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Abstract

Consider a system of two polynomial equations in two variables:

F (X,Y ) = G(X, Y ) = 0

where F ∈ R[X,Y ] has degree d ≥ 1 and G ∈ R[X,Y ] has t monomials.
We show that the system has only O(d3t + d2t3) real solutions when it
has a finite number of real solutions. This is the first polynomial bound
for this problem. In particular, the bounds coming from the theory of
fewnomials are exponential in t, and count only nondegenerate solutions.
More generally, we show that if the set of solutions is infinite, it still has
at most O(d3t+ d2t3) connected components.

By contrast, the following question seems to be open: if F and G

have at most t monomials, is the number of (nondegenerate) solutions
polynomial in t?

The authors’ interest for these problems was sparked by connections
between lower bounds in algebraic complexity theory and upper bounds
on the number of real roots of “sparse like” polynomials.

1 Introduction

Descartes’ rule of signs shows that a real univariate polynomial with t ≥ 1
monomials has at most t−1 positive roots. In 1980, A. Khovanskii [10] obtained
a far reaching generalization. He showed that a system of n polynomials in n
variables involving l + n+ 1 distinct monomials has less than

2(
l+n

2 )(n+ 1)l+n (1)
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non-degenerate positive solutions. Like Descartes’, this bounds depends on the
number of monomials of the polynomials but not on their degrees.

In his theory of fewnomials (a term coined by Kushnirenko), Khovanskii [10]
gives a number of results of the same flavor; some apply to non-polynomial
functions. In the case of polynomials, Khovanskii’s result was improved by
Bihan and Sottile [3]. Their bound is

e2 + 3

4
2(

l

2)nl. (2)

In this paper, we bound the number of real solutions of a system

F (X,Y ) = G(X,Y ) = 0 (3)

of two polynomial equations in two variables, where F is a polynomial of degree
d and G has t monomials. This problem has a peculiar history [4, 13, 16].
Sevostyanov showed in 1978 that the number of nondegenerate solutions can
be bounded by a function N(d, t) which depends on d and t only. According
to [16], this result was the inspiration for Khovanskii to develop his theory
of fewnomials. Sevostyanov suffered an early death, and his result was never
published. Today, it seems that Sevostyanov’s proof and even the specific form
of his bound have been lost.

The results of Khovanskii (1), or of Bihan and Sottile (2), imply a bound
on N(d, t) which is exponential in d and t. Khovanskii’s bound (1) follows
from a general result on mixed polynomial-exponential systems (see Section 1.2
of [10]). One can check that the latter result implies a bound on N(d, t) which
is exponential in t only. As we shall see, this is still far from optimal.

Li, Rojas and Wang [14] showed that the number of real roots is bounded
above by 2t − 2 when F is a trinomial. When F is linear, this bound was
improved to 6t−4 by Avendaño [1]. The result by Li, Rojas and Wang [14] is in
fact more general: they show that the number of non-degenerate positive real
solutions of the system

F1(X1, . . . , Xn) = F2(X1, . . . , Xn) = . . . = Fn(X1, . . . , Xn) = 0

is at most n+ n2 + . . .+ nt−1 when each of F1, . . . , Fn−1 is a trinomial and Fn

has t terms.
Returning to the case of a system F (X,Y ) = G(X,Y ) = 0 where F is a

trinomial and G has t terms, we obtained in [12] a O(t3) upper bound on the
number of real roots. It is also worth pointing out that, contrary to [1], the
methods of [12] apply to systems with real exponents.

The present paper deals with the general case of Sevostyanov’s system (3).
We obtain the first bound which is polynomial in d and t. Indeed, we show that
there are only O(d3t + d2t3) real solutions to (3) when their number is finite.
Note that we count all roots, including degenerate roots. More generally, we
show that when the set of solutions is infinite the same O(d3t + d2t3) upper
bound applies to the number of its connected components (but it is actually the
finite case which requires most of the work).
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Note finally that our bound applies only when F is a polynomial of degree
d ≥ 1. As pointed out in Section 3, the case d = 0 is more difficult. The reason is
that a system of two sparse equations can be encoded in a system where F = 0.
We do not know if the number of real roots can be bounded by a polynomial
function of t in this case.

The authors’ interest for these problems was sparked by connections between
lower bounds in algebraic complexity theory and upper bounds on the number
of real roots of “sparse like” polynomials: see [11, 8, 12] as well as the earlier
work [6, 9, 15].

Overview of the proof

As we build on results from [12], it is helpful to recall how the case d = 1
(intersection of a sparse curve with a line) was treated in that paper. For a line
of equation Y = aX + b, this amounts to bounding the number of real roots of
a univariate polynomial of the form

t
∑

i=1

ciX
αi(aX + b)βi .

