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SINGULAR RIEMANNIAN METRICS, SUB-RIGIDITY VS RIGIDITY
SAMIR BEKKARA* AND ABDELGHANI ZEGHIB

ABSTRACT. We analyze sub-Riemannian and lightlike metrics from thiatmof
view of their rigidity as geometric structures. Followingu@an’s and Gromov's
formal definitions, they are never rigid, yet, in genericasaghey naturally give
rise to rigid geometric structures!?
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1. ON suB-RIEMANNIAN METRICS

The following are variations on the concept of rigidity ofogeetric structures
in a somehow “paradoxical” situation:

SUB-RIEMANNIAN METRICS. A sub-Riemannianstructure(M, D, h) consists
in giving on a manifoldM a hyperplane field> C T M together with a metric
h defined onD (and thought of as infinite oM — D). An isometry ofh is a
diffeomorphism preserving the structure.

The hyperplane field may be defined locally as the kernel ofarh-w,. There
is however no canonical choice, any foum= fw, defines the same hyperplane.

Integrable caself D is integrable, say it defines a foliatiof, thenh is nothing but
a leafwise Riemannian metric. We have for instance thequaati global product
case:M = N x S, where the leaved” x {x} are endowed with a same metfig.
Any family (fs)ses in Iso(N, ho) determines an isometry 60, D, h).

Date April 19, 2011.
* Supported in part by the ANR Geodycos of the ENS-Lyon and tiogept RIAMI of the
CIMPA.
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2 S. BEKKARA AND A. ZEGHIB

1.0.1. A correspondence: contact sub-RiemanniafRiemannian.We will hence-
forth assume thab is a contact hyperplane, i.esy A (dw)? is a volume form
wheredim M = n = 2d + 1. Let us recall the (classical) construction of a natural
Riemannian metrié associated toD, k). Observe thatlw is a symplectic form
on D and that for a functiorf, d( fwy) = fdwy (on D). AssumeD orientable, and
let o be the Riemannian volume form derived frénon it. Writing thatdw? = o
on D determines uniguely, in other words the Riemannian metric (together with
an orientation) allows one to choose a canonical contant,feayw,. Let R be
the Reeb field ofvy: irdwy = 0, andwy(R) = 1. We extend the metrié to a
metrich onT M by declaring thai? is unit and orthogonal t@. The orientation

is actually irrelevant since the inverse orientation giressame metric.

Isometry groups of Lie typeSummarizing up, a contact sub-Riemannian metric
generates a Riemannian metric. In particular the isomaylso(M, k) is a
(closed) sub-group déo(M, k). Similarly for pseudo-groups of local isometries
(i.e. isometries defined between open setd/gfand composed when this is possi-
ble). It then follows that the isometry group @Y/, ) as well as its local isometry
pseudo-group are of Lie type (of finite dimension).

CARTAN’S FINITE TYPE CONDITION (seel[17]) LetH be a subgroup diL ,,(R).

An H structure on a manifold/™ is a reduction of the structural group of its frame
bundleGL (V' (M) = P(M) to H. Equivalently, this is a section aP(M)/H
(assume here to simplify th&f is closed). A Riemannian metric corresponds to a
O(n)-structure. A sub-Riemannian metric corresponds té/astructure whereé{

is the subgroup oL ,,(R) preservingR™"~! and the standard Euclidean product
on it. Its elements have the form:

A W
(0 3)
whered € O(n —1), 7 € R* ' andb € R.

Following Cartan, one associatesAbits k-prolongation;, a space of sym-
metric (k + 1)-multi-linear forms onR™ with values inR™. If A € H;, and
v1,...,v € R™ are fixed, themw — A(v,vq,...,v) belongs toEnd(R™). By
definition of a prolongation, the last element is assumecktmithe Lie algebra of
H.

