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Local Weak Limit of Dynamical Inhomogeneous
Random Graphs

by

Léo Dort & Emmanuel Jacob

Abstract – We consider dynamical graphs, namely graphs that evolve over time, and inves-
tigate a notion of local weak convergence that extends naturally the usual Benjamini-Schramm
local weak convergence for static graphs. One of the well-known results of Benjamini-Schramm
local weak convergence is that of the inhomogeneous random graph IRGn(κ) on n vertices with
connection kernel κ. When the kernel satisfies the mild technical condition of being a graphical
kernel, the IRGn(κ) converges locally in probability to the (unimodular) multi-type (marked)
Poisson-Galton-Watson tree MPGW(κ), see the book [22] for a recent detailed exposure of this
result. We extend this to dynamical settings, by introducing the dynamical inhomogeneous
random graph DIRGn(κ,β), with connection kernel κ and updating kernel β, and its limit the
growth-and-segmentation multi-type Poisson-Galton-Watson tree GSMPGW(κ,β). We obtain
similarly the local limit of a slightly different dynamical model, namely the vertex updating in-
homogeneous random graph. Our framework provides a natural tool for the study of processes
defined on these graphs, that evolve simultaneously as the graph itself and with local dynamics.
We discuss briefly the case of the contact process, where we obtain a slight reinforcement of the
results of [24, 25].
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1. Introduction

1.1. Motivations. Local weak limit of graphs has been introduced by Benjamini and Schramm in
[9] in the context of random walks on planar graphs. It was then studied in a more general context
by Aldous and Steele in [3], and by Aldous and Lyons in [2]. It described the fact that a finite
graph, when it is seen from a typical vertex, looks like some limiting graph. More formally, we say
that a sequence of graphs (Gn)n⩾1 with n vertices converges locally weakly towards an infinite
rooted random graph (G,o), if for all distance d ⩾ 1, the ball of radius d centered at on uniformly
chosen in Gn converges in law to the ball of radius d centered at o in G. A classical example is
the local weak convergence of an Erdös-Rényi random graph (in the sparse regime) to a Poisson-
Galton-Watson tree, which is a random rooted tree where each vertex has independently a
random number of children given by a Poisson random variable. More than a convergence in law,
Dembo and Montanari proved (in the sparse regime) an almost sure convergence of Erdös-Rényi
random graph towards the Poisson-Galton-Watson tree. See [15, Proposition 2.6].

Local weak convergence has countless applications in the study of large sparse graphs. Let us
just mention that they can be used to study their number of spanning trees (see [29, Theorem 3.3]),
or their empirical spectral distribution (see [1, Theorem 4]), as well as the asymptotic properties of
processes evolving on these graphs, such as the random walk (see [9]) or the contact process (see
[30]).

In this work, we are interested in this notion of local weak convergence, but in the context of
dynamical graphs, namely we consider graph structures that can evolve in time. The first study of
dynamical graphs we are aware of was given in the field of sociology by Holland and Leinhardt in
[23] in order to understand the evolution of social networks. Lot of works on dynamical graphs have
also been done in physics, under the common denomination of temporal networks or time-varying
networks, and in epidemiology, for modeling spread of information or infection on social networks.
In the mathematics literature, there has been an increased interest in various models of dynamical
graphs in the last ten years or so. However in the mathematics literature the simplest and most
studied model of dynamical graph is still dynamical percolation, as introduced by Häggström,
Peres and Steif in [17], which we further discuss in this introduction, in the sparse regime.

Fix κ > 0, and consider initially the Erdös-Rényi graph ER(n, κ/n) with n vertices, where each
edge is independently open (or present in the graph) with probability κ/n, and closed (or absent
from the graph) with probability 1 − κ/n. In dynamical percolation, edges are then refreshed at
rate 1; upon refreshing the edge is declared open with probability κ/n and closed with probability
1 − κ/n. We write G

n,κ
t the graph at time t with n vertices. The dynamical graph is stationary,

with invariant measure the law of the Erdös-Rényi graph ER(n, κ/n). Thus at any time t ⩾ 0, Gn,κ
t

converges locally weakly to the Poisson-Galton-Watson tree PGW(κ). It is then natural to ask for
a convergence result for the whole process, which leads to the following questions that motivated
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this work:

Does the dynamical percolation on the complete graph, in the sparse regime, converge locally
weakly to a dynamical version of the Poisson-Galton-Watson tree? If yes, in which sense

precisely? What new can we learn from such a convergence result?

At this point the question is of course imprecise, but we can already easily imagine a “dynamical
Poisson-Galton-Watson tree”, or DPGW(κ), that could appear as a limiting process. At time 0, it
is simply a PGW(κ). Then, the dynamics is as follows:

• each edge is cut at rate 1. Upon cutting an edge, we only keep the part of the tree which
contains the root.

• each vertex, at rate κ, gains a new child that is the root of a new PGW(κ) tree.

Heuristically, the first kind of transitions simply comes from the fact that in the finite Erdös-Rényi
graph, each edge is refreshed at rate 1 and has only probability κ/n to stay present after refreshing,
which vanishes to 0 when n tends to infinity. The second kind of transition comes from the fact
that the dynamics may reveal a new edge incident to any given vertex. However, this new edge
will typically lead to a totally new and still unseen part of the graph, with local structure thus
approximately described by an independent PGW(κ) tree. It can further be checked that the
DPGW(κ) is a well-defined stationary Markov process, and at this point the reader may already
have some ideas on rigorous ways to state and prove a convergence result of dynamical percolation
to this limiting process.

However, we immediately question the choice made above to “only keep the part of the tree
which contains the root” after cutting an edge. This is the natural thing to do if we are only
interested in the local structure of the graph around the root at any given time. But we might
also want to keep track of the further evolution of the vertices which were at some time in the past
in the close neighbourhood of the root. This is in particular important if we are interested in the
spread of some process or information that evolves simultaneously as the network dynamics. This
consideration leads naturally to the notion of space-time paths (namely paths of vertices that are
connected through edges successively present in the dynamical graph), as well as the notions of
dynamical connected components and dynamical balls, that we develop in Section 3. Note we thus
develop a richer topology which encodes more information of our dynamical graph, as compared to
the initial choice. However, when considering this topology, we will have a slightly different limiting
process, namely the “growth-and-segmentation Poisson-Galton-Watson tree”, or GSPGW(κ). It is
defined similarly as the DPGW(κ), except that instead of cutting an edge and only keeping one
part of the tree, we keep both parts and just call the edge segmented. See Section 4 for a precise
construction of these growth-and-segmentation trees. We can now formulate a version of our main
result:
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Proposition 1.1 (Theorem 5.1 in the context of dynamical percolation). The dynamical percolation(
G

n,κ
t

)
t⩾0 converges locally in probability to the GSPGWκ.

We will of course define precisely the meaning of this “local in probability” convergence, but it
implies in particular that we can couple the dynamical ball of a randomly chosen vertex in Gn,κ

up to arbitrary time t and distance d, with that of the GSPGW(κ), so that they coincide with high
probability as n tends to infinity. We actually also have the following more quantitative coupling
result:

Proposition 1.2 (Theorem 5.4 in the context of dynamical percolation). We can couple the dynamical
balls in Gn,κ and in GSPGW(κ) up to time t and distance d, so that they coincide with probability
at least

1 − 34 (1 + κ+ κt)2d+1

n
.

In this result, we can of course take t or d be dependent on n, and for example the coupling
succeeds with high probability as n tends to infinity if d is fixed and t = t(n) = o

(
n

1
2d+1

)
.

In the remainder of this paper, we do not consider dynamical percolation but a more general
model where we allow inhomogeneities in the connection probabilities, encoded by a connection
kernel κ (as in inhomogeneous random graphs), as well as in the speed at which each individual edge
is updated, encoded by a connection kernel β. We also discuss alternative network dynamics with
simultaneous updates of the edges incident to the same vertex. Finally, we provide an application
of our convergence results in the study of a contact process running on our dynamical graphs.

1.2. Relation with other Works. We are unaware of any existing works on the notion of local weak
convergence for dynamical graphs, but other convergence notions have already been investigated
in the context of dynamical graphs:

• Graph limits, which were introduced in [28], look at the limiting homomorphism densities
of finite subgraphs. Some attempts to include dynamic random graphons has been made
for instance in [34, 13, 14]. In [13], Crane builds a projection of a process of graphs into
the space of graph limits, and he shows that some properties pass through to the limiting
process such as the Markov property. More recently, in [5, 11] also studied graphon-valued
processes for which they derived convergence in distribution to graphon-valued diffusions that
are graphon-valued processes whose dynamic is given by some diffusion model. In the latest
work, sample paths large deviations principles are also investigated.

• Scaling limits look at the convergence of graphs from a global point of view. In [16], Garban,
Pete and Schramm identify the scaling limit of dynamical percolation for critical percolation
on the triangular lattice, which can be interpreted as a dynamical percolation on a suitable
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graph. More recently Rossignol proved a scaling limit for the dynamical percolation on
critical Erdös-Rényi random graphs in [35], the resulting process is an explicit “coalescent-
fragmentation” process on a continuous graph.

We mentioned an application of our work when considering a contact process on a dynamical
graph, where we obtain a slight improvement of [24, 25]. However, many other works of the recent
years study processes evolving on a dynamical graph, for example [27, 21], again in the context
or the contact process, or [32, 6, 7, 12, 33, 20, 40, 26] which study mixing times and cover times
of random walks under different types of dynamics. The notion of local weak convergence that
we developed might arguably be helpful in simplifying some of these works, or strengthening their
results.

1.3. Organisation of the Paper. In Section 2, we introduce the model of interest, namely dy-
namical inhomogeneous random graphs. In Section 3, we introduce rigorously the local topology
of dynamical rooted graphs, including the dynamical connected component of a dynamical rooted
graph and the dynamical balls, as well as a variant for marked graphs. We also discuss the subse-
quent notions of local weak convergence for a deterministic or random sequence of dynamical graphs.
In Section 4, we introduce the “growth-and-segmentation multitype Poisson-Galton-Watson” tree
with kernels κ and β, or GSMPGW(κ,β), which will be the limiting dynamical graph of our
sequence of dynamical inhomogeneous random graphs. To this end we first introduce the growth-
and-segmentation trees, which are in a sense all the dynamical components of dynamical rooted
graphs “without loops”, in a similar way that trees are graphs without loops. In Section 5, we
formally state our main theorems of local weak convergence. These include a quantitative result
stating until which time and which distance the dynamical ball of a dynamical inhomogeneous ran-
dom graph can be coupled to the corresponding GSMPGW(κ,β) when you authorize only finitely
many types of vertices. Section 6 contains the technical proofs of these results. In Section 7, we
discuss an adaptation of our results to a different family of dynamically evolving graphs, in which
the dynamics is governed by clocks on each vertex, and in which the vertices incident to that vertex
are all updated simultaneously. In Section 8, we provide a simple application of our theory of local
weak convergence, in the context of a process evolving on these dynamical graphs, namely the con-
tact process, improving the results provided in these settings by [24] and [25]. Finally, Appendix A
details a technical coupling result for Markov processes used in our proofs.

