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Analyses de la conjecture de Syracuse : Démonstration

We give in this paper an analysis of differentes prorieties of Syracuse sequence. And we give a proof of the Syracuse conjecture by considering the inverse sequence and modular studies.

Résumé

Nous donnons dans cet article, nous étudions des différents aspects de la suite de Syracuse. Et nous donnons une démonstration de la conjecture de Syracuse en faisant appel à une suite inverse et en utilisant une représentation modulaire.

L'itération de cette suite en partant d'une valeur initiale N semble aboutir à 1 après un nombre d'étapes, c'est le temps de vol. Ce fait constitue la conjecture de Syracuse qui peut se formuler de la manière suivante :

Conjecture. Pour tout entier N , il existe n ∈ N tel que S n (N ) = 1.

Elle a été étudiée de différentes manières. On renvoi à l'article de Luc-Olivier Pochon et Alain Favre [P-F] qui est très fourni et constitue une référence extrêmement complète sur les différentes pistes et avancées sur ce sujet. Lire aussi l'article de Jean-Paul Delahaye [D] tout aussi complet et qui contient des références et une histoire des différentes recherches. On va considérer une formulation inverse en définissant les fonctions :

f (n) = 2n g(n) = n-1
Lemme. Pour tout entier N , il existe n ∈ N tel que S n (N ) = 1 est équivalent au fait que l'ensemble E 0 soit égal à l'ensemble N.

Remarque. La condition de parité ou non est remplacée par une condition sur l'application g moins contraignante.

On démontre :

Théorème. L'ensemble E 0 est égale à N.

Les études qui suivent ne servent pas qu'a démontrer la conjecture mais aussi à donner des propriétés pour comprendre le comportement des suites de compositions des fonctions f et g ainsi que de la suite de syracuse.

On représente le comportement de f et g sur des graphes modulo 9 qui permettent de voir des aspects qualitatives liés à ces fonctions.

2 Propriétés et résultats.

2.1 Analyse des fonctions f et g.

L'ensemble E 0 est formé de tous les éléments qui sont les images itérées de 1 par les applications f et g lorsque c'est possible. On commence par un exemple :

1 f -→ 2 f -→ 4 f -→ 8 f -→ 16 g -→ 5 f -→ 10 f -→ 20 f -→ 40 g -→ 13 13 f -→ 26 f -→ 52 g -→ 17 f -→ 34 g -→ 11 f -→ 22 g -→ 7.
Ceci peut être écrit sous la forme :

7 = g • f • g • f • g • f • f • g • f • f • f • g • f • f • f • f (1)
une suite de composition de f et g. Un autre exemple de construction dans laquelle les chiffres entre parenthèses (i; j) désignent respectivement i la classe du nombre en base de quatre et j la classe du nombre en base de trois. Quand le nombre obtenue est un multiple de trois, la suite continue par multiplications successives par 2. On part du nombre 7.

(3;1) On donne ici une liste propriétés pour comprendre les fonctions f et g et permettre de visualiser la formulation inverse, l'ensemble E 0 et la suite de Syracuse :

7 f -→ (2;2) 14 f -→ (0;1) 28  g (1;2) 9 f -→ (0;2) 56 f -→ (0;1) 112  g (1;1) 37  g (0;0) 12 f -→ (0;2) 224 f -→ (0;1) 448  g (1;2) 149 f -→ (0;
1. ∀k ∈ N * , f (k) (1) = 2 k ∈ E 0 . 2. ∀n ∈ N * , si [[1; n]] ⊂ E 0 alors ∀k ∈ N * , 2 k l|∀l ∈ [[1; n]] ⊂ E 0 . 3. ∀k ∈ N * , on a : g(4 k ) = 4 k -1 3 = 4 k -1 4-1 = k-1 i=0 4 i ∈ E 0 . 4. Si k ∈ N, alors on a : g(4 k ) ≡ k[3]
5. Si p et q sont deux entiers, alors on a :

g(pq) = pg(q) + g(p).

6. Si p est un entier, on considère sa décomposition en n facteurs premiers (n ≥ 2) :

p = n i=1 p i
On a donc :

g(p) = n l=1 l i=1 p i g(p l+1 ) 7. Si n ≡ 1[3] et n ∈ E 0 , alors on a : g(4n) = n + g(n) ∈ E 0 . 8. Si n ≡ 2[3] et n ∈ E 0 , alors on a : g(8n) = 2n + g(2n) ∈ E 0 . 9. Si n ∈ E 0 alors ∀k ∈ N * , on a f (k) (n) = 2 k n ∈ E 0 f (k) est la k ème itération de f c'est-à-dre f (k) = f • ... • f 10. ∀p et n ∈ N * , on a : p compositions de g .. • g • g • g • ...(n) = 1 3 p (n + 1 2 ) - 1 2
11. ∀p, q et n ∈ N * , on a :

p compositions de a et q compositions de b ... • g • f • ... • f • g • f • ... (n) ≤ p+q compositions de f f • ... • f (n)
12. Plus précisément ∀p, q et n ∈ N * , et p ≥ q on a :

2 p-1 3 q n ≤ p compositions de a et q compositions de b ... • g • f • ... • f • g • f • ...(n) ≤ 2 p 3 q n
Dans ce cas les crochets désignent la partie entière du nombre.

