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A large deviation principle for the normalized excursion
of α-stable Lévy processes without negative jumps

by

Léo Dort, Christina Goldschmidt & Grégory Miermont

Abstract – We establish a large deviation principle for the normalized excursion and bridge of
an α-stable Lévy process without negative jumps, with 1 < α < 2. Based on this, we derive
precise asymptotics for the tail distributions of functionals of the normalized excursion and bridge,
in particular, the area and maximum functionals. We advocate the use of the Skorokhod M1 topology,
rather than the more usual J1 topology, as we believe it is better suited to large deviation principles
for Lévy processes in general.

Figure 1 – Simulation of the area under the normalized excursion of a 4
3 -stable Lévy process without

negative jumps.
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1. Introduction

Fix α ∈ (1, 2). Let L = (Lt, t ⩾ 0) be an α-stable Lévy process without negative jumps, having Laplace
transform

E [exp(−λLt)] = exp(tλα) , λ, t > 0.

Our main goal in this paper is to establish a strong large deviation principle for the normalized bridges
and excursions of the process L. This contributes to the rich study of functional large deviation principles
(LDP) for Lévy processes and related processes, which has its roots in the classical theorem of Cramér
and its extension to random walks, see Chapter 5.1 in [8], and references therein. For a Lévy process
(X(t), t ⩾ 0), the natural setting is to consider the family of renormalized processes

XT = (X(Tt)/T , 0 ⩽ t ⩽ 1). (1.1)

The case where X is Brownian motion is addressed by a famous theorem of Schilder [27], who showed a
large deviation principle with speed T in the space of continuous functions, where the rate function is the
Dirichlet energy. Other Lévy processes are addressed in the landmark paper by Lynch and Sethuraman
[19], which was extended in various directions in particular by Borovkov, Mogul’skĭı and others, see
for instance [5, 6, 15, 16, 20, 21] and references therein. However, the vast majority of the results in the
above references assume that the Lévy process has a vanishing Gaussian part, as well as the Cramér
condition that E

[
eλX(1)] < ∞ for every λ in a non-empty neighborhood of 0. These conditions imply

that the trajectories of the Lévy process have finite variation almost surely, and that the law of X(1)
has exponential tails. Various situations may occur when the Cramér condition does not hold. The
references [11, 12] consider the case of stretched exponential tails, while [25] considers the situation
where the tail of X(1) is regularly varying. In these cases, large deviation principles hold with sublinear
speeds, and even logarithmic speed when the tails are regularly varying.

The case of stable Lévy processes with no negative jumps is in a sense a boundary case of the works
mentioned above, due to the asymmetric nature of the tails of L1: we have

P (L1 > x) ≍ Cα

xα
, P (L1 < −x) ≍ exp(−cαx

α ′
) , x → ∞,

where α ′ = α/(α − 1) ∈ (2,∞) is the conjugate exponent of α, Cα = − 1
Γ(1−α) and cα = (α − 1)/αα ′ .

Heuristically, although it is “easy” for the process to go up, it is “costly” for it to go down, and large
deviation probabilities may have different speeds depending on whether the events involved allow the
process to “go down” or not.

However, considering bridges and excursions of such processes is a way to root them at a given value
at time 1, which prevents the process from “going up too much”. This phenomenon is well-known and
was already exploited in [1, 17], in particular in the study of the heights of random trees. However, to
our knowledge it has not been used to derive an actual LDP result for stable excursions and bridges, and
we fill this gap in the present work. Note that LDPs for bridge-like random walks and Lévy processes
were considered under the Cramér condition in [4].
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Although we believe our results should have extensions to a much larger class of Lévy process bridges
and excursions, we focus here on the particular case of stable processes. In this case, precise estimates
are known for the transition densities and the entrance law of the excursion measure, which allow us to
provide a rather straightforward extension of the method of proof presented by Serlet in [28]. However,
our proof differs from the latter in a crucial aspect. As is often the case in LDP theory, the choice of an
appropriate topology on the path space is an important matter. In [19], the authors derived a strong
LDP for Lévy processes as in (1.1) in a “weak” topology, and observed that the rate function is not
good (in the sense that it does not have compact level sets) in the natural Skorokhod J1 topology. In
a series of papers, Borovkov and Mogul’skĭı improved these results by considering local versions of the
LDP in the J1 topology, or by working in the completion of the Skorokhod J1 metric. Unsurprisingly,
similar questions arise in our context. Indeed, since it is much less costly for the process L to go up
rather than to go down, a similar property also holds for its bridges and excursions, and this implies
that in the large deviation regimes considered in this paper (and in stark contrast to [25]), we cannot
distinguish between the situation where the process performs one big jump, or two jumps of half the
size at extremely close locations, precluding exponential tightness in the J1 topology.

Fortunately, Skorokhod introduced three other possible topologies, called M1, J2 and M2, on spaces
of càdlàg functions, and M1 will turn out to suit our purposes, with a very minor adaptation. This will
allow us to introduce a distance function dist that induces a slight variant of the M1 topology and makes
(D[0, 1], dist) a Polish space in which a strong LDP holds for the excursion and bridge of the process L.
We note that Mogul’skĭı and others [6, 21] also considered the weaker M2 topology, but in the context
of processes satisfying the Cramér condition. The M1 topology was also used by O’Brien [23] to prove
LDPs for the processes (L∨ 1)ε as ε ↓ 0, but these large deviations regimes are very different from the
one considered here.

It might be the case that a weak LDP holds for εe in the J1 topology, or for the unconditioned
scaled processes εL in either the J1 topology or in our modified M1 topology, but we do not pursue
these questions here.

1.1. Main results. Let e = (et, 0 ⩽ t ⩽ 1) be the normalized excursion of L above its past infimum [7],
and let b(x) = (b

(x)
t , 0 ⩽ t ⩽ t) be the bridge of L from 0 to x ∈ R with unit duration. We set b = b

(0).
These processes satisfy a.s. e0 = e1 = b

(x)
0 = 0, b(x)

1 = x, and et > 0 for every t ∈ (0, 1). We view e

and b
(x) as random variables in the space D[0, 1] of “càdlàg” functions f : [0, 1] → R, that is, functions

which are right-continuous at every point t ∈ [0, 1) and have left-limits at every point t ∈ (0, 1]. We
denote by f(t+) = f(t) and f(t−) the right- and left-limits of f ∈ D[0, 1] at t, whenever applicable. We
turn D[0, 1] into a measurable space by equipping it with the σ-algebra generated by the evaluation
maps f 7→ f(t) for t ∈ [0, 1].

Let us recall the definition of a large deviation principle. If S is a topological space, a rate function
is a lower semicontinuous function I : S → [0,∞], i.e. a function such that the level sets LI(c) = {x ∈ S :

I(x) ⩽ c} are closed for every c ⩾ 0. A rate function is called good if the sets LI(c), c ⩾ 0 are compact.
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Definition 1.1. Let β > 0 be fixed. A family (Xε)ε>0 of random elements in the space S (endowed
with the completed Borel σ-algebra) is said to satisfy the large deviation principle (LDP) with speed
ε−β, and rate function I, if for every Borel set A ⊆ S,

− inf
x∈

◦
A

I(x) ⩽ lim inf
ε↓0

εβ logP (Xε ∈ A) ⩽ lim sup
ε↓0

εβ logP (Xε ∈ A) ⩽ − inf
x∈Ā

I(x).

We define a rate function in the following way. Assume that f ∈ D[0, 1] has bounded variation,
meaning that it can be written as the difference g − h of two non-decreasing functions g,h ∈ D[0, 1].
This decomposition is not unique; however, it becomes unique if we further require that g(0) = 0
and that the Stieltjes measures dg and dh are mutually singular. This “minimal” decomposition is
classically called the Jordan decomposition of f, and we write g = f↑,h = f↓. We denote by H(α)

the subspace of D[0, 1] of functions f with bounded variation such that f↓ is an absolutely continuous
function with derivative f ′↓ ∈ Lα ′

[0, 1], where α ′ = α/(α − 1) ∈ (2,∞) is the conjugate exponent of α.
Set

Dex[0, 1] :=
{
f ∈ D[0, 1] : f(1) = 0, f ⩾ 0

}
, (1.2)

(note that we do not impose the usual condition that f(0) = 0) and define

Hex = H(α) ∩Dex[0, 1]. (1.3)

Let us define the rate function Ie : D[0, 1] → [0,∞] by the formula

Ie(f) =

cα
∫1

0 |f
′
↓(s)|

α ′ ds if f ∈ Hex,

+∞ otherwise.
(1.4)

Alternatively, we may define Ie as follows for nonnegative functions f with bounded variation and such
that f(1) = 0. Write f = fac + fsing as a sum of an absolutely continuous part and a singular part, and
let fsing = fsing↑ − fsing↓ be the Jordan decomposition of fsing. Then we have

Ie(f) = cα

∫1

0
(f ′ac(s))

α ′
− ds+∞ · fsing↓(1), (1.5)

where (f ′ac(s))− denotes the negative part of f ′ac(s), and we let Ie(f) = ∞ if f is not nonnegative, or if f
does not satisfy f(1) = 0, or if f does not have bounded variation. In this way, we note that the shape
of the rate function is exactly that involved in [19, Theorem 5.1] (although this theorem does not apply
in our context) and the other references mentioned earlier in this introduction.

We defer a discussion of the topology until Section 2.2, where we will introduce a distance dist on
the set D[0, 1]. We can now state our main result.

Theorem 1.2 (LDP for the normalized excursion e). The laws of (εet)t∈[0,1] satisfy an LDP in (D[0, 1], dist)
as ε ↓ 0 with speed ε−α ′ and good rate function Ie.

We also have the following result, proved in Section 6.3.
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Proposition 1.3. The rate function Ie is not a good rate function for the Skorokhod J1 topology. More-
over, the laws of (εet)t∈[0,1], 0 < ε < 1, are not exponentially tight in D[0, 1] endowed with the Skorokhod
J1 topology.

Recall that in a Polish space, an LDP with a good rate function implies exponential tightness (see
[19, Lemma 2.6] or [9]). However, since the rate function Ie is not good, this does not rule out the
possibility that εe satisfies the LDP in the J1 topology, and we do not know whether this property holds
or not. Note that this problem has been the topic of several references dealing with random walks and
Lévy processes under the Cramér condition, including [5, 19, 20], and at present there is no complete
answer to this question in that context either. However, we believe that the M1 topology is a more
natural choice in this context, since it is arguably a strong topology for which the rate functions are
better behaved.

Theorem 1.2 allows us to deduce general LDPs for functionals of the normalized stable excursion.
This extends the results of [10] dealing with Brownian excursions to the case of stable excursions, and
was the initial motivation for the present work. Define the sets

K(α) =
{
f ∈ H(α) : ∥f ′↓∥α ′ ⩽ 1

}
, Kex = K(α) ∩Dex[0, 1]. (1.6)

It will be shown in Lemma 6.1 below that Kex is a compact subset of (D[0, 1], dist). This will imply,
using the contraction principle, the following logarithmic asymptotics for the right tails of functionals
of e.

