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Résumé

We extend the scope of our recent Compensated Integrability theory, by exploiting the

multi-linearity of the determinant map over Symn(R). This allows us to establish new a

priori estimates for inviscid gases flowing in the whole space R
d. Notably, we estimate the

defect measure (Boltzman equation) or weighted spacial correlations of the velocity field

(Euler system). As usual, our bounds involve only the total mass and energy of the flow.
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Notations: The unit sphere of Rn is Sn−1, whose area is |Sn−1|. For 1 ≤ j ≤ n and x ∈ R
n,

x̂ j ∈ R
n−1 denotes the vector in which the jth coordinate is omitted.

The exponent T indicates transposition. Given a vector Z, we set Z⊗Z := ZZT the symme-

tric, rank-one matrix of entries ziz j. The cofactor matrix of an n×n matrix M is M̂. We recall

the identities MT M̂ = M̂MT = (detM)In and detM̂ = (detM)n−1. The space of n× n symme-

tric matrices with real entries being Symn, the cone of positive semi-definite ones is Sym+
n . Its

interior is SPDn. The inequality A ≻ B between symmetric matrices, means that A−B ∈ Sym+
n .

An inequality F(X)≤n G(X) means that there exists a constant C(n), depending only upon

the ambiant dimension n, such that every X under consideration satisfies F(X) ≤C(n) ·G(X).
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The total mass of a finite Radon measure µ is ‖µ‖M . If ~µ is a vector of Radon measures, its

Euclidian norm |~µ| is still a Radon measure ; we again write ‖~µ‖M for the mass of |~µ|.

1 Introduction

We recall that a symmetric tensor over Rn is a symmetric n× n matrix A, whose entries

are distributions, ai j ∈ D(Rn). The Divergence (with a capital letter in this context) operator

associates with A a vector of distributions,

(DivA)i =
n

∑
j=1

∂ jai j, ∀i ∈ [[1,n]].

Recall that if A is positive semi-definite, then the ai j’s are Radon measures. Since they are abso-

lutely continuous with respect to Tr A, and because det
1
n : Sym+

n →R is positively homogeneous

of order 1, we can define unambiguously the Radon measure (detA)
1
n .

Definition 1.1 The tensor A is said Div-BV over Rn if its entries ai j, as well as the coordinates

(DivA)i, are Radon measures with finite total masses.

The fundamental statement of Compensated Integrability, established in [6, 7] reads as fol-

lows.

Theorem 1.1 ([6, 7]) Let A be a positive semi-definite Div-BV tensor over Rn. Then (detA)
1
n ∈

L
n

n−1 (Rn) and ∫
Rn
(detA)

1
n−1 dx ≤ cn‖DivA‖

n
n−1

M
.

This inequality is sharp, reducing to the isoperimetric inequality when A = χΩIn.

Theorem 1.1 implies several variants that have been described in some other papers of ours.

Of particular interest is a version taylored for Cauchy problems in the whole space R
d . There,

a tensor is given in the strip QT = (0,T )×R
d , which is often Div-free. We set n = 1+ d and

x = (t,y) where y is the space variable. The tensor is extended by 0n away from QT . This

extension is Div-BV provided that the traces of the first column (that is the normal traces) at

t = 0+ and t = T− are finite measures.

For the most important example of inviscid gas dynamics, the tensor is given in QT by

(
ρ ρuT

ρu ρu⊗u+ pId

)
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where ρ ≥ 0 is the mass density, p ≥ 0 the pressure and u is the fluid velocity. The specific

internal energy e ≥ 0 is given in terms of ρ,p through an equation of state, typically p = (γ−
1)ρe for a perfect gas, γ > 1 being the adiabatic constant. The trace condition is ensured by the

assumption of finite total mass and total mechanical energy. The application of C.I. has thus led

to the following estimate of the internal variables:

Theorem 1.2 ([6, 7]) Consider an admissible inviscid gas flow in QT of finite total mass and

energy,

M :=
∫
Rd

ρ(0,y)dy <+∞, E0 :=
∫
Rd

(
1

2
ρ|u|2+ρe

)
(0,y)dy <+∞.

Then

(1)

∫
QT

ρ
1
d p(t,y)dydt ≤d M

1
d

√
ME0 .

We recall that since the right-hand side is independent from T , (1) is valid when T =+∞. The

same remark holds true for all the statements below, unless otherwise specified.

