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Abstract

We study the thermal properties of a pinned disordered harmonic chain weakly perturbed by

a noise and an anharmonic potential. The noise is controlled by a parameter λ → 0, and the

anharmonicity by a parameter λ′ ≤ λ. Let κ be the conductivity of the chain, defined through

the Green-Kubo formula. Under suitable hypotheses, we show that κ = O(λ) and, in the absence

of anharmonic potential, that κ ∼ λ. This is in sharp contrast with the ordered chain for which

κ ∼ 1/λ, and so shows the persistence of localization effects for a non-integrable dynamics.
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1 Introduction

The mathematically rigorous derivation of macroscopic thermal properties of solids, starting from their

microscopic description, is a serious challenge ([8], [17]). On the one hand, numerous experiments and

numerical simulations show that, for a wide variety of materials, the heat flux is related to the gradient

of temperature through a simple relation known as Fourier’s law:

J = −κ(T )∇T ,

where κ(T ) is the thermal conductivity of the solid. On the other hand, the mathematical understand-

ing of this phenomenological law from the point of view of statistical mechanics is still lacking.

A one-dimensional solid can be modelled by a chain of oscillators, each of them being possibly

pinned by an external potential, and interacting through a nearest neighbour coupling. The case of

homogeneous harmonic interactions can be readily analysed, but it has been realized that this very

idealized solid behaves like a perfect conductor, and so violates Fourier’s law ([21]). To take into

account the physical observations, it is thus needed to consider more elaborate models, where ballistic

transport of energy is broken. Here are two possible directions.

On the one hand, adding some anharmonic interactions can drastically affect the conductivity of the

chain ([2], [19]). Unfortunately, the rigorous study of anharmonic chains is in general out of reach, and

even numerical simulations do not lead to completely unambiguous conclusions. In order to draw some

clear picture, anharmonic interactions are mimicked in [3][6] by a stochastic noise that preserves total

energy and possibly total momentum. The thermal behaviour of anharmonic solids is, at a qualitative

level, correctly reproduced by this partially stochastic model. By instance, the conductivity of the one-

dimensional chain is shown to be positive and finite if the chain is pinned, and to diverge if momentum

is conserved.

On the other hand, another element that can affect the conductivity of an harmonic chain is

impurities. In [22] and [10], an impure solid is modelled by a disordered harmonic chain, where the

masses of the atoms are random. In these models, localization of eigenmodes induces a dramatic fall off

of the conductivity. In the presence of everywhere onsite pinning, it is known that the chain behaves

like a perfect insulator (see Remark 1 after Theorem 1). The case of unpinned chain is more delicate,

and turns out to depend on the boundary conditions ([14]). The principal cases have been rigorously

analysed in [24] and [1].

The thermal conductivity of an harmonic chain perturbed by both disorder and anharmonic inter-

actions is a topic of both practical and mathematical interest. We will in the sequel only consider a

one-dimensional disordered chain with everywhere on-site pinning. Doing so we avoid the pathological

behaviour of unpinned one-dimensional chains, and we focus on a case where the distinction between

ordered and disordered harmonic chain is the sharpest. We will consider the joint action of a noise
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and an anharmonic potential ; we call λ the parameter controlling the noise, and λ′ the parameter

controlling the anharmonicity (see Subsection 2.1 below).

The disordered harmonic chain is an integrable system where localization of the eigenmodes can be

studied rigorously ([16]). However, if some anharmonic potential is added, very few is known about the

persistence of localization effects. In [13], it is shown through numerical simulations that an even small

amount of anharmonicity leads to a normal conductivity, destroying thus the localization of energy. In

[20], an analogous situation is studied and similar conclusions are reached. This is confirmed rigorously

in [5], if the anharmonic interactions are replaced by a stochastic noise preserving energy. Nothing

however is said there about the conductivity as λ → 0. Later, this partially stochastic system has been

studied in [12], where numerical simulations indicate that κ ∼ λ as λ → 0.

Let us mention that, although the literature on the destruction of localized states seems relatively

sparse in the context of thermal transport, much more is to find in that of Anderson’s localization and

disordered quantum systems (see [4] and references in [4][12]). There as well however, few analytical

results seem to be available. Moreover, the interpretation of results from these fields to the thermal

conductivity of solids is delicate, in part because many studies deal with systems at zero temperature:

the time evolution of an initially localized wave packet.

The main goal of this article is to establish that disorder strongly influences the thermal conductivity

of a harmonic chain, when both a small noise and small anharmonic interactions are added. We will

always assume that λ′ ≤ λ, meaning that the noise is the dominant perturbative effect. Our main

results, stated in Theorems 1 and 2 below, are that κ = O(λ) as λ → 0, and that κ ∼ λ if λ′ = 0.

Strictly speaking, our results do not imply anything about the case where λ′ > 0 and λ = 0. However,

in the regime we are dealing with, the noise is expected to produce interactions between localized

modes, and so to increase the conductivity. We thus conjecture that κ = O(λ′) in this later case. This

is in agreement with numerical results in [20], where it is suggested that κ could even decay as e−c/λ′

for some c > 0.

In the next section, we define the model studied in this paper, we state our results and we give

some heuristic indications. The rest of the paper is then devoted to the proof of Theorems 1 and 2. Let

us already indicate its main steps. The principal computation of this article consists in showing that

the current due to harmonic interactions between particles k and k + 1, called jk,har , can be written

as jk,har = −Aharuk, where uk is localized near k, and where Ahar is the generator of the harmonic

dynamics. This is stated precisely and shown in Section 4 ; the proof ultimately rests on localization

results first established by Kunz and Souillard (see [16] or [11]). Once this is seen, general inequalities

on Markov processes allow us to obtain, in Section 3, the desired upper bound κ = O(λ) in presence

of both a noise and non-linear forces. The lower bound κ ≥ cλ, valid when λ′ = 0, is established by

means of a variational formula (see [23]), using a method developed by the first author in [5]. This is
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carried out in Section 6.

2 Model and results

2.1 Model

We consider a one-dimensional chain of N oscillators, so that a state of the system is characterized by

a point

x = (q, p) = (q1, . . . , qN , p1, . . . , pN ) ∈ R
2N ,

where qk represents the position of particle k, and pk its momentum. The dynamics is made of a

hamiltonian part perturbed by a stochastic noise.

The Hamiltonian. The Hamiltonian writes

H(q, p) = Hhar(q, p) + λ′Hanh(q, p)

=
1

2

N
∑

k=1

(

p2k + νk q
2
k + (qk+1 − qk)

2
)

+ λ′
N
∑

k=1

(

U(qk) + V (qk+1 − qk)
)

,

with the following definitions.

• The pinning parameters νk are i.i.d. random variables whose law is independent of N . It is

assumed that this law has a bounded density and that there exist constants 0 < ν− < ν+ < ∞
such that

P(ν− ≤ νk ≤ ν+) = 1.

• The value of qN+1 depends on the boundary conditions (BC). For fixed BC, we put qN+1 = 0,

while for periodic BC, we put qN+1 = q1. For further use, we also define q0 = q1 for fixed BC,

and q0 = qN for periodic BC.

