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Abstract. — We classify completely the infinite, planar triangulations satisfying a weak
spatial Markov property, without assuming one-endedness nor finiteness of vertex degrees. In
particular, the Uniform Infinite Planar Triangulation (UIPT) is the only such triangulation with
average degree 6. As a consequence, we prove that the convergence of uniform triangulations of
the sphere to the UIPT is robust, in the sense that it is preserved under various perturbations
of the uniform measure. As another application, we obtain large deviation estimates for the
number of occurencies of a pattern in uniform triangulations.
Résumé. — Nous classifions complètement les triangulations planaires infinies vérifiant

une propriété de Markov faible, sans supposer que la triangulation n’a qu’un seul bout, ni que
les degrés des sommets sont finis. En particulier, l’UIPT (Triangulation Infinie Uniforme du
Plan) est la seule de ces triangulations dont le degré moyen vaut 6. Nous en déduisons que
la convergence des triangulations uniformes de la sphère vers l’UIPT est robuste, au sens où
elle est préservée par diverses perturbations de la mesure uniforme. Enfin, nous obtenons des
estimées de grandes déviations sur le nombre d’occurences d’une petite sous-triangulation dans
les triangulations uniformes.
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2 T. BUDZINSKI

1. Introduction

Local limits of random triangulations. Local limits of random planar maps
have been the object of extensive study in the last fifteen years. The starting point
of this theory was the convergence of large uniform triangulations to the Uniform
Infinite Planar Triangulation (UIPT) proved by Angel and Schramm [AS03]. Since
then, similar results have been proved for many other classes of maps such as
quadrangulations [CD06], or maps with Boltzmann weights on the face degrees
([BS14] in the bipartite case and [Ste18] in the general case). See also [Cur19] for a
complete survey. All these results rely heavily on a very good understanding of the
combinatorics of finite maps. More precisely, the proofs use either exact enumeration
results going back to Tutte such as [Tut62], or bijections with simpler objects such
as labelled trees [CV81].

Spatial Markov property. The UIPT exhibits fractal-like properties (e.g. vol-
ume growth in r4) whose study was started by Angel in [Ang03], relying on an
exploration procedure called peeling. The key feature of the UIPT allowing to per-
form such explorations is its spatial Markov property: the probability to observe a
finite triangulation t as a neighbourhood of the root (we give precise definitions in
Section 2.1 below) in the UIPT only depends on the perimeter and volume of t, and
not on its geometry. This guarantees that during an exploration of the UIPT, the
perimeter and volume of the explored region follow a Markov chain, which reduces
the study of the UIPT to the analysis of an explicit Markov chain with values in
N2. Moreover, the spatial Markov property is easy to observe on many natural finite
models (such as uniform triangulations of the sphere with a fixed size) and passes
well to local limits. We can therefore expect the limits of many natural finite map
models to exhibit the spatial Markov property.

Planar Stochastic Hyperbolic Triangulations. Partly motivated by this re-
mark, Curien introduced(1) in [Cur16] a family of random infinite triangulations of the
plane called Planar Stochastic Hyperbolic Triangulations (PSHT) (see also [AR15]
for similar objects in a half-plane setting). The PSHT form a one-parameter(2) family
(Tλ)06λ6λc , where λc = 1

12
√

3 and Tλc is just the UIPT. They are characterized by
the following equation: if t is a triangulation with one hole of perimeter p and inner
volume v, then

P (t ⊂ Tλ) = Cp(λ)× λv,
where t ⊂ T means that t is a neighbourhood of the root in T , and the constants
Cp(λ) are explicit. In particular, the Tλ satisfy the spatial Markov property. For
λ < λc, the PSHT Tλ exhibit a hyperbolic behaviour contrasting sharply with
the UIPT (e.g. exponential volume growth, positive speed of the simple random

(1)The PSHT defined in [Cur16] are the type-II PSHT, i.e. where multiple edges are allowed but
self-loops are forbidden. The adaptation to the type-I case (with both multiple edges and self-loops)
was done in [Bud18].
(2) In [Cur16, Bud18], the construction is only given for λ ∈ (0, λc]. The extension to the case λ = 0,
where vertices have infinite degrees, will be done carefully in the present work, see Section 2.
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Multi-ended Markovian triangulations 3

walk) [Cur16]. The PSHT were proved in [BL21] to be the local limits of uniform
triangulations with genus proportional to their sizes.

Characterizing Markovian triangulations. An important step of the argu-
ment of [BL21] was the following characterization.
Proposition 1.1. — [BL21, Theorem 2] Let T be a random, infinite, one-ended

planar triangulation with finite vertex degrees. If T satisfies the spatial Markov
property, then T is a mixture of PSHT, i.e. T is of the form TΛ, where Λ is a random
variable with values in (0, λc].
Indeed, once tightness and planarity and one-endedness of the limits are established,

this result ensures that any subsequential limit is a mixture of PSHT. However,
although [BL21] does not rely on precise combinatorial asymptotics on the finite
models, checking the assumptions of one-endedness and planarity on subsequential
limits still required a strong combinatorial input, namely the Goulden–Jackson
recursion of [GJ08]. The goal of the present work is to remove the assumptions of
one-endedness and finite vertex degrees in Proposition 1.1, and therefore to make
the strategy of [BL21] less reliant on the combinatorial understanding of the models.
However, the results presented here do not allow to shorten significantly the proof
of [BL21] (this is discussed in Section 6).

Triangulations with infinite vertex degrees. In this work, an infinite triangu-
lation will be a connected, planar gluing of a countable collection of triangles along
their vertices and edges (see Section 2.1 for a more formal definition). We allow loops
and multiple edges and, importantly, we do not require the vertex degrees to be
finite, which is quite unusual in the literature. The point of this extended definition
will be to allow us to "skip" the tightness step in the proofs of local convergence
results. In particular, given two corners c1 and c2 incident to the same vertex v,
it may be necessary to cross infinitely many edges to go from c1 to c2 in a small
neighbourhood of v (see the right part of Figure 1.1).
In the context of multi-ended triangulations, we need to extend the definition of the

spatial Markov property. We say that a random infinite, rooted, planar triangulation
T is Markovian if for any finite triangulation t with holes, the probability P (t ⊂ T )
only depends on the perimeters of the holes of t and on its total number of faces.
We finally introduce two important examples of "degenerate" planar triangulations

T0 and T? with infinite vertex degrees. We denote by T0 the triangulation obtained
by gluing the edges of the triangles along the structure of a complete binary tree
(as on the left of Figure 1.1). This is also the natural way to extend the PSHT
Tλ to the case λ = 0. On the other hand T? (on the right of Figure 1.1) is the
only infinite, planar triangulation with only one vertex: it is obtained by forming a
triangle with three loops, and then recursively adding two loops inside of each loop
to form new triangles. We highlight that our definition considers T0 and T? as two
distinct objects, even if they have the same dual. Indeed, the vertices are not glued
in the same way in T0 and in T?. We are now able to state our main theorem.
Theorem 1.2. — Let T be a Markovian infinite, planar triangulation. Then T

is of the form TΛ, where Λ is a random variable with values in [0, λc] ∪ {?}.

TOME 1 (-1)



4 T. BUDZINSKI

Figure 1.1. The beginning of the construction of T0 (on the left) and T? (on the
right). Note that these are two different triangulations: T0 has infinitely many
vertices whereas T? has only one.

In particular, this result means that there is no natural notion of "uniform" multi-
ended planar triangulation. This was already observed by Linxiao Chen for a much
stronger version of the Markov property [Che].

