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ON VANISHING DIFFUSIVITY SELECTION FOR THE ADVECTION EQUATION

GIULIA MESCOLINI, JULES PITCHO, AND MASSIMO SORELLA

Abstract. We study the advection equation along vector fields singular at the initial time. More precisely,
we prove that for divergence-free vector fields in L1

loc((0, T ]; BV (Td; Rd)) ∩ L2((0, T ) × Td; Rd)), there
exists a unique vanishing diffusivity solution. This class includes the vector field constructed by Depauw
in [11], for which there are infinitely many distinct bounded solutions to the advection equation.

1. Introduction

We here study the initial value problem for the advection equation{
∂tρ+ b · ∇ρ = 0,
ρ(0, x) = ρin(x),

(PDE)

posed on [0, T ]× Td where b = b(t, x) is a given vector field, ρ = ρ(t, x) is an unknown real-valued function,
ρin = ρin(x) is the bounded initial datum and Td ∼= Rd/Zd is the periodic torus. In this work, we consider
vector fields, which are divergence-free in the sense of distributions, and we study weak solution of (PDE).

Definition 1.1. Consider an integrable vector field b : [0, T ] × Td → Rd, and an initial datum ρin ∈
L∞(Td). We shall say that ρ ∈ L∞((0, T )× Td) is a bounded weak solution of (PDE) along b, if for every
φ ∈ C∞c ([0, T )× Td), we haveˆ T

0

ˆ
Td

[
ρ(t, x)∂tφ(t, x) + ρ(t, x)b(t, x) · ∇φ(t, x)

]
dxdt = −

ˆ
Td

ρin(x)φ(0, x)dx. (1.1)

A regularisation and compactness argument shows the existence of bounded weak solutions if we assume´ T
0 ‖[div b(s, ·)]−‖L∞(Td)ds < +∞. By the Cauchy-Lipschitz theory, uniqueness also holds when the time
integral of the spatial Lipschitz constant of the vector field is finite. However uniqueness of bounded
weak solutions can fail when the vector field is rough. One example is given by Depauw in [11], where he
constructs a bounded, divergence-free vector field, for which there are infinitely many distinct bounded
weak solutions to (PDE). We introduce the diffusivity parameter ν ∈ (0, 1) and we study weak solutions to
the advection-diffusion equation {

∂tρ
ν + div(bρν)− ν∆ρν = 0,

ρ(0, ·) = ρin.
(ν -PDE)

for which uniqueness of bounded weak solutions is restored assuming only that b ∈ L2((0, T ) × Td; Rd)
see [5, Theorem 2.7 and Theorem 3.3] and Section 2. In this context, we introduce vanishing diffusivity
solutions as a subclass of weak solutions.

Definition 1.2. Consider a vector field b ∈ L2((0, T )× Td), an initial datum ρin ∈ L∞(Td), and consider
the family A := {ρν}0<ν<1 ⊂ L∞((0, T )× Td), where ρν is the unique bounded solution of (ν -PDE) along
b with initial datum ρin. We shall say that ρ is a vanishing diffusivity solution along b with initial datum
ρin, if

ρ ∈ A \A,
where the closure is with respect to the weak-star topology in L∞((0, T )× Td).
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We here study uniqueness of vanishing diffusivity solutions.

Question 1.3. What are the minimal assumptions on a divergence-free vector field b ∈ L2((0, T )× Td; Rd)
so that there exists a unique vanishing diffusivity solution for every bounded initial datum?

This question is natural. For scalar conservation laws, Kružkov [16] proves that the unique entropy
solution is selected by vanishing viscosity, even though uniqueness of weak solutions fails. Subsequently,
Bianchini and Bressan [3] prove that for strictly hyperbolic systems the unique entropy solution is selected
by vanishing viscosity. The problem of selection via vanishing diffusivity has also been studied for the
transport equation. In [1] Ambrosio, building upon the work of DiPerna and Lions [12], proves that for
divergence-free vector fields b ∈ L1((0, T );BV (Td; Rd)) there exists a unique bounded weak solution to
the transport equation. This implies directly uniqueness of the vanishing diffusivity solution. Vanishing
diffusivity is also shown to be a selection criterion for more general initial data by Bonicatto, Ciampa and
Crippa in [4]. In [8] Colombo, Crippa and the third author construct a Cα((0, 2) × Td) divergence-free
vector field, with α ∈ (0, 1) fixed but arbitrary, for which there are at least two distinct vanishing diffusivity
solutions. In this example the vector field has a single time of singularity at t = 1. In [14] Huysmans and
Titi construct a bounded, divergence–free vector field for which there exists a unique inadmissible vanishing
diffusivity solution, in the sense that the L2 norm of this solution is not monotonous. A related question is
anomalous dissipation. We say that a vector field b ∈ L2((0, T )× Td; Rd) has anomalous dissipation for an
initial datum ρin if the family of unique weak solutions {ρν}ν∈(0,1) of (ν -PDE) satisfies

lim sup
ν→0

ν

ˆ T

0

ˆ
Td

|∇ρν |2 > 0 .

In [20], it is shown that anomalous dissipation implies non–uniqueness of the backward advection equation.
But for vector fields which have anomalous dissipation, there may be a unique vanishing diffusivity solution
as the construction of [13] shows. See also [2, 6, 15] for works on anomalous dissipation.

An alternative to studying the vanishing diffusivity limit is to regularise the vector field, and to study
the limit of vanishing regularisation. A series of works [7–9, 17] study the absence of selection by such
schemes. The second author of this paper further remarks in [19] that for bounded, divergence-free vector
fields in L1

loc((0, T ];BV (Td; Rd)) regularisation by mollification selects a unique solution of (PDE) for
any integrable initial datum. He also presents a Lagrangian counterpart to this selection result in [18],
where interestingly he shows that for Depauw’s example [11], a probability measure concentrated on
several distinct integral curves is selected for Lebesgue almost every initial datum. In this paper, we
apply the ideas developed by the second author in [19] to show that the vanishing diffusivity is a selection
criterion for the advection equation along a divergence-free Borel vector field b : [0, T ] × Td → Rd in
L1

loc((0, T ];BV (Td; Rd)) ∩ L2((0, T )× Td; Rd).

Recall that a standard mollifier is a function w ∈ C∞c ((0, 1)d) such that w ≥ 0, and
´

(0,1)d w(x)dx = 1,
and that it induces a mollification family {wδ}δ∈(0,1) on Td where we denote wδ(x) = w(x/δ)/δd, and we
identify wδ with its periodisation to a function on Td. Recall also that the mollification of b with wδ is
defined for every x ∈ Td and almost every t ∈ [0, T ] as

(b ∗ wδ)(t, x) =
ˆ

Td

b(t, y)wδ(x− y)dy.

Moreover by Young’s convolution inequality, we have

‖∇(b ∗ wδ)‖L1((0,T );L∞(Td)) ≤ ‖b‖L1((0,T );L1(Td))‖∇wδ‖L∞(Td).

