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Abstract

The Douglas-Rachford algorithm is a popular iterative method for finding a zero of a sum
of two maximally monotone operators defined on a Hilbert space. In this paper, we propose
an extension of this algorithm including inertia parameters and develop parallel versions to
deal with the case of a sum of an arbitrary number of maximal operators. Based on this
algorithm, parallel proximal algorithms are proposed to minimize over a linear subspace of a
Hilbert space the sum of a finite number of proper, lower semicontinuous convex functions
composed with linear operators. It is shown that particular cases of these methods are the
simultaneous direction method of multipliers proposed by Stetzer et al., the parallel proximal
algorithm developed by Combettes and Pesquet, and a parallelized version of an algorithm
proposed by Attouch and Soueycatt.
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1 Introduction

The use of parallel methods for convex optimization has been an active research area for about
two decades [9, 12, 34]. With the widespread use of multicore computer architectures, it can be
expected that parallel optimization algorithms will play a more prominent role. Recently, a number
of proximal parallel convex optimization algorithms have appeared in the literature [22]. These
algorithms are especially useful for solving large-size optimization problems arising in the fields of
inverse problems and imaging.

A splitting algorithm which will be subsequently designated by the simultaneous direction

method of multipliers (SDMM) was recently proposed in [45] to solve the following problem:

minimize
y∈G

m∑

i=1

fi(Liy) (1.1)
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where G is a real Hilbert space, for every i ∈ {1, . . . ,m}, fi is a proper lower semicontinuous convex
functions from a real Hilbert spaceHi to ]−∞,+∞], and Li belongs to B (G,Hi), the set of bounded
linear operators from G to Hi. This algorithm was derived from the Douglas-Rachford algorithm
[17, 19, 25, 35] by invoking a duality argument. Such a duality argument can be traced back to the
work in [31] (see also [25, 48]). It was also pointed out in [45] that the proposed method generalizes
to a sum of more than two functions the alternating-direction method of multipliers [30, 32]. Note
that parallel alternating-direction algorithms had been previously proposed in [24] for monotropic
convex programming problems and for block-separable convex optimization problems in finite
dimensional Hilbert spaces. It is also worth noticing that augmented Lagrangian techniques have
become increasingly popular for solving imaging problems. These approaches appeared under
different names such as alternating split Bregman algorithm [29, 33, 51, 52] or split augmented
Lagrangian shrinkage algorithm (SALSA) [1, 2] in the recent image processing literature.

On the other hand, another splitting method called the parallel proximal algorithm (PPXA)
was proposed in [21] to minimize a sum of convex functions in a possibly infinite dimensional
Hilbert space (see also extensions in [18] for monotone inclusion problems). Since the splitting
algorithms in [21, 45] were derived from the Douglas-Rachford algorithm by working in a product
space, a natural question is to know whether there exist connections between them.

Despite the fact that the work in [45] puts emphasis on duality issues whereas [21] relies on
results from the theory of proximity operators, this paper shows that both algorithms are particular
instances of a more general splitting algorithm. This optimization algorithm itself is a specialization
of an algorithm for solving the following problem:

find ỹ ∈ E such that
( m∑

i=1

ωi L
∗
iAi(Liỹ)

)
∩ E⊥ 6= ∅ (1.2)

where E is a closed linear subspace of G, E⊥ is its orthogonal complement and, for every i ∈
{1, . . . ,m}, Ai : Hi → 2Hi is a maximally monotone operator, L∗

i is the adjoint operator of Li, and
ωi ∈ ]0,+∞[. The latter algorithm for finding a zero of a sum of maximally monotone operators is
derived from an extension of the Douglas-Rachford algorithm which includes inertia parameters.
Note that another framework for splitting sums of maximally monotone operators was developed
in [27]. Other parallel methods based on a forward-backward approach were also investigated in
[5].

Convergence results concerning various inertial algorithms can be found in [3, 4, 36, 37, 38,
40, 41, 42]. Recently, a proximal alternating direction of multipliers method was introduced in [5]
which can be viewed as an algorithm within this class. Applications to game theory, PDEs and
control were described in [10].