Applications to the convergence of "perturbed" models to the UIPT.
As explained above, the main motivation behind this result is to be able to prove
the convergence of finite models to the UIPT without needing a good control on
the combinatorics of these models. Indeed, a corollary of Theorem 1.2 is that the
UIPT is the only Markovian infinite planar triangulation with average vertex degree
6. This characterization of the UIPT involves only properties that are usually easy
to observe on finite models, and is therefore useful to prove the convergence of
such models. Roughly speaking, the "meta-theorem" is that any "almost-uniform"
triangulation model with an additional structure which is "small compared to the
size" converges to the UIPT. As an illustration, we present three particular cases:
triangulations with defects, with moderate genus, and with a very high temperature
Ising model. Note that our approach is robust enough to treat a model where these
three perturbations would be combined.

Triangulations with defects. We first consider "triangulations with defects", i.e.
where a small proportion of the faces are not triangles. More precisely, for f = (fj)j>1
such that ∑j>1 jfj is an even integer, we denote by Mf a uniform rooted planar
map among all those with exactly fj faces of degree j for all j > 1. We write
|f | = 1

2
∑
j>1 jfj for the number of edges of such a map.

Corollary 1.3. — Let fn for n > 1 be face degree sequences such that |fn| →
+∞ when n → +∞. We assume that ∑j 6=3 jfj = o (|fn|). Then the random maps
Mfn converge locally to the UIPT as n→ +∞.

We note that the combinatorics of maps with prescribed face degrees are only fully
understood when we consider bipartite maps [MM07], which is not the case here. On
the other hand, the case where the non-triangular faces are simple and face-disjoint
was completely treated by Krikun [Kri07]. This Corollary was one of the motivations
for this work, and will be used in a forthcoming work of Curien, Kortchemski and
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Multi-ended Markovian triangulations 5

Marzouk on mesoscopic limits of uniform planar maps with fixed numbers of edges,
faces and vertices [CKMar].

Triangulations with moderate genus. For n > 1 and 0 6 g 6 n
2 , we denote

by Tn,g a uniform rooted triangulation with 2n faces and genus g. Note that the
condition g 6 n

2 is necessary for such a triangulation to exist. Using Theorem 1.2,
we can recover the following particular case of the main result of [BL21].

Corollary 1.4. — Let (gn) be a sequence such that gn
n
→ 0 as n→ +∞. Then

Tn,gn converges locally to the UIPT as n→ +∞.

Compared to [BL21], the proof is now much shorter, and does not rely on any
combinatorics of high genus maps.

Very high temperature Ising model. Our last application deals with the Ising
model on random triangulations. If t is a triangulation of the sphere and σ is a
colouring of the faces of t in black and white, we denote by H(t, σ) the number of
edges e of t such that both sides of e have the same colour. For β ∈ R and n > 1, we
denote by Tn[β] the random face-coloured triangulation of the sphere with 2n faces
such that for all (t, σ) the probability that Tn[β] = (t, σ) is proportional to eβH(t,σ).

Corollary 1.5. — Let (βn) be a sequence of real numbers such that βn → 0 as
n → +∞. Then Tn[βn] converges locally as n → +∞ to the UIPT equipped with
Bernoulli face percolation with parameter 1

2 .

The exact same argument would also work for the Potts model or similar statistical
physics models. We note that the case where the Ising model lives on the vertices
and the inverse temperature β > 0 is fixed was treated in [AMS20]. We also refer
to [CT20a, CT20b, Tur20] for local convergence results on Ising triangulations with
a boundary, once again for β fixed.

Large deviations for pattern occurences in uniform triangulations. We
conclude the consequences of Theorem 1.2 with a last application to the counting of
patterns in uniform triangulations. Let t0 be a fixed rooted, finite triangulation with
one or several holes. For every triangulation t of the sphere, we denote by occt0(t)
the number of occurences of t0 in t. More precisely occt0(t) is the number of oriented
edges e of t such that there is a neighbourhood of e isomorphic to t0, so that e is
matched with the root of t0. We recall that Tn stands for a uniform triangulation of
the sphere with 2n faces, and Tλc for the UIPT.

Theorem 1.6. — For every finite triangulation with holes t0 and every ε > 0,
the probability

P
(∣∣∣∣∣occt0(Tn)

6n − P (t0 ⊂ Tλc)
∣∣∣∣∣ > ε

)
decays exponentially in n.

Note that the local convergence of Tn to Tλc only gives the convergence of the ex-
pectation of occt0 (Tn)

6n to P (t0 ⊂ Tλc). Convergence in probability was proved in [DS20]
in the more general context of planar maps with Boltzmann weights on the face
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6 T. BUDZINSKI

degrees. The proof of Theorem 1.6 consists of showing using Theorem 1.2 that if
βn → 0, then Tn biased by exp(βn occt0(Tn)) still converges to the UIPT. This means
that perturbating the uniform measure by subexponential factors does not affect
occt0(Tn) in a significant way, so triangulations where occt0(Tn) deviates from its
mean must be exponentially rare.

Sketch of proof of the main theorem. The starting point of the proof of
Theorem 1.2 is roughly the same as the proof of [BL21, Theorem 2]: using linear
equations between the probabilities P (t ⊂ T ) and the Hausdorff moment problem,
we express the probabilities P (t ⊂ T ) as the moments of a pair (Λ,Γ) of random
variables. Here Λ and Γ can roughly be interpretated as Boltzmann weights on
respectively the number of vertices and the number of ends. The PSHT Tλ for λ ∈
[0, λc] corresponds to the case (Λ,Γ) = (λ, 0), whereas the degenerate triangulation
T? corresponds to (Λ,Γ) = (0, 1). We then use the explicit generating function of
triangulations with a boundary to prove that one of the probabilities P (t ⊂ T ) is
negative, unless almost surely Γ = 0 or (Λ,Γ) = (0, 1). Finally, we refer to Section 6
for a discussion on extensions of Theorem 1.2 and a conjecture in the nonplanar
case.
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2. Preliminaries

2.1. Basic definitions

Finite triangulations. We recall that a finite planar map is a gluing of a finite
number of finite polygons which is homeomorphic to the sphere. We will always
consider rooted maps, which means that they carry a distinguished oriented edge
called the root. We will call root vertex the starting point of the root edge, and
root face the face lying on the left of the root edge. A triangulation of the sphere
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Multi-ended Markovian triangulations 7

is a finite planar map where all the faces have degree 3. We denote by Tf the set
of triangulations of the sphere. Note that in all this work, we will consider type-I
triangulations, which means that we allow self-loops and multiple edges.
A triangulation with holes is a finite, planar map t with marked faces called the

holes, such that:
• all the internal faces (i.e. the faces which are not holes) are triangles;
• every edge is incident to at least one internal face, and the set of internal
faces forms a connected subset of the dual of t.

It will also be important for us to have a notion of volume for triangulations with
holes. While the most usual convention is to use the total number of vertices, we
will choose a different one here, which allows the volume to take any nonnegative
value(3) .

Lemma 2.1. — Let t be a triangulation with k holes of perimeters p1, . . . , pk, and
let ṽ be its total number of vertices. Then we have

(2.1) v := ṽ − 1−
k∑
i=1

(pi − 1) > 0.

We call this quantity v the inner volume of t.

Proof. — We denote by V∂ the set of vertices of t which lie on at least one of the
holes. Let t̂ be the map whose vertices are the holes of t and the vertices of V∂ , and
where for each hole h of t and each vertex v on ∂h, there is one edge linking h to v.
Then a cycle in t̂ would disconnect the set of internal faces, so t̂ is a forest. On the
other hand t̂ has k + #V∂ vertices and ∑k

i=1 pi edges, so

k + #V∂ > 1 +
k∑
i=1

pi,

and finally ṽ > #V∂ > 1 +∑k
i=1(pi − 1). �

On the other hand, let p1, . . . , pk > 1 and v > 0. We note that there is a triangu-
lation with k holes of perimeters p1, . . . , pk and inner volume v except if v = 0 and
either k = 1 and p1 ∈ {1, 2}, or k = 2 and p1 = p2 = 1. To bridge this gap, we set
the following conventions:

• the only triangulation with one hole of perimeter 1 and inner volume 0 is the
triangulation t10 consisting of a single vertex and no edge;
• the only triangulation with one hole of perimeter 2 and inner volume 0 is the
triangulation t20 consisting of two vertices linked by a single edge;
• the only triangulation with two holes of perimeter 1 and inner volume 0 is
the triangulation t1,10 consisting of a single vertex and a loop on this vertex.