Therefore by the Cauchy-Lipschitz theory, for any initial datum ρin ∈ L∞(Td), there exists a unique
bounded weak solution of (PDE) along b ∗ wδ. We now state our result.
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Theorem 1.4. Consider a divergence-free vector field b ∈ L1
loc((0, T ];BV (Td; Rd)) ∩ L2((0, T )× Td; Rd)),

and an initial datum ρin ∈ L∞(Td). Then there exists a unique vanishing diffusivity solution of (PDE)
along b with initial datum ρin. Futhermore,

(i) for every standard mollifier w, the unique bounded weak solutions ρ̃δ of (PDE) along b ∗ wδ
converge weakly-star in L∞((0, T )× Td) to the vanishing diffusivity solution as δ ↓ 0;

(ii) there is no anomalous dissipation, meaning that the unique bounded weak solutions ρν of (ν -PDE)
along b with initial datum ρin satisfy

lim sup
ν↓0

ν

ˆ T

0

ˆ
Td

|∇ρν(t, x)|2dxdt = 0.

Remark 1.5. In contrast with the selection result in [19], we do not have the optimal exponents between
the vector field and the initial datum which insure that weak solutions are well-defined. This is because, for
divergence-free vector fields in L2((0, T )× Td; Rd), we can only prove uniqueness for bounded weak solutions
of (ν -PDE).

1.1. Our argument and organisation of the paper. For the selection part of our result, we relate
forwards-in-time vanishing diffusivity selection to a backwards-in-time uniqueness of vanishing diffusivity
solution by duality. The backwards-in-time uniqueness for vanishing diffusivity solutions follows because of
uniqueness of bounded solution for strictly positive times as well as as uniqueness of the trace up to time
t = 0 in an L∞ weak-star sense. This strategy draws from the work [19] of the second author. The proof of
the absence of anomalous dissipation property draws from [10].

In Section 2, we gather some useful existence and uniqueness results for weak solutions of (PDE) and
(ν -PDE). In Section 3, we thoroughly analyse the backwards problems and prove a uniqueness result for
vanishing diffusivity solutions, as well as a duality formula. In Section 4, we conclude the proof of our main
theorem.

Acknowledgements. GM is supported by the Swiss State Secretariat for Education, Research and
Innovation (SERI) under contract number MB22.00034. MS was supported by the Swiss State Secretariat
for Education, Research and Innovation (SERI) under contract number MB22.00034 during the first part
of this work.

2. Preliminaries

The aim of this section is to state some known results we will need for the proof of our main theorem.

2.1. The non-diffusive problem. We recall the following well-posedness result on (PDE) from [1] in the
context of divergence-free vector fields.

Theorem 2.1. Consider a divergence-free vector field b ∈ L1((0, T );BV (Td; Rd)), and an initial datum
ρin ∈ L∞(Td). Then there exists a unique bounded weak solution of (PDE) along b with initial datum ρin.
Furthermore, up to redefining ρ on a zero measure set we have ρ ∈ C([0, T ];L2(Td)), and

‖ρ(t, ·)‖L2(Td) = ‖ρin‖L2(Td) for every t ∈ [0, T ].

2.2. The diffusive problem. The following remark summarizes the solution theory for (ν -PDE) along a
smooth vector field and with a smooth initial datum.

Remark 2.2. Let (Ω, (Ft)t≥0,P) be a filtered probability space. For t ∈ [0, T ], consider the following
backward stochastic differential equation

dXν
t,s = b(s,Xν

t,s)ds+
√

2νdW s with Xν
t,t(x) = x, (2.1)

where W is a Td-valued Brownian motion adapted to the backward filtration such that we have W t = 0 almost
surely. Assume now that the vector field b is divergence-free and smooth. Then for almost every ω ∈ Ω,
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we have Xt,s(ω) is incompressible, namely Xt,s(ω, ·)#L d = L d. We also recall that the Feynman-Kac
formula, which gives the following expression for solutions of (ν -PDE) with smooth initial datum

ρν(t, x) = E[ρin(Xν
t,0(x))].

It can be checked that ρν ∈ C([0, T ];L2(Td)), and a computation shows that
sup
t∈[0,T ]

‖ρν(t, ·)‖L∞(Td) ≤ ‖ρin‖L∞(Td).

Let us now define bounded weak solutions of the diffuse problem.

Definition 2.3. Consider a vector field b ∈ L1((0, T )× Td; Rd) and an initial datum ρin ∈ L∞(Td). We
shall say that ρ ∈ L∞((0, T )× Td) is a bounded weak solution of (ν -PDE) along b with initial datum ρin,
if for every φ ∈ C∞c ([0, T )× Td), we haveˆ T

0

ˆ
Td

[
ρ(t, x)∂tφ(t, x) + b(t, x)ρ(t, x) · ∇φ(t, x)− νρ(t, x)∆φ(t, x)

]
dxdt = −

ˆ
Td

ρin(x)φ(0, x)dx. (2.2)

The following well-posedness theorem will be useful. We also provide a proof.

Theorem 2.4. Consider a divergence-free vector field b ∈ L2((0, T ) × Td; Rd), an initial datum ρin ∈
L∞(Td), and a real number ν > 0. Then there exists a unique weak solution ρν ∈ L∞((0, T ) × Td) ∩
L2((0, T );H1(Td)) of (ν -PDE) along b with initial datum ρin such that

‖ρν‖L∞((0,T )×Td) ≤ ‖ρin‖L∞(Td).

Moreover ρν belongs to C([0, T ];L2(Td)) up to modification on a zero measure set, and for every t ∈ [0, T ]
‖ρν(t, ·)‖2

L2(Td) + 2ν‖∇ρν‖2
L2((0,t)×Td) ≤ ‖ρin‖

2
L2(Td). (2.3)

Proof. Step 1 (Existence) Let {wδ}δ>0 be a standard family of mollifiers; for example, consider wδ(x) =
δ−dw(x/δ) with w smooth and compactly supported. Define bδ = b ∗ wδ and ρδin = ρin ∗ wδ. We consider
the problem with mollified data {

∂tρ
ν,δ + div(bδρν,δ)− ν∆ρν,δ = 0,

ρν,δ(0, ·) = ρδin.
(2.4)

By the classical theory detailed in Remark 2.2, (2.4) admits a smooth solution that we can bound in
L2((0, T );H1(Td)): indeed, multiplying by ρν,δ and integrating by parts both in space and time, we getˆ t

0
∂s

ˆ
Td

ρν,δ(s, x)ρν,δ(s, x)dxds− 2ν
ˆ t

0

ˆ
Td

∆ρν,δ(s, x)ρν,δ(s, x)dxds = 0,

which implies for a.e. t ∈ [0, T ]

‖ρν,δ(t, ·)‖2
L2(Td) + 2ν‖∇ρν,δ‖2

L2((0,t)×Td) ≤ ‖ρ
δ
in‖2

L2(Td) ≤ ‖ρin‖
2
L2(Td). (2.5)

Together with Remark 2.2, this gives the uniform bounds in δ:
‖ρν,δ‖L∞((0,T )×Td) ≤ ‖ρin‖L∞(Td),

‖ρν,δ‖L2((0,T );H1(Td)) ≤ CT,ν‖ρin‖L2(Td),
(2.6)

where the constant CT,ν depends on T and ν only. Hence, the family {ρν,δ}δ>0 is uniformly bounded and
we can extract a subsequence which converges weakly-star in L∞((0, T )× Td), and in L2((0, T );H1(Td))
to a function ρν , which is a weak solution of (ν -PDE) since the equation is linear and by weak lower
semicontinuity, ρν satisfies the bounds

‖ρν‖L∞((0,T )×Td) ≤ ‖ρin‖L∞(Td),

‖ρν‖L2((0,T );H1(Td)) ≤ CT,ν‖ρin‖L2(Td).
(2.7)
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Step 2 (Uniqueness) Let v be a solution of (ν -PDE) in L∞((0, T )×Td)∩C([0, T ];L2(Td)) with ρin = 0
(which corresponds to the problem solved by the difference of two solutions), and note that the mollification
of the solution vδ := v ∗ wδ satisfies:{

∂tv
δ − ν∆vδ + div(bvδ) = rδ,

vδ(0, ·) = 0,
(2.8)

with rδ := div(bvδ − (bv) ∗ wδ). We can prove that rδ is bounded in L2((0, T ); Ḣ−1(Td)) and

‖rδ‖L2((0,T );Ḣ−1(Td)) → 0 as δ ↓ 0.