The admissibility assumed in Theorem 1.2 is the fact the total mass is conserved and the

total energy at positive times is bounded by that at time t = 0 :

(2) ∀t ∈ (0,T )
∫
Rd

ρ(t,y)dy = M,
∫
Rd

(
1

2
ρ|u|2+ρe

)
(t,y)dy ≤ E0.

The strength of Estimate (1), when compared with (2.b), is the presence of an extra factor ρ
1
d

in the integrand. The price to pay is the replacement of a supremum over t ∈ (0,T ) by a time

integral. Somehow, (1) plays the role of a Strichartz inequality for Gas dynamics.

The flaw of Theorem 1.2 is of course the lack of a corresponding estimate for the velocity

field. This is unsatisfactory since the energy estimate (2.b) suggests that ρ|u|2 and ρe (propor-

tional to p) are on the par, having the same physical dimension. We should expect a space-time

estimate of ρ1+ 1
d |u|2, as a counterpart of (1).

The purpose of this paper is thus to establish complementary estimates for Gas dyna-

mics. They have several features in common with (1). First, they concern space-time integrals.

Second, the integrands contain an extra factor not present in the energy density. Third, the

bounds are still given in terms of M and E0. At last these estimates are invariant under Galilean

transformations. Somehow, all these estimate might be viewed as fundamental, or universal ; in

particular, they do not depend upon the particular equation of state.
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Most importantly, we fill the gap mentionned above, by handling the velocity field. Mind

however that since we are only able to treat Galilean invariant quantities, the velocity enters in

the integrals through correlations

Cor(u0, . . . ,ud) = det

(
1 · · · 1

u0 · · · ud

)
,

where u j(t,y) := u(t,y+ h j) and the constant shifts h j ∈ R
d are parameters. Notice that the

quantity above is d! times the (signed) d-volume of the simplex spanned by (u0, . . . ,ud). Thus

the estimate below (where of course ρ j(t,y) = ρ(t,y+h j)) is useful only when (h0, . . . ,hd) are

affinely independent

Theorem 1.3 Consider an admissible inviscid gas flow in QT , with finite total mass and energy.

Then one has

(3) sup
h0,...,hd

∫
QT

((
d

∏
j=0

ρ j

)
· (Cor(u0, . . . ,ud))

2

) 1
d

(t,y)dydt ≤d M
1
d

√
ME0 .

We point out that the integrand in (3) shares the same physical dimension as the expected

ρ1+ 1
d |u|2. Recall in passing that the product ME0 in the right-hand side of (3) may be replaced

by its Galilean invariant version, exactly like in [6] :

1

4

∫
Rd

∫
Rd

ρ(0,y)ρ(0,z)|u(0,z)−u(0,y)|2dydz+M

∫
Rd
(ρe)(0,y)dy,

where the last integral, the internal energy, remains unchanged.

Once again (3) has the flavor of a Strichartz inequality: denoting the space integral

H(t,h0, . . . ,hd) :=
∫
Rd

((
d

∏
j=0

ρ j

)
· (Cor(u0, . . . ,ud))

2

) 1
d

(t,y)dy,

it tells us that H ∈ L∞
h0,...,hd

L1
t . This must be put in front of a direct application of (2), which

gives instead H ∈ L∞
t,h1,...,hd

Ld
h0

, see Paragraph 4.2.

We observe, sadly, that our collection of a priori estimates, namely the conservation of mass,

decay of energy, together with (1) and (3), is not strong enough to give a meaning to the flux in

the balance law of energy (which is a conservation law in some cases):

(4) ∂t

(
1

2
ρ|u|2+ρe

)
+divy

[(
1

2
ρ|u|2+ρe+ p

)
u

]
≤ 0.
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As a matter of fact, we control quantities which either are quadratic in the velocity field, or do

not involve it, while the flux in (4) is cubic in u.

Another significant improvement of the corpus of estimates is the following statement concer-

ning the pressure.

Theorem 1.4 Admissible flows of Gas dynamics, with finite total mass and energy, satisfy

(5) sup
τ,η

∫ ∞

0

∫
Rd

(
(t − τ)2

(E0(t − τ)2 +M|y−η|2)
d
2+1

) 1
d

p(t,y)dydt ≤d E
1− 1

d

0 .