For p > 1, a finite triangulation of the p-gon is a finite, planar map where the root
face has degree p and is simple, and all the other faces have degree 3. We denote
by τn(p) the number of triangulations of the p-gon with volume n, i.e. with n + 1
vertices overall. This convention for the volume is designed so that when we use a

(3)The point of this change is to have a definition of the PSHT which still makes sense for λ = 0,
see Section 2.3.

TOME 1 (-1)



8 T. BUDZINSKI

triangulation of a polygon to fill one of the holes of a triangulation with holes, their
volumes add up.

Sub-triangulations and balls. If T is a triangulation of the sphere and t a
triangulation with holes, we write t ⊂ T if T can be obtained from t by filling each
hole of t with a triangulation of a polygon(4) . We call t a sub-triangulation of T write
t ⊂ T . We now define two families of sub-triangulations of particular interest.
If T is a triangulation of the sphere and r > 0, we denote by Br(T ) the sub-

triangulation of T consisting of all the faces of T incident to at least one vertex at
graph distance at most r − 1 from the root vertex, together with all the vertices
and edges incident to these faces. We also denote by B∗r (T ) the sub-triangulation
consisting of all the faces at distance at most r from the root face in the dual graph
of T , together with all the vertices and edges incident to these faces. We call Br(T )
(resp. B∗r (T )) the ball of radius r (resp. dual ball of radius r) of T . In some cases, we
will also use the notation Br(T ; e) or B∗r (T ; e) for the ball or dual ball around the
root edge e to emphasize the choice of the root edge.

Local distances and infinite triangulations. We now define two versions of
the local topology on the set of triangulations. The first one is the one which is
used most of the time in the literature, while the second is a weaker version. We
will mostly use the second one in this work, but we will still obtain convergence
results for the first one in the end (Corollaries 1.3, 1.4 and 1.5). If T, T ′ are two
triangulations of the sphere, we write

dloc(T, T ′) = (1 + min{r > 0|Br(T ) 6= Br(T ′)})−1
,

d∗loc(T, T ′) = (1 + min{r > 0|B∗r (T ) 6= B∗r (T ′)})
−1
.

We call dloc (resp. d∗loc) the local distance (resp. dual local distance) on the set of
triangulations. We denote by T the completion of Tf for d∗loc, and write T∞ = T \Tf .
An element of T∞ will be called an infinite triangulation. Alternatively, an infinite
triangulation is a planar, connected gluing of countably many triangles along some of
their vertices and edges, such that all the edges are glued two by two. Note however
that vertex degrees may be infinite. It is also possible that the neighbourhood of a
vertex v becomes disconnected if v is removed (see the right of Figure 1.1). However,
note that the notion of a dual ball still makes sense in a triangulation T ∈ T∞. As
an example, Figure 1.1 represents B∗3(T0) on the left and B∗1(T?) on the right. The
notation t ⊂ T also makes sense in this context (we say that t ⊂ T if there is r such
that t ⊂ B∗r (T )). Finally, we note that for any r > 0, a dual ball Br(T ∗) has at most
1 + 3 + · · ·+ 3r faces, so it may only take finitely many values. This implies that T is
compact for d∗loc. This will be important in the proofs of Corollaries 1.3, 1.4 and 1.5.
Finally, also with Corollaries 1.3, 1.4 and 1.5 in sight, we state an easy lemma (see

e.g. [BL21, Lemma 3]) which will bridge the gap between convergence for d∗loc and
for dloc.

(4)By convention, we always have t10 ⊂ T , we have t20 ⊂ T if and only if the root of T is not a loop,
and t1,10 ⊂ T if and only if the root of T is a loop.

ANNALES HENRI LEBESGUE



Multi-ended Markovian triangulations 9

Lemma 2.2. — Let (Tn) be a sequence of triangulations of T . Assume that

Tn
d∗loc−−−−→

n→+∞
T,

where T ∈ T has only vertices with finite degrees. Then we also have Tn → T for
dloc when n→ +∞.

2.2. The spatial Markov property

We now define precisely our spatial Markov property for infinite triangulations.
We will introduce two definitions of this property and prove that they are equivalent.
The difference between the two definitions is that the second includes the knowledge
of which hole is filled with an infinite component, while the first one does not. The
first definition (Definition 2.3) is the one that is easy to observe on finite models and
will be used to prove Corollaries 1.3, 1.4 and 1.5. However, in most of this work, we
will use the second one, introduced in Lemma 2.4, which is more convenient to deal
with infinite models.
Let T be an infinite, planar triangulation, and let t be a finite triangulation with

k holes. We recall that we write t ⊂ T if there is a neighbourhood of the root in T
which is isomorphic to t, or equivalently if T can be obtained by filling each hole of
t with a finite or infinite triangulation. It follows from the connectedness properties
in the definition of a triangulation with holes that if t ⊂ T then this inclusion is
unique, i.e. the neighbourhood of T isomorphic to t is determined by t and T . We
also write t ⊂∞ T if t ⊂ T and furthermore each of the holes of t contains infinitely
many triangles of T .
Definition 2.3. — Let T be a random infinite planar triangulation. We say that

T is Markovian if there are numbers bp1,...,pk
v for k > 1, p1, . . . , pk > 1 and v > 0 such

that, for any triangulation t with k holes of perimeters p1, . . . , pk and inner volume
v:

P (t ⊂ T ) = bp1,...,pk
v .

Lemma 2.4. — A random infinite planar triangulation T is Markovian if and
only if the following condition is satisfied. There are numbers ap1,...,pk

v for k > 1,
p1, . . . , pk > 1 and v > 0 such that, for any triangulation t with k holes of perimeters
p1, . . . , pk and inner volume v:

P (t ⊂∞ T ) = ap1,...,pk
v .

Proof. — Assume that T satisfies the condition of the lemma, and let (ap1,...,pk
v )

be the associated constants. Let t be a triangulation with k holes of perimeters
p1, . . . , pk and inner volume v. Then the probability that t ⊂ T can be expressed as
a sum over all ways to fill some of the holes of t (but not all of them) with finite
triangulations of the adequate polygons. We obtain

P (t ⊂ T ) =
∑

I⊂{1,...,k}
I 6=∅

∑
vi>0 for i/∈I

∏
i/∈I
τvi(pi)

 a(pi)i∈I
v+
∑

i/∈I vi
,

TOME 1 (-1)



10 T. BUDZINSKI

where by i /∈ I we mean i ∈ {1, . . . , k}\I, and we recall that τv(p) is the number of
triangulations of the p-gon with volume v. This only depends on v and the pi, so T
is Markovian.
Now let T be a Markovian triangulation. For any ` > 0 and any triangulation t

with k > ` holes, we denote by t ⊂`∞ T the event that t ⊂ T and for every i 6 `,
the i-th hole of t contains infinitely many faces of T . We will prove by induction on
` that P

(
t ⊂`∞ T

)
only depends on ` and the perimeters and inner volume of t. The

initialization for ` = 0 holds because T is Markovian, whereas the case ` = k will
prove the lemma. For the induction step, assume the result holds for some ` > 0,
and let t be a triangulation with k > `+ 1 holes of perimeters p1, . . . , pk. Then the
induction follows from the identity