This polynomial is presented as a sum of t “basis functions” of the form fi(X) =
ciX

αi(aX+b)βi . In order to bound the number of roots of a sum of real analytic
functions, it suffices to bound the number of roots of their Wronskians. We recall
that the Wronskian of a family of functions f1, . . . , fk which are (k − 1) times
differentiable is the determinant of the matrix of their derivatives of order 0 up
to k − 1. More formally,

W (f1, . . . , fk) = det

(

(

f
(i−1)
j

)

1≤i,j≤k

)

.

In [12], we proved the following result.

Theorem 1. Let I be an open interval of R and let f1, . . . , ft : I → R be a
family of analytic functions which are linearly independent on I. For 1 ≤ i ≤ t,
let us denote by Wi : I → R the Wronskian of f1, . . . , fi. Then,

Z(f1 + . . .+ ft) ≤ t− 1 + Z(Wt) + Z(Wt−1) + 2

t−2
∑

j=1

Z(Wj)

where Z(g) denotes the number of distinct real roots of a function g : I → R.

The present paper again relies on Theorem 1. Let us assume that for a
system F (X,Y ) = G(X,Y ) = 0, we can use the equation F (X,Y ) = 0 to
express Y as an (algebraic) function of X . Then we just have to bound the
number of real roots of a univariate polynomial of the form

t
∑

i=1

ciX
αiφ(X)βi ,
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and this is a situation where we can apply Theorem 1. Of course, turning this
informal idea into an actual proof requires some care. In particular, the algebraic
function φ needs not be defined on the whole real line, and it needs not be
uniquely defined. We deal with those issues using Collin’s cylindrical algebraic
decomposition (see Section 2.4). We also need some quantitative estimates on
the higher-order derivatives of the algebraic function φ because they appear
in the Wronskians of Theorem 1. For this reason, we express in Section 2.2
the derivatives of φ in terms of φ and of the partial derivatives of F . Using
Theorem 1, we can ultimately reduce Sevostyanov’s problem to the case of a
system where both polynomials have bounded degree. The relevant bounds
for this case are recorded in Section 2.3. We put these ingredients together
in Section 3 to obtain the O(d3t + d2t3) bound on the number of connected
components.

2 Technical Tools

In this section we collect various results that are required for the main part of
this paper (Section 3). On first reading, there is no harm in beginning with
Section 3; the present section can be consulted when the need arises.

2.1 The derivatives of a power

In this section, we recall how the derivatives of a power of a univariate function f
can be expressed in terms of the derivatives of f . We use ultimately vanishing
sequences of integer numbers, i.e., infinite sequences of integers which have only
finitely many nonzero elements. We denote the set of such sequences N(N). For

any positive integer p, let Sp = {(s1, s2, . . .) ∈ N(N)|
∞
∑

i=1

isi = p} (so in particular

for each p, this set is finite). Then if s is in Sp, we observe that for all i ≥ p+1,
we have si = 0. Moreover for any p and any s = (s1, s2, . . .) ∈ N(N), we will

denote |s| =
∞
∑

i=1

si (the sum makes sense because it is finite). A proof of the

following simple lemma can be found in [12].

Lemma 2. [Lemma 10 in [12]] Let p be a positive integer. Let f be a real
function and α ≥ p be a real number such that f is always non-negative or α is
an integer (this ensures that the function fα is well defined). Then

(fα)
(p)

=
∑

s∈Sp

[

βα,sf
α−|s|

p
∏

k=1

(

f (k)
)sk

]

where (βα,s) are some constants.

The order of differentiation of a monomial
∏p

k=1(f
(k))sk is

∑p

k=1 ksk. The
order of differentiation of a differential polynomial is the maximal order of its
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monomials. For example: if f is a function, the total order of differentiation of

f3 (f ′)
2 (

f (4)
)3

+ 3ff ′ is max(3 ∗ 0 + 2 ∗ 1 + 3 ∗ 4, 0 ∗ 1 + 1 ∗ 1) = 14.
Lemma 2 just means that the p-th derivative of an αth power of a function f

is a linear combination of terms such that each term is a product of derivatives
of f of total degree α and of total order of differentiation p.

2.2 The derivatives of an algebraic function

Consider a nonzero bivariate polynomial F (X,Y ) ∈ R[X,Y ] and a point (x0, y0)
where F (x0, y0) = 0 and the partial derivative FY = ∂F

∂Y
does not vanish. By the

implicit function theorem, in a neighborhood of (x0, y0), the equation F (x, y) =
0 is equivalent to a condition of the form y = φ(x). The implicit function φ
is defined on an open interval I containing x0, and is C∞ (and even analytic).
In this section, we express the derivatives of φ in terms of φ and of the partial

derivates of F . For any integers a, b, we denote FXaY b = ∂a+b

∂Xa∂Y bF (X,Y ).

Lemma 3. For all k ≥ 1, there exists a polynomial Sk of degree at most 2k− 1
in
(

k+2
2

)

− 1 variables such that

φ(k)(x) =
Sk (FX(x, φ(x)), . . . , FXaY b(x, φ(x)), . . .)