Inequality (5) is reminiscent of a well-known fact about convolution of functions f : Rn →R of

bounded variations, say with compact support,

(6)

∥∥∥∥
1

|x|
∗ f

∥∥∥∥
L∞

≤n TV ( f ).

Remark 1.1 According to L. Tartar (personal communication), the latter is a consequence of

the improved Sobolev–Lorentz embedding (see A. Alvino [1])

(7) BV (Rn)⊂ L
n

n−1 ,1(Rn),

with the fact that x 7→ 1
|x| belongs to the dual space Ln,∞(Rn). Luc pointed out that the convolu-

tion product actually belongs to Cb(R
n), the space of continuous bounded functions, because of

the density of CK(R
n) in L

n
n−1 ,1(Rn).

We shall give below a new proof of (6), by means of Compensated Integrability, and extend

it to the convolution by arbitrary positively homogeneous kernels of degree −1, see Proposition

3.1.

Plan of the paper. Section 2 displays new forms of Compensated Integrability. The homo-

geneous polynomial A 7→ detA being hyperbolic over Sym+
n in the sense of Gårding [3], we

may use the properties of its multi-linearization, the mixed determinant. Part 3, which applies

the abstract results to scalar functions, is two-fold. It begins with BV-functions and continues

with a Gagliardo-like inequality for time-dependent functions. Section 4 treats applications to

Gas dynamics, and contains the proofs of Theorems 1.3 and 1.4. In the same spirit, it displays

a new estimate of the so-called defect measure introduced by [5] when averaging renormalized

solutions of Boltzman equation.
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2 New forms of Compensated Integrability

We start with a refined result, whose proof illustrates the scaling technique which is at stake

almost everywhere in the theory.

Theorem 2.1 Let A ≻ 0d be Div-BV over Rn. Then

(8)

∫
Rn
(detA)

1
n−1 dx ≤ n

n
n−1 cn

(
n

∏
i=1

‖(DivA)i‖M

) 1
n−1

.

Proof

We rescale both dependent and independent variables,

x′j = µ jx j, a′i j = µiµ jai j.

Since A′ = ∆A∆ for a diagonal matrix ∆, it is still positive semi-definite. Because ∂′j =
1
µ j

∂ j, we

have

(Div′A′)i = µi(DivA)i

and thus A′ is also Div-BV. Let us apply Thm 1.1 to A′, using

detA′ =

(
n

∏
j=1

µ j

)2

detA, dx′ =

(
n

∏
j=1

µ j

)
dx,

and

|DivA| ≤
n

∑
j=1

|(DivA) j|.

We obtain ∫
Rn
(detA)

1
n−1 dx ≤ cn

(
n

∏
j=1

µ j

)− 1
n−1
(

n

∑
i=1

µi‖(DivA)i‖M

) n
n−1

.

Chosing

µi =
1

‖(DivA)i‖M

,
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we obtain (8).

Remark 2.1 The inequality in Theorem 2.1 can be recast as

log

∫
Rn
(detA)

1
n−1 dx ≤ log(n

n
n−1 cn)+

1

n−1

n

∑
j=1

log‖(DivA) j‖M .

Since it remains valid when the canonical basis is replaced by an arbitrary orthonormal basis,

we obtain by averaging

log

∫
Rn
(detA)

1
n−1 dx ≤ log(n

n
n−1 cn)+

n

n−1
−
∫

Sn−1

log‖(DivA) · e‖M ds(e).

In other words, we have

(9)

∫
Rn
(detA)

1
n−1 dx ≤ cn

(
nexp−

∫
Sn−1

log‖div(Ae)‖M ds(e)

) n
n−1

.

2.1 Estimating mixed determinant.

To go further, we invoque the notion of mixed determinant. This is the symmetric n-linear

form Dn with the property that

Dn(M, . . . ,M) = detM, ∀M ∈ Mn(R).

For instance, the case n = 2 (where the determinant is a quadratic form) gives

D2(M,M′) =
1

2

(
det(M+M′)−detM−detM′

)
=

1

4

(
det(M+M′)−det(M−M′)

)
.

More generally, we have

Dn(M1, . . . ,Mn) =
1

2n n!
∑

ε1,...,εn=±1

ε1 · · ·εn det(ε1M1 + · · ·+ εnMn).