P
(
t ⊂`+1
∞ T

)
= P

(
t ⊂`∞ T

)
−
∑
t′

P
(
t⊕`+1 t

′ ⊂`∞ T
)
,

where the sum is over all finite triangulations t′ of the p`+1-gon, and by t⊕`+1 t
′ we

mean the triangulation with k − 1 holes obtained by filling the (`+ 1)-th hole of t
with t′. The set of values of t′ only depends on p`+1 and each term on the right-hand
side only depends on ` and the perimeters and inner volume of t. Therefore, so does
the left-hand side, which proves the lemma. �

2.3. Combinatorics and infinite models

Counting triangulations of polygons. We now recall the exact enumeration of
triangulations of polygons. For n > 0 and p > 1, we recall that τn(p) is the number
of triangulations of the p-gon with volume n (i.e. n + 1 vertices in total). We also
write

Zp(λ) =
∑
n>0

τn(p)λn

for the generating function of triangulations of the p-gon, and finally Zλ(x) =∑
p>1 Zp(λ)xp. By exact enumeration results of Krikun(5) [Kri07], we have Zp(λ) <

+∞ if and only if λ 6 λc := 1
12
√

3 . Moreover, for λ ∈ [0, λc], we have

(2.2) Zλ(x) = 1
2

(
−1 + x+

(
1− 1√

1 + 8h
x

)√
1− 4h√

1 + 8h
x

)
,

where h ∈
[
0, 1

4

]
is such that

(2.3) λ = h

(1 + 8h)3/2 .

Note that the expression of Z here is slightly different from how it usually appears
because of our different volume convention. More precisely,
Finally, note also that Z0(x) = 0.

(5)More precisely, using the Euler formula to express the number of vertices (our notion of volume)
in terms of the number of edges (Krikun’s notion of volume), we have Zλ(x) = U0(λ1/3, λ1/3x),
where U0 is the explicit function of [Kri07, Section 2.2].
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The UIPT and the PSHT. We now define precisely the PSHT (Tλ)06λ6λc ,
where we recall that λc = 1

12
√

3 . The PSHT were introduced in [Cur16] in the type-II
setting, and their definition was extended to type-I triangulations in [Bud18]. They
are random one-ended infinite, planar triangulations, characterized by the following
property: for any triangulation t with one hole of perimeter p and inner volume v,
we have
(2.4) P (t ⊂ Tλ) = CPSHT

p (λ)λv.

Moreover, we have CPSHT
1 (λ) = 1 and

(
CPSHT
p (λ)

)
p>1

satisfies the following recur-
sion:

(2.5) CPSHT
p (λ) = CPSHT

p+1 (λ) + 2
p−1∑
i=0

Zi+1(λ)CPSHT
p−i (λ).

This recursion was obtained in [Cur16] and it was observed in [Bud18] that it yields
the exact formula CPSHT

p (λ) = 1
(1+8h)p/2

∑p−1
q=0

(
2q
q

)
hq, where h is given by (2.3). Note

that our formula for CPSHT
p (λ) differs from the one obtained in [Bud18] by a factor

λp. This is because v now denotes the inner volume instead of the total number of
vertices, and the reason for this change of convention is that now each factor in (2.4)
still makes sense for λ = 0 (with the convention of [Bud18], one factor would go to
+∞ and the other to 0).

In particular, the random map Tλc is the UIPT. On the other hand, for λ = 0, we
get CPSHT

p (0) = 1 and P (t ⊂ Tλ) = 1v=0. Therefore, the triangulation T0 is the dual
of a complete binary tree (i.e. the triangulation depicted on the left of Figure 1.1).

The one-vertex triangulation T?. We finally introduce another deterministic
example of degenerate Markovian triangulation. We denote by T? the unique infinite
planar triangulation with only one vertex. One way to construct T? is to start from
three loops on the same vertex forming a triangle, and then recursively add two
loops to form a new triangle inside of each loop.
Lemma 2.5. — The triangulation T? is Markovian with

ap1,...,pk
v =

1 if p1 = · · · = pk = 1 and v = 0,
0 else.

Proof. — First, if t ⊂ T?, all the edges of T? are loops, so all the holes of t must
have perimeter 1. Moreover T? has only one vertex, so the inner volume of t must
be 0 by (2.1). On the other hand, if t is a triangulation with holes of perimeter 1
and inner volume 0, then it follows from (2.1) that t has only one vertex, and all the
edges are loops. By planarity, each loop of t separates t in two, so t consists of loops
on the same vertex whose nesting structure is that of a binary tree. This implies
t ⊂ T?. �

3. Proof of the main theorem
To prove Theorem 1.2, we will rely on the characterization of Markovian triangu-

lations given by Lemma 2.4. More precisely, let T be a Markovian triangulation and
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Figure 3.1. The three cases appearing in the peeling equations. The case in the
middle corresponds to (i, j) = (2, 4) in the first sum. The case on the right
corresponds to i = 3 in the second.

let ap1,...,pk
v = P (t ⊂∞ T ) for a triangulation t with k holes of perimeters p1, . . . , pk

and inner volume v. Then these coefficients satisfy the following linear equations,
that we will call the peeling equations:

ap1,...,pk
v = ap1+1,p2,...,pk

v + 2
p1−1∑
i=0

∑
j>0

ap1−i,p2,...,pk
v+j × τj(i+ 1) +

p1−1∑
i=0

ai+1,p1−i,p2,...,pk
v .

To obtain this equation, we first note that for v = 0, k = 1 and p1 = 1, the equation
consists of distinguishing whether the root edge is a loop or not, and whether one
side of this loop is filled with a finite region. Note also that a1

0 = 1. In all other cases,
consider a triangulation t with k holes of perimeters p1, . . . , pk and inner volume
v, and assume t ⊂ T . We fix an edge e on the boundary of the first hole of t and
explore the triangle f of T\t incident to e (see Figure 3.1). By planarity, either the
third vertex x of f (other than the two ends of e) does not belong to t, or x lies on
the boundary of the first hole. The first term in the peeling equation corresponds to
the case where x is not in t. The first sum corresponds to the case where f separates
T\t into a finite part with perimeter i+ 1 and j + 1 vertices in total, and an infinite
part. The factor 2 comes from the possibility that the finite component lies either
on the left or on the right of f . Finally, the second sum corresponds to the case
where f splits the first hole into two holes of perimeters i + 1 and p1 − i, each of
which contains infinitely many triangles of T . This last case is the one which is new
compared to the one-ended case.
The main steps of the proof of Theorem 1.2 will be as follows: in Section 3.1, we

will express the solutions to the peeling equations in terms of a pair (Λ,Γ) of random
variables (Proposition 3.3). These two variables can be thought of as Boltzmann
weights on respectively the volume and the number of infinite ends. The PSHT Tλ
corresponds to the case Λ = λ and Γ = 0, whereas T? corresponds to the case Λ = 0
and Γ = 1. In Section 3.2, using the formula obtained in Proposition 3.3 and the
nonnegativity of the coefficients ap1,...,pk

v , we will prove that almost surely Λ = 0 or
Γ = 0. Finally, in Section 3.3, we will exclude the case 0 < Γ < 1 using a similar
strategy.
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3.1. Solving the peeling equations

The ideas used in the first part of the proof will be very similar to the ideas used for
the one-ended case in [BL21, Section 3]: we will use the Hausdorff moment problem
to interpret the coefficients a1,...,1

v as the moments of certain random variables. We
first notice that T is characterized by these coefficients. We will use the notation
k ⊗ 1 for 1, . . . , 1 where 1 appears k times.