(FY (x, φ(x)))2k−1
(4)

with 1 ≤ a+ b ≤ k. Consequently, the numerator is a polynomial of total degree
at most (2k − 1)d in x and φ(x). Moreover, Sk depends only on k and F .

Proof. For all k, let Dk(x) = ∂k

∂xkF (x, φ(x)). We will use later the fact that
Dk(x) is the identically zero function. We begin by showing by induction that
for all k ≥ 1, Dk(x) = φ(k)FY + Rk(φ

′(x), . . . , φ(k−1)(x), . . . , FXaY b , . . .) where
Rk is of total degree at most 1 in (FXaY b)1≤a+b≤k and of derivation order at
most k in the variables

(

φ(i)
)

1≤i<k
.

For k = 1, we get: D1 = φ′FY + FX . Let us suppose now that the result is
true for a particular k, then

Dk+1 =φ(k+1)FY + φ(k)(FXY + FY 2φ′) +
∂

∂x
Rk

(

φ′, . . . , φ(k−1), FXaY b

)

=φ(k+1)FY +Rk+1

(

φ′, . . . , φ(k), FXaY b

)

.

By induction hypothesis, each monomial of Rk is of the form

FXaY b

k−1
∏

i=1

(

φ(i)
)si

where

k−1
∑

i=1

isi ≤ k.

Differentiating this monomial increases its order of differentiation by one at
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most. Indeed,

∂

∂x

(

FXaY b

k−1
∏

i=1

(

φ(i)
)si

)

= (FXa+1Y b + φ′FXaY b+1)

k−1
∏

i=1

(

φ(i)
)si

+ FXaY b

k−1
∑

i=1

siφ
(i+1)

(

φ(i)
)si−1∏

j 6=i

(

φ(j)
)sj

.

Hence, Rk+1 is of total degree at most 1 in the variables (FXaY b)1≤a+b≤k+1 and
of derivation order at most k + 1 in

(

φ(i)
)

1≤i≤k
.

As F (x, φ(x)) is zero, then for all k ≥ 1 we have Dk(x) =
∂kF (x,φ(x))

∂xk = 0.
Thus

φ(k) =
−Rk

FY

.

Then we show by induction over k that for all k ≥ 1 there exists a polynomial

Sk of degree at most 2k − 1 in
(

(

k+2
2

)

− 1
)

variables such that Equation (4) is

verified.
The result is true for k = 1 since φ′ = −FX

FY
. Let k ≥ 1 and we suppose

that the result is true for all i such that 1 ≤ i ≤ k. We know that Dk+1(x) =
φ(k+1)FY +Rk+1(φ

′(x), . . . , φ(k)(x), . . . , FXaY b , . . .) = 0. So,

φ(k+1) =
−1

FY

Rk+1(φ
′(x), . . . , φ(k)(x), . . . , FXaY b , . . .).

So, by induction hypothesis,

φ(k+1) =
−1

FY

Rk+1

(

S1

FY

, . . . ,
Sk

F 2k−1
Y

, . . . , FXaY b , . . .

)

.

As Rk+1(φ
′(x), . . . , φ(k)(x), . . . , FXaY b , . . .) is of derivation order k + 1 on its

k first variables and is of total order 1 on its
(

(

k+2
2

)

− 1
)

last variables, each

monomial is of the form:

FXaY b

Si1

F 2i1−1
Y

. . .
Sip

F
2ip−1
Y

with i1 + . . .+ ip ≤ k + 1 and p ≥ 0. Hence, we get:

FXaY bSi1 . . . Sip

F 2i1−1
Y . . . F

2ip−1
Y

=
FXaY bSi1 . . . SipF

2k−2i+p
Y

F
2(k+1)−2
Y

6



where i = i1+ . . .+ip ≤ k+1. Indeed, the exponent 2k−2i+p is a non-negative
integer since if p = 1, then 2i = 2i1 ≤ 2k and otherwise 2i ≤ 2(k + 1) ≤ 2k + p.
The numerator is a polynomial in the variables FXaY b of degree

≤ 1 + deg(Si1) + . . .+ deg(Sip) + 2k − 2i+ p

≤ 1 + 2i1 − 1 + . . .+ 2ip − 1 + 2k − 2i+ p

≤ 1 + 2i− p+ 2k − 2i+ p

≤ 2(k + 1)− 1.

So, φ(k+1) is of the form:

Sk+1

(

(FXaY b)1≤a+b≤k+1

)

F
2(k+1)−1
Y

where Sk+1 is a polynomial of degree at most 2(k + 1)− 1.

2.3 Real versions of Bézout’s theorem

Bézout’s theorem is a fundamental result in algebraic geometry. One version of
it is as follows.