Conditions for the convergence of inexact forms of the algorithms presented in this paper will
be given in the following. These convergence results are valid in any finite or infinite dimensional
Hilbert space. First versions of the algorithms are provided, the convergence of which requires
that

∑m
i=1 ωiL

∗
iLi is an isomorphism. This assumption is relaxed in slightly more complex variants

of the algorithms. The resulting unrelaxed optimization method is shown to correspond to a
parallelized version of the algorithm in [5] for equal values of the inertia parameters.

In Section 2, we introduce our notation and recall some useful properties of monotone operators.
In Section 3, we propose a variant of the Douglas-Rachford algorithm in a product space, which
includes inertia parameters, and study its convergence. In Section 4, we deduce from this algorithm
an inertial algorithm for solving Problem (1.2). In Section 5, we consider an application of this
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algorithm to convex minimization problems and examine the connections of the resulting parallel
convex optimization methods with some existing approaches.

2 Notation

Let (Hi, ‖ · ‖i)1≤i≤m be real Hilbert spaces. We define the product space H = H1 × · · · × Hm

endowed with the norm

||| · ||| : (x1, . . . , xm) 7→

√√√√
m∑

i=1

ωi‖xi‖2i (2.1)

where (ωi)1≤i≤m ∈]0,+∞[m. The associated scalar product is denoted by 〈〈· | ·〉〉 whereas, for
every i ∈ {1, . . . ,m}, 〈· | ·〉i denotes the scalar product of Hi. Let k ∈ {0, . . . ,m} and let us define
the following closed subspace of H:

Kk = {(x1, . . . , xk, 0, . . . , 0) ∈ H} (2.2)

(with the convention (x1, . . . , xk, 0, . . . , 0) = 0 if k = 0). In the following (x1, . . . , xm) ∈ H1×· · ·×
Hm will denote the components of a generic element x of H.

An operator A : H → 2H is monotone if

(∀(x,y) ∈ H
2)(∀(u,v) ∈ A(x)×A(y)) 〈〈x− y | u− v〉〉 ≥ 0. (2.3)

For more details concerning the properties of monotone operators and the definitions recalled below
the reader is referred to [7].

The set of zeros of A : H → 2H is zerA =
{
x ∈ H

∣∣ 0 ∈ A(x)
}

and its graph is graA ={
(x,u) ∈ H

2
∣∣ u ∈ Ax

}
. A : H → 2H is maximally monotone if, for every (x,u) ∈ H

2,

(x,u) ∈ graA ⇔ (∀(y,v) ∈ graA) 〈〈x− y | u− v〉〉 ≥ 0. (2.4)

Recall that an operator T : H → H is

• β-cocoercive with β ∈ ]0,+∞[ if

(∀(x,y) ∈ H
2) β|||Tx− Ty|||2 ≤ 〈〈Tx− Ty | x− y〉〉; (2.5)

• firmly nonexpansive if it is 1-cocoercive;

• 1/β-Lipschitz continuous with β ∈ ]0,+∞[ if

(∀(x,y) ∈ H
2) β|||Tx− Ty||| ≤ |||x− y|||; (2.6)

• nonexpansive if it is 1-Lipschitz continuous;

• 1/β-strictly contractive if it is 1/β-Lipschitz continuous with β ∈]1,+∞[.
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If A is maximally monotone, then its resolvent JA = (Id +A)−1 is a firmly nonexpansive operator
from H to H, and its reflection RA = 2JA − Id is a nonexpansive operator.

Let Γ0(H) be the set of proper (i.e. not identically equal to +∞) lower semicontinuous convex
functions from H to ]−∞,+∞] and let f ∈ Γ0(H). Then, its subdifferential ∂f is a maximally
monotone operator and the proximity operator of f is proxf = J∂f [39, 44]. The domain of f is
domf =

{
x ∈ H

∣∣ f(x) < +∞
}
. The conjugate of f is f∗ : H → ]−∞,+∞] : x 7→ supy∈H〈〈x |

y〉〉 − f(y).
Let C be a nonempty closed convex subset of H. Its indicator function ιC ∈ Γ0(H) is defined

as

(∀x ∈ H) ιC(x) =

{
0 if x ∈ C

+∞ otherwise.
(2.7)

The projection onto C is PC = proxιC and the normal cone operator to C is NC : H → 2H defined
as

(∀x ∈ H) NC(x) =

{{
u ∈ H

∣∣ (∀y ∈ C) 〈〈y − x | u〉〉 ≤ 0
}

if x ∈ C

∅ otherwise.
(2.8)

The relative interior (resp. strong relative interior) of C is denoted by riC (resp. sriC).