Theorem 1.4 (Logarithmic asymptotics for the right tails of functionals of e). Let Φ be a continuous
nonnegative functional Dex[0, 1] → R+ which is also positive-homogeneous in the sense that Φ(λf) =

λΦ(f) for every f ∈ Dex[0, 1] and λ ⩾ 0, and not identically 0 on Kex. Define X = Φ(e) and let

γΦ := max
{
Φ(f) : f ∈ Kex

}
.

Then εΦ(e) satisfies an LDP in R+ as ε ↓ 0 with speed ε−α ′ and good rate function JΦ(x) = cα

(
x
γΦ

)α ′

.
In particular,

− logP (X > x) ∼ cα

(
x

γΦ

)α ′

as x → +∞ . (1.7)

Using [13, Theorem 4.5], we have that (1.7) implies the following asymptotics for the Laplace trans-
form and the moments:

logE
[
etX
]
∼ (γΦt)α as t → +∞, (1.8)

E [Xn]1/n ∼ α
1
αγΦ

(n
e

)1/α ′

as n → +∞. (1.9)

Taking as a particular case the functions Φ(f) =
∫1

0 f(s) ds and Φ(f) = sups∈[0,1] f(s), we obtain the
following result, which improves [24, Corollary 1.2] by pinning down the precise constants.
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Corollary 1.5 (Logarithmic asymptotics for the right tails of the area under e). Set

Aex =

∫1

0
et dt.

Then it holds that

− logP (Aex > x) ∼ cα(α+ 1)
1

α−1xα
′ as x → +∞, (1.10)

logE
[
etAex

]
∼

tα

α+ 1 as t → +∞, (1.11)

E [An
ex]

1/n
∼

(
α

α+ 1

) 1
α (n

e

)1/α ′

as n → +∞. (1.12)

Corollary 1.6 (Logarithmic asymptotics for the right tails of the supremum of e). It holds that

− logP
(

sup
0⩽t⩽1

et > x

)
∼ cαx

α ′ as x → +∞, (1.13)

logE
[
et sup0⩽s⩽1 es

]
∼ tα as t → +∞, (1.14)

E

[
( sup
0⩽t⩽1

et)
n

]1/n

∼ α1/α
(n
e

)1/α ′

as n → +∞. (1.15)

1.2. Large deviation principles for bridges. Theorems 1.2 and 1.4 have counterparts for bridges of the
Lévy process L. For a ∈ R, we let

D
(a)
br [0, 1] := {f ∈ D[0, 1] : f(1) = a} ,

H
(a)
br := H(α) ∩D

(a)
br [0, 1].

We may now state the main results concerning the stable Lévy bridge. In this statement and the rest
of the paper, for a ∈ R, we let a− = a∨ 0 and a− = (−a)+ be the positive and negative parts of a.

Theorem 1.7 (LDP for the stable bridge b(a)). Let (aε)ε>0 be such that εaε → a as ε → 0. Then the
laws of (εb

(aε)
t )t∈[0,1] satisfy a LDP in (D[0, 1], dist) as ε ↓ 0 with speed ε−α ′ and good rate function

Ib,a defined by

Ib,a(f) =

cα

(∫1
0 |f

′
↓(s)|

α ′ ds− (a−)
α ′
)

if f ∈ H
(a)
br ,

+∞ otherwise.
(1.16)

We obtain an analogue of Theorem 1.4 for bridges. Let

Kbr := K(α) ∩D
(0)
br [0, 1].

Again, Kbr is a compact subset of (D[0, 1], dist), and the following logarithmic asymptotics hold for the
right tails of functionals of b.
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Theorem 1.8 (Logarithmic asymptotics for the right tails of functionals of b). Let Φ be a continuous
nonnegative functional D(0)

br [0, 1] → R+ which is also positive-homogeneous in the sense that Φ(λf) =

λΦ(f) for every f ∈ D
(0)
br [0, 1] and λ ⩾ 0, and not identically 0 on Kbr. Define X = Φ(b) and let

γΦ := max {Φ(f) : f ∈ Kbr} .

Then εΦ(b) satisfies an LDP in R+ as ε ↓ 0 with speed ε−α ′ and good rate function JbΦ(x) = cα

(
x
γΦ

)α ′

.
In particular,

− logP (X > x) ∼ cα

(
x

γΦ

)α ′

as x → +∞.

As an application, using the same proof as for Corollary 1.6, we may reprove an exact logarithmic
asymptotic for the right tails of the supremum of the stable Lévy bridge obtained by Kortchemski in
[17, Corollary 13].

Corollary 1.9 ([17, Corollary 13]). We have

− logP
(

sup
0⩽t⩽1

bt > x

)
∼ cαx

α ′ .

1.3. Outline of the proofs and organization of the paper. The proofs for excursions and bridges are
very much alike, but some extra technicalities arise for excursions, so we focus mostly on this case, and
deal with bridges in Section 7. Section 2 will recall the basics of stable processes, bridges and excursions,
as well as the results on the M1 topology that will be needed in this paper.

In order to prove Theorem 1.2, we first establish the LDP for the finite-dimensional marginals of
εe (Proposition 3.1). This relies on the explicit form of the finite-dimensional marginals of the stable
excursion in terms of stable densities and related quantities, which is recalled in Section 2.1. The key
input is the following estimate for stable densities pt(x) = P (Lt ∈ dx) / dx, [26, Equation (14.35)]),p1(x) = Cαx

−α−1(1 +O(x−α)
)

as x → +∞
p1(−x) = c ′′αx

2−α
2α−2 exp

(
− cαx

α ′)(1 +O(x−α ′
)
)

as x → +∞.
(1.17)

The asymmetry of these two asymptotic behaviors will play a key role. This will imply that εe satisfies
a large deviation principle for the weak topology on D[0, 1] of pointwise convergence at continuity points
of the limit. This result is proved in Section 5, which is also devoted to the identification of the rate
function. In order to prove an LDP in (D[0, 1], dist), we show that the laws of (εe, ε ∈ (0, 1)) are
exponentially tight in this space. This relies on a Kolmogorov-type criterion which we prove in Section
2.2.3, and apply to our present context is Section 4. Finally, Theorem 1.4 is proved in Section 6.1 using
the ideas of Fill and Janson [10], who treated the Brownian case.

Acknowledgement. Thanks are due to Loïc Chaumont for an interesting conversation around stable
excursions.
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2. Preliminaries

2.1. Excursions and bridges of stable Lévy processes without negative jumps. We begin by recalling
the definitions of stable excursions and bridges, for which we mainly refer to [7]. We denote by Px

the law under which the canonical càdlàg process (Lt, t ⩾ 0) is a stable Lévy process without negative
jumps with exponent α, started from x, and we set P = P0. We let (Ft)t⩾0 be the natural filtration.
We denote by (pt)t⩾0 the continuous transition semigroup density of L under Px, which possesses the
scaling property

pt(x) = t−1/αp1(t
−1/αx).

Let E be the excursion space, which is defined by

E =
{
ω ∈ D(R+,R+) : ω(0) = 0 and ζ(ω) = sup{t > 0, ω(t) > 0} ∈ (0,∞)

}
.

Denote by n the Itô measure of L above its past infimum. The σ-finite “law” of the lifetime under n has
been calculated by Monrad and Silverstein (see [22, Lemma 3.2])

n(t < ζ) = Γ

(
1 −

1
α

)−1
t−1/α.

For λ > 0, we define the scaling operator S(λ) on E by

S(λ)(ω) = (λ1/αωt/λ, t ⩾ 0).

Then there exists a unique collection of probability measures (n(t), t > 0) on E such that

(i) for every t > 0, n(t)(ζ = t) = 1;

(ii) for every λ > 0 and t > 0, we have S(λ)(n(t)) = n(λt);

(iii) for every measurable subset A of E,

n(A) =

∫∞
0

ds
αΓ
(
1 − 1

α

)
s1+ 1

α

n(s)(A).

The probability distribution n(1) on càdlàg paths with unit lifetime is called the law of the normalized
excursion of L.

We denote by P(0,∞)
x the law of the process (L,Px), x > 0, killed when it leaves [0,∞), so that

P(0,∞)
x (A, t < ζ) := P

(
A, t < τ(−∞,0)

)
, t ⩾ 0, A ∈ Ft.

We denote by (p
(0,∞)
t (x, ·))t⩾0 the transition semigroup under P(0,∞)

x . The measure n is Markovian
with semigroup (p

(0,∞)
t (x, ·))t⩾0 under Px, which means that if F is measurable and nonnegative, and

θtf = f(t+ ·) is the shift operator, then

n
(
1A F ◦ θt 1{t<ζ}

)
= n

(
1A E(0,∞)

Lt
[F] 1{t<ζ}

)
, t ⩾ 0, A ∈ Ft. (2.1)



10 Léo Dort, Christina Goldschmidt & Grégory Miermont

We denote by (qx(t))t⩾0 the density of the first hitting time of 0 under P(0,∞)
x . Thanks to the absence

of negative jumps, the density (qx(t))t⩾0 can be related to the law of L through the relation (see for
instance [2, Corollary VII.3])

qx(t) =
x

t
pt(−x).

Hence, it satisfies the following scaling property

qx(t) = x−αq1(x
−αt).

Let (jt)t⩾0 be the density of the entrance law under the measure n, defined by the fact that, for every
t > 0,

n(f(Lt)1{t<ζ}) =

∫∞
0

f(x)jt(x) dx,

where f is an arbitrary bounded Borel function. Recall that for all t > 0, jt is an integrable function in
L∞(R+), and we may choose it so that it satisfies the following scaling property

jt(x) = t−2/αj1(t
−1/αx) (2.2)

(see [22, Lemma 3.2]). Combining the above expressions, we may show that the law of the normalized
excursion has a density with respect to the Lebesgue measure. Indeed, if f : R → R∗

+ and g : R+ → R+

are two nonnegative measurable functions, we then have

n
(
f(Lt)g(ζ)1{t<ζ}

)
=

∫∞
t

dsg(s)
∫
R
f(x)jt(x)qx(s− t) dx

=

∫∞
t

g(s)

αΓ
(
1 − 1

α

)
s1+ 1

α

n(s)(f(Lt)) ds.

This implies that for all s > 0,

n(s)(f(Lt)) = αΓ

(
1 −

1
α

) ∫
R+

f(x)jt(x)qx(s− t) dx.

In particular, when s = 1 the law of the normalized excursion is then

n(1)(f(Lt)) = αΓ

(
1 −

1
α

) ∫
R+

f(x)jt(x)qx(1 − t) dx.