Theorem 4. Consider an algebraically closed field K and n polynomials
f1, . . . , fn ∈ K[X1, . . . , Xn] of degrees d1, . . . , dn. If the polynomial system

f1 = f2 = · · · = fn = 0

has a finite number of solutions in Kn, this number is at most

n
∏

i=1

di.

The upper bound
∏n

i=1 di may not apply if K is not algebraically closed.
In particular, it fails for the field of real numbers (see e.g. chapter 16 of [5]
for a counterexample). Nevertheless, there is a large body of work establishing
bounds of a similar flavor for K = R (see e.g. [2, 5] and the references therein).
For instance, we have the following classic result.

Theorem 5 (Oleinik-Petrovski-Thom-Milnor). Let V ⊆ Rn be defined by a
system f1 = 0, . . . , fp = 0, where the fi are real polynomials of degree at most
d with d ≥ 1. Then the number of connected components of V is at most
d(2d− 1)n−1.

A proof of Theorem 5 can be found in e.g. Chapter 16 of [5]. In this paper
we will use this result as well as a variation for the case n = p = 2 (see Lemma 9
at the end of this section). Lemma 6 below will be also useful in Section 3. We
now give self-contained proofs of these two lemmas since they are quite short.

Lemma 6. Let g ∈ R[X,Y ] be a non-zero polynomial of degree d. The set of
real zeros of g is the union of a set of at most d2/4 points and of the zero sets of
polynomials g1, . . . , gk ∈ R[X,Y ] which divide g and are irreducible in C[X,Y ].
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Proof. Let us factor g as a product of irreducible polynomials in C[X,Y ]. We
have

g = λgα1

1 · · · gαk

k hβ1

1 · · ·hβl

l h1
β1

· · ·hl
βl

where the gj are the factors in R[X,Y ], the polynomials hj , hj are complex
conjugate and λ is a real constant. We can assume that none of the hj is of the
form hj = µjrj where µj ∈ C and rj ∈ R[X,Y ]: otherwise, we can replace the
pair (hj , hj) by r2j and the constant µjµj can be absorbed by λ.

The above assumption implies that the hj (and their conjugates) have finitely
many real zeros. Indeed, let pj, qj be the real and imaginary parts of hj . The
real solutions of hj = 0 are the same as those of pj = qj = 0. This system has
finitely many complex solutions since pj and qj are nonzero and do not share a
common factor. Consider indeed a putative factor fj ∈ C[X,Y ] dividing pj and
qj , of degree deg(fj) ≥ 1. Since fj divides hj and this polynomial is irreducible,
we must have deg(fj) = deg(hj). As a result, deg(pj) = deg(qj) = deg(fj) and
the first two polynomials are constant multiples of the third. We conclude that
pj differs from qj only by a multiplicative constant, and this contradicts our
assumption.

By Bézout’s theorem, there are at most deg(hj)
2 complex solutions to pj =

qj = 0. This is also an upper bound on the number of real roots of the hj .
The hj have the same real roots. Altogether, the hj and hj have at most
∑l

j=1 deg(hj)
2 ≤ (d/2)2 real roots.

The point of this lemma is that since each gj is irreducible, the set of its
singular zeros (i.e., the set of complex solutions of the system g = ∂g/∂x =
∂g/∂y = 0) is finite and small. We first consider the more general case given by
the system g = ∂g/∂x = 0.

Lemma 7. If g ∈ C[X,Y ] is an irreducible polynomial of degree d ≥ 1, then
either g(X,Y ) is of the form aY +b or the number of zeros in C

2 of g = ∂g/∂x =
0 is at most d(d− 1).

Proof. We consider two cases.

(i) If the system g = ∂g/∂x = 0 has finitely many solutions, it has at most
d(d− 1) solutions by Bézout’s theorem.

(ii) If that system has infinitely many solutions, ∂g/∂x must vanish every-
where on the zero set of g since g is irreducible. For the same reason, it
then follows that g divides ∂g/∂x. This is impossible by degree consider-
ations unless ∂g/∂x ≡ 0 on C2. Hence g depends only on the variable Y ,
and must be of the form g(X,Y ) = aY + b (by irreducibility again).

As the additional condition ∂g/∂y = 0 implies a = 0 in the previous lemma,
we have:

Corollary 8. If g ∈ C[X,Y ] is an irreducible polynomial of degree d ≥ 1, it
has at most d(d − 1) singular zeros in C2.
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We are now going to bound the number of roots of a real system of two dense
equations.

Lemma 9. Let f, g ∈ R[X,Y ] be two non-zero polynomials of respective degrees
δ and d. Let U be an open subset of R2. Consider the system of polynomial
equations:

{

f(X,Y ) = 0

g(X,Y ) = 0.
(5)

If the number of solutions in U is finite, it is bounded by d2/4 + dδ.
Moreover, if f is the zero polynomial, the number of solutions in U of the

same system is infinite or bounded by d2.