We notice the useful instance

(10) Dn(B,M, . . . ,M) =
1

n
Tr (BT M̂).
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Hyperbolicity. Let us recall that the homogeneous polynomial det : Symn → R is hyperbolic

in Gårding’s terminology [3], meaning that there exists a direction E 6= 0n such that detE > 0

and for every A ∈ Symn, the roots of the univariate polynomial t 7→ det(A− tE) are real. The

connected component Γ of E in the complement of {A|detA = 0} is a convex cone, called the

forward cone. Actually, the hyperbolic property stands in every direction E ′ ∈ Γ. We may of

course choose E = In, and we see that Γ = SPDn is the positive definite cone.

Gårding proved that a hyperbolic polynomial satisfies the reverse Hölder inequality in the

closure of its forward cone. In the case of the determinant, this reads

Proposition 2.1 For every A1, . . . ,An ∈ Sym+
n , there holds

(11)

(
n

∏
j=1

detA j

) 1
n

≤ Dn(A1, . . . ,An).

In particular the mixed determinant takes non-negative values over Sym+
n ×·· ·×Sym+

n . Developing

the multilinear expression Dn(A1 + · · ·+An, . . . ,A1 + · · ·+An), we deduce

(12) Dn(A1, . . . ,An)≤
1

n!
det(A1 + · · ·+An), ∀A1, . . . ,An ∈ Sym+

n .

Applying Theorem 1.1 to A = A1 + · · ·+An, and using (12), we deduce an inequality for

non-negative Div-BV tensors over Rn :

∫
Rn
(Dn(A1, . . . ,An))

1
n−1 dx ≤n

(
n

∑
j=1

‖DivA j‖M

) n
n−1

.

Replacing A j by λ jA j where λ j = ‖DivA j‖
−1
M

, we infer the estimate

Theorem 2.2 Given positive semi-definite Div-BV tensors A1, . . . ,An over Rn, one has

(13)

∫
Rn
(Dn(A1, . . . ,An))

1
n−1 dx ≤n

(
n

∏
j=1

‖DivA j‖M

) 1
n−1

.

2.2 Estimating Schur complements

Consider a positive semi-definite Div-BV tensor written blockwise

A =

(
ρ mT

m B

)
,

8



where ρ is scalar. The positiveness tells us on the one hand that ρ ≥ 0 and on the other hand that

either ρ = 0, m = 0 and B ≻ 0n−1, or ρ > 0 and B ≻ m⊗m
ρ . Thus let us assume that ρ > 0, and

denote S := B− m⊗m
ρ ≻ 0n−1 its Schur complement. Then A splits into the sum of two positive

semi-definite matrices:

(14) A =

(
ρ mT

m m⊗m
ρ

)
+

(
0 0T

0 S

)
=:

(
ρ mT

m m⊗m
ρ

)
+A′.

The Schur complement formula

(15) detA = ρdetS

allows us to make calculations without expressing S in closed form.

Suppose now that F ≻ 0n is another Div-BV tensor. Developping the expression Dn(F,A, . . . ,A)
and discarding all non-negative terms but one, we obtain

(16) Dn(F,A, . . . ,A)≥ Dn(F,A
′, . . . ,A′) =

1

n
Tr (FÂ′) =

1

n
f11 detS.

We infer the Schur complement estimate:

Proposition 2.2 Given two positive semi-definite Div-BV tensors F,A over R
n, with a11 > 0,

the Schur complement S of a11 satisfies

(17)

∫
Rn
( f11 detS)

1
n−1 dx ≤n ‖DivA‖M ‖DivF‖

1
n−1

M
.

Remark 2.2 When the entry a11 is not strictly positive everywhere, it might sometimes be dif-

ficult, if not impossible, to define its Schur complement. Instead, it may happen that the tensor

decomposes as A = K +A′ with K ≻ 0n and

A′ =

(
0 0

0 Σ

)
, Σ ≻ 0n−1.

Then the same argument as above works: (16) still holds true, and implies a generalization of

(17),

(18)

∫
Rn
( f11 detΣ)

1
n−1 dx ≤n ‖DivA‖M ‖DivF‖

1
n−1

M
.

