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We establish a space-time integral estimate of the difference of solutions of non-degenerate scalar conservation laws. It is valid over the maximal domain (0, T max ) × R d in which the solutions are shock-free, and it fails beyond T max . When comparing a solution with its shifts, we deduce a Besov-like estimate at the development of its first singularity.
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Notations. The problems under consideration involve functions of time t and space variable y ∈ R d . The space-time dimension is thus n = 1 + d. If 1 ≤ p ≤ +∞, the norm in L p (U ) is

• p . The cone of symmetric positive semi-definite n × n matrices with real entries is Sym + n . If V ∈ R n , the matrix V ⊗V ∈ Sym + n has entries v i v j . If h ∈ R d and u : R d → R, then τ h u denotes the function u(• + h). The Lipschitz semi-norm of s → g(s) is

|g| Lip(I) = sup s =s ′ ∈I |g(s ′ ) -g(s)|
|s ′ -s| .

Introduction

Let us consider a scalar conservation law in the spacial domain R d ,

(1)

∂ t u + div y f (u) = 0, t > 0, y ∈ R d .
The flux f : R → R d is a given smooth vector field. Choosing an appropriate moving frame, we may assume f (0) = f ′ (0) = 0. Depending upon f , equation ( 1) can be either linear or not, degenerate or not. Recall that if d = 1, (1) is said genuinely non-linear whenever f ′′ does not vanish. The corresponding notion when d ≥ 1, which we call full non-degeneracy, is that det( f ′′ , . . ., f (n) ) does not vanish.

According to Kružkov [START_REF] Kružkov | First order quasilinear equations with several independent variables (in Russian)[END_REF], the Cauchy problem is well-posed for L ∞ -initial data u 0 , in the sense of entropy solutions. It generates a semi-group S t : u 0 → u(t), which enjoys several properties:

Comparison. If u 0 ≤ v 0 almost everywhere, then S t u 0 ≤ S t v 0 . In particular inf u 0 ≤ u(t, y) ≤ sup u 0 .

Contraction. If v 0u 0 ∈ L 1 (R d ), then S t v 0 -S t u 0 ∈ L 1 (R d ), and t → S t v 0 -S t u 0 1 is nonincreasing.

Conservation. Under the same assumption as above,

t → R d (S t v 0 -S t u 0 ) dy is constant, equal to R d (v 0 -u 0 ) dy.
We aim at estimating the difference vu of two solutions associated with initial data u 0 , v 0 . The L 1 -contraction mentionned above holds uniformly in time and is valid for entropy admissible solutions. The contraction fails in L 2 -norm, though it has been shown that in one space dimension, the quantity

t → inf h v(t) -τ h u(t) 2
is non-increasing when u is a pure shock and f is convex ; see N. Leger's analysis [START_REF] Leger | L 2 -stability estimates for shock solutions of scalar conservation laws using the relative entropy method[END_REF]. Within the more general context of systems of conservation laws endowed with a strongly convex entropy, C. Dafermos [START_REF] Dafermos | Entropy and the stability of classical solutions of hyperbolic systems of conservation laws[END_REF] and R. DiPerna [START_REF] Diperna | Uniqueness of solutions to hyperbolic conservation laws[END_REF] established the well-known weak-strong estimate.

This one compares a Lipschitz continuous solution u over (0, T ) × R d with a bounded entropy admissible solution v. The relative entropy

η(v|u) :== η(v) -η(u) -dη(u) • (v -u),
satisfies a differential inequality

d dt R d η(v|u) dy ≤ c( u ∞ ) ∇ y u ∞ R d η(v|u) dy, from which one infers (2) R d η(v(t)|u(t)) dy ≤ exp c( u 0 ∞ ) t 0 ∇ y u(s) ∞ ds R d η(v 0 |u 0 ) dy,
a kind of L 2 -estimate. Other results, dealing with the continuity of the map u 0 → u, were obtained by means of Compensated Compactness (CC), see [START_REF] Chen | The study on application way of the Compensated Compactness (in Chinese)[END_REF][START_REF] Tartar | Compensated compactness and applications to partial differential equations[END_REF].