Proof. Let us suppose that the system has finitely many solutions in U . By
Lemma 6, the set of roots of g is the union of a set of size at most d2/4 and
of the sets of roots of the real polynomials g1, . . . , gk. Hence the number of
solutions of System (5) is bounded by d2/4 plus the sum of the numbers of
solutions of each system gi(X,Y ) = f(X,Y ) = 0. Let us define di as the degree
of gi. For each i, there are two cases:

(i) if gi divides f then either the number of real roots of gi is infinite on U
and then all these roots are solutions of System (5) or the number of its
roots is finite and in this case, each of these roots is a singular zero of gi
(if a point is an isolated zero of a continuous function on an open set of
the plane, it needs to be an extremum of the function on this set). Hence
by Corollary 8, the number of real roots is bounded by di(di − 1), and so,
since gi divides f , by diδ if f is not zero.

(ii) otherwise, gi does not divide f and thus the system has a finite number of
solutions in C2 and this number is bounded by diδ according to Bézout’s
theorem.

Thus for each i, the number of solutions of the system gi(X,Y ) = f(X,Y ) = 0
is at most diδ.

In the case where f is the zero polynomial, we can argue as in case (i). We
saw in the proof of Lemma 6 that the zero set of g is the union of the zero sets of
the gi and of the hi, and that altogether the hi have at most

∑

i deg(hi)
2 zeros.

Moreover, as in case (i), the number of zeros of gi on U is infinite or bounded
by di(di − 1). We conclude that the number of zeros of g on U is infinite or
bounded by

∑

i

deg(hi)
2 +

∑

i

di(di − 1) ≤
∑

i

deg(hi)
2 +

∑

i

d2i ≤ d2.

Note that the somewhat worse bound

max(d, δ).(2max(d, δ)− 1)

follows directly from Theorem 5.
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2.4 Cylindrical algebraic decomposition for one bivariate

polynomial

In his paper, Collins [7] introduced the cylindrical algebraic decomposition.
The purpose was to get an algorithmic proof of quantifier elimination for real
closed fields. More details on cylindrical algebraic decomposition can be found
in [2]. Here, we will use a similar decomposition of R for separating the different
behaviours of the roots of our system. However, in our case the dimension is
just two, and we want to characterize only one polynomial, so we will use an
easier decomposition. Let us recall some definitions and properties from [7].

Definition 10. Let A(X,Y ) be a real polynomial, S a subset of R. We will say
that f1, . . . , fm with m ≥ 1 delineate the roots of A on S in case the following
conditions are all satisfied:

1. f1, . . . , fm are distinct continuous functions from S to C.

2. For all 1 ≤ i ≤ m, there is a positive integer ei such that for all a in S,
fi(a) is a root of A(a, Y ) of multiplicity ei.

3. If a ∈ S, b ∈ C and A(a, b) = 0 then for some i with 1 ≤ i ≤ m, b = fi(a).

4. For some k with 0 ≤ k ≤ m, the functions f1, . . . , fk are real-valued with
f1 < f2 < · · · < fk and the values of fk+1, . . . , fm are all non-real.

The value ei will be called the multiplicity of fi. If k ≥ 1, we will say that
f1, . . . , fk delineate the real roots of A on S. The roots of A are delineable on
S in case there are functions f1, . . . , fm which delineate the roots of A on S.

Collins proved the following theorem.

Theorem 11 (Particular case of Theorem 1 in [7]). Let A(X,Y ) be a polynomial
in R[X,Y ]. Let S be a connected subset of R. If the leading coefficient of A
viewed as a polynomial in Y does not vanish on S, and if the number of distinct
roots of Y 7→ A(x, Y ) on C is the same for all x in S, then the roots of A are
delineable on S.

Criteria are given in the remainder of Collin’s paper for characterizing the
invariance of the number of roots. He uses the resultant of two polynomials.

Let A and B be polynomials in R[X ][Y ] with degY (A) = m and
degY (B) = n. The Sylvester matrix of A and B is the m + n by m + n
matrix M whose successive rows contain the coefficients of the polynomials
Y n−1A(Y ), . . . , Y A(Y ), A(Y ), Y m−1B(Y ), . . . , B(Y ), with the coefficient of Y i

occuring in column m+n− i. The polynomial Res(A,B), the resultant of A and
B, is by definition the determinant of M . If the leading coefficient of A vanishes
for a particular x0, then the resultant Res(A,AY) also vanishes at x0 (we recall
that AY is a shorthand for ∂A

∂Y
). We note, for subsequent application, that if

A ∈ R[X,Y ], degX(A) ≤ d and degY (A) ≤ d, then Res(A,AY) is a polynomial
in R[X ] of degree bounded by 2d2 − d.

An immediate corollary of Theorem 1, 2 and 3 in [7] is

10



Corollary 12. Let A(X,Y ) be a polynomial in R[X ][Y ]. Let S be a connected
subset of R. If Res(A,AY)(X) does not have any roots on S, then the roots of
A are delineable on S.