Notations. All unspecified limits are as n → ∞.
We say that a sequence of events (An)n⩾1 occurs with high probability (w.h.p.) if P (An) → 1.
Convergence in probability is denoted by (P)−→.
We denote µ

po
λ the Poisson law with parameter λ ⩾ 0, µbin

k,p the binomial law with parameters
k ∈ N and 0 ⩽ p ⩽ 1, and µ for a general probability measure.
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We reserve the variables u, v,w for vertices, x,y, z for the type of vertices in S. We also denote
t, s, r for positive times, and t, s, r for (multitype) trees.
We also denote Vn = {1, . . . ,n}.

2. Dynamical Inhomogeneous Random Graphs

The model of inhomogeneous random graphs was introduced in fairly general setting by Bol-
lobás, Janson and Riordan in [10], and is one of the main object of study of the book of Van Der
Hofstad [22]. We enrich this model with a dynamic to define the dynamical inhomogeneous
random graph

(
G

V,n,κ,β
t

)
t⩾0 with vertex set Vn. Here,

V =
(
S,µ, (x(n)

1 , . . . , x(n)
n )n⩾1

)
,

is the vertex space, S is a separable metric space called state space or mark space, and endowed
with a Borel probability measure µ, and x

(n)
i ∈ S is the (possibly random) mark associated with

vertex i ∈ Vn. No relationship is assumed between x
(n)
i and x

(n ′)
i , but to simplify notations

we shall write further (x1, . . . , xn) = (x
(n)
1 , . . . , x(n)

n ). It is assumed that the empirical measure
νn :=

1
n

∑
i

δxi
converges to the measure µ in the usual space of probability measures on S (and

this convergence holds in probability when the xi are random). Equivalently, for any µ-continuity
set A ⊆ S,

νn(A) :=
#{i ∈ Vn : xi ∈ A}

n

(P)−→ µ(A) . (2.1)

From now on, we assume for convenience that S is compact and ordered. We will be partic-
ularly interested in the case when S is [0, 1], endowed with the Lebesgue measure, and x

(n)
i = i/n,

as well as in the case S finite (as introduced and studied by Söderberg in [36, 37, 38, 39]).
Given the sequence x1, . . . , xn,

(
G

V,n,κ,β
t

)
t⩾0 is the random dynamical graph on Vn, such that

any two vertices u and v are initially connected by an edge independently of the others and with
a probability

pu,v =
1
n
κ(xu, xv)∧ 1 ,

and the connection is updated at rate βu,v = β(xu, xv). That is, after an exponential time with
expectation 1/βuv, the vertices are again connected with probability puv, independently of the
past and independently of the other edges. See Figure 1.

Here κ : S×S → [0,∞) and β : S×S → [0,∞) are symmetric non-negative measurable functions
on S×S called the connection kernel and the updating kernel respectively. We will often drop
the vertex space from the notation and write Gn,κ,β. Let us note that:
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−→

Figure 1 – One move of the dynamic of the dynamical inhomogeneous random graph. The red
dotted edge which is absent on the left is the one chosen to be updated.

• The dynamical networks we consider are stationary. At time t = 0 and at later times, the
law of the network G

n,κ,β
t is that of the inhomogeneous random graph with vertex space V

and kernel κ, where any two vertices are connected independently with probability puv.

• Each edge evolves independently according to a 2-state Markov chain, where the edge uv

turns open at rate βuvpuv and turns closed at rate βuv(1 − puv). If we consider another
dynamical inhomogeneous random graph with same vertex space but different kernels κ ′ ⩽ κ

and β ′ ⩽ β, there is a natural coupling for the evolution of the edges in the two dynamical
graphs, where the updating times for Gn,κ ′,β ′ are included in those for Gn,κ,β, and, initially
or when the two graphs update simultaneously, the updating edge is open in Gn,κ,β if it is
in Gn,κ ′,β ′ . Using this coupling, we can see that the evolution of the edge uv coincide in the
two graphs on the whole time interval [0, T ] with probability at least

1 − (puv − p ′
uv) − (βuvpuv − β ′

uvp
′
uv)T . (2.2)

We will of course be interested in the study of the dynamical inhomogeneous random graph in
the limit n → ∞. We will always assume that the kernels κ and β are graphical as in the following
definition.

Definition 2.1. Let V = (S,µ, (x1, . . . , xn)n⩾1) be a vertex space. The kernels κ and β are called
graphical on V if

(i) κ and β are continuous a.e. on S× S;

(ii) κ ∈ L1(S× S,µ⊗ µ) and κβ ∈ L1(S× S,µ⊗ µ);

(iii)
1
n2

∑
κ(xu, xv)∧ n

(P)−→ 1
2

∫ ∫
κ(x,y)µ(dx)µ(dy) (2.3)
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(iv)
1
n2

∑
β(xu, xv) (κ(xu, xv)∧ n)

(P)−→ 1
2

∫ ∫
β(x,y)κ(x,y)µ(dx)µ(dy) . (2.4)

Note that this is a slight adaptation of the definition of a graphical kernel in [10] of the con-
text of dynamical graphs with the additional updating kernel β. Condition (iii) implies that the
number of edges is asymptotically proportional to n, with proportionality constant being precisely
1
2
∫ ∫

κ(x,y)µ(dx)µ(dy). Condition (iv) implies a similar result when considering all the edges
present in the network in a finite time interval [0, T ]. This means in particular that the model is
sparse.

Remark 2.2. 1. The definition of a graphical kernel in [10] does not request (2.3) but the weaker
assumption that the expectation of the LHS converges to the RHS, however they also show
that the two are actually equivalent. We prefer the maybe more meaningful definition with a
convergence in probability. We also do not lose much by considering the xi deterministic and
replacing the convergence in probability by a simple convergence in (2.1), (2.3) and (2.4).

2. For convenience we supposed that the kernels κ and β do not depend on n. However, our
results generalize easily to the case where κ and β can depend on n and be graphical with
limits κ and β, in the sense that we have κn(x,y) → κ(x,y) and βn(x,y) → β(x,y) for a.e.
(x,y) ∈ S × S, as well as an adaptation of (2.3) and (2.4) with of course κn and βn in the
LHS.

3. When S = {1, . . . , r} is finite, the vertices can be classified according to r different types, and
we say κ and β are finite-type kernels. Our strategy in the following will be to prove local
convergence results for the dynamical inhomogeneous random graphs, by first approximating
the kernels by finite-type ones (or regular finitary kernels to be more precise, see later).

3. Local Convergence for Dynamical Graphs

In this part we introduce the space of (possibly marked) dynamical graphs that we consider, and
the associated notions of local convergence and local weak convergence. These are similar to the
notions of local convergence and Benjamini-Schramm local weak convergence for static graphs, of
course adapted to our dynamical settings.

3.1. Dynamical Graphs and Networks. A dynamical rooted graph is a process of rooted graphs
(Gt,o)t⩾0 = ((Vt,Et),o)t⩾0 depending on time t ⩾ 0, where the set of vertices Vt always contains
a specific vertex, called the root o, and is included in a vertex set V. We sometimes simply write G

or (G,o) for the dynamical graph (Gt,o)t⩾0. We further always assume that our dynamical graph:



10 Léo Dort & Emmanuel Jacob

• has nondecreasing vertex set Vt. Each vertex v ∈ Vt then has a birth-time b(v) equal
to the infimum value of {s : v ∈ Vs}, and is smaller than or equal to t. We always assume that
v belongs to Vb(v), which can be seen as a right-continuity property.
We also write (Vt,E⩽t) := (Vt,

⋃
s⩽t Es) the accumulated graph at time t, and (V∞,E<∞) :=

(
⋃

t⩾0 Vt,
⋃

t⩾0 Et) the total accumulated graph. We say we have a growing graph if the
graph and the accumulated graph coincide for all finite t.

• is locally finite, in the sense that for any finite t ⩾ 0, the accumulated graph (Vt,E⩽t) is
locally finite.

When looking at navigability along a dynamical graph, or in the study of processes living on
this graph, we have a natural notion of space-time paths along the graph, as well as space-time
“distances” from the root.

Definition 3.1. A dynamical rooted graph (Gt,o)t⩾0 is called connected if for all t ⩾ 0 and v in
Vt, there exists k ⩾ 0, a path o = v0, . . . , vk = v in the graph (Vt,E⩽t) and times 0 ⩽ t1 ⩽ . . . ⩽
tk ⩽ t such that for all i = 1, . . . ,k, we have vi−1vi ∈ Eti .
We write

→
d t(v) for the smallest possible value for k above (which can be infinite if the dynamical

graph is not connected).

Note that a dynamically connected graph (Gt,o)t⩾0 can fail to be a connected graph for fixed
t > 0. Note also that the function t 7→

→
d t(v), defined on [b(v),+∞), is nonincreasing, and takes

finite values if the dynamical graph is connected. We further define the dynamical component of
the root, as well as the dynamical balls centered at the root.

Definition 3.2. Let (Gt,o)t⩾0 be a dynamical rooted graph on a vertex set V.

(a) The dynamical component of the root o in (Gt)t⩾0 is the largest connected dynamical
subgraph (G

[∞]
t ,o)t⩾0 = ((V

[∞]
t (G),E[∞]

t (G)),o)t⩾0, characterized for t ⩾ 0 by

V
[∞]
t (G) =

{
v ∈ Vt :

→
d t(v) < +∞}

and
E
[∞]
t (G) =

{
u ∼ v ∈ Et : u, v ∈ V

[∞]
t (G)

}
.

(b) The dynamical ball of radius d centered in the root o in (Gt)t⩾0 is the dynamical rooted
graph (G

[d]
t ,o)t⩾0 = ((V

[d]
t (G),E[d]

t (G)),o)t⩾0, where for all t ⩾ 0,

V
[d]
t (G) =

{
u ∈ Vt :

→
d t(u) ⩽ d

}
and

E
[d]
t (G) =

{
u ∼ v ∈ Et : u, v ∈ V

[d]
t (G)

}
.



Local Weak Limit of Dynamical Inhomogeneous Random Graphs 11

Let us stress again that in the dynamical notion of connectivity that we have introduced, the
graphs G

[∞]
t and G

[d]
t can fail to be connected at a fixed time t.

When there is no confusion, we write in the following (G,o) for the dynamical graph (Gt,o)t⩾0.
It is common to identify two graphs that are isomorphic. In our dynamical settings, we say

two dynamical rooted graphs (G1,o1) and (G2,o2) are isomorphic, and we also write (G1,o1) ≡
(G2,o2), if there exists a bijective map γ : V∞(G1) → V∞(G2) such that γ((G1,o1)) = (G2,o2),
where γ((G1,o1)) is by definition the dynamical rooted graph

γ
(
(G1,o1)

)
:=
(
(γ(V1

t ),γ(E1
t)),γ(o1)

)
t⩾0 .

In other words the bijective map γ preserves:

• the root, that is γ(o1) = o2 ; and

• the dynamic of edges, that is for all time t ⩾ 0, γ(V1
t ) = V2

t and {u, v} ∈ Et(G
1) precisely

when {γ(u),γ(v)} ∈ Et(G
2).

It is not difficult to show that ≡ is an equivalence relation on the set of connected dynamical rooted
locally finite graphs with nondecreasing vertex set.

Definition 3.3. We write DG• for the space of isomorphism classes of connected dynamical rooted
locally finite graphs, with nondecreasing vertex set.