Indeed, for any φ ∈ L2((0, T ); Ḣ1(Td)), we have:∣∣∣∣∣
ˆ T

0

ˆ
Td

rδ(s, x)φ(s, x)dxds

∣∣∣∣∣ =

∣∣∣∣∣
ˆ T

0

ˆ
Td

(b(s, x)vδ(s, x)− (bv) ∗ wδ(s, x)) · ∇φ(s, x)dxds

∣∣∣∣∣
=

∣∣∣∣∣
ˆ T

0

ˆ
Td

(ˆ
Td

(b(s, x)− b(s, x− y))v(s, x− y)wδ(y)dy
)
· ∇φ(s, x)dxds

∣∣∣∣∣
≤
ˆ
K

|w(z)|
ˆ T

0

ˆ
Td

|b(s, x)− b(s, x− δz)||v(s, x− δz)||∇φ(s, x)|dxdsdz,

using the change of variables z = y/δ and recalling that supp(w) ⊂ K with K ⊂ Td compact. By dominated
convergence theorem, observing that the integrand converges in measure to 0, we can prove that:

lim
δ→0

ˆ T

0

ˆ
Td

|b(s, x)− b(s, x− δz)||v(s, x− δz)||∇φ(s, x)|dxds = 0. (2.9)

Now, let t ∈ [0, T ], and multiply (2.8) by vδ and integrating by parts in time and space over (0, t)× Td, we
get:

‖vδ(t, ·)‖2
L2(Td)

2 + ν

ˆ t

0

ˆ
Td

|∇vδ(s, x)|2dxds =
ˆ t

0

ˆ
Td

rδ(s, x)vδ(s, x)dxds, (2.10)

The advection term vanishes, becauseˆ t

0

ˆ
Td

div(b(s, x)vδ(s, x))vδ(s, x)dxds = −
ˆ t

0

ˆ
Td

(b(s, x) · ∇vδ(s, x))vδ(s, x)dxds

= −
ˆ t

0

ˆ
Td

div(b(s, x)vδ(s, x))vδ(s, x)dxds,

because div b = 0. By (2.10) and Young’s inequality, we get
‖vδ(t, ·)‖2

L2(Td)

2 + ν‖vδ‖2
L2((0,t);Ḣ1(Td)) ≤ ‖r

δ‖L2((0,t);Ḣ−1(Td))‖v
δ‖L2((0,t);Ḣ1(Td)) (2.11)

≤ ν‖vδ‖2
L2((0,t);Ḣ1(Td)) + 1

4ν ‖r
δ‖2
L2((0,t);Ḣ−1(Td)). (2.12)

The desired uniqueness result comes by observing that
‖vδ(t, ·)‖2

L2(Td)

2 ≤ 1
4ν ‖r

δ‖2
L2((0,t);Ḣ−1(Td)) −→ 0 as δ ↓ 0,

and that t was arbitrary in [0, T ].

Step 3 (Time continuity) We consider ρν,δ = ρν ∗ wδ. Then we have{
∂tρ

ν,δ − ν∆ρν,δ + div(bρν,δ) = rδ,

ρν,δ(0, ·) = 0,
(2.13)
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with rδ := div(bρν,δ − (bρν) ∗ wδ). Since for a.e. t ∈ (0, T ) we have ρν(t, ·) ∈ L2(Td), then

‖ρν,δ(t, ·)− ρν(t, ·)‖L2(Td) → 0

as δ ↓ 0 for a.e. t ∈ (0, T ). We can multiply the equation (2.13) by ρν,δ and integrate in space and in time
in the interval (s, t) to get∣∣∣‖ρν,δ(s, ·)‖2

L2(Td) − ‖ρ
ν,δ(t, ·)‖2

L2(Td)

∣∣∣ = 2
∣∣∣∣ν ˆ t

s

‖∇ρν,δ(τ, ·)‖2
L2(Td)dτ +

ˆ t

s

ˆ
Td

rδρ
ν,δ

∣∣∣∣
≤ 2ν

ˆ t

s

‖∇ρν(τ, ·)‖2
L2(Td)dτ

+ 2‖rδ‖L2((0,T );Ḣ−1(Td))‖ρ
ν,δ‖L2((0,T );Ḣ1(Td))

We observe that 2ν‖ρν,δ‖2
L2((0,T );Ḣ1(Td)) ≤ ‖ρ

δ
in‖2

L2(Td) ≤ ‖ρin‖
2
L2(Td) is uniformly bounded in δ > 0 by

(2.3) and that ‖rδ‖L2((0,T );Ḣ−1(Td)) → 0 as δ ↓ 0 as noticed in the previous step. Then, passing to the limit
δ ↓ 0 in the previous inequality, we get for a.e. t, s ∈ (0, T )∣∣∣‖ρν(s, ·)‖2

L2(Td) − ‖ρ
ν(t, ·)‖2

L2(Td)

∣∣∣ ≤ 2ν
ˆ t

s

‖∇ρν(τ, ·)‖2
L2(Td)dτ .

Since ρν ∈ L2((0, T );H1(Td)), this inequality implies that, up to redefining ρν on a zero measure set,
ρν ∈ C([0, T ];L2(Td)).

�

We record the following proposition, which will be used to prove the main theorem.

Proposition 2.5. Consider a divergence-free vector field b ∈ L2((0, T ) × Td; Rd), and an initial datum
ρin ∈ L∞(Td). Then there exists a vanishing diffusivity solution ρ with initial datum ρin. Furthermore,
any weakly-star converging subsequence of {ρν}ν>0 is also converging in the C([0, T ];w − L2(Td)) topology.

Proof. Step 1 (Existence) The family of unique weak solutions {ρν}ν>0 ⊂ L∞((0, T )× Td) is relatively
compact with respect to the weakly-star convergence, thanks to the estimate ‖ρν‖L∞((0,T )×Td) ≤ ‖ρin‖L∞(Td)
given in Theorem 2.4. Then, {ρν}ν>0 admits an accumulation point ρ, which solves (PDE) along b with
initial datum ρin and which is thus a vanishing diffusivity solution.

Step 2 (Convergence in C([0, T ];w−L2(Td))) Let (ρνi)i∈N be a sequence, which converges to ρ weak-star
in L∞((0, T )× Td). Let us prove the convergence in C([0, T ];w − L2(Td)). From Theorem 2.4, we have
ρν ∈ C([0, T ];L2(Td)). So, for every φ ∈ L2(Td), we define the functions

fνφ : [0, T ] 3 t 7−→
ˆ

Td

ρν(t, x)φ(x)dx.

Let N ⊂ C2
c (Td) be a countable, dense set in L2(Td), and let φ ∈ N . We can prove that the family {fνφ}ν>0

is bounded; thanks to the bound in Theorem 2.4, we have equiboundedness:∣∣∣ˆ
Td

ρν(t, x)φ(x)dx
∣∣∣ ≤ ‖ρin‖L∞(Td)‖φ‖L2(Td).