Lemma 3.1. — The distribution of T is determined by the numbers ak⊗1
v for

v > 0 and k > 1.

Proof. — It is sufficient to prove that for all p1, . . . , pk > 1 and v > 0, the coefficient
ap1,...,pk
v is determined by

(
a`⊗1
v

)
`>1, v>0

. We prove this by induction on ∑k
i=1(pi − 1).

If this sum is zero, then pi = 1 for all i so the result is immediate.
Moreover, if ∑k

i=1(pi − 1) > 0, assume without loss of generality p1 > 2. Then the
peeling equation can be rewritten

ap1,...,pk
v = ap1−1,p2,...,pk

v − 2
p1−2∑
i=0

∑
j>0

ap1−1−i,p2,...,pk
v+j τj(i+ 1)−

p1−2∑
i=0

ai+1,p1−1−i,p2,...,pk
v .

By the induction hypothesis, all the terms in the right-hand side are determined by(
a`⊗1
v

)
`>1, v>0

, so this is also true for the left-hand side, which proves the lemma. �

The next step, which follows closely [BL21, Section 3], is to prove that the ak⊗1
v

are given by the moments of a pair of random variables.

Lemma 3.2. — There is a random variable (Λ,Γ) with values in [0, λc] × [0, 1]
such that, for all k > 1 and v > 0, we have:

(3.1) ak⊗1
v = E

[
ΛvΓk−1

]
.

Proof. — We define the discrete derivative operators ∆v and ∆k by
(∆va)p1,...,pk

v = ap1,...,pk
v − ap1,...,pk

v+1

and
(∆ka)p1,...,pk

v = ap1,...,pk
v − ap1,...,pk,1

v .

Note that
(
∆va

k⊗1
v

)
and

(
∆ka

k⊗1
v

)
are respectively the discrete derivatives of

(
ak⊗1
v

)
with respect to v and to k. Since a1

0 = 1, by the two-dimensional Hausdorff moment
problem [HS33], it is sufficient to prove ∆m

v ∆n
ka

k⊗1
v > 0 for all m,n, v > 0 and k > 1.

We will actually prove the following more general inequality for all m,n, v > 0 and
p1, . . . , pk > 1:
(3.2) ∆m

v ∆n
ka

p1,...,pk
v > 0.

We will prove (3.2) by induction on m + n. Although we only need the case p1 =
· · · = pk = 1 in the end, handling the general case will be necessary in the induction
step.
The case m = n = 0 is immediate since the coefficients ap1,...,pk

v are nonnegative.
We now assume the result holds for (m,n), and prove it for (m,n + 1). Let v > 0

TOME 1 (-1)
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and p1, . . . , pk > 1. Using the induction hypothesis and writing the peeling equation
for ap1,...,pk,k

′⊗1
v+v′ for 0 6 v′ 6 m and 0 6 k′ 6 n, we have:

0 6 ∆m
v ∆n

ka
p1+1,p2,...,pk
v

= ∆m
v ∆n

ka
p1,p2,...,pk
v − 2

p1−1∑
i=0

∑
j>0

τj(i+ 1)∆m
v ∆n

ka
p1−i,p2,...,pk
v+j −

p1−1∑
i=0

∆m
v ∆n

ka
i+1,p1−i,p2,...,pk
v .

By the induction hypothesis, every term in the two sums is nonnegative. Therefore,
the last inequality remains true if we remove entirely the first sum, and keep only
the term i = 0 in the second one. We obtain

0 6 ∆m
v ∆n

ka
p1,p2,...,pk
v −∆m

v ∆n
ka

1,p1,p2,...,pk
v = ∆m

v ∆n+1
k ap1,p2,...,pk

v ,

which proves the result for (m,n+1). The argument to deduce the result for (m+1, n)
from (m,n) is the same, but this time we keep only the term i = 0, j = 1 in the
first sum and remove the factor 2, exactly as in [BL21, Lemma 16]. This proves the
claim (3.2).
Therefore, by the Hausdorff moment problem, there is a random variable (Λ,Γ)

with values in [0, 1]2 such that (3.1) holds for all k > 1 and v > 0. To conclude, we
only need to show Λ 6 λc almost surely. For this, by the peeling equation for v = 0,
k = 1 and p1 = 1, we must have:

E [Z1(Λ)] =
∑
j>0

τj(1)E
[
Λj
]

=
∑
j>0

a1
jτj(1) 6 a1

0 < +∞.

Hence, we must have Z1(Λ) < +∞ a.s.. By the results of Section 2.3, this means
Λ 6 λc a.s.. �

We note that by (2.4) and (2.5), the PSHT Tλ for λ ∈ [0, λc] corresponds to the
case where (Λ,Γ) = (λ, 0) a.s.. On the other hand, by Lemma 2.5, the Markovian
triangulation T? corresponds to the case (Λ,Γ) = (0, 1) a.s.. Therefore, proving the
main theorem is equivalent to showing that almost surely, we have either Γ = 0 or
(Λ,Γ) = (0, 1).
It follows from Lemmas 3.1 and 3.2 that the coefficients ap1,...,pk

v are characterized
by the law of (Λ,Γ). Our next step is to give an explicit formula for these coefficients
in terms of (Λ,Γ).
We recall from Section 2.3 that Zi(λ) is the partition function of Boltzmann

triangulations of the i-gon with Boltzmann weight λ on the volume. For all (λ, γ) ∈
[0, λc] × [0, 1], let (Cp(λ, γ))p>1 be the sequence satisfying C1(λ, γ) = 1 and, for all
p > 1:

(3.3) Cp(λ, γ) = Cp+1(λ, γ) + 2
p−1∑
i=0

Zi+1(λ)Cp−i(λ, γ) + γ
p−1∑
i=0

Ci+1(λ, γ)Cp−i(λ, γ).

Note that this formula defines Cp(λ, γ) in a nonambiguous way, since it allows to
express Cp+1 using only previous terms. We note that for γ = 0, we recover (2.5),
which means that Cp(λ, 0) = CPSHT

p (λ). We also note right now that, by induction
on p, the function Cp(λ, γ) is a continuous function of (λ, γ) ∈ [0, λc] × [0, 1]. In
particular, it is bounded by a constant f(p).
We can now express all the coefficients ap1,...,pk

v in terms of (Λ,Γ).
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Proposition 3.3. — For all p1, . . . , pk > 1 and v > 0, we have

(3.4) ap1,...,pk
v = E

[
ΛvΓk−1

k∏
i=1

Cpi(Λ,Γ)
]
.

In particular, for all p, k > 1 and v > 0, we have

(3.5) ap,(k−1)⊗1
v = E

[
ΛvΓk−1Cp(Λ,Γ)

]
.

Proof. — For all (λ, γ) ∈ [0, λc]× [0, 1], we define

ap1,...,pk
v (λ, γ) = λvγk−1

k∏
i=1

Cpi(λ, γ).

Using (3.3), it is easy to check that (ap1,...,pk
v (λ, γ)) is a solution to the peeling

equations, with ak⊗1
v (λ, γ) = λvγk−1. By linearity of the peeling equations, it follows

that the right-hand side of (3.4) is also a solution. Therefore, both sides of (3.4) are
solutions to the peeling equations. By Lemma 3.2, they coincide for p1 = · · · = pk = 1.
Therefore, by Lemma 3.1, both sides coincide everywhere. Finally, (3.5) is obtained
by taking p2 = · · · = pk = 1. �

3.2. A Markovian triangulation is either degenerate or one-ended

The next step of the proof is to show that almost surely, either Γ = 0 (which can
be interpreted as T being one-ended), or Λ = 0 (which can be interpreted as T being
degenerate, i.e. with infinite vertex degrees). We will do so by proving that if this
is not true, then one of the coefficients ap,(k−1)⊗1

v is negative. We first consider the
case where (Λ,Γ) is deterministic.