Remark 3.4. Note that the map γ is not allowed to depend on t, and as such, an element of DG•

cannot be identified with a function on the space of isomorphic classes of connected (static) rooted
locally finite graphs. A way to by pass through this difficulty would be:

• to consider the edges in (
∪s⩽tE

[∞]
s

)
\Et

as “segmented edges”, so that for fixed t, the graph
(
V
[∞]
t ,∪s⩽tE

[∞]
s

)
containing also the

segmented edges is now connected.

• and then to identify unambiguously every single edge by defining a cyclic ordering of the
neighbours of any given vertex, which would further respect the order of appearance of the
edges in the graph (given that the edges incident to a given vertex in the dynamical component
is now a growing set when we also consider the segmented edges).

We refrain ourselves to do so at this point, for the two reasons that this construction is not that
natural for a given dynamical graph (in particular the requested ordering of the edges incident to
each vertex), and that the space DG• is actually a perfectly nice working space to define a local
topology, as we do in next section.
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However, our main theorem involves the Growth-and-Segmentation Multitype Poisson-Galton-
Watson tree, which is best constructed as a Markov process on the space of ordered segmented
trees. Of course, this process can then also be seen as a random element of DG•.

We will also consider dynamical graphs with the additional structure of a mark associated to
each vertex, living in a mark space S, which we recall is assumed to be compact and ordered1.

A dynamical marked graph, or dynamical network, is then (G,m), where G is a dynam-
ical graph and m the mark function which belongs to SV∞(G). Two rooted dynamical networks
(G1,o1,m1) and (G2,o2,m2) are called isomorphic if there is a bijective map γ : V1∞ → V2∞ such
that γ(G1,o1,m1) = (G2,o2,m2), where now

γ(G1,o1,m1) = (γ(G1),γ(o1),m1 ◦ γ−1) .

In other words, two dynamical networks are isomorphic if the dynamical graphs are isomorphic,
with associated map γ preserving the marks of the vertices.

Definition 3.5. We write DNS
• for the space of isomorphism classes of connected dynamical rooted

locally finite networks, with nondecreasing vertex set and marks in space S. We also write DN•

when the mark space is implicit.

3.2. Local Convergence. We now endow the spaces DG• and DNS
• with the topology of local

convergence. We should again note the similarity with the usual notion of local convergence for
rooted (static) graph. We should also note that we take into account the time dynamics in a way
which is similar to the notion of uniform convergence on compact sets, but with the added subtlety
we already mentioned that an element of DG• cannot be assimilated to a function on the space of
rooted graphs.

Definition 3.6. We say a sequence of dynamical rooted graphs {(Gn
t ,on)t⩾0, n ⩾ 1} converges

locally to (G∞
t ,o∞)t⩾0 in DG• if for all d ⩾ 1 and T < +∞, for n large enough,

(G
n,[d]
t ,on)t⩽T ≡ (G

∞,[d]
t ,o∞)t⩽T .

We say a sequence of dynamical networks (Gn,mn) converges locally to (G∞,m∞) in DNS
• if for

all d ⩾ 1, for all T < +∞ and δ > 0, for n large enough, there is a bijective map γn : V
n,[d]
T → V

∞,[d]
T

such that {
γn

(
(G

n,[d]
t ,on)t⩽T

)
= (G

∞,[d]
t ,o∞)t⩽T ,

∀v ∈ V
n,[d]
T , dS(m∞(γn(v)),mn(v)) ⩽ δ .

1In this section, it would actually suffice to suppose S is a Polish space. The order on S will be important when
defining the growth-and-segmentation Poisson-Galton-Watson tree in next section, while the compactness of S will
be used in the approximation argument of general kernels by regular finitary kernels in Section 6.
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In words, we ask the dynamical graphs to be isomorphic when restricted to graph distance d and
time T , and in the case of dynamical networks we further request the associated map to leave the
marks at distance less than δ from each other.

Proposition 3.7. The topology of local convergence on DG• is metrizable by the distance D• defined
as

D•
(
(G1,o1), (G2,o2)

)
=

∞∑
k=0

1
2kDk

(
(G1,o1), (G2,o2)

)
,

where

Dk

(
(G1,o1), (G2,o2)

)
=
(

1 + sup
{
d ⩾ 1, (G1,[d]

t ,o1)0⩽t⩽k ≡ (G
2,[d]
t ,o2)0⩽t⩽k

})−1
.

Moreover, (DG•,D•) is a complete ultrametric space.
The topology of local convergence on DNS

• can be defined by the distance DS
• defined as

DS
•
(
(G1,o1,m1), (G2,o2,m2)

)
=

∞∑
k=0

1
2kD

S
k

(
(G1,o1,m1), (G2,o2,m2)

)
,

where Dk is defined by
DS

k

(
(G1,o1,m1), (G2,o2,m2)

)
=

1
1 + RS

k

,

and RS
k by

RS
k = sup

{
d ⩾ 1 : ∃γ :

γ
(
(G

1,[d]
t ,o1)0⩽t⩽k

)
= (G

2,[d]
t ,o2)0⩽t⩽k,

∀v ∈ V
1,[d]
k ,dS(m2(γ(v)),m1(v)) ⩽ 1/d.

}
.

We omit the proof of this proposition, as it essentially follows from a careful rereading of
[22, Appendix A]. Note that the metric spaces (DG•,D•) and (DNS

• ,D•) fail to be separable, for
the same reason that the space of real-valued functions endowed with the topology of uniform
convergence on compact sets fails to be separable, and still fails to be separable when restricted to
continuous or càdlàg functions.

It is natural to ask whether we also have a notion of local Skorokhod topology, which would be
similar to the J1-Skorokhod topology and define a Polish space. It is indeed the case, as we now
explain in the context of unmarked graphs.

Consider CDG• ⊂ DG• the subset of càdlàg rooted graphs, in the sense that for every finite
time t and distance d, the process (G

[d]
s ,o)0⩽s⩽t has finitely many jumps and is right continuous.

For finite time T , define DSKT
((G1,o1), (G2,o2)) as the infimum of all those values of δ ∈ (0, 1]

for which there exists (G̃1, õ1) ≡ (G1,o1), (G̃2, õ2) ≡ (G2,o2) and a grid 0 = s0 < · · · < sk, with
sk ⩾ T , and 0 = t0 < · · · < tk with tk ⩾ T , such that |ti − si| ⩽ δ for i = 0, . . . ,k and with
d = ⌈1/δ− 1⌉,

(G̃
1,[d]
s ,o1) = (G̃

2,[d]
t ,o2) for all i = 0, . . . ,k− 1 and si ⩽ s < si+1 and ti ⩽ t < ti+1 .
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Then the local Skorokhod topology is defined by the metric

DSk

(
(G1,o1), (G2,o2)

)
:=

∞∑
k=1

1
2kDSkk

(
(G1,o1), (G2,o2))

)
,

and makes (CDG•,DSk) a Polish space. This space would be another natural working space,
however we obtain our results directly for the finer local topology, and for this reason we do not
work further with the local Skorokhod topology.

3.3. Local Weak Convergence for Dynamical Graphs. In this section, we define an analog of
Benjamini-Schramm convergence, or local weak convergence, in the context of dynamical graphs.
We could define local weak convergence on either spaces DG• for unmarked graphs, or DNS

• for
marked graphs, but we work here directly with marked graphs. Consider a sequence of dynamical
graphs {Gn, n ⩾ 1} with marks in S and defined on a finite vertex set Vn, with size tending to
infinity. We first consider the case of a deterministic such sequence. For each n, we then obtain
a random element of DNS

• by first selecting a root on uniformly at random on Vn, and considering
only (Gn,[∞], on) the dynamical component containing on. To enlighten the notation, we use below
a slight abuse of notation and write (Gn, on) for (Gn,[∞], on), knowing that we always work on
DNS

• .

Definition 3.8. Given a deterministic sequence {Gn, n ⩾ 1} of marked dynamical graphs on Vn,
we say that {Gn, n ⩾ 1} converges locally weakly on DNS

• to a random dynamical rooted
graph (G∞, o), if the sequence {(Gn, on), n ⩾ 1}, where on is a uniform vertex of Vn, converges in
distribution to (G∞, o) w.r.t. the local distance DS

• .

Note that even though Gn is here deterministic, we obtain a (nondeterministic) random variable
(Gn, on) by the random choice of the root on ∈ Vn. An equivalent definition is the weak convergence
of the probability measures

1
n

∑
v∈Vn

δ(Gn,v)

to the law ν of (G∞, o), as probability measure on the metric space (DNS
• ,DS

• ), which can also be
restated as the convergence

1
n

∑
v∈Vn

h(Gn, v) → E [h(G∞, o)]

for every bounded and continuous function h : DNS
• → R.

Having discussed the notion of local weak convergence for deterministic graphs, we now move
on to sequence of random dynamical graphs.

Definition 3.9. Given a random sequence {Gn, n ⩾ 1} of marked dynamical graphs on Vn, we say
that
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(a) {Gn,n ⩾ 1} converges locally weakly to (G∞, o) if {(Gn
t , on)t⩾0,n ⩾ 1} converges in

distribution to (G∞, o).
Equivalently, for every bounded and continuous function h : DNS

• → R:

E
[
h
(
(Gn, on)

)]
= E

 1
n

∑
v∈Vn

h
(
(Gn, v)

) −→ E
[
h
(
(G∞, o)

)]
.

(b) {Gn, n ⩾ 1} converges locally in probability to {Gn,n ⩾ 1} having (possibly random)
distribution ν if for every bounded and continuous function h : DNS

• → R we have convergence
in probability of

E
[
h
(
(Gn, on)

)
| Gn

]
=

1
n

∑
v∈Vn

h
(
(Gn

t , v)
)

to the random variable Eν

[
h
(
(G∞, o)

)]
.

Note that in the definition (b), Eν

[
h
(
(G∞, o)

)]
may be a (nondeterministic) random variable

due to the possible random choice of ν. However, in the common case of a deterministic distribution
ν, there is a convenient way of proving local in probability convergence.

Lemma 3.10. Let ν be a probability measure on DNS
• . Given a random sequence {Gn, n ⩾ 1}

of dynamical graphs on Vn, consider on and o ′
n two independent uniformly chosen vertices, and

suppose that ((Gn, on), (Gn
t , o ′

n)) converges in distribution to ν ⊗ ν. Then {Gn, n ⩾ 1} converges
locally in probability to ν.

Proof. The result follows from a simple second moment computation. Let h be continuous and
bounded, and (G∞

t , o)t⩾0 have distribution ν. Then h
(
(Gn

t , on)t⩾0
)

converges in distribution to
h
(
(G∞

t , o)t⩾0
)
, and as h is bounded, we also get a convergence of the first moment, hence

E

 1
n

∑
v∈Vn

h
(
(Gn

t , v)t⩾0
) = E

[
h
(
(Gn

t , on)t⩾0
)]

−→ E
[
h
(
(G∞, o)

)]
.