An H-structure has &nite type k € N, if H; = 0. The principal result of
Cartan theory is that the isometry group of Hnstructure of finite type is a Lie
group. The remarkable fact here is that being of finite typeedds only onH
(as a subgroup d&L ,,(R)) and not on the structure itself. As an example, a sub-
Riemannian metric has infinite type, no matter it is intetgady contact! If fact,
the test of finiteness of type concerns the case of the flatla@on-invariantH -
structure onR™. The flow of a vector field” preserves this structure iff, for any
x € R, the derivativeD, V' belongs to the Lie algebri. The(k + 1)-coefficient
in the Taylor development in a linear coordinateg/dfelongs tdH ;. Hence, finite
type meand/ is polynomial.
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GROMOV'S RIGIDITY. (seel[2] 3| 8, 11, 15]) Gromov's definition of geometric
structures consists essentially in giving up the “infinited homogeneity” in the
case of Cartan'#/-structures. As examples, functions, vectors fields arengéic
structures, and also is a “ finite union” of geometric struetu Isometries are
defined naturally. Gromov introduces a rigidity conditiomigoh coincides with
finiteness of type in the case &f-structures.

Rough-definition.If ¢ is such a structure on a manifoltf, andz € M, let
Isok°¢(c) be the group of (germs) of isometries defined in a neighbathafor
and fixingz. For an integek, denote byDiff’;(M) the group ofk-jets of diffeo-
morphisms ofM fixing z. We have a maget® : Isok°(c) — Diff*(M). The
intuitive idea of rigidity (of orderk) is thatjet" is injective: an isometry is fully
determined by its-jet. We say in this case thatis Iso-rigid at order k. For
example, a Riemannian metric is Iso-rigid at orélean isometry is determined by
giving its derivative at some point. In the case of sub-Rien@n metricsjet. is
injective in the contact case (since it generates a Riermarmetric), but for ndk,
jetk is injective in the integrable one.

Definition. We then conclude a divergence between this intuitive fozaabn of
rigidity and Cartan’s finiteness of type. The true Gromo\dinition is actually
of infinitesimal nature. For afl-structures, one defines the grougo**!(c)
Diff**1 (M) as the group ofk + 1)-jets of diffeomorphisms preservingup to or-
derk atx. For example, it is a Riemannian metric, then a (local)-diffeomorphism
f gives rise to &k + 1)-infinitesimal isometryc Iso® (o) if f*o — o vanishes
up to orderk atz. (In the general case of a geometric structaref orderr, f is
a(k + r)-isometry if f*o ando have the samé-jet atz). The true definition of

k-rigidity is thatjet” : Iso**! (o) — lIso” (o) is injective for anyz.

Example.Let us see how this injectivity default happens in the examgilthe
contact formw = dz + xdy — ydx onR?3, endowed with the restriction afz? +
dy?. It corresponds to a left invariant contact sub-Riemanmsittacture on the
Heisenberg group, and hence it is homogeneous. Congidér,y, z) — (x +
5(2),y + 6(2),2). Assumes(0) = 0, then, £(0) = 0. Thus,jeti ™ f determines
a (k + 1)-isometry at 0, iﬁ,%(o) = 0 or equivalentlyjetf(f) = 1 (that is f
has the samget as the identity). So any suchwith a non-trivial ;92 (0) # 0

determines an isometry violating the injectivity lep**! — Iso".

Remark.Gromov’s definition strictly coincides with finiteness optyin the case
of H-structure (see [2], Example 3.17), and thus sub-Riemanmiatrics arek-
rigid for no k.

Let us end this criticism on the rough definition Iso-rigydlty noting that a
generic geometric structure (e.g. a Riemannian metric)riaason-trivial local
isometries, in which case the local rigidity condition isgyn In contrast, it is the
infinitesimal rigidity condition (even empty) that allows® to associate “rigid”
(solid") objects tas, independently of the fact that it has or not local isometrie
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Indeed, it is proved in both Cartan and Gromov situationat Akrigidity (or k-
finiteness of type) allows one to construct a parallelisnoo#rally associated to
o defined on thé:-frame bundleGL (¥) (A1) — M (this is the usual frame bundle
for k = 1) (see for instance [2] and Theorem 2[in [8]). This producegsariicular
the Levi-Civita connection and hence geodesics for Rienmaanmetrics. Also, the
Lie group property is proved by means of this framing.