Also, we have the equicontinuity. Indeed, for every 0 ≤ s ≤ t ≤ T, by the weak formulation of (ν -PDE),
we have ∣∣fνφ (t)− fνφ (s)

∣∣ ≤ ˆ t

s

ˆ
Td

|b(τ, x)ρν(τ, x) · ∇φ(x) + νρν(τ, x)∆φ(x)|dxdτ

≤
(
‖b‖L1((s,t);L2(Td))‖φ‖C1(Td) + ν(t− s)‖φ‖C2(Td)

)
‖ρin‖L∞(Td)
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where we have taken a test function φ(x)ψ(τ) = φ(x)1[s,t](τ), and the bound in Theorem 2.4. Therefore,
by the Arzelà-Ascoli Theorem, and up to a relabeling of sequences, for every φ ∈ N , the sequence (fνi

φ )i∈N

converges in C([0, T ]) to some fφ. We now claim that

fφ(t) =
ˆ

Td

ρ(t, x)φ(x)dx ∀t ∈ [0, T ], ∀φ ∈ N (2.14)

where we recall that ρ is the vanishing diffusivity solution. Let φ ∈ N , and observe that
ˆ T

0
fφ(s)ψ(s)ds =

ˆ T

0

ˆ
Td

ρ(s, x)ψ(s)φ(x)dxds ∀ψ ∈ L∞((0, T )) (2.15)

since ρνi converges weakly-star to ρ in L∞((0, T )× Td) as i→ +∞. Therefore

fφ(s) =
ˆ

Td

ρ(s, x)φ(x)dx for a.e. s ∈ (0, T ). (2.16)

Since fφ ∈ C([0, T ]), and by Theorem 2.4, [0, T ] 3 t 7−→
´

Td ρ(t, x)φ(x)dx is continuous, the claim (2.14)
holds ∀t ∈ [0, T ]. Now, by density of N in L2(Td), we have that ρνi converges in C([0, T ];w− L2(Td)) to ρ
as i→ +∞. �

3. Analysis of backward problems

Throughout this section, we consider χ ∈ C∞c ((0, T )×Td), a divergence-free vector field b : [0, T ]×Td →
Rd, which belongs to L1

loc((0, T ]);BV (Td; Rd)) ∩ L2((0, T ) × Td; Rd)), and ν ∈ (0, 1). We consider the
following backward advection problem{

∂tθχ + div(bθχ) + χ = 0,
θχ(T, ·) = 0.

(BW)

Weak solutions to (BW) are defined as follows.

Definition 3.1. We shall say that θχ ∈ L∞((0, T )× Td) is a bounded weak solution of (BW), if for every
φ ∈ C∞c ((0, T ]× Td), we have

ˆ T

0

ˆ
Td

[
θχ(t, x)∂tφ(t, x) + b(t, x)θχ(t, x) · ∇φ(t, x)− χ(t, x)φ(t, x)

]
dxdt = 0. (3.1)

We consider also the following advection-diffusion problem.{
∂tθ

ν
χ + div(bθνχ) + ν∆θνχ + χ = 0,

θνχ(T, ·) = 0.
(ν−BW)

Similarly, weak solutions to (ν−BW) are defined as follows.

Definition 3.2. We shall say that θνχ ∈ L∞((0, T ) × Td) is a bounded weak solution of (ν−BW), if for
every φ ∈ C∞c ((0, T ]× Td), we have

ˆ T

0

ˆ
Td

[
θνχ(t, x)∂tφ(t, x) + b(t, x)θνχ(t, x) · ∇φ(t, x)

− νθνχ(t, x)∆φ(t, x)− χ(t, x)φ(t, x)
]
dxdt = 0. (3.2)
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3.1. The non-diffusive problem. The following result is a consequence of Theorem 2.1.

Theorem 3.3. In the context of this section, there exists a unique bounded weak solution of (BW) such
that

‖θχ‖L∞((0,T )×Td) ≤
ˆ T

0
‖χ(s, ·)‖L∞(Td)ds (3.3)

and, up to redefining θχ on a zero-measure set, we have θχ ∈ C([0, T ];w − L2(Td)).

Remark 3.4. For the vector field constructed by Depauw in [11], which satisfies the assumptions of the
above theorem, it is false that θχ is continuous in time up to t = 0 in the strong L2(Td) topology, i.e. there
exist χ and θχ as in the above theorem such that θχ does not belong to C([0, T ];L2(Td)).

Proof. Step 1 (Existence) Let {wδ}δ>0 be a standard family of mollifiers; define bδ := b ∗wδ, which is such
that bδ → b in L1((0, T ) × Td; Rd), and consider the classical solution θδχ to (BW) with mollified vector
field: {

∂tθ
δ
χ + div(bδθδχ) + χ = 0,

θδχ(T, ·) = 0.
(3.4)

The following bound holds true

‖θδχ‖L∞((0,T )×Td) ≤
ˆ T

0
‖χ(s, ·)‖L∞(Td)ds. (3.5)

Existence of a solution θχ to (BW) follows by the fact that the family {θδχ}δ>0 is uniformly bounded
in L∞((0, T )× Td), hence it admits an accumulation point in the weak-star topology. Using that bδ → b
in L2((0, T )× Td; Rd), we conclude existence of a bounded weak solution θχ, since we can pass into the
limit δ ↓ 0 in the weak formulation of (ν−BW). Finally, (3.3) holds for θχ thanks to the weak lower
semicontinuity of the norm.

Step 2 (Uniqueness). Recall that the equation is linear, hence the problem for the difference of two
distinct solutions v ∈ L∞((0, T )× Td) reads as{

∂tv + div(bv) = 0,
v(T, ·) = 0 .

Switching to the time variable t̃ = T − t, we can refer to Theorem 2.1 to conclude v = 0 and hence
uniqueness.

Step 3 (Time continuity) Let N be a dense, countable subset of L2(Td), which exists by separability,
and let φ ∈ N . Let also ψ ∈ C∞c ((0, T ]). Define

Θφ(t) :=
ˆ

Td

θχ(t, x)φ(x)dx,

and note that from the weak formulation of (BW):ˆ T

0
Θφ(s)∂sψ(s)ds =

ˆ
Td

θfin(x)ψ(T, x)dx−
ˆ T

0

ˆ
Td

b(τ, x)θχ(τ, x)·∇φ(x)ψ(τ)dxdτ+
ˆ T

0

ˆ
Td

χ(τ, x)φ(x)ψ(τ)dxdτ.

Since b ∈ L2((0, T )× Td; Rd), θχ ∈ L∞((0, T );L2(Td)),∇φ ∈ L∞(Td) and ψ ∈ L∞((0, T )), we can conclude
that ∂tΘφ ∈ L1((0, T )), hence Θφ is continuous up to a set Tφ of measure zero. Now let

T :=
⋃
φ∈N

Tφ,

which also has zero measure. For every φ ∈ N , we redefine Θφ on T to be continuous, and we observe
that, since Θφ(t) ≤ ‖θχ‖L∞((0,T );L2(Td))‖φ‖L2(Td) for all t ∈ [0, T ], the bounded linear functional Lt : N 3
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φ 7−→ Θφ(t) ∈ R admits a unique continuous extension L̄t : L2(Td) 3 φ 7−→ Θ̄φ(t) ∈ R. Hence, by Riesz
representation theorem, there exists θ̄χ(t, ·) ∈ L2(Td) such that

ˆ
Td

θ̄χ(t, x)φ(x)dx = Θ̄φ(t) ∀φ ∈ L2(Td), ∀t ∈ [0, T ],

with the properties θ̄χ(t, ·) = θχ(t, ·) ∀t ∈ [0, T ] \ T and ‖θ̄χ‖L∞((0,T );L2(Td)) ≤ ‖θχ‖L∞((0,T );L2(Td)).