We now compute the second moment of this random variable as

E

 1
n2

∑
v,v ′∈Vn

h
(
(Gn

t , v)t⩾0
)
h
(
(Gn

t , v ′)t⩾0
) = E

[
h
(
(Gn

t , on)t⩾0
)
h
(
(Gn

t , o ′
n)t⩾0

)]
−→ E

[
h
(
(G∞

t , o)t⩾0
)]2 ,

where the convergence comes from the convergence in distribution of ((Gn
t , on)t⩾0, (Gn

t , o ′
n)t⩾0)

and again the fact h is continuous and bounded. Hence the random variable 1
n

∑
v h
(
(Gn

t , v)t⩾0
)

converges in L2 and in probability to the constant E
[
h
(
(G∞

t , o)
)]

.
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Remark 3.11. By Definition 3.6, in order to prove the convergence in distribution of the dynamical
components ((Gn

t , on)t⩾0, (Gn
t , o ′

n)t⩾0) to ν⊗ ν, it suffices to prove that for fixed d ⩾ 1, T < +∞
and δ > 0, one can couple the dynamical balls (Gn,[d]

t , on)t⩽T and (Gn,[d]
t , o ′

n)t⩽T with (G[d]
t , o)t⩽T

and (G ′[d]
t , o ′)t⩽T , where G and G ′ are i.i.d. dynamical graphs with law ν, so that w.h.p. as n

tends to infinity, they coincide in DG• with corresponding marks at distance less than δ from each
other.

4. Growth-and-Segmentation Trees

In this section we introduce the growth-and-segmentation multitype Poisson-Galton-Watson
tree, or more briefly GSMPGW tree, appearing in our main Theorem. It should be seen as an
analogue of the (multitype) Galton-Watson tree, in the context of dynamical graphs. In the time-
dynamics of this process, the appearance of new edges may make it “grow” (in the sense that we
concatenate a new tree to the existing one), while the disappearance of edges may split the tree
into several connected components, hence obtaining a forest. We still call this process growth-and-
segmentation tree as it is a dynamically connected graph.

As mentioned earlier, it will be convenient to work with ordered trees. This allows to iden-
tify unambiguously any given vertex during the time-dynamics, and to construct the growth-and-
segmentation multitype Poisson-Galton-Watson tree as a Markov process on the set of ordered
(segmented) trees. The GSMPGW tree can then also be seen as a random element of DNS

• simply
by forgetting the ordering of the children of each vertex, or of DG• by further forgetting the marks
of the vertices.

4.1. Ordered Multitype Trees and the Multitype Galton-Watson Tree. We begin with some
notations.

Definition 4.1. We denote by

(a) T the set of locally finite ordered rooted trees. Using Neveu’s notations [31], a tree t ∈ T
is identified with a subset of

U :=
⋃
n⩾0

(N∗)n ,

the set of finite words on positive integers, with the convention (N∗)0 = {∅}, simply by
identifying the un-th child of the un−1-th child of (...) of the u1-th child of the root, with
the word u = (u1, . . . ,un) ∈ U. In particular, the root is identified with ∅.

(b) ST the set of segmented trees, namely trees in T where some of the edges can be segmented.
For t ∈ ST, we write Vt for its set of vertices, Ẽt for its full set of edges, and Et ⊂ Ẽt for
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the unsegmented ones. We call (Vt, Ẽt) ∈ T the full tree (containing both segmented and
unsegmented edges) associated to the segmented tree. Note that Ẽt\Et is then the set of
segmented edges, and that the graph (Vt,Et) containing only the unsegmented edges is a
forest rather than a tree. In the same spirit as percolation, we also say that an edge of Ẽt\Et

is closed, and an edge of Et is open. See Figure 2.

(c) TS the set of multitype trees, or more precisely trees in T with types in the mark space
S. Formally, a tree with types in S is a couple (t,m) where t is in T, and m is a function
from the set of vertices of t to the mark space S, associating its type to each vertex of t. A
multitype tree is called well-ordered if the children of each vertex are ordered in increasing
order of their types.

(d) STS the set of multitype segmented trees, or segmented trees with types in S.

∅

1 2 3

11 31 32

311 312

E \ Ẽ

E

Figure 2 – Illustration of an ordered segmented tree. The closed edges are dashed.

We use the common terminologies for trees, father, children, aso. For a vertex u of a tree t, we
write |u| for its length, which is also the graph distance of the vertex to the root. The height of t
is defined by

h(t) = sup {|u|, u ∈ t} .

For d ∈ N∗, we denote by T[d] the subset of T consisting in trees with height less than d. The set
T<∞ = ∪dT[d] is then the set of finite-height trees, or trees with finitely many vertices. For a tree
t, we write t[d] for its restriction to the first d generations, or in other words it consists of the
ball centred in ∅ with radius d. All these definitions extend straightforwardly to segmented trees,
or trees with types in S, leading to T[d]

S , T<∞
S , ST[d]

S and ST<∞
S .

Let κ : S × S → R+ be a kernel on the mark space S. Then the multitype Poisson-Galton-
Watson process with kernel κ is classically defined as the branching process, where each particle
of type x ∈ S is replaced in the next generation by a set of individuals distributed as a Poisson
point process on S with intensity κ(x,y)µ(dy). When κ is a graphical kernel, these Poisson point
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processes will typically be of finite intensity, and thus define a set of children, which we can order
with the natural order on S, thus defining an ordered tree.

Definition 4.2. Let κ be a graphical kernel on S. A random tree on TS is called multitype
Poisson-Galton-Watson tree with connection kernel κ and denoted MPGW(κ) if

(a) the root ∅ has type x∅ distributed according to µ on S, and

(b) a vertex u with type xu = x has offspring distribution according to a Poisson point process
Πu with intensity κ(x,y)µ(dy) on S. The children of u are ordered according to their types,
thus defining a well-ordered tree.

We also denote by MPGW(κ, x) the multitype Poisson-Galton-Watson tree obtained by fixing
the type of the root to be x∅ = x. Note that the intensity of the Poisson point process Πu is finite for
µ-a.e. u. Therefore MPGW(κ) is well-defined up to a negligible set, and so is MPGW(κ, x) for µ-
a.e. x. The multitype Poisson-Galton-Watson tree is the local weak limit of sparse inhomogeneous
random graphs (see for instance [22, Theorem 3.11]), which is precisely the result we mentioned in
the abstract, that we generalize in this paper to dynamical settings.

4.2. Growing Trees, Segmented Trees and Growth-and-Segmentation Trees. In this section,
we construct the growth-and-segmentation Poisson-Galton-Watson tree. It should be seen as an
analogue of the Poisson-Galton-Watson tree, but in dynamical settings where edges can additionally
appear - leading to growth of the tree - or disappear - leading to segmentation of the tree. It will be
convenient to first consider only the growth operation and define the growing multitype Poisson-
Galton-Watson tree, or GMPGW tree. The GMPGW tree can also be seen as the accumulated
graph of the GSMPGW tree that we introduce later on.

4.2.1. Growing Trees.

Definition 4.3. A growing (multitype) tree (tt)t⩾0 is a growing sequence of ordered rooted
multitype trees tt ∈ TS, where for t ⩾ 0 and vertex u of tt, the ordering of the children of u in tt
respects the order of appearance of the edges in the process.

On TS we may define a natural operation which can be used to describe growing multitype
trees. Let r, s ∈ TS be two trees, and u a vertex of r. We denote by Growth(r, s,u) the tree obtained
by adding a child to the vertex u of r and merging this child with the root of s. See Figure 3.

Definition 4.4. The random growing tree (Gκ,β
t )t⩾0 is called growing multitype Poisson-

Galton-Watson tree with kernels κ and β and denoted GMPGW(κ,β) if it is a Markov process
on TS where:
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(a) Gκ,β
0 is distributed as a MPGW(κ), and

(b) at each vertex u ∈ Gκ,β
t , a MPGW(κ,y) is grown at rate κ(xu,y)β(xu,y)µ(dy).

∅

ur

∅

s

∅

u

v

t= Growth (r, s,u)

Figure 3 – Illustration of the growing operation of trees: the tree t (right) is obtained by attaching
the tree s (center) to the tree r (left) at vertex u of r.

Remark 4.5. • Note that our definition requires both the connection kernel κ and the updating
kernel β. Informally, κ(x,y)µ(dy) is the probability of initially finding a child of a vertex
of type x which has type in dy. We then multiply this quantity by β(x,y) dt to obtain the
probability of such an edge being grown in time interval dt.

• One can restate (b) by saying that a tree is grown at u at total rate∫
S

κ(xu, z)β(xu, z)µ(dz) ,

and is distributed as MPGW(κ,y) where y is itself distributed according to the probability
measure

κ(xu,y)β(xu,y)µ(dy)∫
S κ(xu, z)β(xu, z)µ(dz) .

Note that the rate
∫
κ(xu, z)β(xu, z)µ(dz) is a.s. finite for every encountered vertex xu.

• The definition might require some caution as the total rate at which new trees are grown
to the whole (possibly) infinite tree Gκ,β

t will typically be infinite. One way of making this
definition rigorous is by truncating the GMPGW tree to the first d generations to have a
well-defined continuous-time Markov chain (G

κ,β,[d]
t )t⩾0 on T[d]

S , whose total jumping rate
is finite on almost every encountered state in T[d]

S . We can then use the consistent family of
the laws of (Gκ,β,[d]

t )t⩾0 for d ⩾ 0 to define the law of (Gκ,β
t )t⩾0, as a Markov process on TS

with càdlàg trajectories.
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• The definition could naturally lead to construct (or explore) the whole progeny of a vertex as
soon as it is added to the tree. However, it is not less natural to construct (or explore) the
growing set of direct children of a vertex x up to some time T (that may be finite or infinite),
before looking at the progeny of these children. When added to the tree, a vertex u then
immediately has a progeny given by a Poisson point process of intensity κ(xu,y)µ(dy), and
later on the vertex receives a child of type y at rate κ(xu,y)β(xu,y)µ(dy). This provides
another rigorous construction of the process, naturally equivalent to the previous one.

4.2.2. Growth-and-Segmentation Trees. We begin with a definition.

Definition 4.6. A growth-and-segmentation multitype tree (tt)t⩾0 is a sequence of multitype
segmented trees tt ∈ STS, where the associated full tree is a growing multitype tree in the sense of
Definition 4.3.

Our definitions of t = Growth(r, s,u), of tu and tu, extend straightforwardly to the case where r,
s and t can now be segmented trees. We also denote by t = Split(s,u) the segmented tree obtained
by closing the edge between the vertex u of t different from the root, and its parent. This action
defines two sub-segmented trees of t, one containing the root, denoted tu and called the pruned
branch of t at u, and the second containing u, denoted tu and called remaining segmented
tree at u. See Figure 4.

∅

us

∅

u

t= Split (s,u)

Figure 4 – Illustration of the segmentation operation: tree s (left) is segmented at vertex u.

4.2.3. Growth-and-Segmentation Multitype Poisson-Galton-Watson Tree. We can now define the
growth-and-segmentation multitype Poisson-Galton-Watson trees similarly as the GMPGW(κ,β),
but with the additional dynamics that each edge uv present in the process is segmented at rate
β(xu, xv).

Definition 4.7. The random growth-and-segmentation tree (T κ,β
t )t⩾0 is called growth-and-seg-

mentation multitype Poisson-Galton-Watson tree with edge kernels κ and β, and denoted
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GSMPGW(κ,β) if it is a Markov process on STS where:

(a) T κ,β
0 is distributed as a MPGW(κ),

(b) each edge uv present in T κ,β
t is segmented at rate β(xu, xv), and

(c) at each vertex u ∈ T κ,β
t , a MPGW(κ,y) is grown at rate κ(xu,y)β(xu,y)µ(dy).