2. LIGHTLIKE METRICS

Duality. Our original motivation was to study rigidity of lightlike etrics. They
are simplyH -structures wheré/ consists of matrices:

(5 %)

whered € O(n — 1), @ € R* ' andb € R. Observe that this is exactly the
dual of the group defining sub-Riemannian metrics, thahiesauitomorphismi e
GL,(R) — A*~! € GL,,(R) sends one group onto the other.

More geometrically, one definedightlike scalar product on a vector space as
a positive symmetric bilinear form having a kernel of dimensone. A lightlike
metric on a manifold/ is a tensor which is a lighlike scalar product on each tan-
gent space. More generaly, a lighlike metric on a vector lAd— M consists in
giving a 1-dimensionnal sub-bundlé C T'M together with a Riemannian metric
on E/N. If one defines a sub-Riemannian metric®n— M as a codimension 1
sub-bundleD C E endowed with a Riemannian metric, then one gets a duality:

lightlike metric onF <« sub-Riemannian metric on (the dualy.

In other words, a lightlike metrig on a manifoldM consists in giving a line sub-
bundle (direction field)N C T'M, and a Riemannian metric M /N. The
direction field N and the 1-dimensional foliatio/ that it generates are called
characteristic.

Natural situations. Lightlike metrics appear naturally as induced metrics dm su
manifolds of Lorentz manifolds. Indeed léL, ) be a Lorentz manifold, and
M C L a submanifold such that for anye M, the restrictionh,, onT, M is de-
generate. Then, this is a lightlike metric an, i.e. h, has a kernel of dimension 1
and is positive off, M. As an example, by definition characteristic hypersurfaces
of the D’Alembertian operator oh are lightlike hypersurfaces. Also, horizons (in
particular of black holes if any) of subsets bfare topological hypersurfaces and
are lightlike whence they are smooth.

Now we give two opposite classes of examples of lightlikerirogtwvhich corre-
spond, by duality to the integrable and contact cases ofubhéRéemannian situa-
tion, respectively:

Transversally Riemmannian lightlike metricA. lightlike metric on a manifoldl
of dimension 1is just 0. Consider now a direct produdtiof) with a Riemannian
metric(Q, h). This gives a lightlike metrié © 0 on@ x I. A lightlike metricg on
a manifoldM is calledtransversally Riemannianif it is locally isometric to such
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a (direct) product. This is equivalent to the fact that thevfaf any vector field
tangent to the characteristic direction preserveg (it suffices that this happens
for one non-singular such vector field).

Generic lightlike metricsLet X be a vector field tangent ty. One sees thaV
annualizes the Lie derivativexg (i.e. Lxg(u,v) = 0, if u € N). Furthermore,
Lx g is conformally well defined: ifX’ is another vector field tangent fg, then
Lxg = fLxg, for some functionf on M. We say thaiy is genericif Lxg
has maximal rank, i.e. its kernel is exacfly. This therefore defines a conformal
pseudo-Riemannian structure @d//N.

Rigidity flavours. Exactly as in the sub-Riemannian case, lightlike metriagha
infinite type and thus are not rigid. Indeed, the local isagngtoup has infinite
dimension for any transversally-Riemannian metric. Fameple, if A/ = R"~! x
R, with the metricdz?+. . . dz2_,, then any mayf (z,t) = (z,1(z, t)) is isometric.

The key observation of [5] was a kind of Liouville theorem fhe lightcone
Co", n > 3. ThisisR*T x S"~! endowed with the lightlike metrig ,) =
e?*Can,, whereCan is the usual metric o™ ~!. This is in fact the lightcone at
0 in the Minkowski spac@/in™ . The lorentz grou® (1, n) acts isometrically
on Min™*! and hence o@o™. The observation is that any local isometry(@$”
coincides with the restriction of an element@®@f (1, n).