• We assume λ′ ≥ 0. The potentials U and V are symmetric, meaning that U(−x) = U(x) and

V (−x) = V (x) for every x ∈ R. They belong to C∞
temp(R), the space of infinitely differentiable

functions with polynomial growth. It is moreover assumed that

∫

R

e−U(x) dx < +∞ and ∂2
xU(x) ≥ 0,

and that there exists c > 0 such that

c ≤ 1 + λ′∂2
xV (x) ≤ c−1.
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For x = (x1, . . . , xd) ∈ Rd and y = (y1, . . . , yd) ∈ Rd, let 〈x, y〉 = x1y1 + · · ·+ xdyd be the canonical

scalar product of x and y. The harmonic hamiltonian Hhar can also be written as

Hhar(q, p) =
1

2
〈p, p〉 +

1

2
〈q,Φq〉,

if we introduce the symmetric matrix Φ ∈ RN×N of the form Φ = −∆+W , where ∆ is the discrete

Laplacian, and W a random “potential”. The precise definition of Φ depends on the BC:

Φj,k = (2 + νk)δj,k − δj,k+1 − δj,k−1 (fixed BC),

Φj,k = (2 + νk)δj,k − δj,k+1 − δj,k−1 − δj,1δk,N − δj,Nδk,1 (periodic BC),

for 1 ≤ j, k ≤ N .

The dynamics. The generator of the hamiltonian part of the dynamics is written as

A = Ahar + λ′Aanh

with

Ahar =

N
∑

k=1

(

∂pk
Hhar . ∂qk − ∂qkHhar . ∂pk

)

= 〈p,∇q〉 − 〈Φq,∇p〉

and

Aanh = −
N
∑

k=1

∂qkHanh . ∂pk
= −

(

∂xU(qk) + ∂xV (qk − qk−1)− ∂xV (qk+1 − qk)
)

. ∂pk
.

Here, for x = (x1, . . . , xN ) ∈ RN , ∇x = (∂x1
, . . . , ∂xN

) .The generator of the noise is defined to be

λSu = λ
N
∑

k=1

(

u(. . . ,−pk, . . . )− u(. . . , pk, . . . )
)

,

with λ ≥ λ′. The generator of the full dynamics is given by

L = A+ λS.

We denote by Xt
(λ,λ′)(x), or simply by Xt(x), the value of the Markov process generated by L at time

t ≥ 0, starting from x = (q, p) ∈ R
2N .

Expectations. Three different expectations will be considered. We define

• µT : the expectation with respect to the Gibbs measure at temperature T ,

• E: the expectation with respect to the realizations of the noise,

• Eν : the expectation with respect to the realizations of the pinnings.
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In Section 5, it will sometimes be useful to specify the dependence of the Gibbs measure on the system

size N ; we then will write it µ
(N)
T .

The Gibbs measure µT is explicitly given by

µT (u) =
1

ZT

∫

R2N

u(x) e−H(x)/T dx, u : R2N → R,

where ZT is a normalizing factor such that µT is a probability measure on R2N . We will need some

properties of this measure. Let us write

Z−1
T e−H(x)/T = ρ′(p1) . . . ρ

′(pN ) . ρ′′(q),

with ρ′(pk) = e−p2

k
/2T /

√
2πT for 1 ≤ k ≤ N .

When λ′ = 0, the density ρ′′ is Gaussian:

ρ′′(q) = (2πT )−N/2 . (detΦ)1/2 . e−〈q,Φq〉/2T .

Since νk ≥ ν− > 0, it follows from Lemma 1.1 in [9] that |(Φ−1)i,j | ≤ Ce−c|j−i|, for some constants

C < +∞ and c > 0 independent of N . This implies in particular the decay of correlations

µT (qiqj) = T (Φ−1)i,j ≤ CT e−c|j−i|.

When λ′ > 0, the density ρ′′ is not Gaussian anymore. We here impose the extra assumption

that ν− is large enough. In that case, our hypotheses ensure that the conclusions of Theorem 3.1 in

[7] hold: there exist constants C < +∞ and c > 0 such that, for every f, g ∈ C∞
temp(R

N ) satisfying

µT (f) = µT (g) = 0,

∣

∣µT (f . g)
∣

∣ ≤ Ce−c d(S(f),S(g))
(

µT

(〈

∇qf,∇qf
〉)

. µT

(〈

∇qg,∇qg
〉)

)1/2

. (2.1)

Here, S(u) is the support of the function u, defined as the smallest set of integers such that u can be

written as a function of the variables xl for l ∈ S(u), whereas d(S(f), S(g)) is the smallest distance

between any integer in S(f) and any integer in S(g). Using that µT (qk) = 0 for 1 ≤ k ≤ N , it is

checked from (2.1) that every function u ∈ C∞
temp(R

N ) with given support independent of N is such

that ‖u‖L1(µT ) is bounded uniformly in N .

The current. The local energy ek of atom k is defined as

ek = ek,har + λ′ek,anh

with

ek,har =
p2k
2

+ νk
q2k
2

+
1

4
(qk − qk−1)

2 +
1

4
(qk+1 − qk)

2 for 2 ≤ k ≤ N − 1,

and

ek,anh = U(qk) +
V (qk − qk−1)

2
+

V (qk+1 − qk)

2
for 2 ≤ k ≤ N − 1.
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For periodic B.C., these expressions are still valid when k = 1 or k = N . For fixed B.C. instead, all

the terms involving the differences (q0 − q1) or (qN+1 − qN ) in the previous expressions have to be

multiplied by 2. These definitions ensure that the total energy H is the sum of the local energies.

The definition of the dynamics implies that

dek =
(

jk−1 − jk
)

dt

for local currents

jk = jk,har + λ′jk,anh

defined as follows for 0 ≤ k ≤ N . First, for 1 ≤ k ≤ N − 1,

jk,har =
1

2
(pk + pk+1)(qk − qk+1) and jk,anh =

1

2
(pk + pk+1) ∂xV (qk − qk+1). (2.2)

Next, j0,1 = jN,N+1 = 0 for fixed B.C. Finally, j0 and jN are still given by (2.2) for periodic B.C.,

with the conventions p0 = pN and pN+1 = p1. The total current and the rescaled total current are

then defined by

JN = JN,har + λ′JN,anh =

N
∑

k=1

jk,har + λ′
N
∑

k=1

jk,anh (2.3)

JN = JN,har + λ′JN,anh =
JN,har√

N
+ λ′ JN,anh√

N
. (2.4)

2.2 Results

For a given realization of the pinnings, the (Green-Kubo) conductivity κ = κ(λ, λ′) of the chain is

defined as

κ(λ, λ′) =
1

T 2
lim
t→∞

lim
N→∞

κt,N (λ, λ′) =
1

T 2
lim
t→∞

lim
N→∞

µTE

(

1√
t

∫ t

0

JN ◦Xs
(λ,λ′) ds

)2

(2.5)

if this limit exists. The choice of the boundary conditions is expected to play no role in this formula

since the volume size N is sent to infinity for fixed time. The disorder averaged conductivity is

defined by replacing µTE by EνµTE in (2.5). By ergodicity, the conductivity and the disorder averaged

conductivity are expected to coincide for almost all realization of the pinnings (see [5]). The dependence

of κ(λ, λ′) on the temperature T will not be analysed in this work, so that we can consider T as a fixed

given parameter.

We first obtain an upper bound on the disorder averaged conductivity.

Theorem 1. Let 0 ≤ λ′ ≤ λ. With the assumptions introduced up to here, if ν− is large enough, and

for fixed boundary conditions,

1

T 2
lim sup
t→∞

lim sup
N→∞

EνµTE

(

1√
t

∫ t

0

JN ◦Xs
(λ,λ′) ds

)2

= O(λ) as λ → 0. (2.6)
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Remarks. 1. When λ = 0, the proof (see Section 3) actually shows that

1

T 2
lim sup
N→∞

EνµT

(

1√
t

∫ t

0

JN ◦Xs
(0,0) ds

)2

= O
(

t−1
)

as t → ∞.

This bound had apparently never been published before. It says that the unperturbed chain behaves

like a perfect insulator: the current integrated over arbitrarily long times remains bounded in L2(EνµT ).

2. The proof (see Section 3) shares some common features with a method used in [18] to obtain a weak

coupling limit for noisy hamiltonian systems. In our case, we may indeed see the eigenmodes of the

unperturbed system as weakly coupled by the noise and the anharmonic potentials.