The weak convergence (resp. strong convergence) is denoted by ⇀ (resp. →).

3 An extension of the Douglas-Rachford algorithm

We will first consider the following problem:

find x̃ ∈ zer(A+B) =
{
x ∈ H

∣∣ 0 ∈ A(x) +B(x)
}

(3.1)

where B : H → 2H is a maximally monotone operator,

A : H → 2H : (x1, . . . , xm) 7→ A1(x1)× · · · ×Am(xm) (3.2)

and, for every i ∈ {1, . . . ,m}, Ai : Hi → 2Hi is a maximally monotone operator.

We first state a quasi-Fejérian property which will be useful in the following.

Lemma 3.1 Let S be a nonempty set of H × Kk. Let (tn)n∈N be a sequence in H and let

(pn)n∈N =
(
(p1,n, . . . , pk,n, 0, . . . , 0)

)
n∈N

be a sequence in Kk such that

(
∀(̃t, p̃

)
∈ S)(∀n ∈ N)

(
|||tn+1 − t̃|||2 +

k∑

i=1

µi,n+1‖pi,n+1 − p̃i‖
2
i

)1/2
≤

(
|||tn − t̃|||2 +

k∑

i=1

µi,n‖pi,n − p̃i‖
2
i

)1/2
+∆n

(3.3)

where, for every i ∈ {1, . . . , k}, (µi,n)n∈N is a sequence of nonnegative reals converging to a positive

limit, and (∆n)n∈N is a summable sequence of nonnegative reals. Then,

(i) (tn)n∈N and (pn)n∈N are bounded sequences.
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(ii) For every (̃t, p̃
)
∈ S, (|||tn − t̃|||2 +

∑k
i=1 µi,n‖pi,n − p̃i‖

2
i )n∈N converges.

(iii) If every weak sequential cluster point of (tn,pn)n∈N belongs to S, then (tn,pn)n∈N converges

weakly to a point in S.

Proof.

(i) Let (̃t, p̃
)
∈ S. According to [16, Lemma 3.1(i)], there exists ρ ∈ ]0,+∞[ such that

(∀n ∈ N)
(
|||tn − t̃|||2 +

k∑

i=1

µi,n‖pi,n − p̃i‖
2
i

)1/2
≤ ρ. (3.4)

Since, for every i ∈ {1, . . . , k}, (µi,n)n∈N is a sequence of nonnegative reals converging to a
positive limit,

∃µ ∈ ]0,+∞[ ,∃n0 ∈ N (∀i ∈ {1, . . . , k})(∀n ≥ n0) µi,n ≥ µωi (3.5)

It can be deduced that

(∀n ≥ n0)
(
|||tn − t̃|||2 + µ|||pn − p̃|||2

)1/2
≤ ρ. (3.6)

This implies that

(∀n ≥ n0) |||tn − t̃||| ≤ ρ

|||pn − p̃||| ≤ µ−1/2ρ (3.7)

which shows the boundedness of the sequences (tn)n∈N and (pn)n∈N.

(ii) This fact follows from [16, Lemma 3.1 (ii)].

(iii) Since (tn,pn)n∈N is bounded, it is enough to prove that this sequence cannot have two distinct
weak sequential cluster points. Let (̃t1, p̃1) ∈ S and (̃t2, p̃2) ∈ S be two such cluster points.
We have

(∀n ∈ N) 2〈〈tn | t̃1 − t̃2〉〉 = |||tn − t̃2|||
2 − |||tn − t̃1|||

2 + |||̃t1|||
2 − |||̃t2|||

2

and

(∀i ∈ {1, . . . , k})(∀n ∈ N) 2〈pi,n | p̃i,1−p̃i,2〉i = ‖pi,n−p̃i,2‖
2
i −‖pi,n−p̃i,1‖

2
i +‖p̃i,1‖

2
i −‖p̃i,2‖

2
i .