We are left to prove that [0, T ] 3 t 7−→ Θφ(t) =
´

Td θ̄χ(t, x)φ(x)dx is continuous for any φ ∈ L2(Td). By
density of N in L2(Td), we know that ∀δ > 0, ∃φδ ∈ N such that ‖φδ − φ‖L2(Td) ≤ δ. Hence, for every
t ∈ [0, T ], we have∣∣∣∣ˆ

Td

θ̄χ(t, x)φδ(x)dx−
ˆ

Td

θ̄χ(t, x)φ(x)dx
∣∣∣∣ ≤ ‖θχ‖L∞((0,T );L2(Td))‖φδ − φ‖L2(Td) ≤ ‖χ‖L1((0,T );L∞(Td))δ,

where we have used (3.3) in the last inequality. Hence, [0, T ] 3 t 7−→
´

Td θ̄χ(t, x)φδ(x)dx converges
uniformly to [0, T ] 3 t 7−→

´
Td θ̄χ(t, x)φ(x)dx as δ ↓ 0, which implies that [0, T ] 3 t 7−→

´
Td θ̄χ(t, x)φ(x)dx

is continuous as well. This proves that θ̄χ belongs to C([0, T ];w − L2(Td)). As θχ coincides with θ̄χ except
on a zero-measure set, the thesis follows.

�

3.2. The diffusive problem. Let us summarise the classical theory for (ν−BW) along a smooth vector
field.

Remark 3.5. Let (Ω, (Ft)t≥0,P) be a filtered probability space. For t ∈ [0, T ], consider the following
forward stochastic differential equation

dXν
s,t = b(s,Xν

s,t)ds+
√

2νdW s with Xν
t,t(x) = x, (3.6)

where W is a Td-valued Brownian motion adapted to the filtration such that we have W t = 0 almost surely.
Assume now that the vector field b is divergence-free and smooth. Then for almost every ω ∈ Ω, we have
Xs,t(ω) is incompressible, namely Xs,t(ω, ·)#L d = L d. We also recall that the Feynman-Kac formula,
which gives the following expression for the solution of (ν−BW)

θνχ(t, x) =
ˆ T

t

E[χ(s,Xν
s,t(x))]ds.

It can be checked that θνχ ∈ C([0, T ];L2(Td)), and a computation using the dual characterisation of the
norm and Fubini shows that

sup
t∈[0,T ]

‖θνχ(t, ·)‖L∞(Td) ≤
ˆ T

0
‖χ(s, ·)‖L∞(Td)ds.

The following lemma will be useful.

Lemma 3.6. In the context of this section, there exists a unique bounded weak solution θνχ ∈ C([0, T ];L2(Td))∩
L2((0, T );H1(Td)) of (ν−BW), which satisfies the following energy estimate for every t ∈ [0, T ]

‖θνχ(t, ·)‖2
L2(Td) + 2ν

ˆ T

t

ˆ
Td

|∇θνχ(s, x)|2dxds ≤ 4T‖χ‖2
L2((t,T )×Td). (3.7)

and the bound

‖θνχ‖L∞((0,T )×Td) ≤
ˆ T

0
‖χ(s, ·)‖L∞(Td)ds. (3.8)
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Proof. Step 1 (Existence) Consider a standard family of mollifiers {wδ}δ>0 and define bδ = b ∗wδ. Define
θν,δχ as the solution to the backwards problem with mollified data:{

∂tθ
ν,δ
χ + ν∆θν,δχ + div(bδθν,δχ ) + χ = 0,

θν,δχ (T, ·) = 0.
(3.9)

By the classical theory detailed in Remark 3.5, there exists a unique smooth solution θν,δ; now, mutliply
(3.9) by θν,δχ and integrate in space and time over (t, T )× Td to get for every t ∈ [0, T ] that

‖θν,δχ (t, ·)‖2
L2(Td) + 2ν

ˆ T

t

ˆ
Td

|∇θν,δχ (s, x)|2dxds ≤ 4T‖χ‖2
L2((0,T )×Td). (3.10)

We also have that

‖θν,δχ ‖L∞((0,T )×Td) ≤
ˆ T

0
‖χ(s, ·)‖L∞(Td)ds. (3.11)

Then, by compactness arguments, there exists a subsequence (θν,δk
χ )k∈N such that θν,δk

χ converges weakly-star
in L∞((0, T ) × Td) to θνχ, and converges weakly in L2((0, T );H1(Td)). Moreover θνχ is a bounded weak
solution of (ν−BW), since the equation is linear. The bounds (3.7) and (3.8) for θνχ follow from the weak
lower semicontinuity of the norms.

Step 2 (Uniqueness) We observe that the difference of two solutions v ∈ L2((0, T );H1(Td))∩C([0, T ];L2(Td))
solves {

∂tv + ν∆v + div(bv) = 0,
v(T, ·) = 0 .

We can conclude uniqueness by mollification, analogously to the case of the forward problem (2.8). Indeed,
introducing the mollified vector field bδ = b ∗ wδ, we have that the mollified solutions vδ = v ∗ wδ solves{

∂tv
δ + ν∆vδ + div(bδvδ) = rδ,

v(T, ·) = 0 .

where rδ := div(bvδ − (bv) ∗ wδ). Let t ∈ [0, T ]. Now, multiplying by vδ and integrating in space and time,
we get

1
2

ˆ T

t

∂s

ˆ
Td

vδ(s, x)vδ(s, x)dxds− ν
ˆ T

t

ˆ
Td

|∇vδ(s, x)|2dxds =
ˆ T

t

ˆ
Td

rδ(s, x)vδ(s, x)dxds,

We then have
‖vδ(t, ·)‖2

L2(Td)

2 + ν‖vδ‖L2((t,T );Ḣ1(Td)) ≤ ‖r
δ‖L2((t,T );Ḣ−1(Td))‖v

δ‖L2((t,T );Ḣ1(Td))

which implies, using Young inequality as in (2.12) that

‖vδ(t, ·)‖2
L2(Td)

2 ≤ 1
4ν ‖r

δ‖2
L2((0,T );Ḣ−1(Td)) → 0 as δ ↓ 0,

as done in Theorem 2.4, from which we conclude v = 0 a.e. because t was arbitrary in [0, T ].
Step 3 (Time continuity) The time continuity can be proved analogously to Step 3 of Theorem 2.4.

�
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Lemma 3.7. In the context of this section, consider ρν ∈ C([0, T ];L2(Td))∩L2((0, T );H1(Td)) the unique
weak solution to (ν -PDE), and θνχ ∈ C([0, T ];L2(Td))∩L2((0, T );H1(Td)) the unique bounded weak solution
to (ν−BW). Then the following duality formula holdsˆ T

0

ˆ
Td

ρν(s, x)χ(s, x)dxds =
ˆ

Td

ρin(x)θνχ(0, x)dx. (3.12)

Proof. We mollify the vector field and the initial datum in (ν -PDE), and consider ρν,δ solving{
∂tρ

ν,δ + div(bδρν,δ)− ν∆ρν,δ = 0,
ρν,δ(0, ·) = ρδin.