Using a similar argument and the Markov property, we can compute

n(1)(f(Lt1 , . . . ,Ltn)) = αΓ

(
1 −

1
α

) ∫
Rn
+

jt1(x1)
n−1∏
i=1

p
(0,∞)
ti+1−ti

(xi, xi+1)qxn(1 − tn) dx1 · · · dxn. (2.3)

This gives the finite-dimensional marginals for the excursion process e, so that the left hand-side of the
preceding equation may also be written as E [f(et1 , . . . , etn)]. In particular, for every t ∈ (0, 1), the
law of (et+s, 0 ⩽ s ⩽ 1 − t) can be obtained from the following formula, valid for every non-negative
measurable F:

E [F(et+s, 0 ⩽ s ⩽ 1 − t)] = αΓ

(
1 −

1
α

) ∫
R+

jt(x)qx(1 − t)E1−t
x [F(L)], (2.4)
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where Eδ
x is the law of the first-passage bridge of duration δ > 0 started from x > 0. The latter is

defined by absolute continuity for every δ ′ > 0 and Fδ ′-measurable F ⩾ 0 by the formula

Eδ
x[F] = Ex

[
F1{T0>δ ′}

qLδ ′ (δ− δ ′)

qx(δ)

]
. (2.5)

In a similar but simpler way, the law of the bridge b(a) has finite-dimensional marginals given by

E
[
f(b

(a)
t1

, . . . ,b(a)
tn

)
]
=

1
p1(a)

∫
Rn

f(x1, . . . , xn)
n∏

i=0
pti+1−ti(xi+1 − xi) dx1 · · · dxn, (2.6)

where 0 = t0 < t1 < . . . < tn < 1 = tn+1, and by convention we let x0 = 0 and xn+1 = a in the above
integral.

2.2. Basic results on the Skorokhod M1 topology. In this section, we introduce define the distance
dist on D[0, 1] and study some of its key properties.

By convention, for f ∈ D[0, 1], we let f(0−) = 0, which is a way to “root” the function f at 0: by
contrast, we adopt the convention f(1+) = f(1).

For two real numbers x,y ∈ R, the real interval [x∧ y, x∨ y] will more simply be denoted by [x,y],
even when x > y.

2.2.1. The space (D[0, 1], dist). For f ∈ D[0, 1], we define the augmented graph of f rooted at 0, to be
the set

Γ0(f) =
{
(t, x) : t ∈ [0, 1], x ∈ [f(t−), f(t)]

}
⊂ [0, 1]× R.

Note in particular that Γ0(f) contains the segments {0}×[0, f(0)] and {1}×[f(1−), f(1)]. For (t, x), (u,y) ∈
Γ0(f), we write (t, x) ⪯ (u,y) if t < u or if t = u and |x − f(t−)| ⩽ |y − f(t−)|. This defines a total
order on Γ0(f). We say that a function r ∈ [0, 1] 7→ (t(r), x(r)) is a parametric representation of Γ0(f) if
it is an increasing bijection from ([0, 1],⩽) to (Γ0(f),⪯), and we write Π(f) for the set of all parametric
representations of Γ0(f). For f1, f2 ∈ D[0, 1], we let

dist(f1, f2) = inf
{

sup
r∈[0,1]

|t1(r) − t2(r)| ∨ |x1(r) − x2(r)| : (t1, x1) ∈ Π(f1), (t2, x2) ∈ Π(f2)

}
.

This indeed defines a distance function that makes (D[0, 1], dist) a Polish space1. We refer to [30,
Theorems 12.3.1 and 12.8.1] with the slight modification that the convention taken in this and other
classical references is that f(0−) = f(0) rather than f(0−) = 0, and that f is supposed to be continuous
at 0 and 1. Had we chosen the former convention, the topology induced by dist would be the so-called
Skorokhod M1 topology introduced by Skorokhod in [29], which is a weaker variant of the more classical
J1 topology. Our choice of convention that f(0−) = 0 allows a sequence of functions that jump “right
after time 0” to be possibly convergent in our topology. For example, one has dist(1[1/n,1],1[0,1]) → 0

1Note, however, that the distance dist is not complete, see [30, Section 12.8].
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as n → ∞, while the sequence 1[1/n,1] is not convergent in the classical M1 topology, and in fact
our topology is strictly weaker than the M1 topology. On the other hand, observe that 1[0,1/n] is not
convergent in (D[0, 1], dist).

2.2.2. The M-oscillation. In this section, we introduce an oscillation function that will serve as a
substitute in (D[0, 1], dist) for the classical modulus of continuity. For x ∈ R and A ⊂ R we let
d(x,A) = inf{|x− y| : y ∈ A} be the distance from x to A. Note the elementary inequalities

d(x,A) − d(y,A) ⩽ d(x,y) , d(x,A) − d(x,B) ⩽ dH(A,B) (2.7)

where x ∈ R and A,B ⊂ R, and dH(A,B) = supx∈A d(x,B)∨ supy∈B d(y,A) is the Hausdorff distance
between A and B.

For x,y, z ∈ R, we set

M(x,y, z) = d(y, [x, z]) = (y− x)+ ∧ (y− z)+ + (y− x)− ∧ (y− z)−.

The M-oscillation of a function f ∈ D[0, 1] is the function defined for δ > 0 by

wM(f, δ) = sup
{
M(f(t1−), f(t), f(t2)) : 0 ⩽ t1 < t < t2 ⩽ 1, |t2 − t1| < δ

}
.

The choice of the left-limit at t1 in the first term might appear unnatural at first sight, because of the
fact that f has left limits. In fact, it is only needed when t1 = 0, because of our rooting convention
f(0−) = 0. So in fact, wM(f, δ) is the maximum of the two quantities

sup
{
M(f(t1), f(t), f(t2)) : 0 ⩽ t1 < t < t2 ⩽ 1, |t2 − t1| < δ

}
and

sup
{
M(0, f(t), f(t2)) : 0 < t < t2 < δ

}
,

and if f(0) = 0, then wM(f, δ) is equal to the first quantity.

Theorem 2.1. Let D be a fixed countable subset of [0, 1] containing 1. Let K ⊂ D[0, 1] be such that

sup
{
|f(q)| : f ∈ K,q ∈ D

}
< ∞

and
lim
δ↓0

sup
{
wM(f, δ) : f ∈ K

}
= 0.

Then K is a relatively compact subset of (D[0, 1], dist).

This theorem can be found in Chapter 12 of Whitt [30], with the minor difference that our space of
functions starts with an “initial jump” (recall that f(0−) = 0 by our convention).
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2.2.3. An exponential tightness criterion. Our second result gives a sufficient condition to check expo-
nential tightness in (D[0, 1], dist) for a family of random processes.

Theorem 2.2 (Exponential Tightness in (D[0, 1], dist)). Let α > 1 and {X(ε), ε > 0} be a family of D[0, 1]-
valued stochastic processes. We assume that X(ε)(0) = 0 for every ε > 0.

1. Suppose that there exist two constants c,C ∈ (0,∞) such that for every λ > 0, and every 0 ⩽ t1 ⩽

t ⩽ t2 ⩽ 1,
E
[
exp(λM(X(ε)(t1),X(ε)(t),X(ε)(t2)))

]
⩽ c exp

(
C(λ ε)α|t2 − t1|

)
,

then it holds that for every β ∈ (0, 1/α),

lim
N→∞ lim sup

ε↓0
εα

′ logP
( ⋃

n>N

{
wM(X(ε), 2−n) > 2 2−nβ

1 − 2−β

})
= −∞.

2. Suppose further that for some countable dense set D of [0, 1] containing 1, the family of random
variables {X(ε)(q), ε > 0} is exponentially tight with speed ε−α ′, for every q ∈ D. Then the laws
of X(ε) as ε ↓ 0 are exponentially tight in (D[0, 1], dist), with speed ε−α ′.

Proof. For 1., we follow and adapt the approach of Billingsley [3]. Let Dn = {k2−n, 0 ⩽ k ⩽ 2n} be the
dyadic numbers of level n. Then for β > 0 and λ > 0, by Markov’s inequality,

P
(
M(X(ε)(k2−n),X(ε)((k+ 1)2−n),X(ε)((k+ 2)2−n) > 2−nβ

)
⩽ c exp(−λ2−nβ + C(λε)α2−n+1)

which by optimizing over λ > 0 and taking a union bound yields

P
(
∃k ∈ {0, 1, . . . , 2n − 2} : M(X(ε)(k2−n),X(ε)((k+ 1)2−n),X(ε)((k+ 2)2−n)) > 2−nβ

)
⩽ 2nc exp(−C ′(α)ε−α ′2n(1−αβ)/(α−1)) .

Setting An = max{M(f(k2−n, (k+1)2−n, (k+2)2−n)), 0 ⩽ k ⩽ 2n−2}, this shows that P
(
An > 2−nβ

)
⩽

2nc exp(−C ′(α)ε−α ′2n(1−αβ)/(α−1)). Next, let f ∈ D[0, 1] and, for I ⊂ [0, 1], let

L(I) = sup
{
M(f(t1), f(t), f(t2)) : t1, t, t2 ∈ I, t1 ⩽ t ⩽ t2

}
.

Fix n ⩾ 1 and k ∈ {0, 1, . . . , 2n − 2}. We aim to provide bounds on L([k2−n, (k+ 2)2−n]). To this end,
by right-continuity, it suffices to bound uniformly the quantities M(f(t1), f(t), f(t2)) for t1 ⩽ t ⩽ t2 in
[k2−n, (k+ 2)2−n] ∩

⋃
m⩾0 Dm. For m ⩾ n, let

Bm = max
{
M(f(t1), f(t), f(t2)) : k2−n ⩽ t1 ⩽ t ⩽ t2 ⩽ (k+ 2)2−n, t1, t, t2 ∈ Dm

}
,

so that L([k2−n, (k+ 2)2−n]) is the increasing limit of Bm as m → ∞. The key observation is that, for
every m ⩾ n,

Bm ⩽ Bm−1 + 2Am . (2.8)
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To check this, let us assume that t1 < t < t2 are in Dm and achieve the maximum defining Bm. If f(t)
lies between f(t1) and f(t2) then this means that Bm = 0 and there is nothing to prove. Otherwise, we
may assume without loss of generality that f(t2) ⩽ f(t1) < f(t), the other cases being symmetric, so
that Bm = f(t)− f(t1). Note that if t ∈ Dm \Dm−1, then t−2−m, t+2−m belong to Dm−1. Moreover,
it must hold that f(t− 2−m)∨ f(t+ 2−m) ⩽ f(t), as otherwise, for instance if f(t− 2−m) > f(t), then
we would have

M(f(t1), f(t− 2−m), f(t2)) = f(t− 2−m) − f(t1) > f(t) − f(t1) = M(f(t1), f(t), f(t2)),

and this would contradict the assumption that M(f(t1), f(t), f(t2)) is maximal over points t1 < t < t2

in Dm. This implies that M(f(t− 2−m), f(t), f(t+ 2−m)) = (f(t) − f(t− 2−m))∧ (f(t) − f(t+ 2−m)),
and therefore, we may choose t ′ ∈ {t − 2−m, t + 2−m} such that |f(t) − f(t ′)| ⩽ Am. If t ∈ Dm−1, we
let t ′ = t.