A correspondence: “generic transversally conformal Liike geometry”« Con-
formal Riemannian geometrnyfhe cone situation generalizes to thatmansver-
sally conformal lightlike structure. This means that the flow of akytangent to
N is conformal, equivalently. xg = f¢ for some functionf. Locally, M = Q x I
wherel is an interval, andy, ) = c(q,7)h,, whereh is a Riemannian metric on
Q.
Assume¢ is an isometry of(M, g), then it acts onQ, the quotient space of
its characteristic foliation and induces a diffeomorphigmwhich is obviously
conformal for(Q, h).

Conversely, let) a conformal transformation dfV, i), and let us look for an
isometry of (M, g) of the form¢ : (q,7) — (¢(q),0(g,7)). We assume here
generic, which means thﬁf% # 0. Let us assume thdt= R, and for any, the
mapr — c(q,r) is a global diffeomorphism aR. If f is the conformal distortion
of ¢, that isy*h = fh, theng is isometric iffc(¢(q),0(g, 7)) f(q) = c¢(g,r). Our
hypotheses imply that for any fixed §(q, ) can be uniquely chosen, and hence
a conformal transformation @fV, #) admits a unique isometric lifting o/, g).
(One may compare with a somehow similar constructiofn_in)[13]

3. SUB-RIGIDITY OF GEOMETRIC STRUCTURESRESULTS

We have the following infinitesimal result for lightlike muits (wherejet® (¢) =
1, means thap has the samg-jet as the identity at):
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Theorem 3.1. Let g be a generic lightlike metric on a manifolld of dimension
n > 4. Then, a 3-infinitesimal isometry with a trivial 1-jet, hasrizial 2-jet:

¢ €150}, jety(¢) =1 => jetr(¢) =1

This notion was actually brought out by Benveniste-Fishdd] under the name
of almost-rigidity. We believe here that the word “sub-tigis more telling (see
also [12]).

In order to keep an elementary level of exposition, we restriirselves to geo-
metric structures of order 1, that I, ,, (R)-equivariant map® (M) (= GL (D (M)) —
Z, whereP(M) is the frame bundle o/ and Z is a manifold with aGL ,,(R)-
action. The classical case of &hstructure corresponds to the homogeneous space
Z =GL,(R)/H.

Definition 3.2. A geometric structurer is (k + s, k)-sub-rigid, if any(k + s)-
isometry whosé-jet is trivial has a trivial (k + 1)-jet; formally, if Imk*k+1 de-
notes the image d§o"™* — Iso®*!, then, for anyz, Imk*sk+1 _ sk is injective.

Remarks 3.3.
1. (k + 1, k)-sub-rigidity meang:-rigidity.
2. In particular, &k + s, k)-sub-rigid structure is Iso-rigid at ordér
3. The theorem above states that generic lightlike metrie$3a1)-sub-rigid.

In the sub-Riemannian case, we have
Theorem 3.4. A contact sub-Riemannian metric(i, 1)-sub-rigid.

Example. The paradigmatic example of sub-rigid structures presemd4] was
that of a degenerate framing. That is, Bff, a system of vector fields —
(X1(x),..., X, (z)), which are linearly independent everywhere except at an iso
lated point, say). As an example, take = 1, and the geometric structure being
a vector fieldX (z) = f(x)a%. A diffeomorphism¢ is isometric if¢'(z) f(x) =
f(o(x)). If f does not vanish, then we have a true parallelism, andOHrigid:
trivial 0-jet implies trivial 1-jet, say at the poind € R; in other words»(0) = 0
implies¢’(0) = 1.