Returning to the scalar case, we recently [START_REF] Serre | Compensated Integrability and conservation laws[END_REF] established a space-time estimate:

(3)

∞ 0 R d K(|v(t, y) -u(t, y)|) 1 d dy dt ≤ c( u 0 2 , v 0 2 , u 0 ∞ , v 0 ∞ ) v 0 -u 0 1 d 1 ,
where

K : R + → R + is a function defined in Section 2.1 below. Typically, K(s) ∼ s n 2 if (1) is fully non-degenerate, thus (3) is a kind of L p -estimate with p = n 2 /d > 2.
However because the solutions are bounded, we may always bound the space integral above, thanks to the L 1contraction,

R d K(|v(t, y) -u(t, y)|) 1 d dy ≤ c( u 0 ∞ , v 0 ∞ ) v 0 -u 0 1 .
Thus the resulting bound of (4)

T 0 R d K(|v(t, y) -u(t, y)|) 1 d dy dt ≤ c( u 0 ∞ , v 0 ∞ )T v 0 -u 0 1
for finite T is way better than (3) as v 0u 0 1 → 0. The only new feature in (3) is therefore the finiteness of the integral when T = +∞. This kind of dispersion effect is of course intimately related to the Strichartz-like estimates obtained in [START_REF] Serre | Multi-dimensional scalar conservation laws with unbounded initial data: well-posedness and dispersive estimates[END_REF].

Our purpose here is to improve the estimate (3) by restricting the integration to the maximal slab (0, T ) × R d in which both u and v are shock-free. Mind that this assumption is more restrictive than that in weak-strong analysis. It is however meaningful since Lipschitz initial data yield shock-free solutions on some non-trivial slab. According to Theorem 6.1.1 of [START_REF] Dafermos | Hyperbolic conservation laws in continuum physics[END_REF], we have

- 1 T = min 0, inf y div( f ′ • v 0 ), inf y div( f ′ • u 0 ) .
In order that it be valuable, our improved estimate will not be a naive consequence of the L 1contraction property: we shall be able to replace the factor v 0u 0 1/d 1 in the right-hand side of (3) by v 0u 0 p 1 , where the exponent p = n/d is now bigger than 1, (5)

∞ 0 R d K(|v(t, y) -u(t, y)|) 1 d dy dt ≤ c( u 0 ∞ , v 0 ∞ ) v 0 -u 0 n d 1 ,
Likewise, (5) does not follow from (2), because of two reasons. On the one hand the integrand depends upon the amount of nonlinearity of the flux f ; a fully non-degenerate flux yields an estimate in an L q -space with q > 2, while ( 5) is trivial if det( f ′′ , . . . , f (n) ) ≡ 0, because then K ≡ 0. On the other hand, the estimate is valid when we integrate in t up to the blow-up time T of one solution ; on the contrary, the integral in (2) becomes infinite in general as t → T , because ∇ y u ∞ behaves like (Tt) -1 generically.

We point out that when taking v = τ h u for some small vector h, the estimate ( 4) is sharp once shocks develop. This is because the left-hand side is proportional to K([u]) 1/d |h|, where [u] := u rightu left is the jump of u across the shock surface, while τ h u 0u 0 1 in the righthand side behaves as |h| • TV (u 0 ). Thus both sides are of order |h| as h → 0. On the contrary (3) writes as the tautology |h| = O(|h| 1/d ). When u is shock-free over (0, T ) × R d , (5) gives the better estimates.

(6)

T 0 R d K(|u(t, y + h) -u(t, y)|) 1 d dy dt ≤ c( u 0 ∞ ) (|h| • TV (u 0 )) n d .
We warn that (6) would be false if we integrated beyond the shock formation, since |h| is not an O(|h| n/d ) as h → 0. The precise statement is given in Theorem 3.2 below. Inequality ( 6) is a valuable information about how strong can be the development of a singularity as t → T -0. Since shock-free solutions are reversible, it also tells us something about the "rarefaction waves" ; by this we mean those shock-free solutions whose initial data is BV ∩ L ∞ (R d ), without being continuous. These data are such that the measure div ( f ′ • u 0 ) is bounded below by some negative constant.

