E
[

1

degTΛ
(ρ)

]
=

1

6
. (15)

For λ ∈ [0, λc]∪{?}, let d(λ) be the expected inverse degree of the root vertex in Tλ. It is proved
in [7, Proposition 20] that for λ ∈ (0, λc], we have d(λ) ≤ 1

6 with equality if and only if λ = λc.
Moreover, it is immediate that d(0) = d(?) = 0 (all the vertices have infinite degree), so (15)
implies Λ = λc and T is the UIPT. We have proved that the UIPT is the only subsequential
limit of Mfn , so Mfn → Tλc in distribution for d∗loc. Since the UIPT has finite vertex degrees,
this implies convergence for dloc by Lemma 6.

3.2 Triangulations with moderate genus

Proof of Corollary 3. The only part of the proof which differs significantly from the proof of
Corollary 2 is the proof that any subsequential limit of Tn,gn for d∗loc is planar. If we admit
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this, since tightness for d∗loc is immediate, any subsequential limit must be of the form TΛ by
Theorem 1. Moreover, by the Euler formula, we have

E

[
1

degTn,gn (ρ)

]
=

2− 2gn + n

6n
−−−−−→
n→+∞

1

6

and we conclude Λ = λc in the same way as in Corollary 2.
To prove that any subsequential limit of Tn,gn for d∗loc is planar, we need to prove that for

all r ≥ 0, the dual ball B∗r (Tn,gn) is planar with probability 1− o(1) as n→ +∞. For all n ≥ 0,
let tn be a triangulation with 2n faces and genus gn. For all r, n ≥ 0, we denote by NPr(tn) the
set of edges e ∈ tn such that the dual ball B∗r (tn; e) of radius r around e is not planar. We will
prove that #NPr(tn) = o(n) uniformly in the choice of tn, which is sufficient by invariance of
Tn,gn under uniform rerooting.

For this, note that the number of edges at dual distance at most 2r from an edge e is bounded
by 32r+1. Therefore, for any edge e ∈ NPr(tn), there are at most 32r+1 edges e′ ∈ NPr(tn) such
that the balls B∗r (tn; e) and B∗r (tn; e′) intersect. Therefore, we can find a subset ÑP r(tn) of
NPr(tn) of size at least 1

32r+1 #NPr(tn) such that the balls B∗r (tn; e) for e ∈ ÑP r(tn) are edge-
disjoint. Each of these balls have genus at least 1, so

1

32r+1
#NPr(tn) ≤ #ÑP r(tn) ≤ gn = o(n).

It follows that #NPr(tn) = o(n), which proves our claim.

3.3 Triangulations with high temperature Ising model

Proof of Corollary 4. We first note that the distances dloc (resp. d∗loc) extend in a natural way
to face-coloured triangulations by requiring that the colouring agrees on a ball (resp. dual ball)
with a large radius. If T is a random face-coloured triangulation and t is triangulation with
holes equipped with a colouring σ of its internal face, we will write (t, σ) ⊂ T for the event that
t ⊂ T and the colouring of the faces of the neighbourhood of the root of T isomorphic to t agrees
with σ.

We first notice that changing the colour of one face only changes the probability for a face-
coloured triangulation to be picked by Tn[βn] by at most a factor e3|βn|. Therefore, let t be a
triangulation with holes, and let σ, σ′ be two colourings of its internal faces which differ on only
one face. Then we have

e−3|βn|P ((t, σ) ⊂ Tn[βn]) ≤ P
(
(t, σ′) ⊂ Tn[βn]

)
≤ e3|βn|P ((t, σ) ⊂ Tn[βn]) .

Let T be a subsequential limit of Tn[βn] for d∗loc. By letting n → +∞ in the last display, we
have

P ((t, σ) ⊂ Tn[βn]) = P
(
(t, σ′) ⊂ Tn[βn]

)
.

This implies that the probability P ((t, σ) ⊂ Tn[βn]) only depends on t and not on σ, so

P ((t, σ) ⊂ T ) =
1

2#Internal faces(t)
P (t ⊂ T )

for all t and σ. This means that conditionally on the triangulation T , the colours of its faces
are just given by Bernoulli face percolation with parameter 1

2 .
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On the other hand, for all n ≥ 0, the probability P ((t, σ) ⊂ Tn[βn]) only depends on the
perimeters and inner volume of t and on the colours of the internal faces of t which share an
edge with a hole. By letting n go to infinity, the same is true for the probability P ((t, σ) ⊂ T ).
But since it does not depend on σ, this probability actually only depends on the perimeters and
inner volume of t, so T is Markovian. Since T is also planar, it must be of the form Tλ, and we
conclude using the mean inverse degree in the same way as in Corollaries 2 and 3.

4 Large deviations for pattern occurences in uniform triangula-
tions

The goal of this section is to prove Theorem 2. We recall that if t0 is a finite triangulation with
one or several holes, then occt0(t) is the number of occurences of t0 in a triangulation of the
sphere t. More precisely occt0(t) is the number of oriented edges ~e of t such that t0 ⊂ (t;~e),
where (t;~e) stands for the triangulation t, rerooted at ~e.

Proof of Theorem 2. We fix a finite triangulation t0 with one or several holes. Let (βn)n≥1 be a

sequence of nonnegative numbers such that βn → 0. We denote by T (βn)
n a random triangulation

of the sphere with 2n faces such that P
(
T

(βn)
n = t

)
is proportional to

exp (βnocct0(t)) .