Assume now thaff (0) = 0, then¢ is isometric up to ordek + 1 at O, if it
satisfies, at the point 0, all the equations obtained by ¢p#ferivatives up to order
k of the equality: ¢/(x) f(z) = f(¢(x)). Assumef has a zero of orded at 0,
e.g. f(z) = 2%, and thatjet}(¢) = 1, i.e. ¢(0) = 0 and¢’(0) = 1; then we
need derivatives ap up to orderd + 2 in order to conclude thatet?(¢) = 1, i.e.
¢"(0) = 0. Therefore, the structure {g + 2, 1)-sub-rigid.

Remarks 3.5.

1. An essentially equivalent example is given in ([1§§,11.B) to show weak-
ness of Iso-rigidity in comparison with rigidity.

2. One may think following([4] that, as above, there is alwaysegeneracy
phenomenon behind sub-rigidity. One may in particular &aksub-rigid structure
is rigid on an open dense set? However, the examples of thidikig structure on
the Minkowski lightcone, and the standard contact sub-Riaman metric on the
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Heisenberg group, show that sub-rigid structures can beobereous. They are
in particular nowhere rigid.

4. PROOF OFTHEOREM[3.4

Proof. Let (D, h) be a contact sub-Riemannian structureldn For computation,
it is useful to seg D, h) as an equivalence class of paits, h) wherew is any
contact form definingD. The correspondencgev, h) — h discussed irff1.0.1
does not depend on the particular choicesofWe will show that thel-jet of & is
determined by the th&-jet of (w, h).

Let X1,... X9 a local system of smooth vector fields generating where
dim M = 2d + 1. The normalized form’ = fw is defined by

fdw(X1,. .., Xan) = det(h(Xi, X;)i;)
Its Reeb vector fieldr is defined algebraically by
df (Xi)w(R) + fdw(X;, R) = 0, and fw(R) = 1

If X, is a vector field transverse 10, thenh(X;, X¢);;, 4,7 > 0, are given by
theh(X;, X;), 4,5 > 0, and the coordinates & in the moving frameg Xy, ... Xa4}.
In particular the first derivatives d¢f come from third derivatives afv, h).

Let f be a diffeomorphismf*w = w; and f*h = hy. Thusf*h = hy. If fisa
4-isometry for(w, h), then by definitionv andw, (resp.h andh;) coincide up to
order 3. It then follows thak andh; coincide up to order 1, that i a 2-isometry
for h. If f was merely a 4-isometry fdiD, k), then,w will coincide up to order 3
with a multiple gw;, which leads to the same conclusion for

To prove(4, 2)-sub-rigidity for (D, k), apply the 1-rigidity (say thé2, 1)-sub-
rigidity) of Riemannian metrics. We get here thatfifs a4-isometry with a trivial
1-jet, then it has a trivial 2-jet.

O

Example.Endow R? with the contact hyperplane field determined by the form
w = dz — xdy together the restriction afz? + dy? on it. The mapf(z,y,z) =
(x+122y—2z2% 2+ Jyz?) belongs tdsoj. It has a trivial 1-jet, but a non-trivial
2-jet. Therefore, the structure is N@& 1)-sub-rigid.

5. ON THE PROOF OFTHEOREM[3.]

We give in what follows hints on the proof of Theoréml3.1. Dlsfaespecially
for §45.1.2 and 5.2 will appear in[6].

5.1. The transversally conformal case.Let us consider first the transversally
conformal case. LocallyM = @Q x I, andg( .y = c(q,7)hy. An isometry¢
has the formy : (¢,7) — (¥(q,7),0(q,r)). Since¢ preserves the characteristic
foliation of g, it acts on the quotient spa€g that is,i) does not depend on
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5.1.1. The local isometry equationThe isometric equation is:

c(¥(q),6(q,7))¢"h = c(q,7)h
That is,¢ is conformal, say with a distortioffi (i.e. ¢*h = fh) which satisfies the
cocycle propertyz(i(q),d(q. 7)) f(q) = c(q,7)-

INFINITESIMAL CASE. For the sake of simplicity, even for infinitesimal isome-
tries, we will assume that theif-part depends only on (what is a priori true in
this case is that the derivatives grwith respect ta- vanish according to the order
of the infinitesimal isometry).