Our strategy is a mix between that of our work [START_REF] Serre | Multi-dimensional scalar conservation laws with unbounded initial data: well-posedness and dispersive estimates[END_REF] with L. Silvestre, and that of F. Golse's work [START_REF] Golse | Nonlinear regularizing effect for conservation laws[END_REF][START_REF] Golse | Nonlinear regularizing effect for hyperbolic partial differential equations[END_REF] in space dimension d = 1 (improved later on by Golse & Perthame [START_REF] Golse | Optimal regularizing effect for scalar conservation laws[END_REF]). Because of the multi-dimensional context, we employ the technique of Compensated Integrability (CI), which we developed in [START_REF] Serre | Divergence-free positive symmetric tensors and fluid dynamics[END_REF][START_REF] Serre | Compensated integrability. Applications to the Vlasov-Poisson equation and other models of mathematical physics[END_REF] and others papers. This tool is slightly less powerful than Compensated Compactness (CC), and our estimate of

T 0 R d K(|u(t, y + h) -u(t, y)|) 1 d dy dt
depends upon the regularity of the data (bounded variation in ( 6)). In one space dimension, where CC is available, Golse could assume only u 0 ∈ L ∞ (R), so that his result expresses a regularizing effect. Notice that his right-hand side c( u

0 ∞ , v 0 ∞ ) |h| is weaker than ours c( u 0 ∞ , v 0 ∞ ) (|h| • TV (u 0 )) 2 as h → 0.
Again, this is imposed by its validity over (0, +∞) × R, thus beyond the shock formation, where it becomes sharp while ours fail.

Plan of the paper. Section 2 contains the definition of shock-free solutions and of the function K involved in Estimate [START_REF] Diperna | Uniqueness of solutions to hyperbolic conservation laws[END_REF]. Section 3 presents the main theorem 3.1 and its consequences.

Eventually we discuss the accuracy of our estimate in space dimension d = 1. Section 4 presents the remaining steps of the proof, starting with the construction of a Div-BV symmetric positive semi-definite tensor, and then applying CI.

Definitions and results

We begin by giving a quantitative notion of non-degeneracy. Then we explain what are shockfree solutions. Eventually we state our main results.

Non-degeneracy and symmetric matrices

Each Lipschitz function η(s) of a real variable can be viewed as an entropy of the conservation law, with entropy flux q given by q ′ = η ′ f ′ . We are specially concerned with the entropies f i , the coordinates of f ! Denoting q i the corresponding fluxes, we have

q i j (s) = s 0 f ′ i (ξ) f ′ j (ξ) dξ.
We point out that q i j = q ji and thus the n × n matrix

A(s) :=       s f 1 (s) . . . f d (s) f 1 (s) . . . . . . . . . q i j (s) . . . f d (s) . . .       is symmetric. If s ≤ σ, then (7) A(σ; s) := A(σ) -A(s) = σ s 1 f ′ (ξ) ⊗ 1 f ′ (ξ)
dξ is positive semi-definite. Following [START_REF] Lions | A kinetic formulation of multidimensional scalar conservation laws and related equations[END_REF], we say that the conservation law is non-degenerate if there does not exist a non-trivial interval (s, σ) on which (1, f ′ ) remains in some hyperplane. This amounts to saying that A(σ; s) is positive definite whenever s < σ.

Let us assume that (1) is non-degenerate. Then s < σ implies det A(σ; s) > 0. Since this quantity is continuous in both arguments, we may define for every bounded interval I ⊂ R and any increment α > 0,

K I (α) = min{det(A(s + α) -A(s)) | (s, s + α) ⊂ I}.
The function α → K(α) ∈ (0, +∞) is non-decreasing. Because of the concavity of det 1/n over Sym + n , it satisfies K I (α + β)

1 n ≥ K I (α) 1 n + K I (β) 1 n .
The paradigm of a fully non-degenerate conservation law is the multi-D Burgers equation:

(8) ∂ t u + ∂ 1 u 2 2 + • • • + ∂ d u n n = 0,
for which

K I (α) = H n α n 2 , H n := det 1 i + j -1 1≤i, j≤n .
For more general fluxes, Andreiv's formula

det A(σ; s) = 1 n! [s,σ] n 1 . . . 1 f ′ (ξ 0 ) . . . f ′ (ξ d ) 2 dξ 0 • • • dξ d implies that K I (α) is always an O α n 2 .
For a fully non-degenerate flux, we have actually

det(A(s + α) -A(s)) α→0+ ∼ H n det( f ′′ (s), . . ., f (n) (s)) 2 α n 2 .