We define t ′1 in a similar way, setting it to be t1 if the latter belongs to Dm−1. If t1 ∈ Dm \Dm−1,
on the other hand, then t1 ± 2−m belong to Dm−1. We note that f(t1 − 2−m) ∧ f(t1 + 2−m) ⩾ f(t1),
as otherwise this would again contradict the maximality of M(f(t1), f(t), f(t2)) over points in Dm. So
we may choose t ′1 ∈ {t± 2−m} in such a way that |f(t ′1) − f(t1)| ⩽ Am.

Finally, we define t ′2 in the following way. If t2 ∈ Dm−1, we let t ′2 = t2 as usual. If t2 ∈ Dm \Dm−1,
we have two situations. If f(t2−2−m)∧f(t2+2−m) ⩾ f(t2) then we may again choose t ′2 ∈ {t2±2−m} in
such a way that |f(t ′2) − f(t2)| ⩽ Am. In this case, we notice that dH([f(t1), f(t2)], [f(t ′1), f(t ′2)]) ⩽ Am,
so that

d(f(t), [f(t ′1), f(t ′2)]) ⩾ d(f(t), [f(t1), f(t2)]) −Am (2.9)

by (2.7). Otherwise, we choose t ′2 ∈ {t2 − 2−m, t2 + 2−m} in such a way that f(t ′2) ⩽ f(t2). In this case,
we have dH([f(t1), f(t ′2)], [f(t ′1), f(t ′2)]) ⩽ Am so that, again by (2.7),

d(f(t), [f(t ′1), f(t ′2)]) ⩾ d(f(t), [f(t1), f(t ′2)]) −Am = d(f(t), [f(t1), f(t2)]) −Am,

so that (2.9) holds in every case. Therefore, for this choice of t ′1, t ′, t ′2 and by (2.7), we obtain

Bm−1 ⩾ M(f(t ′1), f(t ′), f(t ′2)) = d(f(t ′), [f(t ′1), f(t ′2)])

⩾ d(f(t), [f(t ′1), f(t ′2)]) −Am

⩾ d(f(t), [f(t1), f(t2)]) − 2Am = Bm − 2Am ,

so that (2.8) holds. By taking a limit, (2.8) implies that L([k2−n, (k+ 2)2−n]) ⩽ Bn−1 + 2
∑

m⩾nAm

where we note that Bn−1 = 0. Furthermore, we note that

wM(f, 2−n) ⩽ max
0⩽k⩽2n−2

L([k2−n, (k+ 2)2−n])

because three numbers within distance 2−n can all be fitted into the same interval [k2−n, (k + 2)2−n]

for some k. We deduce that
wM(f, 2−n) ⩽ 2

∑
m⩾n

Am.
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Finally, let

KN =
⋂

n⩾N

{
f ∈ D[0, 1] : wM(f, 2−n) ⩽ 2 2−nβ

1 − 2−β

}
,

so that

P
(
X(ε) /∈ KN

)
⩽

∑
n⩾N

P
(

2
∑
m⩾n

Am ⩾ 2 2−nβ

1 − 2−β

)
⩽

∑
n⩾N

∑
m⩾n

P
(
Am ⩾ 2−mβ

)
⩽

∑
n⩾N

∑
m⩾n

c2m exp(−C ′(α)ε−α ′2m(1−αβ)/(α−1))

⩽ C ′′2N exp(−C ′(α)ε−α ′2N(1−αβ)/(α−1)) ,

for some universal constant C ′′ = C ′′(α) > 0. We finally deduce that

lim sup
ε↓0

εα
′ logP

(
X(ε) /∈ KN

)
⩽ −C ′2N(1−αβ)/(α−1),

which converges to −∞ as N → ∞.
It remains to prove 2. Notice that for every choice of 0 = t0 < t1 < . . . < tk = 1 in D with

max{ti − ti−1 : 1 ⩽ i ⩽ k} < δ, it holds that

sup
t∈[0,1]

|X(ε)(t)| ⩽ max
{
|X(ε)(ti)| : 1 ⩽ i ⩽ k

}
+wM(X(ε), δ),

so that

P

(
sup

t∈[0,1]
|X(ε)(t)| > A

)
⩽

k∑
i=1

P
(
|X(ε)(ti)| > A/2

)
+ P

(
wM(X(ε), δ) > A/2

)
.

From the fact that the X(ε)(ti), 1 ⩽ i ⩽ k are exponentially tight, and by 1., we obtain the existence of
AN ∈ (0,∞) such that

lim sup
ε↓0

εα
′ logP

(
sup
t∈D

|X(ε)(t)| > AN

)
< −N.

We deduce that the relatively compact sets of D[0, 1] given by {f ∈ D[0, 1] : supt∈D |f(t)| ⩽ AN} ∩ KN

fulfill the definition of exponential tightness.

3. Large deviations for the finite-dimensional marginal distributions

In this section we prove the following proposition.

Proposition 3.1 (LDP for the marginals of e). Let σ = (t1, . . . , tn), where 0 < t1 < · · · < tn < 1, be
fixed. Under P the laws of ε(et1 , . . . , etn) satisfy a LDP in Rn with speed ε−α ′ and good rate function

Jσ(x1, . . . , xn) =

cα
∑n−1

i=1 (ti+1 − ti)
(
(xi−xi+1)+
ti+1−ti

)α ′

if x1, . . . , xn ∈ R+∞ otherwise.
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The fact that Jσ is a good rate function on Rn is easy to see. Indeed, it is clearly continuous, and
for every c > 0, J(x1, . . . , xn) ⩽ c implies (xi− xi+1)+ ⩽ c ′ for 1 ⩽ i ⩽ n and xn ⩽ c ′, where c ′ is some
positive number depending only on t1, . . . , tn, c that xi ⩽ xi+1 + c ′ that max1⩽i⩽n xi ⩽ nc ′, and the
level sets of Jσ are therefore compact.

3.1. Estimates for transition densities. We will need some crucial estimates for the tails of the tran-
sition densities, pt(x), and for the density of the entrance law, jt(x). In this section, we will make use
of positive, finite universal constants c1, c2 depending only on α, but whose values may vary from line
to line, and of non-universal constants c,C depending on some extra parameters that will always be
specified.

First, [26, Equation (14.35)] entails that for every x ⩾ 0, we have

c1 exp
(
−cαx

α ′
)
⩽ p1(−x) ⩽ c2(1 + x

2−α
2α−2 ) exp

(
−cαx

α ′
)

(3.1)

and [26, Equation (14.34)] entails that

c1(1 + x)−α−1 ⩽ p1(x) ⩽ c2(1 + x)−α−1. (3.2)

By the scaling relations for pt(x), we deduce that for every x > 0 and t ∈ (0, 1],

c1 exp
(
−cα

( x

t1/α

)α ′)
⩽ pt(−x) ⩽

c2
t1/α

(
1 +

( x

t1/α

) 2−α
2α−2

)
exp

(
−cα

( x

t1/α

)α ′)
(3.3)

and
c1(1 + x/t1/α)−α−1 ⩽ pt(x) ⩽ c2(1 + x)−α−1. (3.4)

In particular, note that for every fixed η ∈ (0, 1) and x0 > 0, we have, for any t ∈ (0, 1) and x ⩾ x0,

pt(−x) ⩽ C(η, x0) exp
(
−(1 − η)cα

( x

t1/α

)α ′)
. (3.5)

A similar bound holds for qx(t) =
x
tpt(−x), with possibly different constants.

Next, by [22, Formula (3.20)], it holds that there exists a positive constant ε0 > 0 such that for all
ε ∈ (0, ε0) and for 0 < a < b < +∞,

c1
εα+1

aαt
1−α
α

(
1 −

(a
b

)α)
⩽

∫b/ε
a/ε

jt(y) dy ⩽ c2
εα+1

aαt
1−α
α

(
1 −

(a
b

)α)
. (3.6)

These estimates will allow us to evaluate the densities involved in (2.3) in the large deviations regime.
First we give an explicit formula for p

(0,∞)
t (x,y).

Lemma 3.2. Let t > 0 and x,y > 0. Then

p
(0,∞)
t (x,y) = pt(y− x) −

∫t
0
qx(s)pt−s(y) ds. (3.7)
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Proof. Let f : R → R+ be a measurable function. On the one hand, we have by definition that

E(0,∞)
x [f(Lt)] =

∫
R
f(y)p

(0,∞)
t (x,y) dy.

On the other hand, if we denote by T0 the first hitting time of 0 by (Lt)t⩾0, and L
(s)
t−s = Ls+(t−s) for

s < t, we then have

E(0,∞)
x [f(Lt)] = Ex

[
f(Lt)1{T0>t}

]
= Ex [f(Lt)] − Ex

[
f(Lt)1{T0<t}

]
=

∫
R
f(y)pt(y− x) dy− Ex

[
1{T0<t}E

[
f(L

(T0)
t−T0

) | FT0

]]
=

∫
R
f(y)pt(y− x) dy−

∫t
0
qx(s)E

[
f(L

(s)
t−s)

]
ds

=

∫
R
f(y)pt(y− x) dy−

∫t
0
qx(s)

∫
R
f(y)pt−s(y) dy ds

=

∫
R
f(y)

{
pt(y− x) −

∫t
0
qx(s)pt−s(y) ds

}
dy,

where we used the Markov property in the third equality. Thus Equation (3.7) follows.

Using the scaling properties of pt(x) and qx(t), we may deduce from Lemma 3.2 a bound on the
error when we approximate p

(0,∞)
t (x,y) by pt(y− x), as follows.

Lemma 3.3. For any fixed t > 0 and η > 0, there exists C = C(η, t) > 0 such that for every x,y > 0,∫t
0
qx(s)pt−s (y) ds ⩽ C exp

(
−cα(1 − η)

(
xα

t

) 1
α−1
)

. (3.8)

Proof. Using the scaling relations for pt(x), we have∫t
0
qx(s)pt−s(y) ds =

∫t/2

0

x

s
ps(−x)pt−s(y) ds+

∫t
t/2

x

s
ps(−x)pt−s(y) ds

⩽ ∥pt/2∥∞
∫t/2

0

x

s
ps(−x) ds+ ∥p1∥∞

∫t
t/2

ds
(t− s)1/α

x

s
ps(−x),

and then, using (3.3), we get∫t
0
qx(s)pt−s(y) ds ⩽ c2∥pt/2∥∞

∫t/2

0

xds
(t/2)αs1+1/α (1 + (x/s1/α)

2−α
2α−2 ) exp

(
−cα(x/s

1/α)α
′
)

+ c2∥p1∥∞ x

(t/2)1+1/α

(
1 +

(
x

(t/2)1/α

) 2−α
2α−2

)
exp

(
−cα

( x

t1/α

)α ′) ∫t
t/2

ds
(t− s)1/α .