Fix a point, say(q,r) = (0,0). The fact thaip = (¢, 0) is isometric of order
1 (and fixes(0,0)) means exactly that the previous equation is satisfied0fdr).
Soy(0) =0, 6(0,0) = 0, andy is conformal at order 1.

First step: ¢ € Iso(y g,y andjet(y o é = 1 = jetdy = 1.

— The fact thatp has a trivial 1-jet translates td9y¢ = 1, andg—g = 0, and
N =1
— The fact that € '50%0,0) (9) means that the second derivativescét (0, 0)
satisfy all the equalities obtained by derivating the prasgiequation. Here, using
thatg—g = 0, we observe that we have in fact that Isof(h), that isy is not only
conformal, but isometric foh. Then, we use 1-rigidity of Riemannian metrics to
deduce thaget3(y) = 1.

—Now, ¢ € '50?0,0) (g) implies in particular that) is 3-conformal forh. We then
apply Liouville Theorem, that is the 3-rigidity of conforin@iemannian metrics,
and deduce thatet3 () = 1.

5.1.2. Second stepy € '50?070) andjetdy = 1 = jet%070)5 = jd%op)“ i.e. all
the second derivatives éfvanish at(0, 0).
— The equatiorp € '50?070) obtained by taking second derivatives of the isomet-

ric equation gives relations betweg#2(5) andjet3(1). Since, we already know
that Dyy» = 1 and all other derivatives of ordet 3 vanish, we get equations re-
lating second derivatives oéf(the first derivatives of are known). We then prove
that this system of algebraic linear equations (on theseal®es) is determined

and that all the second derivativesdofanish.

5.2. The general case, generalized conformal structuresiheng, , has a gen-
eral form rather the split one in the transversally confdrozse, we get on the
guotient space a kind afeneralized conformal structure This means that at
eachq € Q, we are givingS, C Sym?"(T,M), the space of Euclidean scalar
products oril, ), such thatS, is the image of a (non-parameterized) curve. The
case of Riemannian metrics correspondsSjaeduced to one point, and that of
conformal structures to that where all the elementsSphre proportional. (Of
course, we assume everything depends smoothiy).on

The proof of Theorerh 311 goes through an adaptation of Lieutheorem to
generalized conformal structures, that is a generalizedoomal structure -
rigid.
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The second step in the proof of Theoreml 3.1 is the same as trattgversally
conformal case.

6. WEAKNESS

We show in what follows how the sub-rigidity is weak in comipan to rigidity.

6.1. Gromov representation theorem for rigid structures. LetG be a Lie group
acting on a compact manifoldl/ by preserving an analytic geometric structare
and a volume form. The Gromov representation theorem coadbe case where
o is rigid andG is a simple Lie group. It states thaf tends to look like a quotient
G/A, whereA is a co-compact lattice ifiy. The precise statement is that(1/)
is large, in the sense that it has a representation in soraarligroup whose the
Zariski closure of the image contains a copy of the Lie gr6upThis result was
generalized for actions of lattices @®, by Fisher-Zimmer:

Theorem 6.1.[14] LetI" be a lattice in a simple Lie grou@ of rank> 2. Suppose
I" acts on a manifold\/ analytically by preserving an analytic rigid geometric
structure, and ergodically for a volume form. Then, either:

1. T" acts via a homomorphism in a compact subgrdtp- Diff (M) (and thus
M is a homogeneous spaé€/C, by ergodicity), or

2. As in Gromov representation theorem,(}/) admits a homomorphism in
someGL n(R) whose Zariski closure contains a subgroup locally isomarph
the Lie groupG.

We will show below that this does not extend to sub-rigid dtiees.