(3.8)
Then, it can be deduced from (ii) and the fact that, for every i ∈ {1, . . . , k}, (µi,n)n∈N is

convergent that (〈〈tn | t̃1 − t̃2〉〉 +
∑k

i=1 µi,n〈pi,n | p̃i,1 − p̃i,2〉i)n∈N converges to some limit
ζ. In addition, there exist some subsequences (tnℓ

,pnℓ
)ℓ∈N and (tnℓ′

,pnℓ′
)ℓ′∈N converging

weakly to (̃t1, p̃1) and (̃t2, p̃2), respectively. Passing to the limit, we have thus

〈〈̃t1 | t̃1 − t̃2〉〉+

k∑

i=1

µi,∞〈p̃i,1 | p̃i,1 − p̃i,2〉i = ζ = 〈〈̃t2 | t̃1 − t̃2〉〉+

k∑

i=1

µi,∞〈p̃i,2 | p̃i,1 − p̃i,2〉i

⇔ |||̃t1 − t̃2|||
2 +

k∑

i=1

µi,∞‖p̃i,1 − p̃i,2‖
2
i = 0 (3.9)

where, for every i ∈ {1, . . . , k}, µi,∞ = limn→+∞ µi,n > 0. Consequently, t̃1 = t̃2 and
p̃1 = p̃2.
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We will also need the following property concerning nonexpansive operators.

Lemma 3.2 Let (γ, λ) ∈ ]0,+∞[2 and let (ε1, . . . , εm) ∈ [0, 1[m be such that

(∀i ∈ {1, . . . ,m}) (εi > 0 ⇔ i ≤ k). (3.10)

Let T and Uλ be the operators from H×Kk to H×Kk defined as

(∀t ∈ H)(∀p ∈ Kk) T (t,p) = (z, PKk
p′) (3.11)

Uλ(t,p) =
(
(1−

λ

2
)t +

λ

2
z, PKk

p′
)

(3.12)

where

p′ =
(
Jγ(1−ε1)A1

(
(1− ε1)t1 + ε1p1

)
, . . . , Jγ(1−εm)Am

(
(1− εm)tm + εmpm

))
(3.13)

z = RγB

(
2p′ − t

)
. (3.14)

We have the following properties:

(i) FixT = FixUλ, and

(̃t, p̃) ∈ FixT

⇔ JγA t̃ ∈ zer(A+B) and (∀i ∈ {1, . . . ,m}) p̃i =

{
JγAi

t̃i if i ≤ k

0 otherwise.
(3.15)

(ii) T is nonexpansive operator in H×Kk endowed with the weighted norm

ν : (z,p) 7→
(
|||z|||2 + 2

k∑

i=1

ωiεi
1− εi

‖pi‖
2
i

)1/2
. (3.16)

(iii) For every (t, s) ∈ H
2 and (p, q) ∈ K

2
k, let (z,p) = T (t,p) and (u, q) = T (s, q).

Then,

|||(1 −
λ

2
)(t − s) +

λ

2
(z − u)|||2 + λ

k∑

i=1

ωiεi
1− εi

‖pi − qi‖
2
i ≤ |||t − s|||2 + λ

k∑

i=1

ωiεi
1− εi

‖pi − qi‖
2
i

− λ
k∑

i=1

ωiεi
1− εi

‖pi − qi − pi + qi‖
2
i −

1

4
(2− λ)λ|||t − s− z + u|||2. (3.17)

Proof.