The second term is of the desired form, while, by performing a change of variables u = s−α ′/α, it is
straightforward to see that the first term is negligible compared to the second.
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Proof of Proposition 3.1. Since Jσ is a good rate function on Rn, [28, Lemma 5] shows that it suffices
to prove that, for every open subset G ⊂ Rn,

lim
ε↓0

εα
′ logP (ε(et1 , . . . , etn) ∈ G) = − inf

G
Jσ . (3.9)

Since Jσ is infinite on Rn \ Rn
+, it suffices to consider open sets G of Rn

+ (with the induced topology),
and this is what we do from now on. For convenience let us write

Ψε(x1, . . . , xn) :=
n−1∏
i=1

p
(0,∞)
ti+1−ti

(xi
ε

, xi+1
ε

)
× qxn/ε(1 − tn).

Using (2.3), we can write

P
(
ε
(
et1 , . . . , etn

)
∈ G

)
= Cεn

∫
G

dx1 . . . dxn jt1

(x1
ε

)
Ψε(x1, . . . , xn),

where C = C(α) > 0 is a positive constant depending only on α.
We start with the lower bound. For a given δ > 0, there exists (y1, . . . ,yn) ∈ G such that

Jσ(y1, . . . ,yn) ⩽ infG Jσ + δ, and we may assume without loss of generality that y1, . . . ,yn are pair-
wise distinct and all lie in (0,∞). Then, there exists a hypercube Qδ =

∏n
i=1(ai,bi) ⊆ G contain-

ing (y1, . . . ,yn) such that the intervals [ai,bi] ⊂ (0,∞) are pairwise disjoint, and such that for all
(x1, . . . , xn) ∈ Qδ, we have

Jσ(x1, . . . , xn) ⩽ inf
G

Jσ + δ.

Let us now consider the terms p
(0,∞)
ti+1−ti

(xi/ε, xi+1/ε) involved in the definition of Ψε(x1, . . . , xn),
where x1, . . . , xn ∈ Qδ. Fix η ∈ (0, 1). From (3.4) and Lemmas 3.2 and 3.3, for every i such that
yi > yi+1, we may bound

p
(0,∞)
ti+1−ti

(xi
ε

, xi+1
ε

)
⩾ c1 exp

(
−

cα

εα
′

(
(bi − ai+1)

α

ti+1 − ti

) 1
α−1
)

− C(η) exp
(
−

cα

εα
′ (1 − η)

(
aα
i

ti+1 − ti

) 1
α−1
)

,

and for every i such that yi < yi+1,

p
(0,∞)
ti+1−ti

(xi
ε

, xi+1
ε

)
⩾ c1

(
1 +

bi+1 − ai

ε(ti+1 − ti)1/α

)−α−1
− C(η) exp

(
−

cα

εα
′ (1 − η)

(
aα
i

ti+1 − ti

) 1
α−1
)

.

Also, we may bound

qxn/ε(1 − tn) ⩾ c1
an

1 − tn
exp

(
−

cα

εα
′

(
bα
n

1 − tn

) 1
α−1
)

.

Therefore, by choosing η small enough so that (1−η)aα ′
i ⩾ (bi−ai+1)

α ′ for every i such that yi > yi+1,
we see that for every ε small enough, P ((et1 , . . . , etn) ∈ G) is bounded from below by a quantity of the
form

cεnΨ̃ε

∫b1

a1

jt1

(x1
ε

)
dx1
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where, for some constant c depending only on t1, . . . , tn, a1, . . . ,an and b1, . . . ,bn, and η,

Ψ̃ε = c

n∏
i=1

(
exp

(
−

cα

εα
′

(
(bi − ai+1)

α

ti+1 − ti

) 1
α−1
)
1{yi>yi+1} + εα+1

1{yi<yi+1}

)
,

with the convention that yn+1 = an+1 = 0. Using the asymptotics (3.6), we finally obtain

lim inf
ε↓0

εα
′ logP (ε(et1 , . . . , etn) ∈ G) ⩾ −cα

n∑
i=1

(
(bi − ai+1)

α
+

ti+1 − ti

) 1
α−1

.

By letting ai and bi tend to yi, we obtain

lim inf
ε↓0

εα
′ logP (ε(et1 , . . . , etn) ∈ G) ⩾ −Jσ(y1, . . . ,yn) ⩾ − inf

G
J− δ,

and since δ was arbitrary, we may conclude that

lim inf
ε↓0

εα
′ logP (ε(et1 , . . . , etn) ∈ G) ⩾ − inf

G
J.

The corresponding upper bound is obtained by similar arguments. It is clear that the upper bound
holds if infG J = 0, so that we may assume infG J > 0. By Lemma 3.2, we have p

(0,∞)
t (x,y) ⩽ pt(y−x).

Therefore,

Ψε(x1, . . . , xn) ⩽ Cxn

n−1∏
i=1

pti+1−ti

(xi+1 − xi
ε

)
p1−tn

(
−
xn

ε

)
,

where C is a positive and finite constant that depends only on t1, . . . , tn.
Let η ∈ (0, 1/2) be a fixed constant. Now observe that for t > 0, and x ∈ R, we have (*)

pt(x) ⩽ pt(x)1{x<0} + ∥pt∥∞1{x⩾0} ⩽ C exp
(
−cα(1 − η)

(x−)
α ′

t
1

α−1

)
,

where the constant C depends only on η and t, but not on x. A similar bound holds for xpt(x), possibly
with a different constant C. Thus we may write for all (x1, . . . , xn) ∈ G, with our usual convention that
xn+1 = 0 and tn+1 = 1, and for a constant C that depends on η, t1, . . . , tn but not on x1, . . . , xn,

Ψε(x1, . . . , xn) ⩽C exp
(
−
(1 − η)

εα
′ Jσ(x1, . . . , xn)

)
⩽C exp

(
−

1 − 2η
εα

′ inf
G

J

)
exp

(
−

η

εα
′ Jσ(x1, . . . , xn)

)
.

Since jt1 ∈ L∞(R+), we obtain after changing xi/ε into xi in the integral,

P (ε(et1 , . . . , etn) ∈ G) ⩽C exp
(
−

1 − 2η
εα

′ inf
G

J

) ∫
Rn
+

dx1 . . . dxn exp
(
− ηJσ(x1, . . . , xn)

)
and the last integral is finite. This implies that

lim sup
ε↓0

εα
′ logP (ε(et1 , . . . , etn) ∈ G) ⩽ −(1 − 2η) inf

G
J.

Since this is true for all η > 0, we get the upper bound

lim sup
ε↓0

εα
′ logP (ε(et1 , . . . , etn) ∈ G) ⩽ − inf

G
J.
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4. Exponential tightness for the normalized excursion

In this section we prove the following proposition.

Proposition 4.1 (Exponential tightness of e). Under P, the laws of (εet)t∈[0,1] as ε ↓ 0 are exponentially
tight in (D[0, 1], dist) with speed ε−α ′.

In order to prove this result, we want to apply Theorem 2.2. Note that we already have exponential
tightness for (εe(q), ε > 0) for every q ∈ [0, 1], as a consequence of Proposition 3.1 for n = 1. It turns
out, however, that the criterion given in Theorem 2.2 cannot immediately be used to obtain exponential
tightness over the whole interval [0, 1]. We must instead treat the intervals [0, 1 − δ] and [1 − δ, 1]
separately.

Lemma 4.2. For every δ ∈ (0, 1), there exists a constant C = C(α, δ) ∈ (0,∞) such that for every
s, t,u ∈ [0, 1 − δ] with s ⩽ t ⩽ u and λ ⩾ 0,

E
[
exp

(
λM(es, et, eu)

)]
⩽ C exp

(
(u− s)λα

)
.

Proof. We split the expectation into five terms:

E
[
exp

(
λM(es, et, eu)

)]
= E

[
eλ(es−et)1{et⩽es⩽eu}

]
+ E

[
eλ(et−eu)1{es⩽eu⩽et}

]
+ E

[
eλ(et−es)1{eu⩽es⩽et}

]
+ E

[
eλ(eu−et)1{et⩽eu⩽es}

]
+ P ({es ⩽ et ⩽ eu} ∪ {eu ⩽ et ⩽ es})

⩽ 2E
[
eλ(es−et)1{et⩽es}

]
+ 2E

[
eλ(et−eu)1{eu⩽et}

]
+ 1.

We see that the two expectation terms on the last line are of the same form E
[
eλ(ea−eb)1{eb⩽ea}

]
where

a ⩽ b with b− a ⩽ u− s. For such a,b, letting c = αΓ(1 − 1/α), we have

E
[
eλ(ea−eb)1{eb⩽ea}

]
= c

∫∞
0

dx
∫∞

0
dy ja(x)p

(0,∞)
b−a (x,y)qy(1 − b)eλ(x−y)

1{y⩽x}

⩽ c

∫∞
0

dz pb−a(−z)eλz
∫∞
z

ja(x)qx−z(1 − b) dx,

where we have used the fact that p
(0,∞)
b−a (x,y) ⩽ pb−a(y− x) and a change of variables. We claim that

the last integral in x is uniformly bounded over z ⩾ 0, 0 ⩽ a < b ⩽ 1 − δ. If we can prove this claim,
then this will imply the existence of a finite constant such that

E
[
eλ(ea−eb)1{eb⩽ea}

]
⩽ CE

[
e−λLb−a

]
= C exp

(
(b− a)λα

)
⩽ C exp

(
(u− s)λα

)
,

for every a,b ∈ [0, 1 − δ] with a ⩽ b and b− a ⩽ u− s, which gives the result.
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To prove the claim, note that∫∞
z

ja(x)qx−z(1 − b) dx =

∫∞
z

ja(x)
x− z

1 − b
p1−b(z− x) dx

⩽
∥pδ∥∞

δ

∫∞
0

xja(x) dx

=
∥pδ∥∞

δ

∫∞
0

xj1(x) dx,

where in the last display we have used the scaling relation (2.2) that implies that the integral does not
depend on a. Letting J̄1(x) =

∫∞
x ja(y) dy, we may integrate by parts and get an upper bound which is

within a multiplicative constant of [
xJ̄1(x)

]∞
0 +

∫∞
0

J̄1(x) dx.

Now by [22, (3.20)], we have that J̄1(x) ∼ c̄x−α as x → ∞ for some finite constant c̄, and the desired
uniform upper bound follows.

Our next lemma shows that e is exponentially well-behaved near time 1.

Lemma 4.3. For every λ,γ > 0, there exists δ ∈ (0, 1) such that

− lim sup
ε↓0

εα
′ logP

(
sup

1−δ⩽t⩽1
εet ⩾ γ

)
⩾ λ.

Proof. For all δ > 0, we have

P

(
sup

1−δ⩽t⩽1
εet ⩾ γ

)
= P (εe1−δ ⩾ γ) + P

(
sup

1−δ<t⩽1
εet ⩾ γ, εe1−δ < γ

)
.