3. The choice of fixed boundary conditions just turns out to be more convenient for technical reasons

(see Section 4).

4. The hypothesis that ν− is large enough is only used to ensure the exponential decay of correlations

of the Gibbs measure when λ′ > 0.

Next, in the absence of anharmonicity (λ′ = 0), results become more refined.

Theorem 2. Let λ > 0, let λ′ = 0, and let us assume that hypotheses introduced up to here hold. For

almost all realizations of the pinnings, the Green-Kubo conductivity (2.5) of the chain is well defined,

and in fact

κ(λ, 0) =
1

T 2
lim
t→∞

lim
N→∞

EνµTE

(

1√
t

∫ t

0

JN ◦Xs
(λ,0) ds

)2

, (2.7)

this last limit being independent of the choice of boundary conditions (fixed or periodic). Moreover,

there exists a constant c > 0 such that, for every λ ∈]0, 1[,

cλ ≤ κ(λ, 0) ≤ c−1λ. (2.8)

The rest of this article is devoted to the proof of these theorems, which is constructed as follows.

Proof of Theorems 1 and 2. The upper bound (2.6) is derived in Section 3, assuming that Lemma 1

holds. This lemma is stated and shown in Section 4 ; it encapsulates the informations we need about

the localization of the eigenmodes of the unperturbed system (λ = λ′ = 0). The existence of κ(λ, 0) for

almost every realization of the pinnings, together with (2.7), are shown in Section 5. Finally, a lower

bound on the conductivity when λ′ = 0 is obtained in Section 6. This shows (2.8). �

2.3 Heuristic comments

We would like to give here some intuition on the conductivity of disordered harmonic chains perturbed

by a weak noise only, so with λ > 0 small and λ′ = 0. We will develop in a more probabilistic way some

ideas from [12]. Our results cover the case where the pinning parameters νk are bounded from below

by a positive constant, but it could be obviously desirable to understand the unpinned chain as well,

in which case randomness has to be putted on the value of the masses. We handle here both cases.
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Let us first assume that νk ≥ c for some c > 0, and let us consider a typical realization of the

pinnings. In the absence of noise (λ = 0), the dynamics of the chain is actually equivalent to that of N

independent one-dimensional harmonic oscillators, called eigenmodes (see Subsection 4.1 and formulas

(4.5-4.6) in particular). Since the chain is pinned at each site, the eigenfrequencies of these modes are

uniformly bounded away from zero. As a result, all modes are expected to be exponentially localized.

We can thus naively think that, to each particle, is associated a mode localized near the equilibrium

position of this particle.

When the noise is turned on (λ > 0), energy starts being exchanged between near modes. Let us

assume that, initially, energy is distributed uniformly between all the modes, except around the origin,

where some more energy is added. We expect this extra amount of energy to diffuse with time, with a

variance proportional to κ(0, λ) . t at time t. Since flips of velocity occur at random times and with rate

λ, we could compare the location of this extra energy at time t to the position of a standard random

walk after n = λt steps. Therefore, denoting by δk the increments of this walk, we find that

κ(λ, 0) ∼
〈( 1√

t

n
∑

k=1

δk

)2〉

∼ λ.

This intuitive picture will only be partially justified, as explained in the remark after the proof of

Theorem 1 in Section 3.

Let us now consider the unpinned chain. So we put νk = 0 and we change p2k by p2k/mk in

the Hamiltonian, where the masses mk are i.i.d. positive random variables. We consider a typical

realization of the masses. In contrast with the pinned chain, the eigenfrequencies of the modes are

now distributed in an interval of the form [0, c], for some c > 0. This has an important consequence

on the localization of the modes. It is indeed expected that the localization length l of a mode and its

eigenfrequency ω are related through the formula l ∼ 1/ω2.

Here again, the noise induces exchange of energy between modes, and we still would like to compare

κ(λ, 0) . t with the variance of a centered random walk with increments δk. However, due to the

unlocalized low modes, δk can now take larger values than in the pinned case. Assuming that the

eigenfrequencies are uniformly distributed in [0, c], we guess that, for large a,

P(|δk| ≥ a) ∼ P(1/ω2 ≥ a) ∼ 1/
√
a.

This however neglects a fact. Since energy does not travel faster than ballistically, and since successive

flips of the velocity are spaced by time intervals of order 1/λ, it is reasonable to introduce the cut-off

P(|δk| > 1/λ) = 0. With this distribution for |δk|, and with n = λt, we now find

κ(λ, 0) ∼
〈( 1√

t

n
∑

k=1

δk

)2〉

∼ λ−1/2.

This scaling is numerically observed in [12]. The arguments leading to this conclusion are very approx-

imative however, and it should be desirable to analyse this case rigorously as well.
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3 Upper bound on the conductivity

We here proceed to the proof of Theorem 1. We assume that Lemma 1 in Section 4 holds: there exists a

sequence (uN )N≥1 ⊂ L2(EνµT ) such that −AharuN = JN,har, and that (uN )N≥1 and (AanhuN)N≥1 are

both bounded sequences in L2(EνµT ). Moreover uN is of the form uN (q, p) = 〈q, αNq〉+ 〈p, γNp〉+ cN ,

where αN , γN ∈ RN×N are symmetric matrices, and where cN ∈ R.

Proof of (2.6). Let 0 ≤ λ′ ≤ λ, and let uN be the sequence obtained by Lemma 1 in Section 4. Before

starting, let us observe that, due to the special form of the function uN , we may write

AanhuN =

N
∑

l=1

φl(q) pl, (3.1)

with

φl(q) = 2

N
∑

k=1

γk,l .
(

∂xV (qk+1 − qk)− ∂xV (qk − qk−1)− ∂xU(qk)
)

, (3.2)

where (γk,l)1≤k,l≤N are the entries of γN . It follows in particular that

AanhuN =
1

2
(−S)AanhuN . (3.3)

Now, since JN = JN,har + λ′JN,anh, we find using Cauchy-Schwarz inequality that

EνµTE

(

1√
t

∫ t

0

JN ◦Xs ds

)2

≤ EνµTE

(

1√
t

∫ t

0

JN,har ◦Xs ds

)2

+(λ′)2EνµTE

(

1√
t

∫ t

0

JN,anh ◦Xs ds

)2

+ 2λ′

(

EνµTE

(

1√
t

∫ t

0

JN,har ◦Xs ds

)2

.EνµTE

(

1√
t

∫ t

1

JN,anh ◦Xs ds

)2
)1/2

.

Since JN,anh = 1
2 (−S)JN,anh, a classical bound ([15], Appendix 1, Proposition 6.1) furnishes

EνµTE

(

1√
t

∫ t

0

JN,anh ◦Xs ds

)2

≤ CEνµT

(

JN,anh . (−λS)−1JN,anh

)

≤ C

2λ
EνµT

(

J 2
N,anh

)

where C < +∞ is a universal constant. By (2.1), EνµT

(

J 2
N,anh

)

is uniformly bounded in N . Therefore

lim sup
t→∞

lim sup
N→∞

EνµTE

(

1√
t

∫ t

0

JN,anh ◦Xs ds

)2

= O(λ−1).

It suffices thus to establish that

lim sup
t→∞

lim sup
N→∞

EνµTE

(

1√
t

∫ t

0

JN,har ◦Xs ds

)2

= O(λ).