(i) It can be first noticed that FixT = FixUλ. In addition, (̃t, p̃) is a fixed point of T if and
only if 




(∀i ∈ {1, . . . ,m}) p̃i =

{
p̃′i if i ≤ k

0 otherwise

t̃ = RγB

(
2p̃′ − t̃

) (3.18)
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where
(∀i ∈ {1, . . . ,m}) p̃′i = Jγ(1−εi)Ai

(
(1− εi)t̃i + εip̃i

)
. (3.19)

The latter relation yields, for every i ∈ {1, . . . , k},

(1− εi)t̃i + εip̃
′
i − p̃′i ∈ γ(1− εi)Ai(p̃

′
i)

⇔ t̃i − p̃′i ∈ γAi(p̃
′
i)

⇔ p̃′i = JγAi
t̃i. (3.20)

So, by using (3.10), (3.19) is equivalent to

p̃′ = JγAt̃. (3.21)

and (̃t, p̃) ∈ FixT if and only if

(∀i ∈ {1, . . . ,m}) p̃i =

{
JγAi

t̃i if i ≤ k

0 otherwise
(3.22)

t̃ = RγB

(
2JγA t̃− t̃

)
. (3.23)

On the other hand, t̃ satisfies (3.23) if and only if it is a fixed point of the standard Douglas-
Rachford iteration, that is if and only if JγAt̃ is a zero of A+B [17, 35].

(ii) For every (t, s) ∈ H
2 and (p, q) ∈ K

2
k, let (z,p) = T (t,p) and (u, q) = T (s, q). Let p′ be

given by (3.13) and q′ be similarly defined as

q′ =
(
Jγ(1−ε1)A1

(
(1− ε1)s1 + ε1q1

)
, . . . , Jγ(1−εm)Am

(
(1− εm)sm + εmqm

))
. (3.24)

For every i ∈ {1, . . . ,m}, as Jγ(1−εi)Ai
is firmly nonexpansive, we have

‖p′i − q′i‖
2
i ≤ 〈p′i − q′i | (1− εi)(ti − si) + εi(pi − qi)〉i

⇔ ‖p′i − q′i‖
2
i ≤ (1− εi)〈p

′
i − q′i | ti − si〉i +

εi
2
(‖p′i − q′i‖

2
i + ‖pi − qi‖

2
i

− ‖p′i − q′i − pi + qi‖
2
i )

⇔ −(1− εi)〈p
′
i − q′i | ti − si〉i ≤ −

(
1−

εi
2

)
‖p′i − q′i‖

2
i +

εi
2
‖pi − qi‖

2
i −

εi
2
‖p′i − q′i − pi + qi‖

2
i .

(3.25)

On the other hand, we deduce from the nonexpansivity of RγB that

|||z − u|||2 ≤ |||2(p′ − q′)− t+ s|||2

⇔ |||z − u|||2 ≤ 4|||p′ − q′|||2 + |||t − s|||2 − 4〈〈p′ − q′ | t− s〉〉. (3.26)

By combining this inequality with (3.25), we get

|||z − u|||2 + 2

k∑

i=1

ωiεi
1− εi

‖p′i − q′i‖
2
i

≤ |||t− s|||2 + 2

k∑

i=1

ωiεi
1− εi

‖pi − qi‖
2
i − 2

k∑

i=1

ωiεi
1− εi

‖p′i − q′i − pi + qi‖
2
i . (3.27)

7



This leads to

|||z − u|||2 + 2

k∑

i=1

ωiεi
1− εi

‖p′i − q′i‖
2
i ≤ |||t − s|||2 + 2

k∑

i=1

ωiεi
1− εi

‖pi − qi‖
2
i . (3.28)

Since p = (p′1, . . . , p
′
k, 0, . . . , 0) and q = (q′1, . . . , q

′
k, 0, . . . , 0), the above inequality implies

that T is a nonexpansive operator, as stated above.

(iii) In addition, we have

|||(1 −
λ

2
)(t − s) +

λ

2
(z − u)|||2

= (1−
λ

2
)2|||t − s|||2 +

λ2

4
|||z − u|||2 +

1

2
(2− λ)λ〈〈t − s | z − u〉〉

= (1−
λ

2
)|||t − s|||2 +

λ

2
|||z − u|||2 −

1

4
(2− λ)λ|||t − s− z + u|||2 (3.29)

which, combined with (3.27), yields (3.17).

We are now able to provide the main result of this section, which concerns the convergence of a
generalization of the Douglas-Rachford algorithm.