9



The full strength of (18) occurs when we choose an extreme tensor F . By “extreme”, we

mean that F be positively homogeneous of degree 1−n, see [7]. Since the homogeneity is not

compatible with fi j ∈ L1(Rn), we use a cut-off function φ(r) before getting rid of it:

F = φ(r)G, G(x) =
x⊗ x

rn+1
, r = |x|.

The cut-off is a non-increasing function such that φ(r)≡ 1 over (0,R) and ≡ 0 over (R+1,+∞).
Since DivG ≡ 0, we have

‖DivF‖M =

∫
Rd

|G∇φ|dx =

∫
Rd

|φ′(r)|
dx

rn−1
= |Sn−1|

∫ ∞

0
|φ′(r)|dr = |Sn−1|.

Applying (17), we obtain

∫
|x|<R

(
x2

1

rn+1

) 1
n−1

(detΣ)
1

n−1 dx ≤n ‖DivA‖M .

Taking the limit as R →+∞ and relaxing the position of the origin, we obtain the estimate

(19) sup
ξ∈Rn

∫
Rn

(
(x1 −ξ1)

2

|x−ξ|n+1

) 1
n−1

(detΣ)
1

n−1 dx ≤n ‖DivA‖M .

When A is positive definite, the Schur complement is well-defined. Then applying a rotation,

using (15) and the Schur formula, we conclude

Theorem 2.3 Let A : Rn → SPDn be a Div-BV tensor. Then we have

(20) sup
ω∈Sn−1

sup
ξ∈Rn

∫
Rn

(
(ω · (x−ξ))2

|x−ξ|n+1

) 1
n−1
(

detA

ωT Aω

) 1
n−1

dx ≤n ‖DivA‖M .

2.3 Estimating the rank-one part in (14)

Let us rewrite (14) in the form A = ρU ⊗U +A′, where

U =

(
1

u

)
, u =

m

ρ
.

Suppose that we are given a collection (A1, . . . ,An) of positive semi-definite Div-BV tensors

over Rn. Let us form the, still positive and Div-BV, tensor

A= A1 + · · ·+An.
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Decomposing A j = ρ jU j ⊗U j +A′
j, we have

A≻ ρ1U1 ⊗U1 + · · ·+ρnUn⊗Un,

whence

detA≥ det(ρ1U1 ⊗U1 + · · ·+ρnUn ⊗Un).

Expressing

ρ1U1 ⊗U1 + · · ·+ρnUn ⊗Un =UT RU, R = diag(ρ1, . . . ,ρn),

where U stands for the matrix whose columns are U1, . . . ,Un, we infer

detA≥ (detR) · (detU)2 =

(
n

∏
j=1

ρ j

)
· [Cor(u1, . . . ,un)]

2 .

Assembling the material above, and applying a standard scaling argument, we end up with

Proposition 2.3 Let A1, . . . ,An be positive semi-definite Div-BV tensors over Rn, written block-

wise

A j = ρ j

(
1

u j

)
⊗

(
1

u j

)
+

(
0 0

0 B j

)
.

Then ∫
Rn

(
n

∏
j=1

ρ j · [Cor(u1, . . . ,un)]
2

) 1
n−1

dx ≤n

(
n

∑
j=1

‖DivA j‖M

) n
n−1

.

Remark that the integrand in the left-hand side has the dimension of a ρ
n

n−1 |u|2.

3 Applications to scalar functions

3.1 BV functions

If f ∈ BV (Rn) is non-negative, we may apply (13) to the choices

A1 = F, A2 = · · ·= An = f In.

With (10), we find

Dn(F, f In, . . . , f In) =
1

n
f n−1Tr F = f n−1 φ

nrn−1
.
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With Div( f In) = ∇ f , we thus obtain
∫
Rn

f (x)φ(r)
1

n−1
dx

r
≤n ‖Div( f In)‖M = TV ( f ).

Letting R →+∞, this yields ∫
Rn

f (x)
dx

r
≤n TV ( f ).

Eventually, placing the origin at an arbitrary point, this rewrites

∀ξ ∈ R
n,

∫
Rn

f (x)
dx

|x−ξ|
≤n TV ( f ).

To pass from non-negative functions to signed functions, we may use |r−1 ∗ f | ≤ r−1 ∗ | f |, and

TV (| f |)≤ TV ( f ). This re-proves (6).