Similarly as before, this defines strong Markov process on STS with càdlàg trajectories.

4.3. Monotone Approximation of GSMPGW. We finish this part in showing a monotone approx-
imation for GSMPGW.

Proposition 4.8 (Monotone coupling of GSMPGW). Suppose κ and β are graphical kernels and
(κn,βn)n⩾0 is a sequence of kernels such that κn(x,y) ↗ κ(x,y) and βn(x,y) ↗ β(x,y). Then
we can couple the processes T κn,βn and T κ,β so that almost surely, for every finite time T ⩾ 0
and distance d ⩾ 1, we have for all n large enough,

T
κn,βn,[d]
t = T

κ,β,[d]
t ∀t ⩽ T .

Note that it follows from this proposition that T κn,βn converges in distribution to T κ,β in
DN• (or in DG•) and the result is actually stronger, as in the theorem the marks in T

κn,βn,[d]
t

and in T
κ,β,[d]
t are equal when n is large, and not only close to each other.

The proof of this easy result is best seen in the “temporal first” construction of the growth-
and-segmentation tree. In this construction, for each vertex u starting from the root, its children
are constructed with the use of

• a Poisson Point Process (PPP) of intensity κ(xu,y)µ(dy) as well as another PPP of intensity

κ(xu,y)β(xu,y)µ(dy)1{0⩽t⩽T} dt ,

in the case of the growth-and-segmentation tree (T
κ,β,[d]
t )0⩽t⩽T ,

• a PPP of intensity κn(xu,y)µ(dy) as well as another PPP of intensity

κn(xu,y)βn(xu,y)µ(dy)1{0⩽t⩽T} dt ,

in the case of the growth-and-segmentation tree (T
κn,βn,[d]
t )0⩽t⩽T .

and we couple the involved PPP so as to guarantee that they a.s. coincide for large n. Hence, almost
surely, for n large enough the growing trees coincide up to time T and distance d (including finitely
many vertices). Finally, taking n large enough also ensures that we can make the segmentation
times coincide for all the (finitely many) edges, almost surely.
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5. Main Results

Our main result shows that for all suitable kernels κ and β, the dynamical inhomogeneous random
graph

(
G

n,κ,β
t

)
t⩾0 admits a local limit.

Theorem 5.1 (Local weak convergence in probability). As n tends to infinity, the (marked) dynamical
inhomogeneous random graph

(
G

n,κ,β
t

)
t⩾0 converges locally in probability to (the distribution of)

the GSMPGW(κ,β), in the sense of Definition 3.9.

To establish this result, from Lemma 3.10 it suffices to prove that when considering two in-
dependent roots uniformly chosen among the vertex set Vn of Gn,κ,β, the two dynamical marked
graphs converge jointly to two independent copies of the limit, which is the case k = 2 of the
following theorem:

Theorem 5.2 (Joint local convergence of dynamical components). For all k ∈ N, as n → ∞, the k

dynamical components (
(G

n,κ,β,[∞]
t , o1)t⩾0, . . . , (Gn,κ,β,[∞]

t , ok)t⩾0

)
seen as random variables on DNS

• and rooted at uniform roots o1, . . . , ok in Vn, jointly converge in
distribution to k independent copies of the GSMPGW(κ,β).

By Remark 3.11 (or its obvious generalization with k dynamical components), it is actually
sufficient, for finite d and T and positive δ, to couple the the dynamical balls up to distance d and
time T , with corresponding marks at distance less than δ from each other. This is the content of
the following theorem:

Theorem 5.3 (Coupling of dynamical balls). Fix k ∈ N, d ∈ N, δ > 0 and T > 0. Then one can
couple the k randomly rooted dynamical balls(

(G
n,κ,β,[d]
t , o1)0⩽t⩽T , . . . , (Gn,κ,β,[d]

t , ok)0⩽t⩽T

)
with k independent copies of the GSMPGW(κ,β), restricted to distance d and time [0, T ], so that
they coincide (in DG•) with corresponding marks at distance less than δ from each other w.h.p. as
n → ∞.

At this point, we stress that all three theorems above are annealed, as the dynamical inhomo-
geneous random graph is a random model constructed on a possibly random sequence (x1, . . . , xn).
However, we directly deduce a similar quenched result if we first condition on any realization of the
vertex space such that all three convergence results (2.1), (2.3) and (2.4) hold (with then a simple
limit rather than a limit in probability).
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We will prove Theorem 5.3 first in the context of finite-type kernels, i.e. when the state space
S = {1, . . . , r} is finite, where we will actually obtain a more quantitative quenched result, in which
t and d may depend on n but not grow too quickly.

Theorem 5.4 (Quantitative coupling for finite-type kernels). Suppose S = {1, . . . , r} is finite, and
k ∈ N, and condition on a realization of the vertex space. Then there exists a finite constant
c = c(κ,β) depending only on the kernels κ and β, such that for any n ⩾ 0 and choices of tn and
dn, we can couple the k randomly rooted dynamical inhomogeneous (marked) random graphs(

(G
n,κ,β,[dn]
t , o1)0⩽t⩽tn , . . . , (Gn,κ,β,[dn]

t , ok)0⩽t⩽tn

)
with k independent copies of GSMPGW(κ,β), restricted to distance dn and time [0, tn], so that
they coincide (in DNS

• ) with probability at least

1 −
(c(1 + tn))

2dn+1

n
− (c(1 + tn))

dn+1 ∑
z∈S

∣∣∣nz

n
− µz

∣∣∣ . (5.1)

Note that this quantitative quenched result implies the annealed result with tn = t and dn = d

not depending on n, simply by observing that the vertex space must have

E

[∑
z∈S

∣∣∣nz

n
− µz

∣∣∣]→ 0 ,

and thus the expectation of (5.1) tends to 1 as n tends to infinity.
Note also that Theorem 5.4 is of course valid with the choice tn = 0, but if you make the natural

assumption tn ⩾ 1 then you can replace the terms 1 + tn by tn in (5.1). A typical application of
this theorem is to answer the question of how large you can take dn and tn for the coupling to
hold with high probability. For example, if the types of the vertices are first chosen randomly and
taken i.i.d. with distribution µ, then the term

∑
z∈S

∣∣∣nz

n − µz

∣∣∣ is typically of order 1/
√
n. Thus

the coupling holds whp at least under the following two choices:

dn = d fixed and tn = o
(
n1/(2d+2)) , or

tn = t fixed and dn ⩽ α logn with small α > 0 .

The proof will actually provide an explicit expression for the constant c. To understand the
expression, observe that (c(1 + tn))

dn is a typical estimate on the number of vertices contained in
the dynamical ball. For each such vertex, we have to couple all the new vertices it connects to up
until time tn for the two processes, which provides the second term. Moreover, for each such two
vertices, we have to check that their connection has the same evolution up to time tn for the two
processes (for example of non-existing if the two vertices are in two different balls), which provides
the first term.
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Sketch of Proofs. Our main results all follow from Theorem 5.3 and Theorem 5.4.
In Section 6.1, we prove that Theorem 5.3 follows from the same result with finite-type kernels,

and in particular follows from Theorem 5.4. To this end, we show that the finite graph (Gn,κ,β
t )t⩾0 is

well-approximated by dynamical inhomogeneous random graphs (Gn,κm,βm
t )t⩾0 with “finite-type”

kernels κm, in the sense that we can couple the two graphs such that the dynamical balls coincide
with high probability until fixed time T ⩾ 0 and fixed radius d ⩾ 1. Moreover Proposition 4.8
proves that GSMPGW(κ,β) is well-approximated by finite-type kernels too. Combining these
two coupling approximation gives us the desired coupling between the two processes with general
graphical kernels κ and β.

In Section 6.2, we finally establish Theorem 5.4 with an explicit coupled construction of the
dynamical balls for finite n and for the limiting process. The approach is computationally and
notationally heavy but based on simple principles:

• We introduce a third intermediate process, so as to prove separately a coupling result con-
cerning the time-evolution of the dynamical balls, and one concerning the exploration of a
dynamical ball at a fixed time, namely after revealing a new edge of the graph.

• For this exploration at a fixed time, we use standard tools (coupling results for binomial and
Poisson random variables), already needed when dealing with static graphs.

• We finally deal with the time-evolution by showing that the dynamical balls are pure jump
Markov processes with transition rates converging fast enough to those of the limiting process.

6. Proofs of Main Results

6.1. From Finite-Type Kernels to General Graphical Kernels. In this part, we show how we can
deduce Theorem 5.3 from Theorem 5.4 (or rather the annealed version of Theorem 5.4) with an
approximation argument of general graphical kernels κ and β.

6.1.1. Regular Finitary Kernels. Suppose there exists a projection π from S to S̃ = {1, . . . , r}, such
that:

• Each Si := π−1(i) is a µ-continuity set. Then, letting µ̃ = πµ and x̃n = π(xn), we obtain the
vertex space

Ṽ = (S̃, µ̃, (x̃(n)
1 , . . . , x̃(n)

n )n⩾1) .

• There exist finite-type kernels κ̃ and β̃ on the state space (S̃, µ̃) such that for every x and y

in S, we have
κ(x,y) = κ̃(π(x),π(y)), β(x,y) = β̃(π(x),π(y)) .
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In that case, we say κ and β are regular finitary kernels with associated projection π (following
the terminology of [10]).

The projection π extends naturally to graphs with marks in S, simply by projecting the marks
of each vertex. This defines in particular a projection from STS to STS̃. It is then clear that
π(GV,n,κ,β) and GṼ,n,κ̃,β̃ have the same law, as well as π(T κ,β) and T κ̃,β̃. Thus we can apply
Theorem 5.4, or rather the annealed version discussed just after this theorem, to obtain the following
proposition:

Proposition 6.1 (Coupling for regular finitary kernels). Suppose κ and β are regular finitary kernels
with associated projection π. Fix k ∈ N, d ∈ N and T > 0. One can couple the k dynamical balls(

(G
n,κ,β,[d]
t , o1

n)0⩽t⩽T , . . . , (Gn,κ,β,[d]
t , okn)0⩽t⩽T

)
with k independent copies of the GSMPGW(κ,β), restricted to distance d and time [0, T ], so that
their projections coincide in DNS̃

• w.h.p. as n → ∞.

Note here that in the coupling we can only ask the projections of the marks to coincide in S̃,
but we cannot ask the marks themselves to coincide in S. In particular, on the state space S, it
may seem that Proposition 6.1 implies a convergence in distribution only in DG• and not in DNS

• .
However, for a given regular finitary kernels, we could modify the associated projection by

refining the associated partition of S into the Si, and ask in this refined partition the further
request that each Si be of diameter less than a given δ > 0, using the compactness of S. This would
have the effect of providing a coupling where the associated dynamical graphs (asymptotically)
not only coincide, but also have the associated marks at distance less than δ. As this is true
for any δ > 0, we indeed can deduce a convergence in distribution in DNS

• . We do not detail
more this approximation argument, as we will write down in the next subsection a more detailed
approximation argument directly for general graphical kernels, and only need Proposition 6.1 from
the current subsection.