Then, in the following, we will consider some subsets of R where the poly-
nomial Res(A,AY) does not have roots. In particular, we want this polynomial
to be nonzero. We show that this is the case if A is irreducible in R[X,Y ].

Lemma 13. Let A(X,Y ) be an irreducible polynomial in R[X ][Y ] with
degY (A) ≥ 1. Then Res(A,AY) is not the zero polynomial.

Proof. By Gauss’ Lemma, the irreducibility of A in R[X ][Y ] implies that A is
also irreducible in R(X)[Y ]. Let us suppose that R(X) = Res(A,AY)(X) = 0.
This implies that A and AY have a common factor B ∈ R(X)[Y ] of degree
degY (B) ≥ 1. Since A is irreducible in R(X)[Y ], there exists C in R(X) such
that A = CB. We thus have degY (A) = degY (B) ≤ degY (AY ). This is
impossible since degY (A) ≥ 1.

Remark 14. If (x0, y0) is a root of A and of AY then Y − y0 divides the
polynomials A(x0, Y ) and AY (x0, Y ). Hence Res(A,AY)(x0) = 0. Therefore, if
Res(A,AY) has no zeros on a subset S of R, the system A(X,Y ) = AY (X,Y ) =
0 does not have solutions on S × R. This remark will be useful for the proof of
Lemma 20 in the next section, and for an application of the analytic implicit
function theorem before Lemma 19.

3 Intersecting a sparse curve with a low-degree

curve

Recall that a polynomial is said to be t-sparse if it has at most t monomials. In
this section we prove our main result.

Theorem 15. Let F ∈ R[X,Y ] be a nonzero bivariate polynomial of degree d
and let G ∈ R[X,Y ] be a bivariate t-sparse polynomial. The set of real solutions
of the system

{

F (X,Y ) = 0

G(X,Y ) = 0
(6)

has a number of connected components which is O(d3t+ d2t3).

We will proceed by reduction to the case where F is irreducible and the
system has finitely many solutions:

Proposition 16. Consider again a nonzero bivariate polynomial F of degree d
and a bivariate t-sparse polynomial G. Assume moreover that F is irreducible
in C[X,Y ] and that (6) has finitely many real solutions. Then this system has
O(d3t+ d2t3) distinct real solutions.

11



We first explain why this proposition implies Theorem 15. Let us begin by
removing the hypothesis that the system has a finite number of solutions.

Corollary 17 (Corollary of Proposition 16). Consider again a nonzero bivari-
ate polynomial F of degree d and a bivariate t-sparse polynomial G. Assume
moreover that F is irreducible in C[X,Y ]. The set of real solutions of (6) has a
number of connected components which is O(d3t+ d2t3).

Proof. There are two cases:

1. The system has a finite set of real solutions. In this case, by Proposition 16
there at most O(d3t+ d2t3) solutions.

2. The set of solutions is infinite. This implies that F and G share a common
factor. Since F is irreducible in C, F must be a factor of G. But in this case
the set of solutions of (6) is exactly the set of zeros of F . By Theorem 5,
this set has at most d(2d− 1) connected components.

Proof of Theorem 15 from Corollary 17. By Lemma 6, the set of real roots of
F is the union of the set of real roots of the real irreducible factors F1, . . . , Fk

of F and of a set U of cardinality at most d2/4. Consequently, the number of
connected components of the set of solutions of (6) is bounded by the sum of
the numbers of connected components of the solutions of the systems Fi(x, y) =
G(x, y) = 0 for i ≤ k and of the system

{

(X,Y ) ∈ U

G(X,Y ) = 0.

The latter system has at most d2/4 solutions. By Corollary 17, each system
Fi(x, y) = G(x, y) = 0 has at most O((deg Fi)

3t + (degFi)
2t3) connected com-

ponents. To conclude, we observe that

k
∑

i=1

(

(degFi)
3t+ (degFi)

2t3
)

≤

(

k
∑

i=1

degFi

)3

t+

(

k
∑

i=1

degFi

)2

t3

≤ d3t+ d2t3.

Remark 18. Note that the non-zero condition on F in Theorems 15 and Propo-
sition 16 is important. Indeed, it is an open problem whether there exists a
polynomial P (t) which bounds the number of real solutions of any system of two
t-sparse polynomials G and H when this bound is finite. However, if we allowed
the polynomial F to be 0 in Theorems 15, we would be able to code a system of
two sparse equations in the system:

{

F = 0

G(X,Y )2 +H(X,Y )2 = 0.
(7)

12



It remains to prove Proposition 16. In the following, we will suppose that
the system has a finite number of real solutions. We begin with two basis cases.

1. If F (X,Y ) = cY , then as G(X, 0) 6= 0 (otherwise (x, 0) is a solution of (6)
for all x in R), by Descartes’ rule, the number of roots of the form (x, 0)
is bounded by 2t− 1.