The calculation above can be generalized as follows. If g∈ Ln−1(Sn−1) is non-negative, then

choose instead

Ḡ(x) = g
(x

r

)n−1 x⊗ x

rn+1

and F(x) = φ(r)Ḡ(x) as before. In [7] we have seen that DivḠ =V δx=0 where

V =

∫
Sn−1

g(ω)n−1ωds(ω).

With φ as before, this yields

DivF = φ(0)Vδx=0 +g
(x

r

)n−1 φ′

rn−1
~er,

Whence

‖DivF‖M ≤ 2‖g‖n−1
Ln−1(Sn−1)

.

Then (13), applied to (F, f In, . . . , f In) yields
∫
Rn

f (x)φ(r)
1

n−1 g
(x

r

) dx

r
≤n TV ( f )‖g‖Ln−1(Sn−1)

.

Taking as above the supremum over the admissible φ (the limit as R →+∞), and chosing arbi-

trarily the origin, we end up with (see also Remark 1.1 for the replacement of L∞ by Cb)

Proposition 3.1 There exists a finite constant Cn such that, for every g ∈ Ln−1(Sn−1), there

holds

‖ḡ∗ f‖L∞ ≤Cn ·TV ( f )‖g‖Ln−1(Sn−1)
, ∀ f ∈ BV (Rn), ḡ(x) :=

1

r
g
(x

r

)
.
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3.2 A Gagliardo-like inequality

Let us recall Gagliardo’s inequality [4] in R
d : given d functions f j ∈ Ld−1(Rd−1), the new

function

f (y) =
d

∏
j=1

f j(ŷ j), y ∈ R
d

is integrable. And there is a functional inequality

‖ f‖L1(Rd) ≤
d

∏
j=1

‖ f j‖Ld−1(Rd−1).

If d = 2, this is nothing but Fubini’s theorem. For general d, this can be recovered, up to a

multiplicative constant, by applying (8) to the tensor φdiag(| f1|
d−1, . . . ,| fd|

d−1), where φ is a

cut-off as above, see [6].

We now introduce a time parameter, thus having d functions f j(t,ŷ j) and defining as above

(21) f (t,y) =
d

∏
j=1

f j(t,ŷ j), (t,y) ∈ R
1+d .

Mind that each f j is defined over a d-dimensional space. Let us set n = 1+ d and form the

tensor

A(x) =
φ(r)x⊗ x

rn+1
+diag

(
0,φ(|y1|)| f1(x̂1)|

n−1, . . . ,φ(|yd|) fd(x̂d)
n−1
)
=:

d

∑
i=0

Ai.

We have as above

‖DivA0‖M = |Sn−1|,

while

‖DivA j‖M =
∫
Rn

|φ′(|y j|)| · | f j(x̂ j)|
n−1dx = 2‖ f j‖

d
Ld(Rd)

.

By Schur formula,

detA =
φ(r)t2

rn+1
·

d

∏
j=1

φ(|y j|)| f1(x̂ j)|
n−1.

Applying Theorem 1.1, we infer

∫
|x|<R

(
t2

(t2+ |y|2)1+ d
2

) 1
d
∣∣∣∣∣

d

∏
j=1

f j(t,ŷ j)

∣∣∣∣∣ dydt ≤d

(
1+

d

∑
j=1

‖ f j‖
d
Ld(R×Rd−1)

)1+ 1
d

.
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Passing to the limit as R →+∞, and making the appropriate scaling, we conclude

Theorem 3.1 Given the functions f1, . . . , fd ∈ Ld(R×R
d−1), the function f defined over R×R

d

by (21) satisfies

∫
R×Rd

(
t2

(t2+ |y|2)1+ d
2

) 1
d

| f (t,y)|dydt ≤d

d

∏
j=1

‖ f j‖Ld(R×Rd−1).

4 Applications to Gas dynamics

Once again we set n = 1+d, where d is the space dimension, so that 1
n−1

= 1
d

. The Euler

system governs the conservation of mass and linear momentum

∂tρ+divy(ρu) = 0,

∂t(ρu)+Divy(ρu⊗u)+∇yp = 0.

This is recast as Divt,yA = 0, where

A =

(
ρ ρuT

ρu ρu⊗u+ pId

)
= ρU ⊗U + pJ in QT ,

with

U :=

(
1

u

)
, J =

(
0 0

0 Id

)
.

We recognize the Schur complement pId of ρ in A, whose determinant is just pd .