Shock-free solutions

Let u 0 ∈ L ∞ (R d ) be an initial data, and u be the corresponding entropy solution of the Cauchy problem for [START_REF] Chen | The study on application way of the Compensated Compactness (in Chinese)[END_REF]. Its characterization in terms of a kinetic equation has been found by P.-L. Lions & coll. [START_REF] Lions | A kinetic formulation of multidimensional scalar conservation laws and related equations[END_REF] ; see also Theorem 3.21 in [START_REF] Perthame | Kinetic formulation of conservation laws[END_REF]. To describe it, we need the step function χ(ξ; s), which vanishes for ξ(sξ) < 0, and equals sgn(ξ) = sgn(s) otherwise. In other terms,

χ(ξ; s) = ∂ ∂ξ 1 2 (|ξ| -|s -ξ|) .
Let us define an auxiliary function h(t, y, , ξ) := χ(ξ; u(t, y)). Then h satifies the transport equation ( 9)

∂ t h + f ′ (ξ) • ∇ y h = ∂ ξ m,
where m(•; ξ) is the non-negative measure which occurs in Kružkov's entropy inequalities:

∂ t |u -ξ| + div y [(sgn(u -ξ))( f (u) -f (ξ))] = -2m(ξ).
We notice that if u 0 takes values in an interval I, then so does u, and thus m(ξ) ≡ 0 for ξ ∈ I.

Definition 2.1 We say that the solution u of (1) is shock-free in an open domain U if m(ξ)|

U ≡ 0 for every ξ ∈ R.
This amounts to saying that u satisfies every entropy identity (just multiply by η ′ (ξ) and integrate with respect to the kinetic variable))

(10) ∂ t η(u) + div q(u) = 0, q ′ = η ′ f ′ in U .
A specific property of shock-free solutions is Proposition 2.1 Let (η, q) be an entropy-flux pair of ( 1), and let u, v be two bounded shock-free solutions in an open domain U of R + × R d . Then we have

(11) ∂ t [(sgn(v -u))(η(v) -η(u))] + div y [(sgn(v -u))( q(v) -q(u))] = 0 in U .

Proof

Given ξ ∈ R, the flux of the entropy s → (sgn(s -ξ))(η(s) -η(ξ)) is the vector field s → (sgn(s -ξ))( q(s)q(ξ)). Since u and v are shock-free, we thus have the entropy identities

∂ t [(sgn(v -ξ))(η(v) -η(ξ))] + div y [(sgn(v -ξ))( q(v) -q(ξ))] = 0 ∂ t [(sgn(u -ξ))(η(u) -η(ξ))] + div y [(sgn(u -ξ))( q(u) -q(ξ))] = 0.
We conclude by using Kružkov's trick, known as the doubling of variables trick. Having started from equalities, we receive an equality, instead of an inequality.

Integrating in space and time, we infer a conservation property: Corollary 2.1 Let η : R → R be a C 1 -function, and u 0 , v 0 be bounded initial data such that v 0u 0 ∈ L 1 (R). Assume that the corresponding solutions u, v are shock-free over (0, T ) × R d . Then for all t ∈ (0, T ), we have

R d [(sgn(v -u))(η(v) -η(u))](t, y) dy = R d [(sgn(v 0 -u 0 ))(η(v 0 ) -η(u 0 ))](y) dy.
Remark 2.1 Our starting point is somewhat different than in C. Dafermos' analysis [START_REF] Dafermos | Continuous solutions for balance laws[END_REF]. Instead of focusing on the continuity of the solution, we are interested in the full list of entropy identities [START_REF] Kružkov | First order quasilinear equations with several independent variables (in Russian)[END_REF]. In one space dimension, Dafermos proved that the former implies the latter, by a clever examination of characteristics.

Statements and discussion

Our most general result writes

Theorem 3.1 Let u 0 , v 0 ∈ L ∞ (R d ) be given initial data, such that v 0 -u 0 ∈ L 1 (R d ). Denote I = [min{infu 0 , infv 0 }, max{sup u 0 , sup v 0 }].
Let us assume that the corresponding solutions u, v of ( 1) are shock-free over (0, T ) × R d . Then we have an inequality

(12) T 0 R d K I (|v(t, y) -u(t, y)|) 1 d dy dt ≤ c | f | Lip(I) v 0 -u 0 n d 1 .
We may take

c | f | Lip(I) = c d d ∏ j=1 | f j | Lip(I) 1 d
for some absolute constant c d .