2. If FY (X,Y ) = 0, then F does not depend on Y and there are at most
d values of x such that F (x, Y ) = 0. For every such value, G(x, Y ) is a
univariate t-sparse polynomial so it has at most 2t− 1 distinct real roots.
Hence, in this case there are at most 2td− d solutions to (6).

We have therefore verified the bound of Proposition 16 in these two particular
cases. We will assume in the following we are not in case 1 or 2.

Let us consider the univariate polynomial Res(F,FY), which is of degree
at most 2d2 − d and which is not zero by Lemma 13. Let x1 < . . . < xq with
q ≤ 2d2−d be the real roots of this polynomial and let I = {(xi, xi+1)|0 ≤ i ≤ q}
with x0 = −∞ and xq+1 = +∞, be the corresponding set of open intervals. We
notice that |I| ≤ 2d2 − d+ 1. If I is in I, the roots of F are delineable on I by
Corollary 12.

From the definition of delineability, for each interval I in I, there are mI ≤ d
continuous real-valued functions φI,1 < . . . < φI,mI

: I → R such that
F (x, y) = 0 on I × R if and only if there exists i ≤ mI such that y = φI,i(x).
Moreover, FY (x, φI,i(x)) 6= 0 since Res(F,FY) does not vanish on I (see Re-
mark 14). The analytic version of the implicit function theorem therefore shows
that the functions φI,i are analytic on I.

Let us denote Ω =
⋃

I∈I I. We bound separately the number s of solutions
of system (6) on Ω× R and the number s′ of solutions on (R \ Ω)× R.

Lemma 19. If FY (X,Y ) is a non-zero polynomial, the number s′ of solutions
on (R \ Ω)× R of System (6) is at most 2d3 − d2.

Proof. We recall that (R \ Ω) = {x1, . . . , xq} is a finite set of cardinality at most
2d2 − d. For each i ≤ q, X − xi does not divide F since F is irreducible and
FY 6= 0. So the number of roots of F on {xi} × R is finite and bounded by d.
Consequently, s′ ≤ 2d3 − d2.

Now, we want to bound the number s of solutions on Ω × R. To do so, we
will bound the number sIj (with j ≤ mI) of solutions of the following system
over I × R:

{

Y = φj(X)

G(X,Y ) = 0.
(8)

Hence,
∑

I

∑

0≤j≤mI
sIj = s and in particular all the sIj are finite.

The polynomial G is t-sparse, so G(X,Y ) =
∑t

j=1 ajX
αjY βj . Then, if (x, y)

is a root of (8), we have G(x, φi(x)) =
∑t

j=1 ajx
αj (φi(x))

βj = 0.

13



Let us assume that there exist real constants c1, . . . , ct (not all zero) such
that H(X,Y ) =

∑t

j=1 cjX
αjY βj is a multiple of F . In this case, we can consider

the polynomial G̃(X,Y ) = G− au

cu
H which is t−1 sparse (where cu is a non-zero

coefficient of H). Then, the roots of (6) are exactly the roots of the following
system:

{

F (X,Y ) = 0

G̃(X,Y ) = 0.
(9)

In this system, the first polynomial has not changed and the number of terms
of the second polynomial has decreased. We can therefore assume (by induction
on t) that the claimed O(d3t+d2t3) upper bound on the number of real solutions
applies to (9). We will therefore assume for the remainder of the proof that if
H(X,Y ) =

∑t
j=1 cjX

αjY βj is a multiple of F then all the constants cj are zero.
Before stating the next lemma, we recall that I is a finite list of open intervals

defined before Lemma 19 and that if we want to use Theorem 1 for bounding
the number of zeros of f1 + . . . + ft, we need to bound the number of zeros of
W (f1, . . . , fs) for each s ≤ t.

Lemma 20. For any s ≤ t, there exists a non-zero polynomial Ts(X,Y ) ∈
R[X,Y ] of degree at most (1 + 2d)

(

s
2

)

in each variable such that for every
interval I in I and every 0 ≤ i ≤ mI , the Wronskian of the s functions
xα1(φi(x))

β1 , . . . , xαs(φi(x))
βs satisfies:

W (xα1(φi(x))
β1 , . . . , xαs(φi(x))

βs) =
xα−(s2)φ

β−(s2)
i

F
s(s−1)
Y (x, φi)

Ts(x, φi)

where α =
∑s

j=1 αj and β =
∑s

j=1 βj. Moreover, this Wronskian is not identi-
cally 0 on I.

Proof. Let I be a an interval in I and i be an integer between 0 and mI .