4.1 A new estimate of the pressure

Applying (19), we have

(22) sup
τ,η

∫
QT

(
(t − τ)2

((t − τ)2 + |y−η|2)
d
2+1

) 1
d

p(t,y)dydt ≤d M+
√

ME0.

Since the bound does not depend upon the length of the time interval, this estimate is valid over

Q∞.

The estimate above is not homogeneous from a Physical point of view. To prove Theorem

1.4, we apply a scaling technique as in [6] : for every parameter µ> 0, the dependent/independent

variables

t ′ = t, y′ = µy, ρ′ = ρ, u′ = µu, p′ = µ2 p

14



define an admissible flow, to which we may apply (22). Chosing µ =
√

M/E0 , we obtain (5).

Notice that we may rewrite (5) in terms of the square root mean velocity ū :=
√

2E0/M ,

sup
τ,η

∫
QT




(t − τ)2

(
(t − τ)2 +

|y−η|2

ū2

) d
2+1




1
d

p(t,y)dydt ≤d E0.

4.2 The velocity field

To get more information about the velocity field than just what is given by the energy esti-

mate, we apply Proposition 2.3 to the tensors A0, . . . ,Ad obtained from A by a space shift:

A j(t,y) := A(t,y+h j).

Hereabove h0, . . . ,hd are constant vectors. Of course the A j’s are Div-BV whenever A is so. We

thus obtain the inequality

∫
QT

(
d

∏
j=0

ρ(t,y+h j) · (Cor(u(t,y+h0), . . . ,u(t,y+hd)))
2

) 1
d

dydt ≤d

(
M+

√
ME0

)1+ 1
d
.

After the same scaling procedure as above, this gives Theorem 1.3.

Discussion. The integral depends only upon (h0, . . . ,hd) modulo translations ; we may thus

assume h0 = 0 without loss of generality. Estimate (3) is a statement about the expression

H(t,h1, . . . ,hd) =

∫
Rd

(
ρ

d

∏
j=1

ρ j · (Cor(u,u1, . . . ,ud))
2

) 1
d

dy.

Namely, it says that

(23) H ∈ L∞
h1,...,hd

L1
t .

We shall compare (23) with what can be said of H by using only the conservation of total

mass and the decay of total energy. On the one hand, (3) is established through Compensated

Integrability and thus requires that the mass-momentum of the fluid be positive semi-definite. As

such, it applies to an inviscid fluid, as well as to the conservation of mass/momentum satisfied

15



by the renormalized solutions of the Boltzman equation (see [5]), but it does not apply to a

viscous fluid. On the other hand, the pure mass-energy estimate below is valid in a much more

general context, since it does not assume the positiveness of the mass-momentum tensor.

For this direct estimate, we first notice that, U = (U0| · · · |Ud) being the same matrix as

above,

|detU |=

∣∣∣∣∣
d

∑
k=0

(−1)k det(. . . ,uk−1,uk+1, . . .)

∣∣∣∣∣≤
d

∑
k=0

∏
j 6=k

|u j|.

We infer a majorization H ≤d ∑d
k=0 Hk where

Hk(t,h1, . . . ,hd) =
∫
Rd

(
d

∏
j=0

ρ j ·∏
j 6=k

|u j|
2

) 1
d

dy.

The treatment of Hk depends on whether k = d or k < d, although it yields the same bound. Let

us begin with the latter case. Applying the Hölder inequality with exponents (d, . . . ,d), we have

Hd
k ≤

(

∏
j 6=k,d

∫
Rd

ρ j|u j|
2dy

)
·
∫
Rd

ρk(t,y)(ρ|u|
2)(t,y+hd)dy

≤ (2E0)
d−1

∫
Rd

ρk(t,y)(ρ|u|
2)(t,y+hd)dy.

Integrating in hd and using Fubini, this gives
∫
Rd

Hk(t,h1, . . . ,hd)
ddhd ≤d (2E0)

d

∫
Rd

ρk(t,y)dy = M(2E0)
d.

If instead k = d, we have

Hd
d ≤

(
d−1

∏
j=1

∫
Rd

ρ j|u j|
2dy

)
·
∫
Rd

ρ(t,y+hd)(ρ|u|
2)(t,y)dy

≤ (2E0)
d−1

∫
Rd

ρ(t,y+hd)(ρ|u|
2)(t,y)dy,

and again ∫
Rd

Hd(t,h1, . . . ,hd)
ddhd ≤d MEd

0 .