We write

JN,har = −AharuN = −LuN + λ′AanhuN + λSuN = −LuN + λS
(

Id− λ′

2λ
Aanh

)

uN ,

where the second equality is obtained by means of (3.3). Therefore

1√
t

∫ t

0

JN,har ◦Xs ds =
−1√
t

∫ t

0

LuN ◦Xs ds+
λ√
t

∫ t

0

S

(

Id− λ′

2λ
Aanh

)

uN ◦Xs ds

=
1√
t
Mt −

u ◦Xt − u√
t

+
λ√
t

∫ t

0

S

(

Id− λ′

2λ
Aanh

)

uN ◦Xs ds, (3.4)
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where Mt is a martingale given by

Mt =

∫ t

0

N
∑

j=1

SjuN ◦Xs (dN
j
s − λds),

with Nj
s the Poisson process that flips the momentum of particle j.

It now suffices to establish that the three terms in the right hand side of (3.4) are O(λ) in L2(EνET ).

Let us first show that µT (uN . (−S)uN) ≤ 4‖uN‖2L2(µT ). Writing

uN = up,p,0
N + up,p,1

N + uq,q
N + cN

with

up,p,0
N =

∑

i6=j

γi,jpipj , up,p,1
N =

∑

i

γi,ip
2
i , uq,q

N = 〈q, αN q〉,

we get indeed

µT (uN . (−S)uN) = µT (uN . (−S)up,p,0
N ) = 4µT (u

p,p,0
N . up,p,0

N )

and

µT (uN . uN ) = µT

(

up,p,0
N . up,p,0

N

)

+ µT

(

(up,p,1
N + uq,q

N + cN )2
)

+ 2µT

(

(up,p,1
N + uq,q

N + cN ) . up,p,0
N

)

.

The claim follows since µT

(

(up,p,1
N + uq,q

N + cN ) . up,p,0
N

)

= 0.

So first,

µTE

(

1√
t
Mt

)2

= 2λµT

(

uN . (−S)uN

)

≤ 8λ ‖uN‖2L2(µT ).

Next,

µTE

(

u ◦Xt − u√
t

)2

≤ 2

t
‖uN‖2L2(µT ).

Finally, by a classical bound ([15], Appendix 1, Proposition 6.1),

µTE

(

λ√
t

∫ t

0

S

(

Id− λ′

2λ
Aanh

)

uN ◦Xs ds

)2

≤ Cλ2µT

(

S

(

Id− λ′

2λ
Aanh

)

uN . (−λS)−1S

(

Id− λ′

2λ
Aanh

)

uN

)

= CλµT

((

Id− λ′

2λ
Aanh

)

uN . (−S)

(

Id− λ′

2λ
Aanh

)

uN

)

= Cλ

(

µT

(

uN . (−S)uN

)

+
1

2

(

λ′

λ

)2

‖AanhuN‖2L2(µT )

)

≤ Cλ
(

‖uN‖2L2(µT ) + ‖AanhuN‖2L2(µT )

)

where (3.3) and

µT (uN , AanhuN) = µT

(

(

〈q, αN q〉+ 〈p, γNp〉+ cN
)

.
N
∑

l=1

φl(q) pl

)

= 0

have been used to get the second equality. Taking the expectation over the pinnings, the proof is

completed since (uN )N and (AanhuN)N are bounded sequences in L2(EνµT ). �
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Remark. When λ′ = 0, formula (3.4) becomes

1√
t

∫ t

0

JN ◦Xs ds =
1√
t
Mt −

uN ◦Xt − uN√
t

+
λ√
t

∫ t

0

SuN ◦Xs ds. (3.5)

Now, since SuN = −4
∑

1≤k 6=l≤N γk,l pkpl, it is computed that

∫ t

0

JN ◦Xt−s ds = −
∫ t

0

JN ◦Xs ds and

∫ t

0

SuN ◦Xt−s ds =

∫ t

0

SuN ◦Xs ds.

The measure on the paths being invariant under time reversal, it thus holds that

µTE

(

∫ t

0

JN ◦Xs ds .

∫ t

0

SuN ◦Xs ds

)

= 0.

We therefore deduce from (3.5) that

µTE

(

1√
t

∫ t

0

JN (s) ds

)2

= µTE

( 1√
t
Mt

)2

− µTE

(

λ√
t

∫ t

0

SuN ◦Xs ds

)2

+ r(t)

where r(t) is quantity that vanishes in the limit t → ∞. We see thus that our proof does not completely

justify the heuristic developed in Subsection 2.3, due to the second term in the right hand side of this

last equation. As explained after the statement of Lemma 1 below, the sequence uN should not be

unique. It could be that a good choice of sequence uN makes this second term of order O(λ2).

4 Poisson equation for the unperturbed dynamics

In this section, we state and prove the following lemma. Fixed BC are assumed for the whole section.

Lemma 1. Let λ′ ≥ 0, and assume fixed boundary conditions. For every N ≥ 1, and for almost every

realization of the pinnings, there exist a function uN of the form

uN (q, p) = 〈q, αNq〉+ 〈p, γNp〉+ cN ,

where αN , γN ∈ RN×N are symmetric matrices and where cN ∈ R, such that

−AharuN = JN,har. (4.1)

Moreover, the functions uN can be taken so that

(uN )N≥1 and (AanhuN )N≥1 are bounded sequences in L2(EνµT ).

Remarks. 1. The parameter λ′ only plays a role through the definition of the measure µT .

2. For a given value of N and for almost every realization of the pinnings, the unperturbed dynamics

is integrable, meaning here that it can be decomposed into N ergodic components, each of them

corresponding to the motion of a single one-dimensional harmonic oscillator (see Subsection 4.1 and

12



(4.5-4.6) in particular). This has two implications. First, since (4.1) admits a solution, we conclude

that the current JN is of mean zero with respect to the microcanonical measures of each ergodic

component of the dynamics. Next, the solution uN is not unique since every function f constant on

the ergodic components of the dynamics satisfies −Aharf = 0.

Proof of Lemma 1. To simplify notations, we will generally not write the dependence on N explicitly.

The proof is made of several steps.

4.1 Identifying (uN)N≥1: eigenmode expansion

Let z > 0 and let 1 ≤ l,m ≤ N . Let us consider the equation

(z −Ahar)vl,m,z = qlpm.

The solution vl,m,z exists and is unique. It is given by

vl,m,z(x) =

∫ ∞

0

e−zs
[

ql ◦Xs
(0,0)(x) . pm ◦Xs

(0,0)(x)
]

ds. (4.2)

We will analyse vl,m,z to obtain the sequence uN . Although we assumed fixed BC, all the results of

this subsection apply for periodic BC as well.

Solutions to Hamilton’s equations. The matrix Φ is a real symmetric positive definite matrix in

RN×N , and there exist thus an orthonormal basis (ξk)1≤k≤N of RN , and a sequence of positive real

numbers (ω2
k)1≤k≤N , such that

Φξk = ω2
k ξ

k.

It may be checked that

min{νj : 1 ≤ j ≤ N} ≤ ω2
k ≤ max{νj : 1 ≤ j ≤ N}+ 4 (4.3)

for 1 ≤ k ≤ N . According to Proposition II.1 in [16], for almost all realization of the pinnings, none of

the eigenvalue is degenerate:

ωj 6= ωk if j 6= k, 1 ≤ j, k ≤ N. (4.4)

In the sequel, we will assume that (4.4) holds.

When λ = λ′ = 0, Hamilton’s equations write

dq = p dt, dp = −Φq dt.