From Proposition 3.1,

lim sup
ε↓0

εα
′ logP (εe1−δ ⩾ γ) ⩽ −cα

(
γα

δ

) 1
α−1

. (4.1)

Let us prove now a similar bound for the second probability. By (2.4), we may recast it as

P

(
sup

1−δ<t⩽1
εet ⩾ γ, εe1−δ < γ

)
= αΓ

(
1 −

1
α

) ∫γ/ε
0

dx j1−δ(x)qx(δ)Pδ
x

(
sup

0⩽t⩽δ
L ⩾ γ/ε

)
. (4.2)

Now note that Pδ
x(sup0⩽t⩽δ L ⩾ γ/ε) is the limit of Pδ

x(sup0⩽t⩽δ ′ L ⩾ γ/ε) as δ ′ ↑ δ. By the absolute
continuity relation (2.5) and an elementary martingale argument, the latter can be rewritten as

Ex

[
1{T0>S}1{S<δ ′}

qLS
(δ− S)

qx(δ)

]
,

where S denotes the stopping time inf{t ⩾ 0 : Lt > γ/ε}. Finally, for every η ∈ (0, 1), we may use (3.5)
to obtain

qγ/ε(δ− S) ⩽ C(η,γ) exp
(
− (1 − η)cα

(
γα

εαδ

) 1
α−1
)

.
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Since this bound does not depend on δ ′, plugging it into the previous expectation gives

P

(
sup

1−δ<t⩽1
εet ⩾ γ, εe1−δ < γ

)
⩽ αΓ

(
1 −

1
α

) ∫γ/ε
0

dx j1−δ(x)C(η,γ) exp
(
−(1−η)cα

(
γα

εαδ

) 1
α−1
)

.

Since j1−δ is integrable, the desired bound follows.

Proof of Proposition 4.1. Fix λ > 0. By Lemma 4.3, for every n ⩾ 1, there exists a δn ∈ (0, 1) such
that for every ε > 0 small enough

P

(
sup

1−2δn<t⩽1
εe ⩾

1
2n

)
⩽

exp
(
− λε−α ′)
2n .

For this choice of δn, by Lemma 4.2 and Theorem 2.2, for every n ⩾ 0 there exists a compact set K
(n)
λ

of D[0, 1] such that for every ε > 0 small enough,

P
(
(εe

(n)
t , 0 ⩽ t ⩽ 1 − δn) ̸∈ K

(n)
λ

)
⩽

exp
(
− λε−α ′)
2n ,

where e(n) is the process (et∧(1−δn), 0 ⩽ t ⩽ 1). We conclude by noting that the set Kλ of functions
f ∈ D[0, 1] such that for every n ⩾ 0,

(
f(t∧ (1− δn)), 0 ⩽ t ⩽ 1

)
∈ K

(n)
λ and sup1−2δn⩽t⩽1 |f(t)| ⩽ 2−n

is relatively compact, and, by the above, satisfies P (εe /∈ Kλ) ⩽ 2 exp(−λε−α ′
).

5. Proof of Theorem 1.2

In this section, we prove Theorem 1.2. We will do this by combining the exponential tightness with a
weaker form of the LDP, as we now explain. The weak topology W on D[0, 1] is the topology generated
by the basis of neighborhoods of the form

N(f, t1, . . . , tk, ε1, . . . , εk) =
{
g ∈ D[0, 1] : |g(ti) − f(ti)| < εi, 1 ⩽ i ⩽ k

}
,

where f ∈ D[0, 1], ε1, . . . , εk > 0, and t1, . . . , tk are elements of [0, 1] that are continuity points of f.
Here, by convention, 0 is a continuity point of f if and only if f(0) = 0, which is consistent with our
convention that f(0−) = 0. Clearly this defines a Hausdorff topology, since two different elements of
D[0, 1] necessarily differ at some common continuity point. It is easy to see that a sequence (fn,n ⩾ 0)
that converges to a limit f in (D[0, 1], dist) also converges pointwise at every continuity point of f, and
therefore converges to f in the topological space (D[0, 1],W). Consequently, the weak topology is coarser
than the topology of (D[0, 1], dist). Therefore, by [8, Corollary 4.2.6], and by the exponential tightness
established in Proposition 4.1, Theorem 1.2 will follow from the following statement.

Proposition 5.1. The laws of (εet)t∈[0,1] satisfy an LDP in (D[0, 1],W) as ε ↓ 0 with speed ε−α ′ and
good rate function Ie.

The remainder of this section is thus devoted to the proof of this proposition, which follows the
approach of Lynch and Sethuraman [19] closely.
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5.1. Facts about the rate function. Denote by S the set of finite subdivisions of [0, 1]. For σ =

(t1, . . . , tn), where 0 < t1 < · · · < tn < 1, recall that for x1, . . . , xn ∈ R+, we let

Jσ(x1, . . . , xn) = cα

n∑
i=1

(ti+1 − ti)

(
(xi − xi+1)+
ti+1 − ti

)α ′

where, by convention, xn+1 = 0 and tn+1 = 1. We let Jσ(x1, . . . , xn) = ∞ if one of the xi’s is negative.
To ease notation, for f : [0, 1] → R, we let Iσe (f) = Jσ(f(t1), . . . , f(tn)). By the Dawson-Gärtner theorem
[8, Theorem 4.6.1], it follows from Propositions 3.1 and 4.1 that the laws of (εet)t∈[0,1] satisfy a LDP
in R[0,1] (with the product topology) as ε ↓ 0, with speed ε−α ′ and good rate function

Ĩe(f) = sup
σ∈S

Jσ(f(t1), . . . , f(tn)). (5.1)

We cannot immediately make use of this, since the domain of this rate function is not a space of càdlàg
functions. However, let us prove some properties of the rate function Ĩe and, in particular, that its
restriction to D[0, 1] coincides with the rate function Ie given in Theorem 1.2. To this end, we prove
the following proposition.

Proposition 5.2. A function f ∈ D[0, 1] with f ⩾ 0 and f(0) = 1 is in Hex if and only if

Me(f) := sup
σ∈S

Iσe (f) < ∞.

In this case, we have
Me(f) = Ie(f)

and, consequently, the functions Ie and Ĩe coincide on D[0, 1].

Proof. This statement should be compared with [19, Theorem 3.2], where the proof uses a martingale
argument. We provide another elementary proof here, based on the Lebesgue differentiation theorem
instead. For convenience, let Λ(x) = cα(x−)

α ′ for all x ∈ R.
Let f ∈ Hex, and write f = f↑ − f↓ for its Jordan decomposition with absolutely continuous f↓,

such that f ′↓ ∈ Lα ′
[0, 1]. Let σ = (t1, . . . , tn) be a subdivision of [0, 1]. Here and below, we adopt the

notational convention that t0 = 0 and tn+1 = 1. Then

cα

n∑
i=0

((
f(ti) − f(ti+1)

)α
+

ti+1 − ti

) 1
α−1

=

n∑
i=0

(ti+1 − ti)Λ

(
f(ti+1) − f(ti)

ti+1 − ti

)

⩽
n∑

i=0
(ti+1 − ti)Λ

(
f↓(ti) − f↓(ti+1)

ti+1 − ti

)

= cα

n∑
i=0

(ti+1 − ti)

(
1

ti+1 − ti

∫ti+1

ti

f ′↓(s) ds
)α ′

⩽ cα

n∑
i=0

∫ti+1

ti

f ′↓(s)
α ′ ds
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= cα

∫1

0
f ′↓(s)

α ′ ds,

where we used the fact that f↑ and Λ are non-increasing in the first inequality, and applied Jensen’s
inequality in the second inequality. Since this is true for any subdivision σ ∈ S, we get the first bound
Me(f) ⩽

∫1
0 f

′
↓(s)

α ′ ds < ∞.
Conversely, assume that f ∈ Hex is not of bounded variation and fix A > 0. Then there exists a

subdivision σ = (t1, . . . , tn) such that

A <

n∑
i=0

|f(ti+1) − f(ti)| =

n∑
i=0

(
f(ti) − f(ti+1)

)
+
+

n∑
i=1

(
f(ti) − f(ti+1)

)
−

.

Furthermore

f(0) =
n∑

i=0

(
f(ti) − f(ti+1)

)
=

n∑
i=0

(
f(ti) − f(ti+1)

)
+
−

n∑
i=0

(
f(ti) − f(ti+1)

)
−

.

This implies that
n∑

i=0

(
f(ti) − f(ti+1)

)
+
⩾

A+ f(0)
2 .

Therefore,

A+ f(0)
2 ⩽

n∑
i=0

(
f(ti) − f(ti+1)

)
+
=

n∑
i=0

(ti+1 − ti)
1/α
(
f(ti) − f(ti+1)

)
+

(ti+1 − ti)1/α

⩽

(
n∑

i=0
(ti+1 − ti)

)1/α
 n∑

i=0

(
f(ti) − f(ti+1)

)α ′

+

(ti+1 − ti)
1

α−1

1/α ′

,

by Hölder’s inequality, and this entails that Me(f) = ∞. By the contrapositive, this implies that if
Me(f) < ∞, then f has bounded variation. Therefore, assuming that Me(f) < ∞, we may write
f = f↑ − f↓ for the Jordan decomposition of f, with f↑, f↓ nondecreasing and such that f↑(0) = 0 and
df↑ ⊥ df↓. We proceed by contradiction. Suppose that f↓ is not absolutely continuous. Then there
exists ε > 0 such that for all k ⩾ 1, there exists an open set of the form Uk =

⊔n(k)
i=1 (s

(k)
i , t(k)i ) with

n(k)∑
i=1

(t
(k)
i − s

(k)
i ) <

1
k

and
n(k)∑
i=1

(
(f↓(t

(k)
i ) − f↓(s

(k)
i )

)
> 2ε.

Moreover since df↓ ⊥ df↑, there exists a measurable set B such that df↓(Bc) = df↑(B) = 0, and by
regularity of the measures Leb, df↓ and df↑ applied to the set B∩Uk, we may find open sets V

(1)
k ,V(2)

k

containing B ∩Uk such that

Leb(V(1)
k ) <

1
k

and df↑(V
(2)
k ) < ε,
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and by setting Vk = V
(1)
k ∩V

(2)
k , we see that these two inequalities remain true with Vk in place of V(1)

k

and V
(2)
k respectively, while

df↓(Vk) ⩾ df↓(B ∩Uk) = df↓(Uk) > 2ε.

By writing the open set Vk as the limit of finite unions of open intervals, we deduce that we may choose
the family of intervals {(s

(k)
i , t(k)i ), 1 ⩽ i ⩽ n(k)} in such a way that

n(k)∑
i=1

(
f↑(t

(k)
i ) − f↑(s

(k)
i )

)
< ε.