(3.13)

Consider also: {
∂tθ

ν
χ + div(bθνχ) + ν∆θνχ + χ = 0,

θνχ(T, ·) = 0.
(3.14)

Since ρν,δ is smooth, we can multiply the equation in (3.14) by ρν,δ and integrate by parts discharging
derivatives on ρν,δ:

−
ˆ T

0

ˆ
Td

(∂tρν,δ(t, x) + bδ(t, x) · ∇ρν,δ(t, x)− ν∆ρν,δ(t, x))θνχ(t, x)dtdx

−
ˆ T

0

ˆ
Td

(b(t, x)− bδ(t, x)) · ∇ρν,δ(t, x)θνχ(t, x)dxdt+
ˆ T

0

ˆ
Td

χ(t, x)ρν,δ(t, x)dxdt =
ˆ

Td

ρδin(x)θνχ(0, x)dx.

By (3.13) we have that ∂tρν,δ + bδ · ∇ρν,δ − ν∆ρν,δ = 0; moreover, we can prove that, as δ ↓ 0:ˆ T

0

ˆ
Td

(b(t, x)−bδ(t, x))·∇ρν,δ(t, x)θνχ(t, x)dxdt ≤ ‖b−bδ‖L2((0,T )×Td)‖∇ρν,δ‖L2((0,T )×Td)‖θνχ‖L∞((0,T )×Td) → 0,

thanks to the fact that bδ → b strongly in L2((0, T ) × Td; Rd), and by Lemma 3.6, ‖θνχ‖L∞((0,T )×Td) is
bounded. Note also thatˆ T

0

ˆ
Td

χ(t, x)ρν,δ(t, x)dxdt→
ˆ T

0

ˆ
Td

χ(t, x)ρν(t, x)dxdt as δ ↓ 0,

since ρν,δ ∗⇀ ρν in L∞((0, T )× Td) as proved in Theorem 2.4, andˆ
Td

ρδin(x)θνχ(0, x)dx→
ˆ

Td

ρin(x)θνχ(0, x)dx as δ ↓ 0,

because ρδin → ρin in L2(Td). Therefore, we have that
ˆ T

0

ˆ
Td

χ(t, x)ρν(t, x)dxdt =
ˆ

Td

ρin(x)θνχ(0, x)dx.

�

3.3. Uniqueness of the backward vanishing diffusivity solution. The following lemma is essential
to prove Theorem 1.4.

Lemma 3.8. In the context of this section, consider the family {θνχ}ν>0 of bounded weak solutions of
(ν−BW), and the bounded weak solution θχ of (BW). Then the family {θνχ}ν>0 converges in C([0, T ];w −
L2(Td)) to θχ as ν ↓ 0.

Proof. Since from Lemma 3.6, we have the uniform bound

‖θνχ‖L∞((0,T )×Td) ≤
ˆ T

0
‖χ(s, ·)‖L∞(Td)ds, (3.15)
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the family {θνχ}ν>0 is bounded and therefore has at least one accumulation point in the weak-star topology
on L∞((0, T )× Td)). Moreover, any limit point must be a weak solution of (BW), and as by Theorem 3.3,
θχ is the unique such solution, we have that θνχ converges weakly-star in L∞((0, T )× Td) to θχ as ν ↓ 0.

In particular, for every φ ∈ L2(Td), and every ψ ∈ L1((0, T )) it holds:ˆ T

0

ˆ
Td

θνχ(s, x)φ(x)ψ(s)dxds→
ˆ T

0

ˆ
Td

θχ(s, x)φ(x)ψ(s)dxds as ν ↓ 0. (3.16)

Let us prove that the convergence takes place in C([0, T ];w − L2(Td)). From Lemma 3.6, we have
θνχ ∈ C([0, T ];L2(Td)). So, for every φ ∈ L2(Td), we define the functions

fνφ : [0, T ] 3 t 7−→
ˆ

Td

θνχ(t, x)φ(x)dx.

Let N ⊂ C2
c (Td) be a countable, dense set in L2(Td), and let φ ∈ N . We can prove that the sequence

{fνφ}ν>0 is bounded; thanks to (3.7), we have equiboundedness:∣∣∣ ˆ
Td

θνχ(t, x)φ(x)dx
∣∣∣ ≤ ‖θνχ‖L∞((0,T );L2(Td))‖φ‖L∞(Td) ≤ 4T‖χ‖L2((0,T )×Td)‖φ‖L∞(Td).

Also, we have the equicontinuity. Indeed, for every 0 ≤ s ≤ t ≤ T by the weak formulation of (3.2), we have∣∣fνφ (t)− fνφ (s)
∣∣ ≤ ˆ t

s

ˆ
Td

|b(τ, x)θνχ(τ, x) · ∇φ(x) + νθνχ(τ, x)∆φ(x) + χ(τ, x)φ(x)|dxdτ

≤
(
‖b‖L1((s,t);L2(Td))‖φ‖C1(Td) + ν(t− s)‖φ‖C2(Td)

)
‖θνχ‖L∞((0,T );L2(Td))

+ ‖χ‖L1((s,t);L1(Td))‖φ‖C(Td)

≤
(
‖b‖L1((s,t);L2(Td))‖φ‖C1(Td) + ν(t− s)‖φ‖C2(Td)

)
4T‖χ‖L2((0,T )×Td)

+ ‖χ‖L1((s,t);L1(Td))‖φ‖C(Td),

where we have taken a test function φ(x)ψ(τ) = φ(x)1[s,t](τ), and used (3.15) in the last bound. Therefore,
by the Arzelà-Ascoli theorem and a diagonal argument, there exists a sequence (νi)i∈N such that νi ↓ 0, and
for every φ ∈ N , the sequence (fνi

φ )i∈N converges in C([0, T ]) to some fφ. Now, let φ ∈ N . We claim that

fφ(t) =
ˆ

Td

θχ(t, x)φ(x)dx ∀t ∈ [0, T ], (3.17)

where θχ ∈ C([0, T ];w − L2(Td)) is the unique solution to the transport equation by Theorem 3.3. We
observe by (3.23) thatˆ T

0
fφ(s)ψ(s)ds =

ˆ T

0

ˆ
Td

θχ(s, x)ψ(s)φ(x)dxds ∀ψ ∈ L1((0, T )). (3.18)

Therefore
fφ(s) =

ˆ
Td

θχ(s, x)φ(x)dx for a.e. s ∈ (0, T ). (3.19)

Since fφ ∈ C([0, T ]), and by Lemma 3.6, [0, T ] 3 t 7−→
´

Td θχ(s, x)φ(x)dx is continuous, the claim (3.24)
holds ∀t ∈ [0, T ].

Therefore, the family {fνφ}ν>0 converges uniformly to fφ, because every subsequence {fνk

φ }k∈N admits a
subsequence {fνkl

φ }l∈N convergent to the same limit fφ. Indeed, if we suppose by contradiction that the
full sequence is not convergent, i.e., ∃ε > 0, {fνk

φ }k∈N such that ‖fνk

φ − fφ‖C([0,T ]) > ε, we contradict the
hypothesis. Finally, by density of N in L2(Td), we have that θνχ converges in C([0, T ];w−L2(Td)) to θχ as
ν ↓ 0. �
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3.4. Regularisation by convolution. Consider a standard mollifier w ∈ C∞c ((0, 1)d) such that w ≥ 0
and

´
(0,1)d w(x)dx = 1, and for every δ > 0, write wδ(x) = w(x/δ)/δd, and bδ = b ∗ wδ. Let θδχ be the

unique solution {
∂tθ

δ
χ + div(bδθδχ) + χ = 0,

θδχ(T, ·) = 0.
(δ-BW)

It is then given by

θδχ(t, x) =
ˆ T

t

χ(s,Xδ(s, t, x))ds, (3.20)

where Xδ solves {
∂sX

δ(s, t, x) = bδ(t,Xδ(s, t, x)),
Xδ(t, t, x) = x.