6.1.2. General Graphical Kernels. We now consider κ and β graphical kernels. We consider an
approximating partition as in [22, Lemma 3.6], which provides approximating kernels (κm)m⩾1

and (βm)m⩾1 that satisfy:

1. For each m, the kernels κm and βm are regular finitary.

2. The sequence of kernels (κm)m⩾1 (resp. (βm)m⩾1) is nondecreasing and bounded by κ (resp.
β), with for µ-a.e. x and y in S:

κm(x,y) → κ(x,y), βm(x,y) → β(x,y) .
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We then have, as κ is a graphical kernel,

1
n

∑
u<v

(
κm(xu, xv)

n
∧ 1
)

(P)−→
n,m→∞ 1

2

∫ ∫
S2

κ(x,y)µ(dx)µ(dy) ,

1
n

∑
u<v

(
κ(xu, xv)

n
∧ 1
)

(P)−→
n→∞ 1

2

∫ ∫
S2

κ(x,y)µ(dx)µ(dy) ,

and thus also
1
n

∑
u<v

(
κ(xu, xv)

n
∧ 1
)
−

(
κm(xu, xv)

n
∧ 1
)

(P)−→
n,m→∞ 0 .

Similarly,

1
n

n∑
u<v

β(xu, xv)
(
κ(xu, xv)

n
∧ 1
)
− βm(xu, xv)

(
κm(xu, xv)

n
∧ 1
)

(P)−→
n,m→∞ 0 .

Using (2.2), we deduce that for every T ⩾ 0,

1
n
P
(
∃t ⩽ T , uv ∈ E(Gn,κm,βm

t )∆E(Gn,κ,β
t )

)
−→

n,m→∞ 0 , (6.1)

where ∆ is the notation for the symmetric difference between the two edge sets. In other words,
when m and n are large, the average number of edges which can differ between the two random
graphs within the time interval [0, T ], is bounded by a small constant times n. This result and
Proposition 6.1 for the kernels κm and βm are sufficient to prove Theorem 5.3 for the kernels κ

and β, as we now explain.
We fix k ∈ N, d ∈ N and T > 0. Moreover we let δ > 0 and ε > 0, and aim to show that for

large n, we can couple the k dynamical balls(
(G

n,κ,β,[d]
t , o1

n)0⩽t⩽T , . . . , (Gn,κ,β,[d]
t , okn)0⩽t⩽T

)
with k copies of the GSMPGW(κ,β), restricted to distance d and time [0, T ], so that with prob-
ability larger than 1 − ε, they coincide in DG•, with marks at distance less than δ from each
other.

Choose K large enough so that the probability that the segmented tree T
κ,β,[d]
T has more than

K (possibly segmented) edges, is bounded by ε. The existence of such a K is guaranteed since
(T

κ,β,[d]
t )t⩾0 is a non-explosive Markov process on STS.
Choose m large enough so that for n larger than m, we have

1
n

∑
u<v

P
(
∃t ⩽ T , uv ∈ E(Gn,κm,βm)∆E(Gn,κ,β)

)
⩽ ε/K .

Then as n → ∞, we have w.h.p.

1
n

∑
u<v

1{∃t⩽T , uv∈E(Gn,κm,βm)∆E(Gn,κ,β)} ⩽ 2ε/K . (6.2)
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Now, using Proposition 4.8 and increasing the value of m if necessary, we can ensure that with
probability at least 1 − ε, we have

T
κm,βm,[d]
t = T

κ,β,[d]
t ∀t ⩽ T .

For these regular finitary kernels κm and βm, we can associate a projection π on some finite set
S̃ = {1, . . . , r} so that diam(Si) ⩽ δ for any i ⩽ r. Then by Proposition 6.1, we can ensure that for
n large enough, we can couple the k dynamical balls(

(Gn,κm,βm,[d], o1
n)0⩽t⩽T , . . . , (Gn,κm,βm,[d], okn))0⩽t⩽T

)
with k independent copies of the GSMPGW(κm,βm), restricted to distance d and time [0, T ], so
that with error probability less than ε, they coincide in DG•, with marks at distance less than
δ from each other. In turn, with error probability less than 2εk, these k independent copies of
GSMPGW(κm,βm) coincide with k independent copies of GSMPGW(κ,β) when restricted to
distance d and time [0, T ], and moreover none of the k segmented trees has more than K (possibly
segmented) edges at time T .

When further Inequality (6.2) is satisfied, the dynamical balls(
(G

n,κm,βm,[d]
t , o1

n)0⩽t⩽T , . . . , (Gn,κm,βm,[d]
t , okn)0⩽t⩽T

)
also coincide with the dynamical balls(

(G
n,κ,β,[d]
t , o1

n)0⩽t⩽T , . . . , (Gn,κ,β,[d]
t , okn)0⩽t⩽T

)
with error probability bounded by 2εk. Finally, for large enough n, we accomplish the desired
coupling with error probability less than (2 + 4k)ε.

6.2. Coupling of dynamical balls for finite-type kernels. We finally prove Theorem 5.4, which
then implies all our main results. As it is a quenched result, we work conditionally on the vertex
space, and thus consider x1, . . . , xn to be deterministic. For j = 1, . . . ,k, let us write (B

(n),j
t )t⩾0 =

((V
(n),j
t ,E(n),j

t ), oj)t⩾0 for the dynamical ball of radius dn of the dynamical inhomogeneous random
graph (Gn,κ,β

t )t⩾0 centred at oj. Let us also write Ê
(n),j
t its respective accumulated edges. In the

following, we consider

T† = sup
{
t ⩾ 0, B(n),1

t , . . . ,B(n),k
t are disjoint segmented trees,

and no edge of
⋃
j

Ê
(n),j
t has been segmented and after reappeared

}
,
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with the convention sup ∅ = 0. For t < T , in the trees (V
(n),1
t , Ê(n),1

t ), . . . , (V(n),k
t , Ê(n),k

t ), we can
order the children of each vertex by order of appearance, then by the order of their types, and then
in case of ties by the natural order on the vertex set Vn. Thus we can define, for t < T†,

F
(n),j
t = [V

(n),j
t , Ê(n),j

t ,E(n),j
t ] ∈ ST[dn]

S

the ordered segmented tree. For a vertex u ∈ F
(n),j
t ⊂ U, we write v

j
u the corresponding vertex

in V
(n),j
t ⊂ Vn, and its type x

v
j
u

will be simply written x
j
u. For t ⩾ T†, we will simply define

(F
(n),1
t , . . . , F(n),k

t ) = †, where † is a cemetery state that we introduce, so that T† is also the
hitting time of this cemetery state. We also write (T

1,[dn]
t , . . . , T k,[dn]

t )t⩽tn for k independent
copies of GSMPGW(κ,β) truncated at height dn. In order to couple (F

(n),1
t , . . . , F(n),k

t )t⩽tn with
(T

1,[dn]
t , . . . , T k,[dn]

t )t⩽tn , we will actually see that these are Markov processes on (ST[dn]
S )k ∪ {†}

(which might still be unclear for the process (F(n),1
t , . . . , F(n),k

t )), whose transition rates are close to
another. Note that if the coupling succeeds, then we have tn < T†, so that we will not be interested
in what happens after time T†.
For t < T†, we write V

(n),=dn,j
t for the vertices at distance exactly dn from the root oj in the

tree (V
(n),j
t , Ê(n),j

t ), and V
(n),[dn−1],j
t for the remaining vertices at distance at most dn − 1. An

important observation is that every edge uv with u ∈ Vn\
⋃

j V
(n),[dn−1],j
t and v ∈ Vn\

⋃
j V

(n),j
t ,

is open at time t independently with probability pu,v = κ(xu, xv)/n. This is a consequence of the
independence of the evolution of these edges from the evolution of the dynamical balls up to time
t, together with the stationarity property.

Let us consider the different possible transitions modifying the process (F(n),1, . . . , F(n),k) while
it is in some state (f1, . . . , fk).

1. Each edge can be segmented. If uu ′ is an unsegmented edge in fj = F(n),j, this holds at rate
β(xju, xju ′)(1 − κ(xju, xju ′)/n).

2. Each segmented edge or each pair of unconnected vertices can get connected. In that case we
reach time T† and by construction the process jumps to the cemetary state †. For each such
edge between u ∈ fj = F(n),j and u ′ ∈ fj ′ = F(n),j ′ , this holds at rate β(xju, xj

′

u ′)κ(x
j
u, xj

′

u ′)/n.

3. For each l = 1, . . . ,k, for each vertex u of fl = F
(n),[dn−1],l
t and each type x ∈ S, an edge

can appear between the vertex vlu ∈ V
(n),[dn−1],l
t and some vertex v ∈ Vn\

⋃
j V

(n),l of type
xv = x. This holds at rate

(nx − |

k⋃
j=1

V
(n),j
t (x)|)β(xlu, x)κ(x

l
u, x)
n

=β(xlu, x)κ(xlu, x)nx

n
−

β(xlu, x)κ(xlu, x)
n

k∑
j=1

|V
(n),j
t (x)| ,
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where V
(n),j
t (x) is the set of vertices of type x in F

(n),j
t . When this happens, the process

(F(n),1, . . . , F(n),k) will jump to a new random value. We will see that its conditional distri-
bution depends only on the current value of the process and on l, u and x, but not on the
values of the vertices vlu and v in Vn for example, and we will further write this conditional
distribution as µ

(n)
(f1,...,fk),l,u,x.

To understand this distribution, suppose (F
(n),1
t− , . . . , F(n),k

t− ) = (f1, . . . , fk) and at time t an edge
has been added between vlu ∈ V

(n),[dn−1],l
t− and v ∈ Vn\

⋃
j V

(n),j
t− with xv = x. The new value for

(F
(n),1
t , . . . , F(n),k

t ) will then be:

• Either (f1, . . . , Growth(fl, t,u), . . . , fk) for some tree t ∈ T[dn−|u|−1]
S with root of type x and

height at most dn − |u|− 1.

• Or the cemetary state if B(n),1
t , . . . ,B(n),k

t are no more disjoint segmented trees.

Let us fix t ∈ T[dn−|u|−1]
S with root of type x and compute the probability of having (F

(n),1
t , . . . , F(n),k

t ) =

(f1, . . . , Growth(fl, t,u), . . . , fk). To this end, we check successively for every w ∈ t in the contour
(or lexicographical, or depth-first) order whether the neighbourhood of the corresponding vertex in
Vn corresponds to that in t. This also requires some notation.

Let us write cw(t) for the number of children of w in the tree t and c
y
w(t) for the number of

children of given type y. Let us write e
y
w for the number of explored vertices of type y when we

explore w, including w. This is also the number of vertices of type y which arrive no later than w

in t in the contour order. Let us finally write s
y
w for the number of “seen but unexplored” vertices

of type y when we explore w. These seen vertices are also the children of the explored vertices, not
counting the children of w itself. Let us finally write u ′ = u(cu(fl) + 1) so that we will now have
vlu ′ = v. We then have

µ
(n)
(f1,...,fk),l,u,x(f1, . . . , Growth(fl, t,u), . . . , fk)

=
∏
w∈t

r∏
y=1

µbin∑
j |f

=dn,y
j |+s

y
w,κ(x

t
w,y)
n

(0)
∏
w∈t

|w|<dn−|u|−1

r∏
y=1

µbin

ny−
∑

j |f
y
j |−s

y
w−e

y
w,κ(x

t
w,y)
n

(cyw(t)) ,

where we recall that µbin
n,p denotes the binomial distribution with parameters n and p. Indeed, to

obtain this result (see Figure 5), successively for each w ∈ t in the contour order, starting from
w = ∅t and vlu ′ = v:

• We first check that the corresponding vertex vlu ′w is not connected to any other vertex in⋃
j V

(n),=dn,j
t− or in the set of seen and unexplored vertices at this time. This provides the

first term.
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• If |w| < dn − |u| − 1 and thus |u ′w| < dn, we check that the number of children of vlu ′w of
type y is equal to c

y
w(t), which provides the second term. Moreover, if this is the case, we

define accordingly vlu ′wi for 1 ⩽ i ⩽ c
y
w(t).

o1

w1

o2

u

×
××

o1

w1

o2

u

w2

v w3

Figure 5 – Illustration of one step of the exploration process at a growing time. On the top are
the two balls just before that growing time. On the bottom a new component is grown at u

(orange edge). Blue vertices correspond to stack vertices. Green edges with black cross (not all
displayed) are edges checked to be not connected to v when the vertex v (in green) is explored.
Black vertices correspond to the explored vertices. Red vertices correspond to those at distance d

from its corresponding root. The unseen vertices are not displayed for a better visibility.