Then on the one hand we have
n(k)∑
i=1

(
f(s

(k)
i ) − f(t

(k)
i )

)
+

=

n(k)∑
i=1

(
f↓(t

(k)
i ) − f↓(s

(k)
i ) − (f↑(t

(k)
i ) − f↑(s

(k)
i ))

)
+

⩾
n(k)∑
i=1

(
f↓(t

(k)
i ) − f↓(s

(k)
i )

)
−

n(k)∑
i=1

(
f↑(t

(k)
i ) − f↑(s

(k)
i )

)
⩾ ε. (5.2)

On the other hand, by Hölder’s inequality,

n(k)∑
i=1

(
f(s

(k)
i ) − f(t

(k)
i )

)
+

⩽

n(k)∑
i=1

(t
(k)
i − s

(k)
i )

 1
α
n(k)∑

i=1

(
f(s

(k)
i ) − f(t

(k)
i )

)α ′

+

(t
(k)
i − s

(k)
i )

1
α−1

1/α ′

⩽
1

cαk1/αMe(f). (5.3)

But (5.2) and (5.3) combined contradict the assumption that Me(f) < +∞. Thus f↓ is absolutely
continuous.

Let us now prove that
∫1

0 f
′
↓(s)

α ′ ds ⩽ Me(f), which will prove that f ∈ Hex, and that if f ∈ Hex,
then Me(f) =

∫1
0 f

′
↓(s)

α ′ ds. For n ⩾ 1, define

f(n)(t) = n

(
f

(
⌊(n+ 1)t⌋

n

)
− f

(
⌊nt⌋
n

))
for t ∈ [0, 1), f(n)(1) = n

(
f(1) − f

(
1 −

1
n

))
.

By the Lebesgue decomposition theorem, we may write f↑ = f↑ac + f↑sing, where f↑ac is an absolutely
continuous function and f↑sing is such that df↑sing is singular with respect to the Lebesgue measure. By
the Lebesgue differentiation theorem, for Lebesgue-almost every t ∈ [0, 1] we have

f(n)(t) −→
n→+∞ f ′↑ac(t) − f ′↓(t).

Considering the subdivision σn =
(
0, 1

n , 2
n , . . . , 1

)
, we then have

Me(f) ⩾ lim inf
n→+∞ Jσn(f)

= lim inf
n→+∞

n∑
i=1

1
n
Λ

(
f(n)

(
i

n

))
= lim inf

n→+∞
∫1

0
Λ
(
f(n)(s)

)
ds.
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By Fatou’s lemma, we thus get

Me(f) ⩾
∫1

0
Λ
(
f ′↑ac(s) − f ′↓(s)

)
ds.

Recall that df↑ ⊥ df↓, so that we also have df↑ac ⊥ df↓. But by the Lebesgue differentiation theorem,
we have df↑ac(s) = f ′↑ac(s) ds and df↓(s) = f ′↓(s) ds, so that the sets {f ′↑ac > 0} and {f ′↓ > 0} intersect in
a set of zero Lebesgue measure. Since f ′↑ac ⩾ 0 Lebesgue-a.e., we have Λ(f ′↑ac) = 0, which implies that∫1

0
Λ
(
f ′↑ac(s) − f ′↓(s)

)
ds =

∫1

0
Λ
(
−f ′↓(s)

)
ds = cα

∫1

0
f ′↓(s)

α ′ ds,

which concludes the proof.

In passing, we note that the reasoning at the end of this proof explains why we may express the rate
function Ie in the alternative form (1.5).

Lemma 5.3. The function Ie is a good rate function on the spaces (D[0, 1],W) and (D[0, 1], dist).

Proof. Since the weak topology is not first-countable, we must initially use nets to characterise the
lower-semicontinuity of Ie. We first need to show that if (fλ) is a net that converges to f in the
weak topology, with fλ ⩾ 0 and fλ(1) = f(1) = 0 for every λ, then lim infλ Ie(fλ) ⩾ Ie(f). Let
σ = (t1, . . . , tk) be a subdivision of continuity points of f, so that fλ(ti) converges to f(ti) for 1 ⩽ i ⩽ k,
and Iσe (fλ) = Jσ(fλ(t1), . . . , fλ(tk)) converges to Iσe (f) = Jσ(f(t1), . . . , f(tk)). Since Ie(fλ) ⩾ Iσe (fλ) by
Proposition 5.2, this implies that lim infλ Ie(fλ) ⩾ Iσe (f). Applying Proposition 5.2 once again allows
us to conclude that Ie is a rate function on (D[0, 1],W), and therefore also on (D[0, 1], dist).

Let us now prove that Ie is good on (D[0, 1], dist), which will imply the result. Fix c ∈ (0,∞), and
then pick f ∈ D[0, 1] with Ie(f) ⩽ c so that, in particular, f(1) = 0 and f has bounded variation. Let
s ⩽ t be in [0, 1]. Then, by Hölder’s inequality,

f(s) − f(t) ⩽ f↓(t) − f↓(s) =

∫t
s

f ′↓(u) du ⩽ (c/cα)(t− s)1/α.

Since f(1) = 0, this implies that f is uniformly bounded and, moreover, that for every s ⩽ t ⩽ u we
have

M
(
f(s), f(t), f(u)

)
⩽ 2
(
(f(s) − f(t))1{f(t)⩽f(s)} + (f(t) − f(u))1{f(u)⩽f(t)}

)
⩽ 4(c/cα)(u− s)1/α.

The conclusion now follows from Theorem 2.1.

Next, for A ⊂ D[0, 1], and for σ ∈ S, we let

Iσe (A) = inf
f∈A

Iσe (f) and Ie(A) = inf
f∈A

Ie(f) .

Lemma 5.4. For every closed set F of (D[0, 1],W), we have

Ie(F) = sup
σ∈S

Iσe (F) .
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Proof. The proof follows that of [19, Theorem 3.5] closely. Since we know from Proposition 5.2 that
Iσe (A) ⩽ Ie(A) for every σ ∈ S and every set A, let us assume, for a contradiction, that supσ∈S Iσe (F) <

c < Ie(F) for some constant c ∈ (0,∞). For every subdivision σ = (t1, . . . , tk) ∈ S, we may find some
element fσ ∈ D[0, 1] such that Iσe (fσ) < c. Let f̂σ be the piecewise affine interpolation of the values of
fσ at times 0 < t1 < . . . < tk < 1, with f̂σ(0) = f̂σ(1) = 0 and of course f̂σ(ti) = fσ(ti), 1 ⩽ i ⩽ k.
Then, plainly,

Ie(f̂σ) = Iσe (f̂σ) = Iσe (fσ) < c

and, by Lemma 5.3, we obtain that {f̂σ,σ ∈ S} forms a relatively compact family in (D[0, 1],W) (and
even in (D[0, 1], dist)). Let f0 be a cluster point of this family, and σ ′ = (t ′1, . . . , t ′l) ∈ S be a subdivision
consisting of continuity points of f0. We fix ε > 0 and consider the weak neighborhood of f0 defined by

Nσ ′,ε =
{
f ∈ D[0, 1] : max

1⩽i⩽l
|f(t ′i) − f0(t

′
i)| < ε

}
∈ W .

For any partition σ ′′ finer than σ ′, there exits an even finer σ such that f̂σ ∈ Nσ ′,ε, since f0 is a cluster
point. But since f̂σ agrees with fσ on σ, it follows that fσ ∈ Nσ ′,ε and, therefore, that f0 is also a
cluster point of {fσ : σ ∈ S} ⊂ F. Since F is closed, we conclude that f0 ∈ F, and that Ie(f0) ⩽ c by
lower semicontinuity of Ie. This contradicts the assumption that Ie(F) > c, and the result follows.

We now have all the tools needed to prove Proposition 5.1. The proof is split into two lemmas which
follow [19, Theorems 4.1 and 4.2] closely.

Lemma 5.5. If F is a closed subset of (D[0, 1],W), then

lim sup
ε↓0

εα
′ logP (εe ∈ F) ⩽ −Ie(F) .

Proof. For any σ = (t1, . . . , tk) ∈ S, it holds that

P (εe ∈ F) ⩽ P (Iσe (εe) ⩾ Iσe (F)) .

From the explicit form of Iσe (εe), and the fact that ε(et1 , . . . , etk) satisfy an LDP with continuous rate
function Jσ by Proposition 3.1, we obtain by the contraction principle that

lim sup
ε↓0

εα
′ logP (εe ∈ F) ⩽ −Iσe (F) .

We conclude using Lemma 5.4.

Lemma 5.6. If G is an open subset of (D[0, 1],W), then

lim inf
ε↓0

εα
′ logP (εe ∈ G) ⩾ −Ie(G) .

Proof. Without loss of generality, we may assume that I(G) < ∞. We then fix ε > 0 and select f ∈ G

such that Ie(f) < Ie(G) + ε. Then, we may find δ > 0 and a subdivision σ = (t1, . . . , tk) consisting of
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continuity points of f such that {g ∈ D[0, 1] : max1⩽i⩽k |g(ti)− f(ti)| < δ} is contained in G. We deduce
that

P (εe ∈ G) ⩾ P
(
ε(et1 , . . . , etk) ∈ G ′)

where G ′ is the open set {(x1, . . . , xk) ∈ Rk : max1⩽i⩽k |xi − f(ti)| < δ}. By Proposition 3.1, we obtain
that

lim inf
ε↓0

εα
′ logP (εe ∈ G) ⩾ − inf

(x1,...,xk)∈G ′
Jσ(x1, . . . , xk) .

Letting δ → 0, we may conclude that

lim inf
ε↓0

εα
′ logP (εe ∈ G) ⩾ −Iσe (f) ⩾ −Ie(f) ⩾ −Ie(G) − ε ,

as desired.

6. Consequences of the LDP for stable excursions

In this section, we prove the remaining statements: Theorem 1.4, Corollaries 1.5 and 1.6, and Proposition
1.3.

6.1. Proof of Theorem 1.4. We follow the approach of Fill and Janson [10] closely. First, a direct
consequence of the fact that Ie is a good rate function is the following.

Lemma 6.1. The set Kex defined at (1.6) is a compact subset of D[0, 1].

The argument for the proof of Theorem 1.4 is the same as [10, p.415]. We apply the contraction
principle ([14, Theorem 27.11], [8, Theorem 4.2.1]) to the continuous functional Φ : Dex[0, 1] → R+.
This entails that εX = Φ(εe) satisfies an LDP in [0,∞) with good rate function whose value at x > 0
is given by

inf
f∈Hex :Φ(f)=x

cα∥f ′↓∥α
′

α ′ = inf
f∈Hex :Φ(f) ̸=0

cα

∥∥∥∥∥ x f ′↓
Φ(f)

∥∥∥∥∥
α ′

α ′

= inf
f∈Hex :Φ(f) ̸=0

cα

(
x

Φ(f)

)α ′

∥f ′↓∥α
′

α ′

= inf
f∈Hex : Φ(f) ̸=0

cα

(
x

Φ(f/∥f↓∥α ′)

)α ′

= inf
f∈Hex : ∥f ′

↓∥α ′=1,Φ(f) ̸=0
cα

(
x

Φ(f)

)α ′

= cα

(
x

γΦ

)α ′

.

Taking A = (1,∞) and ε = x−1 in the definition of an LDP proves (1.7). Finally, (1.8) and (1.9) follow
from (1.7) by [13, Theorem 4.5]. This concludes the proof of Theorem 1.4.
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6.2. Applications. Corollaries 1.5 and 1.6 are obtained by applying Theorem 1.4 to the area and
supremum functionals, which are both positive-homogeneous and continuous for the M1 topology.