If
∑t

j=1 cjx
αjφ

βj

i = H(x, φi(x)) is the zero polynomial, then F divides H by
irreducibility of F . It then follows that H ≡ 0 by the assumption preceding the
lemma. The family x 7→ xαj (φi(x))

βj is therefore linearly independent. As the
functions are analytic on I, the Wronskian W (xα1(φi(x))

β1 , . . . , xαs(φi(x))
βs)

is not identically zero. By Remark 14, FY (x, φi(x)) has no zeros on I. Then
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using Lemmas 2 and 3,

(

xαj (φi(x))
βj
)(p)

=

p
∑

k=0

(

p

k

)

(xαj )
(k) (

φi(x)
βj
)(p−k)

=

p
∑

k=0

(

p

k

)

(xαj )(k)
∑

s∈Sp−k

[

cβj,sφ
βj−|s|
i

p−k
∏

l=1

(

φ
(l)
i

)sl

]

= xαj−pφ
βj−p

i

p
∑

k=0

∑

s∈Sp−k

[

c′αj ,βj,p,s
xp−kφ

p−|s|
i

p−k
∏

l=1

(

Sl

F 2l−1
Y

)sl]

=
xαj−pφ

βj−p

i

F 2p
Y

p
∑

k=0

∑

s∈Sp−k

[

c′αj ,βj,p,s
xp−kφ

p−|s|
i F

2k+|s|
Y

p−k
∏

l=1

Ssl
l

]

=
xαj−pφ

βj−p

i

F 2p
Y

Tj,p(x, φi).

We saw in Lemma 3 that deg(Sl) ≤ 2l−1. As a result, Tj,p(X,Y ) is a polynomial
of degree in X bounded by

degX(Tj,p) ≤ max
k,s

(

p− k + (2k + |s|)d+

p−k
∑

l=1

sl(2l − 1)d

)

≤ max
k,s

(p− k + 2kd+ |s|d+ 2d(p− k)− d|s|)

≤ 2dp+ p

and of degree in Y bounded by

degY (Tj,p) ≤ max
k,s

(

p− |s|+ (2k + |s|)(d− 1) +

p−k
∑

l=1

sl(2l− 1)d

)

≤ max
k,s

(p− |s|+ 2kd− 2k + |s|d− |s|+ 2dp− 2dk − d|s|)

≤ max
k,s

(p− 2|s| − 2k + 2dp)

≤ p+ 2dp.

Moreover Tj,p does not depend on φi by Lemma 3. Hence, the Wronskian is a
bivariate rational function:

W
(

xα1(φi(x))
β1 , . . . , xαs(φi(x))

βs
)

=
xα−(s2)φ

β−(s2)
i

F
s(s−1)
Y (x, φi)

Ts(x, φi)

where α =
∑s

j=1 αj , β =
∑s

j=1 βj and Ts(X,Y ) is a polynomial of degree

bounded by (1+2d)
(

s
2

)

in each variable, which does not depend on I and i.
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Let us count the number vI,i of roots of φi on I. We assumed that Y
does not divide F , so the univariate polynomial F (X, 0) is not zero and is of
degree at most d. If vI denotes the number of roots of F (X, 0) on I, we have
(
∑

I∈I vI
)

≤ d. Since each root of φi is by definition a root of F (X, 0), this
implies that φi has at most vI roots on I.

For any I and i, let us count now the number rsI,i of roots of Ts(x, φi(x)).
This number is finite since the Wronskian of Lemma 20 would otherwise be
identically 0. Furthermore, let us denote by rs the number of solutions on
Ω× R of the system

{

Ts (X,Y ) = 0

F (X,Y ) = 0.
(10)

Thus, rs =
(
∑

I

∑

i r
s
I,i

)

is finite.

Finally, by Lemma 9 and as the total degree of Ts is bounded by 2(1+2d)
(

s
2

)

,

the number rs of roots of (10) is bounded by d2/4 + 2d(1 + 2d)
(

s
2

)

.

Then, by Lemma 20, for any I and i, W
(

xα1(φi(x))
β1 , . . . , xαs(φi(x))

βs
)

has at most 1I(0) + vI + rsI,i real roots and Theorem 1 shows that the number
sI,i of distinct real roots of G(x, φi(x)) is bounded by

t− 1 + 2

t
∑

s=1

(1I(0) + vI + rsI,i
)

= t− 1 + 2t1I(0) + 2tvI + 2

t
∑

s=1

rsI,i.

Hence, as |I| ≤ 2d2 − d + 1, as mI ≤ d for each interval I in I, and as
(
∑

I∈I vI
)

≤ d,

s =
∑

I∈I

∑

i≤mI

sI,i

≤ (2d2 − d+ 1)d(t− 1) + 2dt+ 2td2 + 2

t
∑

s=1

rs

≤ (2d2 − d+ 1)d(t− 1) + 2dt+ 2td2 + 2

t
∑

s=1

[

d2/4 + 2(1 + 2d)

(

s

2

)

d

]

= (2d3t+ 4d2t3)(1 + o(1)).

This completes the proof of Proposition 16, and of the main theorem.
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