The direct mass-energy bound for H is thus

(24) sup
t,h1,...,hd−1

∫
Rd

H(t,h1, . . . ,hd)
ddhd ≤d MEd

0 .
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Thus the mass-energy conservation (or decay) provides the qualitative result that

(25) H ∈ L∞
t,h1,...,hd−1

Ld
hd
.

Comparing with (23), this amounts to replacing L∞
hd

L1
t by L∞

t Ld
hd

.

Somehow the inequality (24) is brutal, in the sense that it applies to every quantity H of the

form

H (t,h1, . . . ,hd) =
∫
Rd

(
d

∏
j=0

ρ j ·F(u0, . . . ,ud)

) 1
d

dy

where F is a homogeneous polynomial of global degree 2d, quadratic in each argument.

4.3 Renormalized solutions of Boltzman equation

Let us consider the Boltzman equation

(26) (∂t + v ·∇y) f (t,y,v) = Q[ f (t,y,·)], (t,y) ∈ QT = (0,T )×R
d,v ∈ R

d.

The Cauchy problem consists in finding a solution which fits an initial data f (0,y,v) = f0(y,v).
The existence of distributional solutions to this problem is not known, except in space dimension

d = 1. When d ≥ 1, R. DiPerna & P.-L. Lions [2] proved instead the existence of a weaker notion

of solutions, called renormalized. We shall not give a precise definition of this notion, and we

content ourselves to recall that it implies, at the macroscopic level, the conservation of mass and

a weak form of the conservation of momentum, in the sense that

∂tρ+divym = 0, ∂tm+Divy

(∫
Rd

f v⊗ vdv+Σ

)
= 0(27)

ρ(t,y) :=

∫
Rd

f dv, m(t,y) :=

∫
Rd

f vdv, Σ ≻ 0d.

The quantities ρ,m are the mass density and linear momentum. Compared to what is formally

expected, the second equation above contains an additional term Σ, called the defect measure,

which takes values in Sym+
d ; see [5]. Finally, it is known that the total mass

M =

∫
Rd

∫
Rd

f0(y,v)dvdy ≡

∫
Rd

∫
Rd

f (t,y,v)dvdy

is a constant of the motion, and the total energy

E(t) :=
1

2

∫
Rd

∫
Rd

f (t,y,v)|v|2dvdy+
1

2

∫
dTr Σ(t,·)
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is a non-increasing function of time and satisfies

E(t)≤ E0 :=
1

2

∫
Rd

∫
Rd

f0(y,v)|v|
2dvdy.

The equations (27) can be recast by saying that the following tensor

A =

( ∫
Rd f dv

∫
Rd f vT dv∫

Rd f vdv
∫
Rd f v⊗ vdv+Σ

)

is Div-free. For finite total mass and energy, the extension of A by 0n away from QT = (0,T )×
R

d is Div-BV.

As mentionned in Remark 2.2, it might be difficult to construct the Schur complement of

the density, if it vanishes here and there. Instead, decomposing A = B+A′ where

B(t,y) =
∫
Rd

f (t,y,v)

(
1

v

)
⊗

(
1

v

)
dv, A′ =

(
0 0

0 Σ

)
,

we may apply (18) to obtain

sup
τ,η

∫ T

0

∫
Rd

(
(t − τ)2

((t − τ)2+ |y−η|2)1+d/2

) 1
d

d(detΣ)
1
d ≤d M+

√
ME0 ,

where we recall that (detΣ)
1
d is a finite measure, satisfying

0 ≤ (detΣ)
1
d ≤

1

d
Tr Σ.

Letting T →+∞ (as usual, the upper bound does not depend upon the length of the time inter-

val), and applying the usual scaling trick, we conclude that the defect measure is constrained

by

(28) sup
τ,η

∫ T

0

∫
Rd

(
(t − τ)2

(E0(t − τ)2 +M|y−η|2)1+d/2

) 1
d

d(detΣ)
1
d ≤d E

1− 1
d

0 .

Inequality (28) tells us that (detΣ)
1
d is not too singular. For instance it does not charge points

(no Dirac mass) ; Σ itself might charge points, but its density at a Dirac mass must be a singular

matrix.
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