The proof consists of first showing that T (βn)
n converges locally to the UIPT. This means that

it is not possible to increase significantly occt0(Tn) by "twisting" the uniform measure in a
subexponential way. Therefore, exponential factors are necessary, so triangulations with much
more occurences of t0 are exponentially rare.

More precisely, as in the proof of Corollary 4, in order to show that T (βn)
n converges to

the UIPT, the only non-trivial point is to prove that any subsequential limit T of T (βn)
n is

Markovian. For this, let t1 and t2 be two finite triangulations with the same hole perimeters
and the same inner volume. If t is a triangulation of the sphere such that t1 ⊂ t, we denote by
Φ(t) the triangulation obtained by replacing t1 by t2 in the neighbourhood of the root. Then
|occt0(t)− occt0(Φ(t))| is bounded by a constant c depending only on t0, t1 and t2. It follows
that

e−cβnP
(
T (βn)
n = t

)
≤ P

(
T (βn)
n = Φ(t)

)
≤ ecβnP

(
T (βn)
n = t

)
.

By summing over t, we get

e−cβnP
(
t1 ⊂ T (βn)

n

)
≤ P

(
t2 ⊂ T (βn)

n

)
≤ ecβnP

(
t1 ⊂ T (βn)

n

)
.

Letting n → +∞, we obtain P (t1 ⊂ T ) = P (t2 ⊂ T ), so any subsequential limit of T (βn)
n is

Markovian. Since it must also be planar and have mean degree 6, this implies convergence to
the UIPT by Theorem 1.

We now recall that Tn stands for a uniform triangulation of the sphere with 2n faces and
write Xn = occt0(Tn) and X(βn)

n = occt0(T
(βn)
n ). We also write p0 = P (t0 ⊂ Tλc). By invariance

of Tn and T (βn)
n under uniform rerooting and convergence of both models to the UIPT, we have

1

6n
E [Xn] = P (t0 ⊂ Tn) −−−−−→

n→+∞
p0,
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1

6n
E
[
X(βn)
n

]
= P

(
t0 ⊂ T (βn)

n

)
−−−−−→
n→+∞

p0.

We now fix ε > 0. The last convergence implies

P
(
X(βn)
n ≤ 6p0n+ εn

)
≥ 1−

E
[
X

(βn)
n

]
6p0n+ εn

−−−−−→
n→+∞

ε

6p0 + ε
> 0. (16)

On the other hand, by definition we have

P
(
X(βn)
n ≤ 6p0n+ εn

)
=

E
[
eβnXn1Xn≤6p0n+εn

]
E [eβnXn ]

≤
E
[
eβnXn1Xn≤6p0n+εn

]
E [eβnXn1Xn≥6p0n+2εn]

≤ eβn(6p0n+εn)P (Xn ≤ 6p0n+ εn)

eβn(6p0n+2εn)P (Xn ≥ 6p0n+ 2εn)

≤ e−εβnn

P (Xn ≥ 6p0n+ 2εn)
.

Therefore, we have

P (Xn ≥ 6p0n+ 2εn) ≤ e−εβnn

P
(
X

(βn)
n ≤ 6p0n+ εn

) = O
(
e−εβnn

)
by (16). Since (βn) can be any sequence going to 0, we have proved that the sequence(

− 1

n
logP (Xn ≥ 6p0n+ 2εn)

)
n≥0

is eventually larger than any sequence which goes to 0. Hence, it is bounded from below by a
positive constant, which means that P (Xn ≥ 6p0n+ 2εn) decays exponentially in n. The same
bound for P (Xn ≤ 6p0n− 2εn) is proved in the same way, but by biasing by e−βnXn instead of
eβnXn .

5 Extensions and conjectures

There are two natural ways to try to extend Theorem 1: the first one is to consider more
general classes of planar maps than triangulations, and the second is to remove the planarity
assumption. We expect that an analog of Theorem 1 for more general models of maps should be
true. In this context, a Markovian map would be an infinite random map M where P (m ⊂M)

depends only on the perimeters of the holes of m, and the family of degrees of its internal faces,
as in [8, Theorem 4]. The extension of the proof of Theorem 1 does not seem straighforward,
since the partition functions are not as explicit as for triangulations (only the pointed partition
functions are explicit). Moreover, the extension of the Infinite Boltzmann Planar Maps of [8] to
the infinite-degree case would be more difficult, because different ways to let Boltzmann weights
go to zero give rise to different degenerate objects.

On the other hand, the non-planar case seems difficult. The natural definition of a Markovian
triangulation in the nonplanar case is that P (t ⊂ T ) depends only on the volume of t, on the
perimeters of its holes and on its genus. We conjecture the following.
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Conjecture 16.

• There are Markovian infinite triangulations which are not planar.

• There is no Markovian infinite nonplanar triangulation with only finite vertex degrees.

The motivation for the first point is that uniform triangulations with 2n faces and genus
gn = n

2 − o(n) should have Markovian local limits for d∗loc. In particular, for all k ≥ 1, we should
obtain a Markovian limit with exactly k vertices for gn = n+2−k

2 . On the other hand, proving
the second point of this conjecture would remove the necessity to use the Goulden–Jackson
equation in [7]. However, it seems hopeless to prove this second point using the same sketch as
for Theorem 1, at least for the following two reasons:

• the generating function for triangulations with higher genus is not explicitely known;

• when we write down the peeling equations for ak⊗1
v,g and a

(k+1)⊗1
v,g to adapt the proof of

Lemma 11, the lists of terms appearing in both equations are different because two holes
can now be filled with the same component. Therefore, it is not easy anymore to take the
discrete derivative ∆k of the peeling equation with respect to the number of holes.
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