13. Si n ∈ E 0 et n ≡ 1[3], alors ∀k ∈ N * , on a :

g(4 k n) = 4 k n-1 3 = 4 k n-4 k +4 k -1 3 = 4 k g(n) + g(4 k ) ∈ E 0 . 14. Si n ∈ E 0 et n ≡ 2[3], alors ∀k ∈ N * , on a : g(2 2k+1 n) = 2 2k+1 n-1 3 = 2 2k+1 n-2 2k +2 2k -1 3 = 4 k g(2n) + g(4 k ) ∈ E 0 .
15. Si n ∈ E 0 et n est impair, alors g -1 (n) = 3n + 1 appartient à E 0 .

16. Si 2n ∈ E 0 , alors n appartient à E 0 ou 6n + 1 appartient à E 0 . 17. Un autre tableau permet d'avoir d'autres propriétés sur les comportement des fonctions a et b.

Pour m ∈ E 0 , on a :

m 4m-1 3 modulo 3 modulo 4 modulo 6 1 1 1 1 1 4 5 2 1 5 7 9 0 1 3 10 13 1 1 1 13 17 2 1 5 16 21 0 1 3 19 25 1 1 1 Pour m ∈ E 0 et m ≡ 4[9], 4m -1 3 ≡ 5[6].
De ces propriétés, on déduit le théorème suivante :

Théorème. Pour tout k ∈ N, on a :

• si 3k ∈ E 0 alors 4k ∈ E 0 • si 3k + 1 ∈ E 0 alors 4k + 1 ∈ E 0 • si 3k + 2 ∈ E 0 alors 2k + 1 et 4k + 2 ∈ E 0
Démonstration :

• Si 3k ∈ E 0 et en supposant que k est impair (sinon on divise par deux quitte à multiplier par deux à la fin), alors 9k + 1

∈ E 0 . Donc 36k + 4 ∈ E 0 et par suite 12k + 1 ∈ E 0 , finalement 4k ∈ E 0 . • Si 3k + 1 ∈ E 0 alors 12k + 4 ∈ E 0 . Donc 4k + 1 ∈ E 0 . • Si 3k + 2 ∈ E 0 alors 6k + 4 ∈ E 0 . Donc 2k + 1 ∈ E 0 et 4k + 2 ∈ E 0 . □ 2.
2 Étude modulaire et représentation géométrique.

Cette partie est consacrée à une étude qui permet de voir des propriétés supplémentaires des applications f et g. Il s'agit de donner des pistes pour de nouvelles recherches.

On remarque que pour tout entier k ∈ N :

4 9k -1 3 ≡ 0[9] et 4 9k ≡ 1[9]
Et pour tout entier α ∈ [[0; 8]], on a :

4 9k+α -1 3 = 4 9k+α -4 9k + 4 9k -1 3 = 4 9k 4 α -1 3 + 4 9k -1 3 .
Donc, on a le tableau suivant : Cette dernière partie est formée de tous les éléments inversibles dans Z/9Z, donc c'est un groupe.

α 4 α -1 3 4 α -1 3 mod 9 = 4 9k+α -1 3 mod 9 0 0 0 1 1 1 2 5 5 3
Si n ∈ N\3N, alors ṅ ∈ Ċ1 = { 1; 2; 4; 5; 7; 8}. Lemme. L'image de E 0 par l'application φ est égale à Z/9Z.

Démonstration.

On suppose que E 0 n'est égal à N * et on considère le complémentaire de E 0 dans N * .

E = N * \E 0
Les ensembles E 0 et E sont stables pour les applications f et g (pour les éléments dont l'image existe). Si E n'est pas vide, alors il admet un plus petit élément ξ 0 . On a :

[[1; ξ 0 -1]] ⊂ E 0 par définition de ξ 0 .
On a les cas suivants :

• Si ξ 0 = 3k + 1 , alors :

g(ξ 0 ) = ξ 0 -1 3 = k ∈ E et k < ξ 0 .
Donc ξ 0 n'est pas le plus petit élément de E. Et ξ 0 n'est pas congru à 1 mod 3.

• Si ξ 0 = 3k + 2 , alors :

g(2ξ 0 ) = 2ξ 0 -1 3 = 2k + 1 ∈ E et 2k + 1 < ξ 0 .
Donc ξ 0 n'est pas le plus petit élément de E. Et ξ 0 n'est pas congru à 1 mod 3.