Finally, the fact that µ
(n)
(f1,...,fk),l,u,x is a probability measure allows to write

µ
(n)
(f1,...,fk),l,u,x(†) = 1 −

∑
t∈T[dn−|u|−1]

S

µ
(n)
(f1,...,fk),l,u,x(f1, . . . , Growth(fl, t,u), . . . , fk) .

At this point, we have proven that (F(n),1
t , . . . , F(n),k

t ) is indeed markovian and we have provided
its transition rates. We will compare these rates with those of (T 1,[dn], . . . , T k,[dn]), which we can
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simply make explicit as these are k-independent copies of GSMPGW(κ,β), truncated at height dn.
When this process is in state (f1, . . . , fk) ∈

(
ST[dn]

S

)k
, these rates are given by:

1. Each edge uu ′ in some fj is segmented at rate β(xju, xju ′).

2. For each l = 1, . . . ,k, for each vertex u of fl = F
(n),[dn−1],l
t and each type x ∈ S, a

MPGW(κ, x) (truncated at height dn − |u| − 1) is grown at u at rate κ(xlu, x)β(xlu, x)µx.
Calling µdn

(f1,...,fk),l,u,x the law of the k-tuple of trees after this growth, we thus have for any
tree t ∈ T[dn−|u|−1]

S with root of type x:

µdn

(f1,...,fk),l,u,x(f1, . . . , Growth(fl, t,u), . . . , fk) = P
(
MPGW(κ, x)[dn−|u|−1] = t

)
=

∏
w∈t

|w|<dn−|u|−1

r∏
y=1

µ
po
κ(xt

w,y)µy
(cyw(t)),

where we recall that µ
po
λ denotes the Poisson law with parameter λ.

In order to couple the Markov processes (F(n),1, . . . , F(n),k) and (T 1,[dn], . . . , T k,[dn]), it will
be convenient to introduce a third continuous-time Markov process (F̃(n),1, . . . , F̃(n),k), with initial
condition (F̃

(n),1
0 , . . . , F̃(n),k

0 ) = (T
1,[dn]

0 , . . . , T k,[dn]
0 ), and with the same jump rates as those of

(F(n),1, . . . , F(n),k), except that when a new vertex of type x is added to one of the segmented tree
F̃(n),l, we use the distribution µdn

(f1,...,fk),l,u,x instead of µ(n)
(f1,...,fk),l,u,x to determine the state of the

process. To this end, we will show that it is unlikely that the segmented trees contain too many
vertices.

For given (f1, . . . , fk), the sum over (f ′1, . . . , f ′k) of the absolute value of the differences between
the transition rates from (f1, . . . , fk) to (f ′1, . . . , f ′k) for the Markov chains (T 1,[dn], . . . , T k,[dn]) and
(F̃(n),1, . . . , F̃(n),k) is bounded by

max
x,y∈S

β(x,y)κ(x,y)
( f (f − 1)

2n +
f 2

n
+ f

∑
z∈S

∣∣∣nz

n
− µ(z)

∣∣∣ )
⩽ max

x,y∈S
κ(x,y)β(x,y)

(
3f 2

2n + f
∑
z∈S

∣∣∣nz

n
− µz

∣∣∣) ,

where f = |f1|+ · · ·+ fk|.
The first term with f (f − 1)/2n comes from comparing, for each unordered pair of vertices u and
u ′ of f1, . . . , fk, the rate at which the edge is segmented if uu ′ is the edge of some fj, or the rate at
which it appears otherwise (in Vn, leading to the process (F̃(n),1, . . . , F̃(n),k) jump to the cemetary
state). The second and third term come from comparing the rates of growth.



32 Léo Dort & Emmanuel Jacob

Therefore, from Lemma A.1 we can couple the two processes so that

P
(
∃t ⩽ tn,

(
F̃
(n),1
t , . . . , F̃(n),k

t

)
̸=
(
T

1,[dn]
t , . . . , T k,[dn]

t

))
⩽ tn max

x,y
κ(x,y)β(x,y)

(3E
[
Z2
n

]
2n + E [Zn]

∑
z∈S

∣∣∣nz

n
− µz

∣∣∣) , (6.3)

where
Zn :=

∣∣∣T 1,[dn]
tn

∣∣∣+ . . . +
∣∣∣T k,[dn]

tn

∣∣∣ (6.4)

It remains to couple the two processes (F(n),1, . . . , F(n),k) and (F̃(n),1, . . . , F̃(n),k) up to time tn.
To this end, we first observe that the k roots of (F(n),1, . . . , F(n),k) correspond to distinct vertices
in Vn and have types coupled with those of (F̃(n),1, . . . , F̃(n),k) with failure probability roughly
bounded by

k

(
k

n
+

∑
z∈S

∣∣∣nz

n
− µz

∣∣∣) .

Next, since two edges do not flip simultaneously, it suffices to couple the growing operations
encoded with the distributions µ

(n)
(f1,...,fk),l,u,x and µdn

(f1,...,fk),l,u,x. We thus couple successively the
offspring of each vertex encountered, that we are ordered according to their order of appearance,
then (in case of ties) the index of the tree between 1 and k, and finally the contour order inside the
given.
Suppose the j−th (appeared) vertex is u in F(n),l (and in F̃(n),l as well), and the number of revealed
vertices before we reveal the offspring of u is n(j). When exploring its offspring, we have to consider:

• A family of Poisson random variables (Pu
y)y∈S with parameters κ(xu,y)µy yielding its number

of children of type y, in the case of F̃(n),l (and when u is not already at maximal depth dn).

• A family of binomial random variables (Bu
y)y∈S and (B ′u

y )y∈S with parameters (bu
y , κ(xu,y)/n)

and (ny−b ′u
y , κ(xu,y)/n) for some bu

y and b ′u
y satisfying

∑
y bu

y ⩽ n(j) and
∑

y b ′u
y ⩽ n(j),

and yielding:

– the number of connections to previously explored and revealed vertices of type y in
(F(n),1, . . . , F(n),k),

– the number of children of type y (when u not already at maximal depth dn)

in the case of F(n),l.

The total variation distance between a binomial µbin
n,p distribution and a Poisson µ

po
np distribution

with the same mean is at most p (see for instance [8]). Thus all the Bu
y are 0 with failure probability
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at most
∑

y κ(xu,y)bu
y/n, and we can couple each B ′u

y with Pu
y with failure probability at most

dTV(µ
bin
ny−b ′v

y ,κ(xv,y)/n,µpo
κ(xv,y)µy

)

⩽ dTV(µ
bin
ny−b ′v

y ,κ(xv,y)/n,µbin
ny,κ(xv,y)/n)) + dTV(µ

bin
ny,κ(xv,y)/n,µpo

κ(xv,y)µy
)

⩽ κ(xv,y)
b ′v
y

n
+ dTV(µ

bin
ny,κ(xv,y)/n,µpo

κ(xv,y)ny/n
) + dTV(µ

po
κ(xv,y)ny/n

,µpo
κ(xv,y)µy

)

⩽ κ(xv,y)
(b ′v

y + 1
n

+
∣∣∣ny

n
− µy

∣∣∣ ) .

Hence, all these couplings succeed for vertex u with failure probability bounded by

max
x,y∈S

κ(x,y)
(

2n(j) + |S|

n
+

∑
z∈S

∣∣∣nz

n
− µz

∣∣∣) .

We repeat this for all the vertices encountered until time tn. On the event that the first coupling
succeeded, the number of these encountered vertices is∣∣∣F̃(n),1

tn

∣∣∣+ . . . +
∣∣∣F̃(n),k

tn

∣∣∣ = ∣∣∣T 1,[dn]
tn

∣∣∣+ . . . +
∣∣∣T k,[dn]

tn

∣∣∣ = Zn .

For j ⩽ Zn we also have n(j) ⩽ Zn, and therefore this second coupling fails with probability
bounded by (

1 + max
x,y∈S

κ(x,y)
)(2E

[
Z2
n

]
+ |S|E [Zn]

n
+ E [Zn]

∑
z∈S

∣∣∣nz

n
− µz

∣∣∣) , (6.5)

and in particular the probability of T† < tn is bounded by the same quantity.
Combining (6.3) and (6.5), we finally obtain that we can couple the three processes (F(n),1

t , . . . , F(n),k
t ),

(F̃
(n),1
t , . . . , F̃(n),k

t ) and (T
1,[dn]
t , . . . , T k,[dn]

t ) up until time tn and with failure probability bounded
by: (

1 + max
x,y∈S

κ(x,y)(1 + β(x,y)tn)
)(2E

[
Z2
n

]
+ |S|E [Zn]

n
+ E [Zn]

∑
z∈S

∣∣∣nz

n
− µz

∣∣∣) . (6.6)

To conclude Theorem 5.4, it remains to prove that the first two moments of Zn can be bounded
by (c(1 + tn))

dn and (c(1 + tn))
2dn respectively, for some constant c > 0. It clearly suffices to

prove this when there is only one ball, so we suppose k = 1. Then we can roughly bound Zn by
the number Z̃n of vertices at distance at most dn from the root of a PGW tree with parameter
λn = 1 + maxx,y∈S κ(x,y)(1 + β(x,y)tn), and we can assume λn ⩾ 2 by increasing its value if
necessary. From a classic analysis of Galton-Watson processes (see for instance [18, 19, 4]), we get
the following estimates

λdn
n ⩽ E

[
Z̃n

]
=

λdn+1
n − 1
λn − 1 ⩽

λn

λn − 1λ
dn
n ⩽ 2λdn

n ,

λ2dn
n ⩽ E

[
(Z̃n)

2] ⩽ 2
(

λn

λn − 1

)3
λ2dn
n ⩽ 16λ2dn

n ,
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and this concludes the proof.

As final remarks, we stress that we clearly could have provided better estimates of the moments
of Zn, for example as most vertices in the dynamical balls are added at times close to tn and
have less time to generate offspring than the initial root vertices. We also could have obtained the
same formula as (6.6) with E [Zn ∧ωn] instead of E [Zn], with arbitrary choice of ωn, simply by
stopping the process when Zn exceeds ωn, but at the cost of adding an error term P (Zn > ωn).