Extension of Killing fields.One crucial ingredient in the proof on the previous
results is that, for rigid geometric structures, local gtialKilling fields extend
to the full manifold if it is simply connected (seel [1,/11) L5More precisely, let
M be analytic, simply connected and endowed with an analigid geometric
structures. Let V' be a Killing field of o defined on an open sét C M (that is
the local flow of V' preservesr). Then,V extends (as an analytic Killing field) to
M.

This fact is no longer true for sub-rigid structures. Inddetly = 2%¢dz? be
a “singular” Riemannian metric oR. OnR — {0}, the metric is regular, and
hence flat, it has a Lie algebra of Killing fields of dimensianNo such Killing
field extends at 0. Indeed, as 0 is the unique singular poigt afwill be fixed
by any local isometryy defined on its neighbourhood. One then shows ¢hest
necessarily-Id. Indeed, there is a well defined distantederived fromg. Thus,

dg(07 T) = dg(O, o(x)).

6.2. No Gromov representation for sub-rigid structures. In the sub-rigid case,
we have the following example:

Theorem 6.2. The latticeSL 3(Z) acts analytically and ergodically on a compact
simply connected manifold, by preserving an analytic sglatrstructure and a
volume form. More precisely, there exists a holomorphiéactf SL 3(Z + jZ),
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j = e%”, on a compact Calabi-Yau 3-manifold (i.e. a simply conra:é€@hler
manifold with a holomorphic volume form). The action pressra holomorphic
sub-rigid structure, and is ergodic (it is measurably isaptoc to an affine action
of a complex torus of dimension 3).

Remark 6.3. Observe this is a sub-rigid counter-example for the Fishienmer
version concerning higher rank lattices actions. The arigiGromov’s theorem
deals with actions of Lie groups.

Proof. Before giving the construction, let us discuss somewhagémeral question
of taking pull-backs of geometric structures.

Pull-Back. Let 7 : M’ — M be a differentiable map, withi/ and M’ of same
dimensionn. AssumeM is endowed with and-structures (H a subgroup of
GL ,(R)). If = has no critical points7 a local diffeomorphism) then, one defines
straightforwardlyr*(c). Indeed,jet! () is well defined as a ma@L () (M) —
GL M (A1), and then one composes it with : GL M (M) — GL,(R)/H. In
contrast, there is generally no mean to defirf¢o) at a critical point. As an
example, there is no definition of the inverse image of a vdattd on M.

Let us now describe a situation where the definition of thé-Ipatk of anH -
structure is possible as a geometric structure in the Groseoge, but not as an
H-structure. Assume is a parallelismz — (e1(z),...,e,(z)) on M. One
defines a geometric structusé : GL (Y (M) — Mat,(R) by:

w=(u,...,u,) € GLW(M') = o' (u) = (a;j(u)) € Maty(R)

whereD,m(u;) = Ya;;j(u)e;j(m(y)). In other wordsg’ (u) is the matrix of the de-
rivative D, 7 with respect to the basg¢s, ..., u,) and(e1(7(y)), ..., en(7(y)))
of T, M" and T, M, respectively.

Case of the affine flat connectioAnother situation which serves in the proof of
our theorem is that of the usual affine structuré®dn This anH -structure of order
2,i.e. amap : GLO(R") - GL Y (R"), whereGL ”) (R") is the set of invert-
ible jets injet3(R™, R™) (the space of jetR™, 0) — R"), i.e. the inverse image of
GL ,(R) under the projectiopiets ,(R",R™) — GL ,(R™) C jetg o(R",R") (the
space of jet§R"™,0) — (R™,0)). The usual affine connection @i is obtained
from the projectiorGL @ (R™) = R™ x GL | (R") — GL ) (R™). Now the point
is thato extends as a map: jetj(R™,R™) — jetj o((R",R"). The smooth map
m always induces a majet?(r) : GL ) (M') — jet2(R™,R™). We definer* (o)
asa o jet?(m).

If the degeneracy of is bounded, that is there existssuch thatjet® (r) # 0,
for anyz, thenw* (o) is sub-rigid.