When choosing v = τ h u, this yields

Corollary 3.1 Let u 0 ∈ L ∞ (R d ) be a given initial data, and h ∈ R d be such that u 0 (• + h) -u 0 ∈ L 1 (R d ). Denote I = [infu 0 , sup u 0 ].
Let us assume that the corresponding solution u of ( 1) is shock-free over (0, T ) × R d . Then we have an inequality

(13) T 0 R d K I (|u(t, y + h) -u(t, y)|) 1 d dy dt ≤ c | f | Lip(I) ω 1 (h; u 0 ) n d ,
where

ω 1 (h; u 0 ) := τ h u 0 -u 0 1 .
The best regularity estimate is thus

Theorem 3.2 Let u 0 ∈ L ∞ (R d ) ∩ BV (R d
) be a given initial data, and

I = [infu 0 , sup u 0 ].
Let us assume that the corresponding solution u of ( 1) is shock-free over (0, T ) × R d . Then we have an inequality

(14) T 0 R d K I (|u(t, y + h) -u(t, y)|) 1 d dy dt ≤ c | f | Lip(I) (|h| • TV (u 0 )) n d .
Likewise, we may choose v(t, y) = u(t + τ, y). The conservation law tells us that

|∂ t u| ≤ | f | Lip(I) |∇ y u|, so that u(τ) -u 0 1 ≤ | f | Lip(I) τ • TV (u 0 ) : Theorem 3.
3 Under the same assumptions as in Theorem 3.2, and for τ ∈ (0, T ), we have an inequality

(15) T -τ 0 R d K I (|u(t + τ, y) -u(t, y)|) 1 d dy dt ≤ c 1 | f | Lip(I) (τ • TV (u 0 )) n d .
For a fully non-degenerate flux, where K(s) ∼ s n 2 , (14,15) mean together that the restriction of u to (0, T ) × R d belongs to the homogeneous Besov space Ḃ1/n,n 2 /d ∞ . We point out that this property is not implied, even locally, by u ∈ BV (R + × R d ) and embeddings, because of

d n 2 - 1 n 2 = d -1 n 2 < 1 - 1 n = d n .
Notice also that the one-dimensional case u ∈ Ḃ1/2,4 ∞ ((0, T ) × R) is better than the optimal result B 1/3,3 ∞ (see [START_REF] Golse | Optimal regularizing effect for scalar conservation laws[END_REF][START_REF] De Lellis | On the optimality of velocity averaging lemmas[END_REF]), of course because we avoid the shocks.

Accuracy of Theorem 3.2 in dimension d = 1

In one space dimension, Estimate ( 14) turns out to be sharp in the following sense. Consider a genuinely non-linear conservation law, say Burgers,

∂ t u + ∂ y u 2 2 = 0.
Then [START_REF] Serre | Divergence-free positive symmetric tensors and fluid dynamics[END_REF] writes

T 0 R d |u(t, y + h) -u(t, y)| 4 dy dt ≤ c u 0 ∞ (h • TV (u 0 )) 2 .
Rarefaction wave. Assume first that u 0 (y) = u ± where u -< u + are constants. Then the solution, a rarefaction wave, is shock-free over R + × R, and the estimate above is valid for T = +∞. Because u ≡ u -for y < tu -and u ≡ u + for y > tu + , the difference u(t, y + h)u(t, y) equals [u] := u +u -on a small triangle, whose basis is the segment {0} × (-h, 0) and upper vertex is at

t = h/[u]. Therefore T 0 R d |u(t, y + h) -u(t, y)| 4 dy dt ≥ [u] 3 h 2 2 ,
and both sides of the estimate have the same order h 2 as h → 0. Of course, this can be reversed by û(t, y) = u(Tt, -y), to transform the initial singularity into a final one, a shock formation.

Generic singularities. The above example is non-generic. What happens usually is that u(t, •) is locally decreasing, with a non-degenerate inflexion point. As t increases, the derivative ∂ y u at the inflexion point decreases and tends to -∞ as t → T -0. At time T , the solution is still continuous, but experiences a cubic root singularity in the space variable. Reversing time and space to make it an initial singularity, we are lead to consider the example of a smooth bounded increasing initial data u 0 (y) which coincides with y 1/3 in some neighbouhood of the origin. Say that u 0 ≡ u ± takes constant values away from a compact interval.