For initial conditions (q, p), the solutions write

q(t) =

N
∑

k=1

(

〈q, ξk〉 cosωkt+
1

ωk
〈p, ξk〉 sinωkt

)

ξk, (4.5)

p(t) =

N
∑

k=1

(

− ωk〈q, ξk〉 sinωkt+ 〈p, ξk〉 cosωkt
)

ξk. (4.6)
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An expression for vl,m,z. To determine vl,m,z, we just need to insert the solutions (4.5-4.6) into

the definition (4.2), and then compute the integral, which is a sum of Laplace transforms of sines and

cosines:

vl,m,z(q, p) =
1

4

N
∑

k=1

〈l, ξk〉〈m, ξk〉
(

− 〈q, ξk〉2 + 1

ω2
k

〈p, ξk〉2
)

+
∑

1≤j 6=k≤N

〈l, ξj〉〈m, ξk〉
( ω2

k

ω2
j − ω2

k

〈q, ξj〉〈q, ξk〉+ 1

ω2
j − ω2

k

〈p, ξj〉〈p, ξk〉
)

+O(z), (4.7)

where 〈j, ξk〉 denotes the jth component of the vector ξk, and where the rest term O(z) is a polynomial

of the form 〈q, α̃zq〉+ 〈q, β̃zp〉+ 〈p, γ̃zp〉, where α̃z and γ̃z can be taken to be symmetric. We define

vl,m = lim
z→0

vl,m,z.

It is observed that vl,m is of the form 〈q, α̃q〉+ 〈p, γ̃p〉 where α̃ and γ̃ can be taken to be symmetric.

Defining the solution uN . For fixed BC, the total current is given by

JN =
1

2
(q1p1 − qNpN ) +

1

2

N−1
∑

k=1

(

qkpk+1 − qk+1pk
)

Setting

wl = vl,l−1 − vl−1,l − µT (vl,l−1 − vl−1,l) (4.8)

for 2 ≤ l ≤ N and

w1 = vN,N − v1,1 − µT (vN,N − v1,1), (4.9)

we define

uN =
−1

2
√
N

N
∑

k=1

wl.

The function uN is of the form uN = 〈q, αNq〉 + 〈p, γNp〉 + cN , where αN and γN are symmetric

matrices, and where cN ∈ R.

Let us show that uN solves−AanhuN = JN . We may assume that cN = 0 without loss of generality.

The current JN can be written as JN = 〈q, Bp〉. The function uN has been obtained as the limit as

z → 0 of the function uz of the form uz = 〈q, αzq〉+ 〈q, βzp〉+ 〈p, γzp〉 which solves (z−Ahar)uz = JN ,

and with αz and γz symmetric matrices. Since

(z −Ahar)uz = 〈q, (zαz + βzΦ)q〉+
〈

q,
(

zβz − 2(αz − Φγz)
)

p
〉

+ 〈p, (z − βz)p〉,

it holds that 1

zαz +
1

2
(βzΦ+ Φβ†

z) = 0, zβz − 2(αz − Φγz) = B, z − 1

2
(βz + β†

z) = 0.

1Here and in the following M† denotes the transpose matrix of the matrix M .
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We know that (αz , βz, γz) → (α, 0, γ) as z → 0, with α and γ symmetric, so that −2(α − Φγ) = B.

Taking into account that α and γ are symmetric, we deduce that

Φγ − γΦ =
1

2
(B −B†), 2α = 2Φγ −B. (4.10)

It is checked that, if two symmetric matrices α and γ satisfy these relations, then uN = 〈q, αq〉+〈p, γp〉
solves the equation −AharuN = JN .

4.2 A new expression for wl

For 1 ≤ l ≤ N , the function wl defined by (4.8) or (4.9) can be written as

wl = 〈q, α(l)q〉+ 〈p, γ(l)p〉+ c(l),

where α(l) and γ(l) are symmetric matrices, and where c(l) ∈ R. A relation similar to (4.10) is satisfied:

with the definitions

(

B(l)
)

m,n
= δl,l−1(m,n)− δl−1,l(m,n) (2 ≤ l ≤ N) and

(

B(1)
)

m,n
= δN,N(m,n)− δ1,1(m,n),

for 1 ≤ m,n ≤ N , we write

2α(l) = 2Φγ(l)−B(l), (4.11)

for 1 ≤ l ≤ N . Therefore the knowledge of the matrices γ implies that of the matrices α.

An expression for the matrices γ(l) can be recovered from (4.7) with z = 0. We will now work this

out in order to obtain a more tractable formula. We show here that, for 2 ≤ l ≤ N ,

γs,s(l) = −
N
∑

j=l

N
∑

k=1

〈s, ξk〉2〈j, ξk〉2, 1 ≤ s ≤ l − 1,

γs,s(l) =

l−1
∑

j=1

N
∑

k=1

〈j, ξk〉2〈s, ξk〉2, l ≤ s ≤ N,

γs,t(l) =
l−1
∑

j=1

N
∑

k=1

〈j, ξk〉2〈s, ξk〉〈t, ξk〉, 1 ≤ s 6= t ≤ N,

= −
N
∑

j=l

N
∑

k=1

〈j, ξk〉2〈s, ξk〉〈t, ξk〉, 1 ≤ s 6= t ≤ N (4.12)

and

γs,t(1) =
1

4

N
∑

k=1

〈N, ξk〉2
ω2
k

〈s, ξk〉〈t, ξk〉 − 1

4

N
∑

k=1

〈1, ξk〉2
ω2
k

〈s, ξk〉〈t, ξk〉, 1 ≤ s, t ≤ N. (4.13)

Formula (4.13) is directly derived from (4.7), noting that γ(1) is the only symmetric matrix such

that w1(0, p) =
∑

s,t γs,t(1)pspt. To derive (4.12), we observe that γ(l) is the only symmetric matrix

such that wl(0, p) =
∑

s,t γs,t(l)pspt. Starting from (4.7), we deduce

wl(0, p) =
(

ul,l−1 − ul−1,l

)

(0, p) =
∑

1≤j 6=k≤N

(

〈l, ξj〉〈l − 1, ξk〉 − 〈l − 1, ξj〉〈l, ξk〉
)〈p, ξj〉〈p, ξk〉

ω2
j − ω2

k

.
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For fixed BC, the eigenvectors ξj satisfy the following relations for 1 ≤ j ≤ N :

〈ξj , 0〉 = 〈ξj , N + 1〉 = 0 (by definition),

−〈ξj ,m− 1〉+ (2 + νm)〈ξj ,m〉 − 〈ξj ,m+ 1〉 = ω2
j 〈ξj ,m〉, 1 ≤ m ≤ N.

So the following recurrence relation is satisfied:

〈ξj ,m+ 1〉 = (2 + νm − ω2
j )〈ξj ,m〉 − 〈ξj ,m− 1〉, 1 ≤ m ≤ N. (4.14)

Let us first compute w2(0, p). Using (4.14), it comes

〈2, ξj〉〈1, ξk〉 − 〈1, ξj〉〈2, ξk〉 = (2 + ν1 − ω2
j )〈1, ξj〉〈1, ξk〉 − (2 + ν1 − ω2

k)〈1, ξj〉〈1, ξk〉

= − (ω2
j − ω2

k)〈1, ξj〉〈1, ξk〉.

Therefore

w2(0, p) = −
∑

1≤j 6=k≤N

〈1, ξj〉〈1, ξk〉〈p, ξj〉〈p, ξk〉 = −
∑

1≤j,k≤N

〈1, ξj〉〈1, ξk〉〈p, ξj〉〈p, ξk〉 +

N
∑

k=1

〈1, ξk〉2〈p, ξk〉2

= − 〈1, p〉2 +
N
∑

k=1

〈1, ξk〉2〈p, ξk〉2, (4.15)

where the last equality follows from the fact that (ξk)k forms an orthonormal basis.

Let us now compute wl(0, p) for 2 < l ≤ N . Again by (4.14),

〈l, ξj〉〈l − 1, ξk〉 − 〈l − 1, ξj〉〈l, ξk〉 =
(

(2 + νl−1 − ω2
j )〈l − 1, ξj〉 − 〈l − 2, ξj〉

)

〈l − 1, ξk〉

− 〈l − 1, ξj〉
(

(2 + νl−1 − ω2
k)〈l − 1, ξk〉 − 〈l − 2, ξk〉

)

= − (ω2
j − ω2

k)〈l − 1, ξj〉〈l − 1, ξk〉

+ 〈l − 1, ξj〉〈l − 2, ξk〉 − 〈l − 2, ξj〉〈l − 1, ξk〉.