The construction is natural, and thus, if a grdumcts onM’ andR™ equiv-
ariantly with respect tar, and if the action oR" is affine, thenI" preserves the
pull-back of the geometric structure ar’.

All this applies identically to the toru§™ = R™/Z", since we have the same
trivialization of the jet bundleL (2 (T").
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Actions. ConsiderT” a subgroup ofL ,,(Z) and let it act as usually dfi”. Blow-
up a finite orbit ofl" (e.g. a rational point), and get a manifdld’ with aI’-action.

It was proved by Katok-Lewis [16] that this action is volumegerving, and by
Beneviste-Fisher [4] that it preserves a sub-rigid stme;tbut can not preserve a
rigid one.

Orbifolds. Here, we assume that there is a finite index subgrbug SL,,(Z)
commuting with". We then consider the orbifold/, = T™/F. It inherits a
T-invariant natural flat affine connection in an orbifold sens

The next step is to desingulariaé, in order to get a (regular) manifolt’ with
al'-action equivariant with respect to a projectidfi — M.

An example.Take F' to be the group isomorphic t8/27Z generated by the invo-
lution 7 : z — —xz. If n = 2, the quotient around fixed points is just a cone
with opening angler. It follows that the so obtained orbifold is a topological-su
face. Itis in fact a topological sphere, with exactly 4 cosiiegularities on which

I' = SL»(Z) acts continuously by preserving a continuous volume fortre 3in-
gularities can be solved to give the usual differentialdlecstire on the sphere, but
this can not be donE-equivariantly.

Complex caseA higher dimensional generalization is possible, but in mpl@x
framework. So, we start with a complex tords= C" /A (of complex dimension
n). We considerM, = A/F, whereF' is the same previous group generated by
the involution!. If n > 2, M, is no longer a topological manifold, since the fixed
points of I are not conical. We then start blowing-up on I-fixed points, in a
complex way, and get/;. We have a projectiop; : M; — A with singular fibers
isomorphic toCP"~! overI-fixed points. Now,F acts naturally or\/; with coni-

cal singularities, and hendd, = M, /F is a topological manifold. The resolution
of singularities yields a complex structure d#, with a naturall’-holomorphic
action.

Our case.Forn = 2, we get a Kummer surface, a special case of K3 surfaces.
Observe that the volume forthv = dz1 Adzs is F-invariant and hence well defined
on M. However, even if the formp;(dv) is singular along the exceptional fibers,

it gives rise to a true regular holomorphic volume form/ds.

In order to have a similar construction in dimension 3, wdaepF' by the
group generated by the rotation: = — jz wherej = eFionC3 (seel[10]57.6).

It preserves the volume form, and therefore, we get on theesponding/; a
holomorphic volume form.

Regarding thé -action, we takel’ = SL 3(Z + jZ) andA = (Z + jZ)3 c C3.
Thus,T" is a lattice inSL 3(C), it preserves\ and commutes withy.

As in the cases = 1,2, one can prove directly thalt/, is simply connected.
Another idea is to use the fact tha&f,; has holomorphic volume form to deduce
it has a vanishing first Chern class. Then, apply Yau's thaadi® get a Kahler
Ricci flat metric on it. But, for such manifolds, up to a finitever, there is a de
Rham decomposition into a product of a flat torus, and (cothgaaply connected
manifolds (hyper-Kahler and Calabi-Yau, see [7]). Thuisuifices to verify that
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M, has no torus (of dimension 1, 2 or 3) as a factor, to prove thas a finite
fundamental group. a

Remark 6.4. One can use general theory of rigid transformation groupseto
that the latter action can not preserve a (real) analyticl ggometric structure.
Indeed, by[[11], 15], the isometry group of a unimodular ati@lygid structure on

a simply connected manifold have a finite number of connecteaponents. This
means that up to a finite index, theaction extends to an action of a Lie group,
which can be easily seen to be impossible.
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