(δ-ODE)

Let ρδ be the unique bounded weak solution of (PDE) along bδ with initial datum ρin. The following then
holds.

Lemma 3.9. In the context of this section, consider the family {θδχ}δ>0 of bounded weak solutions of
(δ-BW), and the bounded weak solution θχ of (BW). Then the family {θδχ}δ>0 converges in C([0, T ];w −
L2(Td)) to θχ as δ ↓ 0.

Moreover, we have the duality formulaˆ T

0

ˆ
Td

ρδ(s, x)χ(s, x)dxds =
ˆ

Td

ρin(x)θδχ(0, x)dx ∀χ ∈ C∞c ((0, T )× Td), (3.21)

for every δ > 0.

Proof. The argument is analogous to the proof of Lemma 3.8. Thanks to the representation formula (3.20),
we have the uniform in δ bound

‖θδχ‖L∞((0,T )×Td) ≤
ˆ T

0
‖χ(s, ·)‖L∞(Td)ds, (3.22)

Thus, the family {θδχ}δ>0 is bounded and therefore has at least one accumulation point for the weak-star
topology on L∞((0, T ) × Td)). Moreover, any limit point must be a weak solution of (BW), and as by
Theorem 3.3, θχ is the unique such solution, we have that θδχ converges weakly-star in L∞((0, T )× Td) to
θχ as δ ↓ 0.

In particular, for every φ ∈ L2(Td), and every ψ ∈ L1((0, T )) it holds:ˆ T

0

ˆ
Td

θδχ(s, x)φ(x)ψ(s)dxds→
ˆ T

0

ˆ
Td

θχ(s, x)φ(x)ψ(s)dxds as δ ↓ 0. (3.23)

Let us prove that the convergence takes place in C([0, T ];w − L2(Td)). From Lemma 3.6, we have
θδχ ∈ C([0, T ];L2(Td)). So, for every φ ∈ L2(Td), we define the functions

fδφ : [0, T ] 3 t 7−→
ˆ

Td

θδχ(t, x)φ(x)dx.

Let N ⊂ C2
c (Td) be a countable, dense set in L2(Td), and let φ ∈ N . We can prove that the sequence

{fδφ}δ>0 is bounded; thanks to (3.7), we have equiboundedness:∣∣∣ˆ
Td

θδχ(t, x)φ(x)dx
∣∣∣ ≤ 4T‖θδχ‖L∞((0,T );L2(Td))‖φ‖L∞(Td) ≤ 4T‖χ‖L2((0,T )×Td)‖φ‖L∞(Td).

Also, we have the equicontinuity. Indeed, for every 0 ≤ s ≤ t ≤ T by the weak formulation of (3.2), we have∣∣fδφ(t)− fδφ(s)
∣∣ ≤ ˆ t

s

ˆ
Td

|b(τ, x)θδχ(τ, x) · ∇φ(x) + χ(τ, x)φ(x)|dxdτ
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≤ ‖b‖L1((s,t);L2(Td))‖φ‖C1(Td)‖θδχ‖L∞((0,T );L2(Td))

+ ‖χ‖L1((s,t);L1(Td))‖φ‖C(Td)

≤ 4T‖b‖L1((s,t);L2(Td))‖φ‖C1(Td)‖χ‖L2((0,T )×Td)

+ ‖χ‖L1((s,t);L1(Td))‖φ‖C(Td),

where we have taken a test function φ(x)ψ(τ) = φ(x)1[s,t](τ), and used (3.15) in the last bound. Therefore,
by the Arzelà-Ascoli theorem and a diagonal argument, there exists a sequence (δi)i∈N such that δi ↓ 0, and
for every φ ∈ N , the sequence (fδi

φ )i∈N converges in C([0, T ]) to some fφ. Now, let φ ∈ N . We claim that

fφ(t) =
ˆ

Td

θχ(t, x)φ(x)dx ∀t ∈ [0, T ], (3.24)

where θχ ∈ C([0, T ];w − L2(Td)) is the unique solution to the transport equation by Theorem 3.3. We
observe by (3.23) thatˆ T

0
fφ(s)ψ(s)ds =

ˆ T

0

ˆ
Td

θχ(s, x)ψ(s)φ(x)dxds ∀ψ ∈ L1((0, T )). (3.25)

Therefore
fφ(s) =

ˆ
Td

θχ(s, x)φ(x)dx for a.e. s ∈ (0, T ). (3.26)

Since fφ ∈ C([0, T ]), and by Lemma 3.6, [0, T ] 3 t 7−→
´

Td θχ(s, x)φ(x)dx is continuous, the claim (3.24)
holds ∀t ∈ [0, T ].

Therefore, the family {fδφ}δ>0 converges uniformly to fφ, because every subsequence {fδk

φ }k∈N admits a
subsequence {fδkl

φ }l∈N convergent to the same limit fφ. Indeed, if we suppose by contradiction that the
full sequence is not convergent, i.e., ∃ε > 0, {fδk

φ }k∈N such that ‖fδk

φ − fφ‖C([0,T ]) > ε, we contradict the
hypothesis. Finally, by density of N in L2(Td), we have that θδχ converges in C([0, T ];w−L2(Td)) to θχ as
δ ↓ 0.

Let us prove the duality formula (3.21). Let χ ∈ C∞c ((0, T ) × Td) be arbitrary, and note that by the
classical theory

ρδ(s, ·) = Xδ(s, 0, ·)#ρinL
d, (3.27)

where recall that Xδ solves (δ-ODE). Therefore,ˆ T

0

ˆ
Td

ρδ(s, x)χ(s, x)dxds =
ˆ T

0

ˆ
Td

ρin(x)χ(s,Xδ(s, 0, x))dxds =
ˆ

Td

ρin(x)θδχ(0, x)dx, (3.28)

where in the last equality, we have used Fubini, and (3.20). This proves the thesis. �

4. Proof of Theorem 1.4

Let χ ∈ C∞c ((0, T )× Td) be arbitrary. We have proved the duality formula in (3.12)ˆ T

0

ˆ
Td

ρν(s, x)χ(s, x)dxds =
ˆ

Td

ρin(x)θνχ(0, x)dx. (4.1)

Let ρ be a vanishing viscosity solution of (PDE) along b with initial datum ρin, which exists by Proposi-
tion 2.5. We can pass into the limit ν ↓ 0 in (3.12) and we getˆ T

0

ˆ
Td

ρ(s, x)χ(s, x)dxds =
ˆ

Td

ρin(x)θχ(0, x)dx, (4.2)

where we have used that θνχ(0, ·) ⇀ θχ(0, ·) in L2(Td) as ν ↓ 0, thanks to Lemma 3.8. As χ was arbitrary,
this uniquely characterises the vanishing diffusivity solution, up to a zero measure set.
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Now let w be a standard mollifier, and let {ρ̃δ}δ>0 be the family of unique bounded weak solutions along
b ∗wδ. Then by the classical theory ‖ρ̃δ‖L∞((0,T )×Td) ≤ ‖ρin‖L∞(Td) for every δ > 0, and there is therefore
a sequence (δi)i∈N such that ρ̃δi converges weakly-star in L∞((0, T )× Td) to some ρ̃ as i→ +∞. Also by
Lemma 3.9, we have the duality formulaˆ T