Therefore

wl(0, p) = −
∑

1≤j 6=k≤N

〈l − 1, ξj〉〈l − 1, ξk〉〈p, ξj〉〈p, ξk〉 + wl−1(0, p)

= − 〈l − 1, p〉2 +

N
∑

k=1

〈l − 1, ξk〉2〈p, ξk〉2 + wl−1(0, p). (4.16)

Combining (4.15) and (4.16), we arrive to an expression valid for 2 ≤ l ≤ N :

wl(0, p) =

l−1
∑

j=1

(

N
∑

k=1

〈j, ξk〉2〈p, ξk〉2 − 〈j, p〉2
)

.

Let us now write 〈j, p〉2 = p2j and

〈p, ξk〉2 =

(

∑

s

ps〈s, ξk〉
)2

=
∑

s,t

pspt〈s, ξk〉〈t, ξk〉.
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We obtain

wl(0, p) =
∑

s,t

pspt

l−1
∑

j=1

N
∑

k=1

〈j, ξk〉2〈s, ξk〉〈t, ξk〉 −
l−1
∑

j=1

p2j

=

l−1
∑

s=1

p2s





l−1
∑

j=1

N
∑

k=1

〈j, ξk〉2〈s, ξk〉2 − 1





+

N
∑

s=l

p2s

l−1
∑

j=1

N
∑

k=1

〈j, ξk〉2〈s, ξk〉2

+
∑

1≤s6=t≤N

pspt

l−1
∑

j=1

N
∑

k=1

〈j, ξk〉2〈s, ξk〉〈t, ξk〉.

In this formula, the coefficients of p2s coincide with γs,s(l) given by (4.12) for l ≤ s ≤ N , and the

coefficients of pspt with s 6= t coincide with the first expression of γs,t(l) given by (4.12). To recover

the coefficients γs,s(l) for 1 ≤ s ≤ l − 1, just use the fact that (ξk)k and (|k〉)k are orthonormal basis:

l−1
∑

j=1

N
∑

k=1

〈j, ξk〉2〈s, ξk〉2 − 1 =

N
∑

k=1



1−
N
∑

j=l

〈j, ξk〉2


 〈s, ξk〉2 − 1

=
N
∑

k=1

〈s|ξk〉2 − 1−
N
∑

j=l

N
∑

k=1

〈j, ξk〉2〈s, ξk〉2 = −
N
∑

j=l

N
∑

k=1

〈j, ξk〉2〈s, ξk〉2.

The second expression for the coefficients γs,t(l) with s 6= t in (4.12) is obtained by a similar trick.

4.3 Exponential bounds

We show here that there exist constants C < +∞ and c > 0 independent of N such that

Eν

(

α2
j,k(l)

)

≤ C exp
(

− c
(

|j − l|+ |k − l|
)

)

, Eν

(

γ2
j,k(l)

)

≤ Cexp
(

− c
(

|j − l|+ |k − l|
)

)

, (4.17)

for 2 ≤ l ≤ N and for 1 ≤ j, k ≤ N . This is still valid for l = 1 if |k−l| is replaced by min{|k−1|, |k−N |}
and |j− l| by min{|j− 1|, |j−N |}. Due to (4.11), it suffices to establish these bounds for the matrices

γ.

Let us first observe that the almost sure bounds

|γs,t(l)| ≤ 1 (2 ≤ l ≤ N), |γs,t(1)| ≤ 1

2min{ω2
k : 1 ≤ k ≤ N}

hold for 1 ≤ s, t ≤ N . This is directly deduced from (4.12) and (4.13) by taking absolute values inside

the sums if needed, using that (ξk)k and (|k〉)k are orthonormal basis, and Cauchy-Schwarz inequality

if needed. By (4.3), min{ω2
k : 1 ≤ k ≤ N} ≥ c > 0, where c does not depend on N . In particular

Eν (|γs,t|p) ≤ CpEν |γs,t| for every p ≥ 1, so that we only need to bound Eν |γs,t|.
We now will apply localization results originally derived by Kunz and Souillard ([16]), but we follow

the exposition given by [11]. From (4.12) and (4.13), we see that we are looking for upper bound on

17



the absolute value of sums of the type

∑

k

〈r, ξk〉2〈t, ξk〉2, r < t,

and of the type

∑

k

〈r, ξk〉2〈s, ξk〉〈t, ξk〉,
∑

k

〈r, ξk〉〈s, ξk〉2〈t, ξk〉,
∑

k

〈r, ξk〉〈s, ξk〉〈t, ξk〉2, r < s < t.

Since |〈r, ξk〉| ≤ 1 for 1 ≤ r, k ≤ N , all of them can be bounded by

∑

k

|〈r, ξk〉〈t, ξk〉|.

By the formula before Lemma 4.3 in [11], and the lines after the proof of this lemma, we may conclude

that there exist constants C < +∞ and c > 0 independent of N such that

Eν

(

∑

k

|〈r, ξk〉〈t, ξk〉|
)

≤ Ce−c(t−r).

Together with the remarks formulated up to here, this allows to deduce (4.17).

4.4 Concluding the proof of Lemma 1

We write

EνµT (u
2
N ) =

1

4N

∑

m,n

EνµT (wm . wn) and EνµT

(

(AanhuN )2
)

=
1

4N

∑

m,n

EνµT (Aanhwm . Aanhwn).

We will establish that there exist constants C < +∞ and c > 0 such that

|EνµT (wm . wn)| ≤ Ce−c|m−n| and |EνµT (Aanhwm . Aanhwn)| ≤ Ce−c|m−n| (4.18)

for 1 ≤ m,n ≤ N . This will conclude the proof.

Let us fix 1 ≤ m,n ≤ N . Let us first consider |EνµT (wm . wn)|. Let us observe that the functions

wl are of zero mean by construction, and so the relation

∑

j

γj,j(l)

∫

p2j dµT +
∑

j,k

αj,k(l)

∫

qjqk dµT + c(l) = 0 (4.19)

holds for 1 ≤ l ≤ N . Using this relation, it is computed that

µT (wm . wn) = µT

(

(

∑

i,j

αi,j(m)qiqj +
∑

i,j

γi,j(m)pipj + c(m)
)(

∑

i,j

αi,j(n)qiqj +
∑

i,j

γi,j(n)pipj + c(n)
)

)

=
∑

i,j,k,l

αi,j(m)αk,l(n)

∫

qiqjqkql dµT +
∑

i,j,k,l

αi,j(m)γk,l(n)

∫

qiqjpkpl dµT

+
∑

i,j,k,l

γi,j(m)αk,l(n)

∫

pipjqkql dµT +
∑

i,j,k,l

γi,j(m)γk,l(n)

∫

pipjpkpl dµT − c(m)c(n)

= S1 + S2 + S3 + S4 − c(m)c(n).
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Using (4.19) and the fact that
∫

p2 dµT = T , the sum S1 is rewritten as

S1 =
∑

i,j,k,l

αi,j(m)αk,l(n)

∫

(

qiqj −
∫

qiqj dµT

)(

qkql −
∫

qkql dµT

)

dµT

+
∑

i,j,k,l

αi,j(m)αk,l(n)

∫

qiqj dµT

∫

qkql dµT

=
∑

i,j,k,l

αi,j(m)αk,l(n)

∫

(

qiqj −
∫

qiqj dµT

)(

qkql −
∫

qkql dµT

)

dµT

+ T 2
∑

i,j

γi,i(m)γj,j(n) + Tc(m)
∑

i

γi,i(n) + Tc(n)
∑

i

γi,i(m) + c(m)c(n).