• Si ξ 0 = 3k, alors il est impair car sinon sa moitié serait dans E. Donc en posant k = 2m + 1, on a : ξ 0 = 6m + 3, deux cas sont alors possibles :

1. Pour m = 2n donc ξ 0 = 12n + 3.

Il existe une suite (Z p ) (p∈Z) qui dépend de ξ 0 telle que :

...g • f • ... • f...(Z p ) = ξ 0 une composition de f et g un nombre |p| fois, si p ≤ 0 Z p = 2 p ξ 0 si p ≥ 0
Par hypothèse, la suite (Z p ) (p∈Z) donne des termes plus grand que ξ 0 . On peut construire de la même manière une suite parallèle

(Z ′ p ) (p∈Z) qui dépend de ξ ′ 0 = ξ 0 -12 > 1 telle que :    ...g • f • ... • f...(Z ′ p ) = ξ ′ 0 une même composition de f et g, un nombre |p| fois que pour Z p , si p ≤ 0 Z ′ p = 2 p ξ ′ 0 si p ≥ 0
Par construction, la suite (Z ′ p ) (p∈Z) a les mêmes congruences que (Z p ) (p∈Z) , donc elle admet comme minimum ξ ′ 0 . Ces éléments sont alors dans E et de plus, pour tout p ∈ Z, on a : Z ′ p < Z p , Le nombre ξ 0 sous cette forme ne peut pas être le plus petit élément de E. 2. Pour m = 2n + 1 donc ξ 0 = 12n + 9 et posant l = 9n + 7, on a :

g(4l) = 4l -1 3 = 36n + 28 -1 3 = 12n + 9 = ξ 0 avec l < ξ 0 .
En conclusion, l'ensemble E = ∅ et E 0 = N * . □

3 Éxtentions possibles.

• Trouver le nombre d'étape pour atteindre une hauteur donnée.

• Trouver l'altitude maximale. L'étude des propriétés des fonctions f et g peut donner une borne supérieure de l'altitude.

• Trouver le temps de vol. Ce nombre semble être lié à l'altitude maximale.

• On considère deux entiers p et q non nuls et premiers entre eux. La suite de nombres :

S n+1 = Sn p si n ≡ 0[p] qS n + 1 sinon (3)
La question est : « Que peut-on dire de cette suite suivant les couples (p; q) considérés ? » Il semble que le théorème de Bésout intervient dans cette étude.

Annexes

Dans ces annexes, on donne des calculs qui peuvent servir pour avancer sur la compréhension de la suite de Syracuse et voir certaines coïncidences à analyser.

1. On donne ce tableau de temps de vols et les nombres de compositions par f -1 et par g -1 (suite de Syracuse) :

Les compositions par f -1 Les compositions par g On remarque dans ce tableau des répétitions surprenantes qui poussent à analyser de plus près le comportement de la suite pour certains nombres consécutifs.

2. On remarque que les graphes des suites de Syracuse dont les nombres de départs sont 27 et 31 sont des translatés l'un de l'autre. Cette remarque ne concerne pas que ce couple de nombres et donne une idée sur d'autres manières de démontrer le théorème de Syracuse.

  La suite de Syracuse est définie par :S 0 (p) = p ∈ N et S n+1 (p) = Sn(p) 2 si S n (p) est pair 3S n (p) + 1 sinon (1)

  Ces remarques conduisent à une étude modulo 9 (moins triviale que modulo 3) et à une représentation graphique de Z/9Z sur un cercle. L'application f sur N peut être associée à une transformation de Z/9Z qui a plusieurs cycles. Donc induit une action sur cet ensemble. L'application g n'est pas définie sur Z/9Z mais on peut construire des transformations qui lui correspondent.φ : N -→ Z/9Z n -→ ṅLes représentations de φ • f et φ • g sont données par les diagrammes des figures 2.2 et 2.2. (Nous n'allons pas écrire les expressions de ces éléments).

Figure 2 . 1 :

 21 Figure 2.1 : Action de f sur Z/9Z Figure 2.2 : "Action" de g sur Z/9ZOn a trois cycles qui correspondent aux parties de classes stables par l'action de a : Ċ0 = { 0}, Ċ3 = { 3; 6} et Ċ1 = { 1; 2; 4; 5; 7; 8}.

Figure 2

 2 Figure 2.3 : 0 modulo 3 Figure 2.4 : 1 modulo 3 Figure 2.5 : 2 modulo 3

  On voit que les deux graphes sont superposables avec un décalage. Et on peut montrer que pour tout entier n ≥ 1, on a : S n+5 (27) = S n (31). 27) = S 0 (31) = 31.

si n ≡ 1[3] (2)On définit l'ensemble E 0 formé de toutes les images de 1 par les itérations des applications f et g (quand c'est possible). Il est facile de voir l'équivalence suivante :