Proposition 3.4. — If λ ∈ (0, λc] and γ ∈ (0, 1], then there is p > 1 such that
Cp(λ, γ) < 0.

Proof. — We fix λ, γ > 0 throughout the proof and write Cλ,γ(x) = ∑
p>1Cp(λ, γ)xp.

Then the recursion (3.3) on Cp becomes

(3.6) Cλ,γ(x) = 1
x

(Cλ,γ(x)− x) + 2
x
Zλ(x)Cλ,γ(x) + γ

x
Cλ,γ(x)2,

where Z(x) = ∑
p>1 Zp(λ)xp is given by (2.2). After solving the quadratic equation,

we find

Cλ,γ(x) = 1
2γ


√√√√(1− x√

1 + 8h

)2 (
1− 4h√

1 + 8h
x

)
+ 4γx−

(
1− x√

1 + 8h

)√
1− 4h√

1 + 8h
x

 ,
where h ∈ [0, 1/4] is given by (2.3).
Now assume that all the Cp(λ, γ) are nonnegative. By the Pringsheim theorem,

the radius of convergence of (Cp(λ, γ)) is equal to the first nonnegative singularity
of Cλ,γ. On the other hand, this function has a singularity at x =

√
1+8h
4h . Moreover,

for x <
√

1+8h
4h , the inside of the first square root is clearly positive, so the radius of
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convergence of (Cp(λ, γ)) is
√

1+8h
4h . However, if h < 1/4 (i.e. λ < λc), then we can

compute:
lim

x→
√

1+8h
4h

C ′λ,γ(x) = −∞,

which is a contradiction. Similarly, in the critical case h = 1/4, the radius of conver-
gence is

√
3 and

lim
x→
√

3
C ′′λ,γ(x) = −∞.

�

Proposition 3.5. — With the notation of Lemma 3.2, we have almost surely
either Λ = 0 or Γ = 0.

Proof. — Assume that P (Λ > 0,Γ > 0) > 0. Since the coefficients ap1,...,pk
v must be

nonnegative, by (3.5), it is sufficient to find p, k > 1 and v > 0 such that

(3.7) E
[
ΛvΓk−1Cp(Λ,Γ)

]
< 0.

Let K be the compact support of the law of (Λ,Γ). We first claim that there is a
coefficient α > 1 such that the quantity λ×γα has a unique maximizer in K. Indeed,
we write

logK = {(log λ, log γ) |λ > 0, γ > 0, (λ, γ) ∈ K} .
This is nonempty by assumption, so the convex hull logK of logK is a nonempty
convex subset of (R−)2. Its boundary ∂logK contains at most a countable number of
nontrivial segments. Therefore, there is a vector (1, α) with α > 1 such that ∂logK
contains no segment orthogonal to (1, α). This implies that x + αy has a unique
maximizer in logK, so λ× γα has a unique maximizer in K. We denote by (λ0, γ0)
this maximizer.
By Proposition 3.4, there is p0 > 1 such that Cp0(λ0, γ0) < 0. The idea will be

that if we take p = p0 and k = αv and let v go to infinity, then the mass of the
expectation (3.7) is concentrated close to (Λ,Γ) = (λ0, γ0).
More precisely, we denote by Bε(λ0, γ0) the ball of radius ε around (λ0, γ0) in R2.

By continuity (see the remark just before Proposition 3.3), we fix ε > 0 such that,
for all (λ, γ) ∈ Bε(λ0, γ0), we have

Cp0(λ, γ) 6 −ε.

By definition of (λ0, γ0) as a unique maximizer, there is δ > 0 such that, if (λ, γ) ∈
K\Bε(λ0, γ0), then λγα < λ0γ

α
0 − δ. We can now rewrite the expectation (3.7) for

p = p0 as

(3.8) E
[
ΛvΓk−1Cp0(Λ,Γ)1ΛΓα>λ0γα0 −δ

]
+ E

[
ΛvΓk−1Cp0(Λ,Γ)1ΛΓα<λ0γα0 −δ

]
.

By definition of δ, if the inside of the first expectation is nonzero, then (Λ,Γ) ∈
Bε(λ0, γ0), so Cp0(Λ,Γ) < 0. Therefore, the inside of the first expectation is nonpos-
itive, so we can bound it from above by

E
[
ΛvΓk−1Cp0(Λ,Γ)1ΛΓα>λ0γα0 −δ/2

]
.
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We now take k = bαvc + 1, so that ΛvΓk−1 > (ΛΓα)v. Then this first term can be
bounded from below by

−ε
(
λ0γ

α
0 −

δ

2

)v
P (ΛΓα > λ0γ

α
0 − δ/2) ,

where the probability is positive by definition of the support K.
We move on to the second term of (3.8), again with k = bαvc + 1. Since α > 1,

we have ΛvΓbαvc 6 (ΛΓα)(v−1), so the second term can be bounded by
E
[
(ΛΓα)v−1 |Cp(Λ,Γ)|1ΛΓα<λ0γα0 −δ

]
6 (λ0γ

α
0 − δ)

v−1 f(p0),
where f(p0) is a bound on |Cp0(λ, γ)| for all λ, γ (see the discussion right before
Proposition 3.3). Combining the last two displays and letting v → +∞, we get the
result. �

3.3. End of the proof: degenerate triangulations

Finally, we have to treat the cases Λ = 0 and Γ = 0. The second one corresponds
to the one-ended PSHT, so we need to focus on the first. We will prove that it is not
possible to have Λ = 0 but 0 < Γ < 1. The proof will be very similar to the previous
argument (Proposition 3.5), with the difference that this time, it is not sufficient to
look at the maximum of the support of Γ, since it is possible that Γ = 1. Therefore,
we will first argue that either Γ = 1, or 0 6 Γ 6 1

2 , and then consider the maximum
of the support of Γ minus 1. As in Section 3.2, we will start with the case where
(λ, γ) is deterministic.
Lemma 3.6. — For all 0 < γ < 1, there is p > 1 such that Cp(0, γ) < 0. Moreover,

if 1
2 < γ < 1, we can take p = 3.
Proof. — We first consider the case λ = 0 in the induction (3.3). Using Zi+1(0) = 0,

we obtain
Cp(0, γ) = Cp+1(0, γ) + γ

p−1∑
i=0

Ci+1(0, γ)Cp−i(0, γ).

In particular, using the cases p = 1 and p = 2, since C1(0, γ) = 1, we must have
C2(0, γ) = 1− γ and
(3.9) C3(0, γ) = (1− γ)(1− 2γ).
In particular, we have C3(0, γ) < 0 as soon as 1

2 < γ < 1, which proves the second
point.
On the other hand, we recall that Cλ,γ(x) = ∑

p>1Cp(λ, γ)xp. By solving (3.6) and
using Z0(x) = 0, we get:

C0,γ(x) =


1

2γ

(√
(1− x)2 + 4γx− (1− x)

)
if γ > 0,

x
1−x if γ = 0.

In particular, the generating function C0,γ has at most two singularities, which are
conjugate complex numbers of modulus 1. Therefore, the radius of convergence of
(Cp(0, γ))p>1 is at least one.
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On the other hand, we can compute the third derivative for 0 < x < 1:∑
p>3

p(p− 1)(p− 2)Cp(0, γ)xp−3 = C ′′′0,γ(x) = 6(1− γ)(1− 2γ − x)
((1− x)2 + 4γx)5/2 .