Then, still using (4.19), we get

S2 + S3 = −Tc(m)
∑

i

γi,i(n)− Tc(n)
∑

i

γi,i(m)− 2T 2
∑

i,j

γi,i(m)γj,j(n).

Finally, the terms in the sum S4 are non zero only when

i = j = k = l, i = j, k = l, i 6= k, i = k, j = l, i 6= j, i = l, j = k, i 6= j.

Using that
∫

p4dµT = 3(
∫

p2 dµT )
2 and that

∫

p2 dµT = T , S4 is seen to be equal to

S4 = T 2
∑

i,j

(

γi,i(m)γj,j(n) + 2γi,j(m)γi,j(n)
)

.

Therefore

µT (wm . wn) =
∑

i,j,k,l

αi,j(m)αk,l(n)

∫

(

qiqj −
∫

qiqj dµT

)(

qkql −
∫

qkql dµT

)

dµT

+ 2T 2
∑

i,j

γi,j(m)γi,j(n).

Applying the decorrelation bound (2.1) and the exponential estimate (4.17), the result is obtained.

Let us next consider |EνµT (Aanhwm . Aanhwn)|. We find from (3.1) that

µT (Aanhwm . Aanhwn) =
∑

s,t

µT

(

φt(q,m)φs(q, n) pspt
)

= T
∑

t

µT

(

φt(q,m)φt(q, n)
)

.

Now, it follows from (3.2) that φt(q, k) =
∑

s γs,t(k)ρs(q) for 1 ≤ k ≤ N . Here ρs(q) = ρs(qs−1, qs, qs+1)

is a function of mean zero since the potentials U and V are symmetric. We write

µT (Aanhwm . Aanhwn) =
∑

t

∑

s,s′

γs,t(m) γs′,t(n)µT (ρs . ρs′).

Applying the decorrelation bound (2.1) and the exponential estimate (4.17) yield the result. �

5 Convergence results

In this section we show the convergence result (2.7). We assume thus λ > 0 and λ′ = 0.
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We start with some definitions (see [5] for details). The dynamics defined in Section 2 can also

be defined for a set of particles indexed in Z instead of ZN . Points on the phase space are written

x = (q, p), with q = (qk)k∈Z and p = (pk)k∈Z. Let us denote by L the generator of this infinite-

dimensional dynamics. We remember here that µ
(N)
T represents the Gibbs measure of a system of size

N ; we denote by µ
(∞)
T the Gibbs measure of the infinite system (the dependence on the size will still

be dropped in the cases where it is irrelevant). We extend the definition (2.2) of local currents jk to

all k ∈ Z (jk = jk,har since λ′ = 0). If u = u(x, ν), with ν = (νk)k∈Z a sequence of pinnings, and if

k ∈ Z, we write τku(x, ν) = u(τkx, τkν), where

(τkq)j = qk+j , (τkp)j = pk+j , (τkν)j = νk+j .

Finally, we denote by ≪ ·, · ≫ the inner-product defined, for local bounded functions u and v, by

≪ u, v ≫ =
∑

k∈Z

Eν

(

µ
(∞)
T (u . τkv

∗)− µ
(∞)
T (u)µ

(∞)
T (v)

)

where v∗ is the complex conjugate of v, and by H the corresponding Hilbert space, obtained by

completion of the bounded local functions.

We start with two lemmas. We have no reason to think that Lemma 2 still holds if an anharmonic

potential is added, and this is the main reason why we here restrict ourselves to harmonic interactions.

Lemma 2. There exists a constant C < +∞ such that, for any realization of the pinnings, for the

finite dimensional dynamics with free or fixed B.C., or for the infinite dynamics, for any k ≥ 1 and

for any l ∈ ZN (resp. k ∈ Z for the infinite dynamics),

‖Lkjl‖L2(µT ) ≤ Ck (resp. ‖Lkjl‖L2(µT ) ≤ Ck).

Proof. Let us consider the infinite dimensional dynamics ; other cases are similar. We can take l = 0

without loss of generality. The function j0 is of the form j0 = 〈q, αq〉+ 〈q, βp〉+ 〈p, γp〉, with α = γ = 0

and β defined by

βi,j =
1

2

(

δ0,0(i, j)− δ(1,1)(i, j) + δ0,1(i, j)− δ1,0(i, j)
)

.

Now, if u is any function of the type u = 〈q, αq〉+〈q, βp〉+〈p, γp〉, then Lu = 〈q, α′q〉+〈q, β′p〉+〈p, γ′p〉
with

(α′, β′, γ′) =
(

− βΦ+ Φβ†

2
, α− 2Φγ − 2λβ,

β + β†

2
− 4λγ̃

)

,

where γ̃ is such that (γ̃)i,i = 0 and (γ̃)i,j = γi,j for i 6= j. Thus

Lkj0 = 〈q, α(k)q〉+ 〈q, β(k)p〉+ 〈p, γ(k)p〉,

and there exists a constant C < +∞ such that ζi,j = 0 whenever |i| ≥ Ck or |j| ≥ Ck and such that

|ζi,j | ≤ Ck otherwise, with ζ one of the three matrices α(k), β(k) or γ(k). The claim is obtained by

expressing ‖Lkjl‖L2(µT ) in terms of the matrices α(k), β(k) and γ(k). �

Explicit representation for the matrix Φ−1 in Lemma 1.1. in [9] allows to deduce the following lemma.
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Lemma 3. Let f and g be two polynomials of the type 〈q, αq〉+ 〈p, βp〉+ 〈p, γp〉, and assume that there

exists n ∈ N such that αi,j = βi,j = γi,j = 0 whenever |i| > n or |j| > n. Then there exists c > 0 such

that, for fixed or periodic B.C.,

∣

∣µ
(N)
T (f . g∗)− µ

(∞)
T (f . g∗)

∣

∣ = O(e−cN ) as N → ∞.

Let then D = {z ∈ C : ℜz > 0}. For every z ∈ D, let uz be the unique solution to the resolvent

equation in H
(z − L)uz = j0. (5.1)

We know from Theorem 1 in [5]2, and from its proof, that

lim
z→0

≪ uz, j0 ≫ exists and is finite (5.2)

and that

lim
z→0

z ≪ uz, uz ≫ = 0. (5.3)

For z ∈ D and N ≥ 3, let uk,z,N be the unique solution to the equation

(z − L)uk,z,N = jk. (5.4)

so that

uz,N :=
1√
N

∑

k

uk,z,N solves (z − L)uz,N = JN . (5.5)

Lemma 4. For fixed or free boundary conditions and for almost all realizations of the pinnings,

lim
z→0

lim
N→∞

µT

(

uz,N .JN

)

= lim
z→0

lim
N→∞

EνµT

(

uz,N .JN

)

= lim
z→0

≪ uz, j0 ≫,

lim
z→0

lim
N→∞

z µT

(

uz,N . uz,N

)

= lim
z→0

lim
N→∞

z EνµT

(

uz,N . uz,N

)

= 0.

Proof. By (5.2) and (5.3), it suffices to establish separately that, for every z ∈ D, and for almost every

realization of the pinnings,

lim
N→∞

µT

(

uz,N .JN

)

= ≪ uz, j0 ≫, lim
N→∞

EνµT

(

uz,N .JN

)

= ≪ uz, j0 ≫,

lim
N→∞

z µT

(

uz,N . uz,N

)

= z ≪ uz, uz ≫, lim
N→∞

z EνµT

(

uz,N . uz,N

)

= z ≪ uz, uz ≫ .

The proof of these four relations is in fact very similar, and we will focus on the first one. We proceed

in two steps: we first show the result for |z| large enough, and then extend it to all z ∈ D.