7. Vertex Updating Inhomogeneous Random Graph

In this section, we discuss briefly vertex updating inhomogeneous random graphs, a model
of dynamical graph with a different kind of dynamics where several edges can be updated simulta-
neously. More precisely, we consider as before a vertex space V = (S,µ, (x(n)

1 , . . . , x(n)
n )n⩾1) and a

connection kernel κ : S×S → [0,∞), but we now consider an updating function β : S → [0,∞)

which is a function of only one variable. The dynamic is then the following: all edges adjacent to
a vertex are updated simultaneously at rate depending on the type of the vertex. Upon updating
vertex loses all its connections, and new connections are built independently. See Figure 6.

−→

Figure 6 – One move of the dynamic of the dynamical inhomogeneous random graph with vertex
updating. Red vertex on the left is the one chosen to be updated. The red edges on the right are
the newly formed edges.

More formally, given the sequence x1, . . . , xn,
(
H

n,κ,β
t

)
t⩾0 is the random dynamical graph on

Vn, such that any two vertices u and v are initially connected by an edge independently of the
others and with a probability

pu,v =
1
n
κ(xu, xv)∧ 1,

and each vertex u updates independently with rate βu = β(xu). That is, after an exponential time
with expectation 1/βu, every unordered pair {u, v}, for u ̸= v forms an edge with probability pu,v
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independently of its previous state and all other edges. The remaining edges vw with v,w ̸= u

remain unchanged.
We obtain the local limit of these dynamical graphs in a similar manner as for the dynamical

inhomogeneous random graphs. In order to describe the limiting model, we need the growing
operation Growth(r, s,u) which was introduced in Section 4.2.2, as well as a new operation, which
we write Merge(r, s,u), and which is the tree obtained by merging the root of the tree s with the
vertex u of r, assuming this root and u have the same type.

Definition 7.1. The random growth-and-segmentation tree (H κ,β
t )t⩾0 is called vertex-growth-

and-segmentation multitype Poisson-Galton-Watson tree with edge and vertex kernels κ

and β, and denoted VGSMPGW(κ,β) if it is a Markov process on STS where:

(a) H κ,β
0 is distributed as a MPGW(κ),

(b) for each vertex u ∈ H κ,β
t , at rate β(xu), all its incident edges are segmented, and a new

MPGW(κ, xu) is merged at u,

(c) at each vertex u ∈ H κ,β
t , a MPGW(κ,y) is grown at rate κ(xu,y)β(y)µ(dy).

Similarly as before, this defines a strong Markov process on STS with càdlàg trajectories. The
reason why we now have two different growing operations, is that the dynamical ball can grow
either by the update of one of its own vertices, leading to a merging operation, or by the update of
one external vertex that then connects to one vertex of the ball, leading to a growing operation.

All the results of Section 5 can be adapted to these new settings, in a similar way that we do
not detail. We just state the rephrasing of the first and last result in these new settings.

Theorem 7.2 (Local weak convergence in probability). As n tends to infinity, the (marked) vertex
updating inhomogeneous random graph

(
H

n,κ,β
t

)
t⩾0 converges locally in probability to (the distri-

bution of) the VGSMPGW(κ,β).

Theorem 7.3 (Coupling for the finite-type kernels). Suppose S = {1, . . . , r} is finite, and k ∈ N. Then
there exists a finite constant c = c(κ,β) depending only on the kernels κ and β, such that for any
n ⩾ 0 and choices of tn and dn, we can couple the k randomly rooted dynamical balls(

(H
n,κ,β,[dn]
t , o1)0⩽t⩽tn , . . . , (Hn,κ,β,[dn]

t , ok)0⩽t⩽tn

)
with k independent copies of VGSMPGW(κ,β), restricted to distance dn and time [0, tn], so that
they coincide (in DNS

• ) with probability at least

1 −
(c(1 + tn))

2dn+1

n
− (c(1 + tn))

dn+1 ∑
z∈S

∣∣∣nz

n
− µz

∣∣∣. (7.1)
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8. Application to the Contact Process

We briefly describe an application of the theory of local convergence for dynamical graphs developed
in this paper. In a recent work [25], the authors consider the contact process on a dynamical
inhomogeneous random graph. Their graph model fits our settings when we take the mark space
to be S = [0, 1], x(n)

i = i/n, with connection kernel to be either of the following kernels:

• the factor kernel κ(x,y) = ax−γy−γ,

• the preferential attachment kernel κ(x,y) = a(x∧ y)−γ(x∨ y)γ−1,

• the strong kernel κ(x,y) = a(x∧ y)−γ,

• the weak kernel κ(x,y) = a(x∨ y)−γ−1,

and updating kernel
β(x,y) = b

(
x−γη + y−γη

)
,

where a > 0, b > 0, γ ∈ (0, 1) and η ∈ R are various parameters of the model. Applying
Theorem 5.1, we directly obtain that their randomly rooted graphs converge locally in probability
to the corresponding GSMPGW(κ,β).

Still in [25], on top of this graph dynamics, the authors consider the contact process, which is
a popular model of spread of an infection in a population, defined as a continuous-time Markov
chain, where every infected vertex infects each of its neighbours with rate λ and becomes healthy
with rate 1. It is easily seen that on finite graphs, the infection will become extinct in finite time,
however they could obtain the following metastability result, in some regime of the parameters
γ and η, that we can simply call slow extinction regime: writing In(t) for the expected number
of infected vertices at time t in the contact process run on the dynamical graph with initially all
vertex infected, there exists some ε > 0 such that:

1. For every sequence tn going to infinity slower than eεn, we have

lim inf
n→∞ In(tn) > 0 .

2. For every sequences (sn) and (tn) both going to infinity slower than eεn, we have

In(sn) − In(tn) −→
n→∞ 0 .

The function In is actually nonincreasing, so in particular whenever 1 ≪ sn ≪ tn ⩽ eεn, the
function In is approximately constant on the whole time-interval [sn, tn] and takes a value far from
0. However, they could not show how this value depends on n, and in particular, defining the
lower metastable density to be ρ−(λ) = lim infn→∞ In(tn) and the upper metastable density to be
ρ+(λ) = lim supn→∞ In(tn), they could not prove that ρ+(λ) = ρ−(λ). This identity is however a
simple consequence of our local convergence result, as we now explain.
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Theorem 8.1 (Metastability of the contact process). Write θ(λ) for the probability that the contact
process with infection rate λ survives on the GSMPGW(κ,β), starting from only the root infected.
Then, in the slow extinction regime, we have

ρ+(λ) = ρ−(λ) = θ(λ) > 0 .

Actually, the slow extinction regime is the regime where [25] can prove that there is slow
extinction (namely the mean extinction time is exponential in the number of vertices) whatever the
value of λ > 0, which implies in particular ρ−(λ) > 0. Although we do not prove this, it is natural
to conjecture that the link between metastability and θ(λ) > 0 holds more generally.

Conjecture 8.2 (Local survival is equivalent to metastability). We have θ(λ) > 0 precisely when there
is slow extinction of the contact process, and in that case there is metastability, with metastable
density θ(λ).

Proof of Theorem 8.1. Using the duality property of the contact process and of the dynamical
inhomogeneous graph, we can rewrite In(t) as

In(t) =
1
n

∑
x∈{1,...,n}

Px (Infection has not been extinct by time t) ,

where Px stands for the contact process starting from only x infected. Looking again at the proof
of metastability by [25], the authors actually prove that for every small error r > 0, there exists
t > 0 such that uniformly in large n, we have In(tn) − In(t) ⩽ r. Therefore, it suffices to prove
the convergence of In(t) when n → 0 for fixed t to obtain the claimed result. To this end,
simply consider the functional ht : DG• → [0, 1], which to a given dynamical graph, associates the
probability that a contact process started from only the root infected, survives in this dynamical
graph up to time t. The functional ht is clearly continuous. Hence we obtain

In(t) −→
n→∞ E [ht(GSMPGW(κ,β))] , (8.1)

and subsequently ρ+(λ) = ρ−(λ) as claimed. We can further write it as simply ρ(λ) and call it the
metastable density. Furthermore, using that the graphs converge locally in probability and not only
locally weakly, we can strengthen (8.1) by conditioning on the evolution of the dynamical graph
(but not of the contact process run on this graph) and obtain the convergence in probability of the
corresponding random variables. Finally, we have

ρ(λ) = lim
t→∞E [ht(GSMPGW(κ,β))] = E [h(GSMPGW(κ,β))] ,

where h is now the probability that the contact process on the dynamical graph survives2 for all
times t ∈ R+.

2Of course, the functional h is not a continuous functional!
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Finally, we mention [24], where the authors study the contact process on vertex-updating inho-
mogeneous random graphs. We then obtain similarly the following strengthening of their results:

Theorem 8.3. Suppose the contact process with infection rate λ > 0 survives with positive probability
on the VGSMPGW(κ,β), starting from only the root infected. Then this probability is also the
metastable density of the contact process on the vertex-updating inhomogeneous random graphs
with kernels κ and β.

A. Coupling of Markov Processes

Lemma A.1 (Coupling of Markov processes). Let X and Y be two continuous time Markov processes
on a countable state space E with transition rates (τXe,f)e,f∈E and (τYe,f)e,f∈E respectively, started
from same state e0 ∈ E. For e ∈ E, we define

∆(e) :=
∑

f∈E, f ̸=e

|τXe,f − τYe,f| . (A.1)

Then there exists a coupling (X̃, Ỹ) of (X, Y) such that for all time t ⩾ 0,

P
(
∃s ⩽ t, X̃s ̸= Ỹs

)
⩽ t E

[
sup
s⩽t

∆(Xs)

]
. (A.2)

Proof. We let Z be a Markov process started from e0 with transition rates τZe,f := min(τXe,f, τYe,f),
and constructed from a graphical representation of independent PPP (ΠZ

e,f)e,f∈E with intensities
τZe,f. We also let (ΠZ,X

e,f )e,f∈E and (ΠZ,Y
e,f )e,f∈E be independent families of PPP with respectively

intensities τXe,f − τZe,f and τYe,f − τZe,f respectively. We now define ΠX
e,f = ΠZ

e,f ∪ Π
Z,X
e,f for e, f ∈ E,

and observe these are independent PPP with intensities τXe,f. These can thus be used to construct
a Markov process X̃ with same law as X. We similarly construct Ỹ with same law as Y.

We now work conditionally on the process (Zs)s⩾0, and write 0 = s0 < s1 < · · · < sk = t its
jumping times up to time t and e0, . . . , ek−1 its successive states, so that Zs = ei for si ⩽ s < si+1.
We also let T := inf{s ⩾ 0, X̃s ̸= Zs or Ỹs ̸= Zs}. Letting the conditioning on Z be implicit to
enlighten the notation, we have, for 0 ⩽ i ⩽ k− 1:

P (T ⩽ si+1 | T > si) = 1 − P

( ⋃
f ̸=ei

(ΠZ,X
ei,f ∪ Π

Z,Y
ei,f)

)
∩ [si, si+1[= ∅


= 1 − exp (−(si+1 − si)∆(ei)) = 1 − exp

(
−(si+1 − si)∆(X̃si)

)
⩽ (si+1 − si) sup

s⩽t
∆(X̃s).
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Summing over i, we obtain
P (T ⩽ t | Z) ⩽ t sup

s⩽t
∆(X̃s) ,

and we conclude by taking the expectation of this inequality.
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