6.2.1. Area under e. Let us compute the constant γΦ for the area under the normalized excursion Aex,
corresponding to the functional Φ(f) =

∫1
0 f(s) ds. So let

γ∫ = max
{∫1

0
f(u)du : f ∈ Kex

}
.

Lemma 6.2 (Constant γΦ for Aex). We have γ∫ = (α+ 1)−1/α.

Proof. We first find an upper bound. Let f ∈ Kex. Note that, integrating by parts, we have∫1

0
f(s) ds =

∫1

0
f↑(s) ds−

∫1

0
f↓(s) ds

=

∫1

0
(f↑(s) − f↓(1)) ds+

∫1

0
sf ′↓(s) ds

⩽

( ∫1

0
|f ′↓(s)|

α ′ ds
)1/α ′( ∫1

0
sα ds

)1/α
⩽ (α+ 1)−1/α ,

where in the third line we have used the fact that f↑(1)−f↓(1) = f(1) = 0, which entails that f↑ ⩽ f↓(1),
and then Hölder’s inequality. We obtain γ∫ ⩽ (α+ 1)−1/α.

Now note that f(s) =
(α+1)1/α ′

α (1 − sα) lies in Kex and is such that

∫1

0
f(s) ds = (α+ 1)−1/α,

so that γ∫ = (α+ 1)−1/α is indeed the optimum.

6.2.2. Supremum of e. We now compute the constant γΦ corresponding to the functional sup0⩽t⩽1 f(t)

which is continuous for the M1 Skorokhod topology.

Lemma 6.3 (Constant γΦ for sup e). We have γsup = 1.

Proof. First, notice that if f ∈ Kex, then using the fact f↑ ⩽ f↓(1) we get that for all t ⩾ 0,

f(t) ⩽ f↓(1) − f↓(t) =

∫1

t

|f ′↓(s)|ds ⩽
∫1

0
|f ′↓(s)|ds ⩽

(∫1

0
|f ′↓(s)|

α ′ ds
)1/α ′

= 1,

where we used Hölder’s inequality. We thus obtain the upper bound γsup ⩽ 1.
Now note that the function f(t) = 1 − t lies in Kex and satisfies sup f = 1, so that γsup = 1.
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6.3. Negative results for the Skorokhod J1 topology. Here we give a sketch of proof for Proposi-
tion 1.3. The idea is that it is costless for the process εe to make macroscopic jumps within small time
intervals, which prevents it from being concentrated in J1-compact sets. Fix δ > 0. We note that

P (εeδ ∈ [1, 2], εe2δ ∈ [3, 4]) = αΓ

(
1 −

1
α

) ∫2/ε

1/ε
dx1 jδ(x1)

∫4/ε

3/ε
dx2 p

(0,∞)
δ (x1, x2)qx2(1 − 2δ)

⩾ C(δ)ε2α+2 exp(−cα(3/ε(1 − 2δ))α ′
) , (6.1)

where we have used Lemmas 3.2, 3.3 and (3.2) to bound p
(0,∞)
δ (x1, x2) uniformly from below by

some constant times εα+1, then (3.3) to bound qx2(1 − 2δ) uniformly from below by some con-
stant times exp(−cα(3/ε(1 − 2δ))α ′

), and finally (3.6) to bound the remaining integral. Setting
ωJ1(f,η) = sups<t<u,u−s⩽η |f(u) − f(t)| ∧ |f(t) − f(s)|, we obtain

lim
δ↓0

lim inf
ε↓0

εα
′ logP (ωJ1(εe, 2δ) > 1/2) ⩾ −3α ′

cα .

Let K be a compact subset of D[0, 1] in the J1 topology, so that supf∈KωJ1(f, δ) converges to 0 as δ ↓ 0.
In particular, there exists δ0 such that ωJ1(f, 2δ0) ⩽ 1/2 for every f ∈ K. Therefore,

lim inf
ε↓0

εα
′ logP (εe /∈ K) ⩾ lim inf

ε↓0
εα

′ logP (ωJ1(εe, 2δ0) > 1/2) ⩾ −3α ′
cα ,

and so (εe)0<ε<1 cannot be exponentially tight.

7. LDP for the α-stable Lévy bridge

In this section, we adapt the proof of the LDP for the normalized excursion in order to get an LDP for
the Lévy bridge. Roughly speaking the process b(a), called the (0, 0) → (1,a) bridge, is obtained by
conditioning L to be equal to a at time 1. This is obviously a degenerate conditioning; however, it can
be obtained by performing a space-time h-transform with respect to the function p1−t(a−Lt)

p1(a)
(see, for

instance, [18]). This means that the law of b(a) may be defined by

Pbr(A) := E
[
p1−t(a− Lt)

p1(a)
1A

]
, ∀A ∈ Ft , t ∈ [0, 1). (7.1)

See [7] or [2, Chapter VIII] for a rigorous construction.

7.1. Large deviations for the finite-dimensional marginal distributions. This section is devoted to
proving that the finite-dimensional marginals of b(a) satisfy an LDP on R.

Proposition 7.1 (LDP for the marginals of the stable bridge). Fix a ∈ R, and let (aε)ε>0 be such that
εaε → a as ε → 0. Let σ = (t1, . . . , tn) be a finite subdivision of [0, 1]. Under P, the laws of
ε(b

(aε)
t1

, . . . ,b(aε)
tn

) satisfy an LDP in Rn with speed ε−α ′ and good rate function

Jσb,a(x1, . . . , xn) = cα

((
(−x1)

α
+

t1

) 1
α−1

+

n−1∑
i=1

(
(xi − xi+1)

α
+

ti+1 − ti

) 1
α−1

+

(
(xn − a)α+

1 − tn

) 1
α−1

− (a−)
α ′

)
.
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The proof of this proposition is similar to that of Proposition 3.1, but is technically simpler and we
only explain where the argument differs. It is not difficult to check that Jb,a is a good rate function,
so [28, Lemma 5] applies. We use this in the same way as in the proof of Proposition 3.1, using the
expression (2.6) for the marginal laws of the bridge, and the bounds (3.3) for the stable transition
densities. The term −(a−)

α ′ in the definition of Jb,a arises from the contribution of the density p1(aε)

in the denominator of (2.6): by (3.3) and (3.4), we have

lim
ε↓0

εα
′ log p1(aε) = −cα(a−)

α ′ .

7.2. Exponential tightness for the stable bridge.

Proposition 7.2 (Exponential tightness for the stable bridge). Under P, the laws of (εb(aε)
t )t∈[0,1] as ε ↓ 0

are exponentially tight with speed ε−α ′.

Proposition 7.2 is a direct consequence of the tightness criterion in (D[0, 1], dist) from Theorem 2.2
and the following lemma.

Lemma 7.3. There exists a constant C = C(α) > 0 such that for every s, t,u ∈ [0, 1] with s ⩽ t ⩽ u

and λ ⩾ 0,
E
[
exp

(
λM(b

(aε)
s ,b(aε)

t ,b(aε)
u )

)]
⩽ C exp

(
(u− s)λα

)
. (7.2)

Proof. Splitting the expectation into five terms as at the beginning of the proof of Proposition 4.1, we
get the following bound

E
[
exp

(
λM(b

(aε)
s ,b(aε)

t ,b(aε)
u )

)]
⩽ 2E

[
eλ(b

(aε)
s −b

(aε)
t )

1
{b

(aε)
t ⩽b(aε)

s }

]
+ 2E

[
eλ(b

(aε)
t −b

(aε)
u )

1
{b

(aε)
u ⩽b(aε)

t }

]
+ 1.

We see that the last two terms are of the same form E
[
eλ(b

(aε)
σ −b

(aε)
ρ )

1
{b

(aε)
ρ ⩽b(aε)

σ }

]
where ρ ⩽ σ with

σ− ρ ⩽ u− s. For such ρ,σ, we have

E
[
eλ(b

(aε)
σ −b

(aε)
ρ )

1
{b

(aε)
ρ ⩽b(aε)

σ }

]
=

∫+∞
−∞ dx

∫+∞
−∞ dypρ(x)pσ−ρ(y− x)

p1−σ(aε − y)

p1(aε)
eλ(x−y)

1{y⩽x}

=
1

p1(aε)

∫∞
0

dz pσ−ρ(aε − z)eλz
∫+∞
−∞ dxpρ(x)p1−σ(z− x),

where we have used the change of variables z = x− y+ aε. It remains to show that the last integral in
x is uniformly bounded over z ⩾ 0, 0 ⩽ ρ < σ ⩽ 1. Indeed this gives the existence of a constant C < ∞
such that

E
[
eλ(b

(aε)
σ −b

(aε)
ρ )

1
{b

(aε)
ρ ⩽b(aε)

σ }

]
⩽ CE

[
e−λb

(aε)
σ−ρ

]
= C exp

(
(σ− ρ)λα

)
,

which gives the result.
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However, by the cyclic invariance of the increments of b(a), which is a direct consequence of (2.6),
we see that it suffices to check this boundedness assumption for 0 ⩽ ρ < σ ⩽ 1/2 say. For such σ, ρ we
have ∫+∞

−∞ dxpρ(x)p1−σ(z− x) = (1 − σ)−
1
α

∫+∞
−∞ dxpρ(x)p1

(
z− x

(1 − σ)
1
α

)

⩽ 2
1
α ∥p1∥∞

∫+∞
−∞ dxpρ(x)

= 2
1
α ∥p1∥∞

∫+∞
−∞ dx ρ−

1
αp1

(
x

ρ
1
α

)
= 2

1
α ∥p1∥∞

∫+∞
−∞ dxp1(x),

where the last integral does not depend on ρ.

7.3. Proof of Theorem 1.7. We may finally prove Theorem 1.7 using Proposition 7.1 and Proposi-
tion 7.2. The scheme of proof is exactly the same as that in Section 5, and combines the exponential
tightness in (D[0, 1], dist) with an LDP in the weak topology (D[0, 1],W), similar to Proposition 5.1.
Therefore, we will give a brief account, only pointing out the places where the formulas differ.

We can easily adapt the proof of Proposition 5.2 to get the following proposition. For a subdivision
σ = (t1, . . . , tn) and f ∈ D[0, 1], define Iσ

b,a(f) = Jσ
b,a(f(t1), . . . , f(tn)).

Proposition 7.4. A function f ∈ D[0, 1] is in H
(a)
br if and only if

Mb,a(f) := sup
σ∈S

Iσb,a(f) < ∞.

In this case, we have
Mb,a(f) = Ib,a(f).

Then, analogs of Lemmas 5.3, 5.4, 5.6 and 5.6 hold true with Ib,a in place of Ie, with exactly the
same proofs. This ends the proof of Theorem 1.7.

Theorem 1.8 can then be deduced from Theorem 1.7 along the same lines as in Section 6.2.
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