0

ˆ
Td

ρ̃δ(t, x)χ(t, x)dxdt =
ˆ T

0

ˆ
Td

ρin(x)θδχ(0, x)dx ∀χ ∈ C∞c ((0, T )× Td). (4.3)

As θδχ(0, ·) converges weakly to θχ(0, ·) in L2(Td), a subsubsequence argument shows that the whole family
{ρ̃δ}δ>0 converges weakly-star to ρ̃ in L∞((0, T )× Td) as δ ↓ 0 andˆ T

0

ˆ
Td

ρ̃(s, x)χ(s, x)dxds =
ˆ

Td

ρin(x)θχ(0, x)dx ∀χ ∈ C∞c ((0, T )× Td). (4.4)

This uniquely characterises ρ̃ independently of the standard mollifier w, and in view of (4.2) shows that up
to a zero measure set, we have ρ = ρ̃, where we recall that ρ is the vanishing diffusivity solution.

We are missing the proof of no anomalous dissipation. We suppose by contradiction that there exists
ε > 0 and a subsequence νn → 0 such that

lim sup
νn→0

νn

ˆ T

0

ˆ
Td

|∇ρνn(s, x)|2dxds > ε .

In light of Proposition 2.5, the vanishing viscosity solution ρ belongs to C([0, T ];w − L2(Td)) and ρν

converges to ρ in C([0, T ];w − L2(Td)) as ν ↓ 0. Let us now give a useful lemma.

Lemma 4.1. In the context of this section, we have
lim
t→0+

‖ρ(t, ·)‖L2(Td) = ‖ρin‖L2(Td) .

Proof. We know that ρν ∗⇀ ρ in the weak-star topology of L∞((0, T );L2(Td)) as ν ↓ 0. We know ρ(t, ·) ⇀ ρin
in the weak L2 topology as t ↓ 0. From the lower semicontinuity of the norms and the bound of Theorem 2.1
we get

‖ρ(t, ·)‖L2(Td) ≤ ‖ρin‖L2(Td) ∀t ∈ [0, T ] .
Therefore from the lower semicontinuity of the norms and the previous bound we getˆ

Td

|ρin(x)|2dx ≥ lim sup
t→0+

ˆ
Td

|ρ(t, x)|2dx ≥ lim inf
t→0+

ˆ
Td

|ρ(t, x)|2dx ≥
ˆ

Td

|ρin(x)|2dx .

�

Firstly, thanks to Lemma 4.1 we fix δ > 0 such that

‖ρ(t, ·)‖2
L2(Td) ≥ ‖ρin‖2

L2(Td) −
ε

4 ∀ t ≤ δ . (4.5)

Therefore, we have

νn

ˆ T

0

ˆ
Td

|∇ρνn(s, x)|2dxds = νn

ˆ δ

0

ˆ
Td

|∇ρνn(s, x)|2dxds+ νn

ˆ T

δ

ˆ
Td

|∇ρνn(s, x)|2dxds (4.6)

and the first term can be bounded thanks to Theorem 2.4 with

2νn
ˆ δ

0

ˆ
Td

|∇ρνn(s, x)|2dxds = ‖ρin‖2
L2(Td) − ‖ρ

νn(δ, ·)‖2
L2(Td)

= ‖ρin‖2
L2(Td) − ‖ρ(δ, ·)‖2

L2(Td)

+ ‖ρ(δ, ·)‖2
L2(Td) − ‖ρ

νn(δ, ·)‖2
L2(Td)
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≤ ε

4 + ε

4 ,

where in the last we used (4.5) to estimate ‖ρ(δ, ·)‖2
L2(Td) − ‖ρ

νn(δ, ·)‖2
L2(Td) ≤ ε/4 we used the lower

semicontinuity of the norms, and have taken n sufficiently large.

To estimate the second term in (4.6) we claim that

lim sup
νn→0

νn

ˆ T

δ

ˆ
Td

|∇ρνn |2dxds ≤ ε

4 ,

which will conclude the proof. We estimate

2νn
ˆ T

δ

ˆ
Td

|∇ρνn(s, x)|2dxds ≤ 2νn
ˆ T

δ

ˆ
Td

|∇ρνn(s, x)|2dxds+ 2νn
ˆ T

δ

ˆ
Td

|∇(ρνn(s, x)− ρνn(s, x))|2dxds,

where ρνn ∈ L∞((δ, T )×Td)∩L2((δ, T );H1(Td)) is the unique solution to the advection-diffusion (ν -PDE)
on [δ, 1]× Td with initial datum ρ(δ, ·) ∈ L2(Td) by Theorem 2.4. Thanks again to Theorem 2.4 applied to
ρν we have ˆ

Td

|ρνn(T, x)|2dx+ 2νn
ˆ T

δ

ˆ
Td

|∇ρνn(s, x)|2dxds ≤
ˆ

Td

|ρνn(δ, x)|2dx. (4.7)

Observe that in view of Proposition 2.5, and by uniqueness of bounded weak solutions of (PDE) over
[δ, T ]× Td, the sequence (ρ̄νn)n∈N converges in C([δ, T ];w − L2(Td)) to ρ as n→ +∞. Hence,

lim sup
νn→0

2νn
ˆ T

δ

ˆ
Td

|∇ρνn(s, x)|2 ≤ ‖ρ(δ, ·)‖2
L2(Td) − lim inf

νn→0
‖ρνn(T, ·)‖2

L2(Td) = 0 ,

where in the last equality we use weak lower semicontinuity of the norm, equation (4.7), and conservation
of the L2 norm of ρ on [δ, T ] by Theorem 2.1 to getˆ

Td

|ρ(δ, x)|2dx =
ˆ

Td

|ρ(T, x)|2dx ≤ lim inf
n→+∞

ˆ
Td

|ρνn(T, x)|2dx

≤ lim sup
n→+∞

ˆ
Td

|ρνn(T, x)|2dx ≤
ˆ

Td

|ρ(δ, x)|2dx.
(4.8)

Finally, from (2.3) applied to ρνn − ρνn we have that

2νn
ˆ T

δ

ˆ
Td

|∇(ρνn(s, x)− ρνn(s, x))|2dxds ≤ ‖ρνn(δ, ·)− ρνn(δ, ·)‖2
L2(Td) (4.9)

= ‖ρνn(δ, ·)‖2
L2(Td) + ‖ρ(δ, ·)‖2

L2(Td) − 2
ˆ

Td

ρνn(δ, x)ρ(δ, x)dx ,

where we used that ρνn(δ, ·) = ρ(δ, ·). Using (2.3) and (4.5) we have

lim sup
n→+∞

ˆ
Td

|ρνn(t, x)|2dx ≤
ˆ

Td

|ρ(0, x)|2dx ≤
ˆ

Td

|ρ(δ, x)|2dx+ ε

4 . (4.10)

Taking the lim supn→∞ on both sides of (4.9), using that ρνn(δ, ·) converges weakly to ρ(δ, ·) by Proposi-
tion 2.5 and using (4.10) we conclude the claim and therefore the proof.
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