The corresponding solution of the Burgers equation is globally shock-free. Thanks to the finite velocity of waves, it coincides locally with a self-similar solution:

u(t, y) = √ t U y t 3/2 , U (z) 3 +U (z) = z, say over (0, 1) × (-2, 2).
Let us split the integral

1 0 R |u(t, y + h) -u(t, y)| 4 dy dt = 1 0 +1 -1 (• • • ) + 1 0 |y|>1 (• • •).
Since u is smooth away from (0, 0), and is constant ≡ u ± for |y| > L for a suitable L < +∞, the second integral above is an O(h 4 ). As for the first one, it equals Likewise, for 1 ≤ j ≤ d,

1 0 +1 -1 |u(t, y + h) -u(t, y)| 4 dy dt = 1 0 +1 -1 t 2 U y + h t 3/2 -U y t 3/2
(DivB) j M = f j • v 0 -f j • u 0 1 + f j • v(T ) -f j • u(T ) 1 ≤ | f j | Lip(I) ( v 0 -u 0 1 + v(T ) -u(T ) 1 ) ≤ 2| f j | Lip(I) v 0 -u 0 1 .

Applying Compensated Integrabilty

Let us recall a version of CI, taken from [START_REF] Serre | Mixed determinants and new a priori estimates in gas dynamics[END_REF] (Theorem 2.1): which is [START_REF] Lions | A kinetic formulation of multidimensional scalar conservation laws and related equations[END_REF]. This ends the proof.

2 dx 1 +

 21 (a) 2 +U (a)U (b) +U (b) 2 ) 4 ,where we first made the change of variables (a, b) = (yt -3/2 , (y + h)t -3/2 ), and then used the cubic equation that U satisfies. Since1 +U (a) 2 +U (a)U (b) +U (b) 2 ≥ 1 + 1 2 (U (a) 2 +U (b) 2 ) ≥ C(1 + r 2/3 ), r := a 2 + b 2for some constant C > 0, and becauseR r 8/3 < +∞,Let us recall that the Divergence of a symmetric tensor x → S is defined row-wise:(Div S) i := ∑ j ∂s i j ∂s j ,where the derivatives are understood in the distributional sense. The tensor S is said Div-BV over U if its entries and the coordinates of Div S are bounded measures over U . It is Div-free if Div S ≡ 0. Taking x = (t, y), we haveDiv B = |v 0u 0 | (sgn(v 0u 0 ))( f (v 0 )f (u 0 )) L d | t=0 -|v(T )u(T )| (sgn(v(T )u(T )))( f (v(T ))f (u(T ))) L d | t=Twhere L d denotes the d-dimensional Lebesgue measure. Therefore B is Div-BV and we have(DivB) 0 M = v 0u 0 1 + v(T )u(T ) 1 ≤ 2 v 0u 0 1 .

Theorem 4 . 1 1 . 1 d dy dt ≤ 2c n 2

 41112 Let S be a symmetric positive semi-definite, Div-BV tensor over R n . Then Applying (16) to our tensor B, and using the estimates established in the previous paragraph, we inferT 0 R d K(|v(t, y)u(t, y)|)

the quantity (1 +U (a) 2 +U (a)U (b) +U (b) 2 ) -4 is integrable over R 2 . Thus 1 0 +1 -1 |u(t, y + h)u(t, y)| 4 dy dt ∼ κh 3 , where (mind that U is odd)

Summing up the calculations above, we deduce that

as h → 0.

Conclusion. Theorem 3.2 is sharp in space dimension 1, but only for non-generic initial data.

For the Burgers equation and generic data, there is a gap between the order h 2 of our upper bound, and the equivalent cst • h 3 of the left-hand side of [START_REF] Serre | Divergence-free positive symmetric tensors and fluid dynamics[END_REF]. We leave open the question whether ( 14) is sharp in higher dimension, or not. That is, whether there exist shock-free solutions for which the left-hand side is bounded below by a constant times |h| n/d as h → 0, at least in some directions. An answer seems to need a good understanding of the worst singularities that are consistent with the conservation law.

4 Proof of Theorem 3.1

A positive Div-BV tensor

From the solutions u and v, we build the symmetric tensor

Thanks to formula [START_REF] Golse | Nonlinear regularizing effect for conservation laws[END_REF]