If 0 < γ < 1 and x is close enough to 1, this is negative, which proves the lemma. �
We can now finish the proof.
Proof of Theorem 1.2. — As noted right after the proof of Lemma 3.2, all we need

to prove is that either Γ = 0 or (Λ,Γ) = (0, 1). Given Proposition 3.5, all we have
left to prove is that P (0 < Γ < 1) = 0.
Now let p > 1 and k > 1. By (3.5), we have

ap,k⊗1
0 = E

[
ΓkCp(Λ,Γ)

]
= E

[
ΓkCp(0,Γ)

]
,

where the last equality comes from the fact that if ΓkCp(Λ,Γ) 6= 0, then Γ > 0 so
Λ = 0 by Proposition 3.5. It is sufficient to prove that if 0 < Γ < 1 with positive
probability, then we can find p, k > 1 such that E

[
ΓkCp(0,Γ)

]
< 0.

For p = 3, by (3.9) we get

a3,k⊗1
0 = E

[
Γk(1− Γ)(1− 2Γ)

]
.

The quantity in the expectation is negative for 1
2 < Γ < 1 and vanishes for Γ = 1,

so if P
(

1
2 < Γ < 1

)
> 0, then we have a3,k⊗1

0 < 0 for k large enough, which is not
possible. Therefore, the support of Γ is included in

[
0, 1

2

]
∪ {1}.

Finally, we denote by γ0 the maximum of the intersection of the support of Γ with
the interval

[
0, 1

2

]
. If γ0 > 0, by Lemma 3.6, there is p0 > 1 such that Cp0(0, γ0) < 0.

Exactly in the same way as in the proof of Proposition 3.5, using the fact that
Cp0(0, γ) is a continuous function of γ, we deduce that E

[
ΓkCp0(0,Γ)

]
< 0 for k

large enough. Therefore, we must have γ0 = 0, which concludes the proof. �

4. Applications to the convergence of finite models to the
UIPT

4.1. Triangulations with defects

Proof of Corollary 1.3. — We first argue that any subsequential limit of Mfn for
d∗loc is almost surely a triangulation.
For this, let mn be a map with face degrees given by fn, and recall that |fn| is the

total number of edges of mn. Let D(mn) be the set of edges of mn incident to a face
which is not a triangle. By our assumption, we have

#D(mn) 6
∑
j 6=3

jfnj = o (|fn|) .

Moreover, for all r > 0, let Er(mn) be the set of edges e such that B∗r (mn, e) is not a
triangulation with holes. In other words Er(mn) is the set of edges e at dual distance
at most r from an edge of D(mn). If e ∈ Er(mn), let de be the edge of D(mn) which
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is the closest to e for the dual distance (if it is not unique, pick one arbitrarily). Let
also γe be a shortest dual path from de to e. By minimality of de, the path γe is a
non-backtracking dual path of length at most r+ 1 containing only triangles. Hence,
for each de, the path γe can take at most 2r+2 values. It follows that, for all r > 0,

#Er(mn) 6 2r+2#D(mn) = o (|fn|) .
Since Mfn is invariant under uniform rerooting, this implies that with probability
1− o(1), all the internal faces in B∗r (Mfn) are triangles. This is true for all r > 0, so
Mfn is tight for d∗loc and any subseqential limit is a triangulation.
Now let T be such a subsequential limit. First B∗r (Mfn) is planar for all r, n > 0, so

T must be planar. Moreover |fn| → +∞, so T is infinite. Finally, for any triangulation
t with k holes of perimeters p1, . . . , pk and any n > 0, the probability P (t ⊂Mfn)
only depends on n, on p1, . . . , pk and on the inner volume of t. Indeed, this probability
is given by the number of ways to fill each hole hi of t with a map mi of the pi-gon,
in such a way that t∪⋃ki=1mi has face degrees prescribed by fn. By letting n→ +∞,
it follows that T is Markovian, so by Theorem 1.2 T is of the form TΛ, where Λ is a
random variable with values in [0, λc] ∪ {?}.
Finally, we prove Λ = λc almost surely by considering the mean inverse degree: by

the Euler formula, the number of edges and vertices of Mfn are respectively |fn| and
2 +∑

j>1(j − 2)fnj . Let ρn be the root vertex of Mfn . Since Mfn is invariant under
rerooting on a uniform oriented edge, we have

E
[

1
degMfn

(ρn)

]
=

2 +∑
j>1(j − 2)fnj
2|fn| −−−−→

n→+∞

1
6 .

Moreover, the inverse degree of the root vertex is a bounded, continuous function
for d∗loc, so we must have

(4.1) E
[

1
degTΛ

(ρ)

]
= 1

6 .

For λ ∈ [0, λc]∪{?}, let d(λ) be the expected inverse degree of the root vertex in Tλ.
It is proved in [BL21, Proposition 20] that for λ ∈ (0, λc], we have d(λ) 6 1

6 with
equality if and only if λ = λc. Moreover, it is immediate that d(0) = d(?) = 0 (all
the vertices have infinite degree), so (4.1) implies Λ = λc and T is the UIPT. We
have proved that the UIPT is the only subsequential limit of Mfn , so Mfn → Tλc in
distribution for d∗loc. Since the UIPT has finite vertex degrees, this implies convergence
for dloc by Lemma 2.2. �

4.2. Triangulations with moderate genus

Proof of Corollary 1.4. — The only part of the proof which differs significantly
from the proof of Corollary 1.3 is the proof that any subsequential limit of Tn,gn for
d∗loc is planar. If we admit this, since tightness for d∗loc is immediate, any subsequential
limit must be of the form TΛ by Theorem 1.2. Moreover, by the Euler formula, we
have

E
[

1
degTn,gn (ρ)

]
= 2− 2gn + n

6n −−−−→
n→+∞

1
6
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and we conclude Λ = λc in the same way as in Corollary 1.3.
To prove that any subsequential limit of Tn,gn for d∗loc is planar, we need to prove

that for all r > 0, the dual ball B∗r (Tn,gn) is planar with probability 1 − o(1) as
n → +∞. For all n > 0, let tn be a triangulation with 2n faces and genus gn. For
all r, n > 0, we denote by NPr(tn) the set of edges e ∈ tn such that the dual ball
B∗r (tn; e) of radius r around e is not planar. We will prove that #NPr(tn) = o(n)
uniformly in the choice of tn, which is sufficient by invariance of Tn,gn under uniform
rerooting.
For this, note that the number of edges at dual distance at most 2r from an edge

e is bounded by 32r+1. Therefore, for any edge e ∈ NPr(tn), there are at most 32r+1

edges e′ ∈ NPr(tn) such that the balls B∗r (tn; e) and B∗r (tn; e′) intersect. Therefore,
we can find a subset ÑP r(tn) of NPr(tn) of size at least 1

32r+1 #NPr(tn) such that
the balls B∗r (tn; e) for e ∈ ÑP r(tn) are edge-disjoint. Each of these balls have genus
at least 1, so

1
32r+1 #NPr(tn) 6 #ÑP r(tn) 6 gn = o(n).