First step. Here we fix z ∈ D with |z| large enough. We first assume periodic boundary conditions.

The function uz solving (5.1) may be given by

uz =
∑

k≥0

z−(k+1)Lkj0,

2The model studied there is not exactly the same. The proof of the properties we mention here can be however readily

adapted.
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this series converging in virtu of Lemma 2 for |z| large enough. Let now n ≥ 1. We compute

≪ j0, uz ≫ =
n
∑

k=0

z−(k+1)
∑

l∈Z

Eνµ
(∞)
T (jl . L

kj0) +
∞
∑

k=n+1

z−(k+1)
∑

l∈Z

Eνµ
(∞)
T (jl . L

kj0). (5.6)

For every given k, the sum over l is actually a sum over C k non-zero terms only, for some C < +∞.

From this fact and from Lemma 2, it is concluded that the second sum in the right hand side of (5.6)

converges to 0 as n → ∞. Similarly we write

µ
(N)
T (JN . uz,N) =

1

N

∑

s,t

n
∑

k=0

z−(k+1)µ
(N)
T (js . L

kjt) +
1

N

∑

s,t

n
∑

k=0

z−(k+1)µ
(N)
T (js . L

kjt). (5.7)

Here as well, the second term in (5.7) is such that

lim
n→∞

lim sup
N→∞

1

N

∑

s,t

n
∑

k=0

z−(k+1)µ
(N)
T (js . L

kjt) = 0.

To handle the first term in (5.7), let us write

Fn(ν) =
∑

t∈ZN

n
∑

k=0

z−(k+1)µ
(N)
T (j0 . L

kjt).

Then in fact
1

N

∑

s,t

n
∑

k=0

z−(k+1)µ
(N)
T (js . L

kjt) =
1

N

∑

s

Fn(τsν).

The result is obtained by letting N → ∞, invoking Lemma 3 and the ergodic theorem, and then letting

n → ∞. If we had started with fixed boundary conditions, then, for every fixed n, all the previous

formulas remain valid up to some border terms that vanish in the limit N → ∞ due to the factor 1/N .

Second step. Denote by LN,ν(z) and L(z) the complex functions defined on D by

LN,ν(z) = µ
(N)
T (uz,N .JN ) and L(z) = ≪ uz, j0 ≫ .

The first observation is that these functions are well defined and analytic on D. Moreover, similarly

to what is proved in [5], they are uniformly bounded on D by a constant independent of N and the

realization of the pinning ν.

Let us fix a realization of the pinnings. The family {LN,ν ; N ≥ 1} is a normal family and by

Montel’s Theorem we can extract a subsequence {LNk,ν}k≥1 such that it converges (uniformly on every

compact set of D) to an analytic function f⋆
ν .

By the first step we know that f⋆
ν (z) = L(z) for any real z > z0. Thus, since the functions involved

are analytic, f⋆
ν coincides with L on D. It follows that the sequence {LN,ν(z)}N≥1 converges for any

z ∈ D to L(z). �

Following a classical argument, we can now proceed to the
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Proof of (2.7). For any z > 0, it holds that

1√
t

∫ t

0

JN ◦Xs ds = − 1√
t

∫ t

0

Luz,N ◦Xs ds+
z√
t

∫ t

0

uz,N ◦Xs ds

=
1√
t
Mz,N,t −

uz,N ◦Xt − uz,N√
t

+
z√
t

∫ t

0

uz,N ◦Xs ds

Here Mz,N,t is a stationary martingale with variance given by

µTE
(

M2
z,N,t

)

= µT

(

uz,N . (z − L)uz,N

)

− z µT (uz,N . uz,N). (5.8)

Here the equality µT

(

uz,N . Aharuz,N

)

= 0 has been used. Next

µTE

(

uz,N ◦Xt − uz,N√
t

)2

≤ 2

t
µT (uz,N . uz,N)

and

µTE

(

z√
t

∫ t

0

uz,N ◦Xs ds

)2

≤ z2t µT (uz,N . uz,N).

Reminding that µT

(

uz,N . (z−L)uz,N

)

= µT

(

uz,N .JN

)

, the proof is completed by taking z = 1/t and

invoking Lemma 4. �

6 Lower bound in the absence of anharmonicity

We here establish the lower bound in (2.8), and so we assume λ > 0 and λ′ = 0. We also assume

periodic boundary conditions. We use the same method as in [5] (see also [12]). According to Section

5, it is enough to establish that there exists a constant c > 0 such that, for almost every realization of

the pinnings, for every z > 0 and for every N ≥ 3,

µT

(

JN . (z − L)−1JN

)

≥ c. (6.1)

Indeed, by (5.5), µT

(

JN . (z−L)−1JN

)

= µT

(

uz,N . (z−L)uz,N

)

, and, by (5.8), this quantity converges

to the right hand side of (2.7).

Proof of (6.1). For periodic B.C., the total current JN is given by

JN =
1

2

∑

k∈ZN

(qkpk+1 − qk+1pk).

To get a lower bound on the conductivity, we use the following variational formula

µT

(

JN (z − L)−1 JN
)

= sup
f

{

2µT (JN . f)− µT (f . (z − λS)f)− µT

(

Aharf . (z − λS)−1 Aharf
)}

(6.2)

where the supremum is carried over the test functions f ∈ C∞
temp(R

2N ). See [23] for a proof. We take

f in the form

f = a〈q, βp〉 with a ∈ R and β = ΦM,
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where M is the antisymmetric matrix such that Mi,j = δi,j−1 − δi,j+1, with the convention of periodic

B.C.: δ1,N+1 = δ1,1 and δN,0 = δN,N .

First, we have

Aharf = a〈p, βp〉 − a〈q, βΦq〉 = a
∑

i6=j

βi,jpipj

since βΦ = ΦMΦ is antisymmetric, and since βi,i = 0 for 1 ≤ i ≤ N . Since S(pipj) = −4pipj for i 6= j,

we obtain

µT

(

Af . (z − λS)−1 Af
)

=
1

z + 4λ
µT (Aharf .Aharf) =

a2T 2

z + 4λ

∑

i6=j

(

β2
i,j + βi,jβj,i

)

≤ C
a2T 2N

z + 4λ
(6.3)

for some constant C < +∞. Next, since Spk = −2pk for ≤ k ≤ N , there exists some constant C < +∞
such that

µT (f . (z − λS)f) = a2T 2(z + 2λ)
∑

i,j

βi,j(Φ
−1β)i,j = a2T 2(z + 2λ)Tr

[

β†Φ−1β
]

≤ Ca2T 2(z + 2λ)N. (6.4)

Let us finally estimate the term µT (JN f):

µT (JN f) =
a

2
µT

(

∑

i,j

βi,jqipj .
∑

k∈ZN

(qkpk+1 − qk+1pk)
)

=
aT 2

2

∑

i,k

(

βi,k+1µT (qiqk)− βi,kµT (qiqk+1)
)

=
aT 2

2

∑

k∈ZN

(

(β†Φ−1)k+1,k − (β†Φ−1)k+1,k

)

=
aT 2

2

∑

k∈ZN

(

Mk,k+1 −Mk+1,k

)

= aT 2N. (6.5)

By (6.3), (6.4), (6.5) and the variational formula (6.2), we find that there exists a constant C < +∞,

independent of the realization of the disorder, of λ and of N , such that for any positive a,

1

NT 2
µT (JN (z − L)−1 JN ) ≥ a− Ca2



(z + 2λ) +
1

z + 4λ



 .

By optimizing over a, this implies

1

NT 2
µT (JN (z − L)−1 JN ) ≥ 1

4C



(z + 2λ) +
1

z + 4λ





−1

.

Since JN = JN/
√
N , this shows (6.1). �
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