It follows that #NPr(tn) = o(n), which proves our claim. �

4.3. Triangulations with high temperature Ising model

Proof of Corollary 1.5. — We first note that the distance dloc extends in a natural
way to face-coloured triangulations by setting

dloc ((T, σ), (T ′, σ′)) =
(
1 + min{r > 0|

(
Br(T ), σ|Br(T )

)
6=
(
Br(T ′), σ′|Br(T ′)

)
}
)−1

,

and similarly for d∗loc. If T is a random face-coloured triangulation and t is trian-
gulation with holes equipped with a colouring σ of its internal face, we will write
(t, σ) ⊂ T for the event that t ⊂ T and the colouring of the faces of the neighbourhood
of the root of T isomorphic to t agrees with σ.
We first notice that changing the colour of one face only changes the probability

for a face-coloured triangulation to be picked by Tn[βn] by at most a factor e3|βn|.
Therefore, let t be a triangulation with holes, and let σ, σ′ be two colourings of its
internal faces which differ on only one face. Then we have

e−3|βn|P ((t, σ) ⊂ Tn[βn]) 6 P ((t, σ′) ⊂ Tn[βn]) 6 e3|βn|P ((t, σ) ⊂ Tn[βn]) .
Let T be a subsequential limit of Tn[βn] for d∗loc. By letting n → +∞ in the last
display, we have

P ((t, σ) ⊂ Tn[βn]) = P ((t, σ′) ⊂ Tn[βn]) .
This implies that the probability P ((t, σ) ⊂ Tn[βn]) only depends on t and not on σ,
so

P ((t, σ) ⊂ T ) = 1
2#Internal faces(t)P (t ⊂ T )

for all t and σ. This means that conditionally on the triangulation T , the colours of
its faces are just given by Bernoulli face percolation with parameter 1

2 .
On the other hand, for all n > 0, the probability P ((t, σ) ⊂ Tn[βn]) only depends

on the perimeters and inner volume of t and on the colours of the internal faces of
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t which share an edge with a hole. By letting n go to infinity, the same is true for
the probability P ((t, σ) ⊂ T ). But since it does not depend on σ, this probability
actually only depends on the perimeters and inner volume of t, so T is Markovian.
Since T is also planar, it must be of the form Tλ, and we conclude using the mean
inverse degree in the same way as in Corollaries 1.3 and 1.4. �

5. Large deviations for pattern occurences in uniform
triangulations

The goal of this section is to prove Theorem 1.6. We recall that if t0 is a finite
triangulation with one or several holes, then occt0(t) is the number of occurences of
t0 in a triangulation of the sphere t. More precisely occt0(t) is the number of oriented
edges ~e of t such that t0 ⊂ (t;~e), where (t;~e) stands for the triangulation t, rerooted
at ~e.
Proof of Theorem 1.6. — We fix a finite triangulation t0 with one or several holes.

Let (βn)n>1 be a sequence of nonnegative numbers such that βn → 0. We denote by
T (βn)
n a random triangulation of the sphere with 2n faces such that P

(
T (βn)
n = t

)
is

proportional to
exp (βnocct0(t)) .

The proof consists of first showing that T (βn)
n converges locally to the UIPT. This

means that it is not possible to increase significantly occt0(Tn) by "twisting" the uni-
form measure in a subexponential way. Therefore, exponential factors are necessary,
so triangulations with much more occurences of t0 are exponentially rare.
More precisely, as in the proof of Corollary 1.5, in order to show that T (βn)

n converges
to the UIPT, the only non-trivial point is to prove that any subsequential limit T of
T (βn)
n is Markovian. For this, let t1 and t2 be two finite triangulations with the same

hole perimeters and the same inner volume. If t is a triangulation of the sphere such
that t1 ⊂ t, we denote by Φ(t) the triangulation obtained by replacing t1 by t2 in the
neighbourhood of the root. Then |occt0(t)− occt0(Φ(t))| is bounded by a constant c
depending only on t0, t1 and t2. It follows that

e−cβnP
(
T (βn)
n = t

)
6 P

(
T (βn)
n = Φ(t)

)
6 ecβnP

(
T (βn)
n = t

)
.

By summing over t, we get
e−cβnP

(
t1 ⊂ T (βn)

n

)
6 P

(
t2 ⊂ T (βn)

n

)
6 ecβnP

(
t1 ⊂ T (βn)

n

)
.

Letting n→ +∞, we obtain P (t1 ⊂ T ) = P (t2 ⊂ T ), so any subsequential limit of
T (βn)
n is Markovian. Since it must also be planar and have mean degree 6, this implies

convergence to the UIPT by Theorem 1.2.
We now recall that Tn stands for a uniform triangulation of the sphere with 2n faces

and write Xn = occt0(Tn) and X(βn)
n = occt0(T (βn)

n ). We also write p0 = P (t0 ⊂ Tλc).
By invariance of Tn and T (βn)

n under uniform rerooting and convergence of both
models to the UIPT, we have

1
6nE [Xn] = P (t0 ⊂ Tn) −−−−→

n→+∞
p0,
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1
6nE

[
X(βn)
n

]
= P

(
t0 ⊂ T (βn)

n

)
−−−−→
n→+∞

p0.

We now fix ε > 0. The last convergence implies

(5.1) P
(
X(βn)
n 6 6p0n+ εn

)
> 1−

E
[
X(βn)
n

]
6p0n+ εn

−−−−→
n→+∞

ε

6p0 + ε
> 0.

On the other hand, by definition we have

P
(
X(βn)
n 6 6p0n+ εn

)
=

E
[
eβnXn1Xn66p0n+εn

]
E [eβnXn ]

6
E
[
eβnXn1Xn66p0n+εn

]
E [eβnXn1Xn>6p0n+2εn]

6
eβn(6p0n+εn)P (Xn 6 6p0n+ εn)
eβn(6p0n+2εn)P (Xn > 6p0n+ 2εn)

6
e−εβnn

P (Xn > 6p0n+ 2εn) .

Therefore, we have

P (Xn > 6p0n+ 2εn) 6 e−εβnn

P
(
X

(βn)
n 6 6p0n+ εn

) = O
(
e−εβnn

)
by (5.1). Since (βn) can be any sequence going to 0, we have proved that the sequence(

− 1
n

logP (Xn > 6p0n+ 2εn)
)
n>0

is eventually larger than any sequence which goes to 0. Hence, it is bounded from
below by a positive constant, which means that P (Xn > 6p0n+ 2εn) decays expo-
nentially in n. The same bound for P (Xn 6 6p0n− 2εn) is proved in the same way,
but by biasing by e−βnXn instead of eβnXn . �

6. Extensions and conjectures

There are two natural ways to try to extend Theorem 1.2: the first one is to
consider more general classes of planar maps than triangulations, and the second is
to remove the planarity assumption. We expect that an analog of Theorem 1.2 for
more general models of maps should be true. In this context, a Markovian map would
be an infinite random map M where P (m ⊂M) depends only on the perimeters of
the holes of m, and the family of degrees of its internal faces, as in [BL22, Theorem
4]. The extension of the proof of Theorem 1.2 does not seem straighforward, since
the partition functions are not as explicit as for triangulations (only the pointed
partition functions are explicit). Moreover, the extension of the Infinite Boltzmann
Planar Maps of [BL22] to the infinite-degree case would be more difficult, because
different ways to let Boltzmann weights go to zero give rise to different degenerate
objects.
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On the other hand, the non-planar case seems difficult. The natural definition of
a Markovian triangulation in the nonplanar case is that P (t ⊂ T ) depends only on
the volume of t, on the perimeters of its holes and on its genus. We conjecture the
following.
Conjecture 6.1. —
• There are Markovian infinite triangulations which are not planar.
• There is no Markovian infinite nonplanar triangulation with only finite vertex
degrees.

The motivation for the first point is that uniform triangulations with 2n faces and
genus gn = n

2 − o(n) should have Markovian local limits for d∗loc. In particular, for all
k > 1, we should obtain a Markovian limit with exactly k vertices for gn = n+2−k

2 .
On the other hand, proving the second point of this conjecture would remove the
necessity to use the Goulden–Jackson equation in [BL21]. However, it seems hopeless
to prove this second point using the same sketch as for Theorem 1.2, at least for the
following two reasons:

• the generating function for triangulations with higher genus is not explicitely
known;
• when we write down the peeling equations for ak⊗1

v,g and a(k+1)⊗1
v,g to adapt the

proof of Lemma 3.2, the lists of terms appearing in both equations are different
because two holes can now be filled with the same component. Therefore, it
is not easy anymore to take the discrete derivative ∆k of the peeling equation
with respect to the number of holes.
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