Proposition 3.3 Let γ ∈ ]0,+∞[, (ε1, . . . , εm) ∈ [0, 1[m and (λn)n∈N be a sequence of reals. Let

(an)n∈N and (bn)n∈N be sequences in H, and let (tn)n∈N and (pn)n≥−1 be sequences generated by

the following routine.

Initialization⌊
t0 ∈ H,p−1 ∈ H

For n = 0, 1, . . .

For i = 1, . . . ,m⌊
pi,n = Jγ(1−εi)Ai

(
(1− εi)ti,n + εipi,n−1

)
+ ai,n

tn+1 = tn + λn

(
JγB

(
2pn − tn

)
+ bn − pn

)
.

(3.30)

Suppose that the following hold.

(i) zer(A+B) 6= ∅

(ii) There exists λ ∈]0, 2[ such that (∀n ∈ N) λ ≤ λn+1 ≤ λn < 2.

(iii)
∑

n∈N |||an|||+ |||bn||| < +∞.

Then, (tn)n∈N converges weakly to t̃ and JγAt̃ ∈ zer(A+B).

Proof. Without loss of generality, it can be assumed that (3.10) is satisfied (up to some re-indexing).
For every n ∈ N, let

p′
n =

(
Jγ(1−ε1)A1

(
(1− ε1)t1,n + ε1p1,n−1

)
, . . . , Jγ(1−εm)Am

(
(1− εm)tm,n + εmpm,n−1

))
(3.31)

zn = RγB

(
2p′

n − tn
)

(3.32)

t′n+1 = (1−
λn

2
)tn +

λn

2
zn. (3.33)
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We have then

(∀n ∈ N)

{
(zn, PKk

p′
n) = T (tn, PKk

pn−1)
(t′n+1, PKk

p′
n) = Uλn

(tn, PKk
pn−1)

(3.34)

where T and Uλn
are defined by (3.11)-(3.14). According to Lemma 3.2(i) and Assumption (i),

FixUλn
= FixT 6= ∅. Let (̃t, p̃) be an arbitrary element of FixT and, for every n ∈ N, define

t̂n = tn − t̃, p̂n−1 = pn−1 − p̃, t̂
′
n+1 = t′n+1 − t̃, and p̂′

n = p′
n − p̃. By applying Lemma 3.2(iii), we

get

|||̂t
′
n+1|||

2 + λn

k∑

i=1

ωiεi
1− εi

‖p̂′i,n‖
2
i + λn

k∑

i=1

ωiεi
1− εi

‖p′i,n − pi,n−1‖
2
i +

1

4
(2− λn)λn|||tn − zn|||

2

≤ |||̂tn|||
2 + λn

k∑

i=1

ωiεi
1− εi

‖p̂i,n−1‖
2
i . (3.35)

From the triangular inequality, we have, for every n ∈ N,

(
|||̂tn+1|||

2 + λn

k∑

i=1

ωiεi
1− εi

‖p̂i,n‖
2
i + λn

k∑

i=1

ωiεi
1− εi

‖pi,n − pi,n−1‖
2
i +

1

4
(2− λn)λn|||tn − zn|||

2
)1/2

≤
(
|||̂t

′
n+1|||

2 + λn

k∑

i=1

ωiεi
1− εi

‖p̂′i,n‖
2
i + λn

k∑

i=1

ωiεi
1− εi

‖p′i,n − pi,n−1‖
2
i +

1

4
(2− λn)λn|||tn − zn|||

2
)1/2

+ |||t′n+1 − tn+1|||+ (2λn)
1/2

( k∑

i=1

ωiεi
1− εi

‖p′i,n − pi,n‖
2
i

)1/2
. (3.36)

By straightforward calculations, the iterations of Algorithm (3.30) can be expressed as

(∀n ∈ N)

{
pn = p′

n + an

tn+1 = t′n+1 +
λn

2

(
RγB(2pn − tn)− zn + 2bn

)
.

(3.37)

From the nonexpansivity of the RγB operator, it can be deduced that

(∀n ∈ N) |||tn+1 − t′n+1||| ≤
λn

2
|||RγB(2pn − tn)− zn|||+ λn|||bn||| (3.38)

|||RγB(2pn − tn)− zn||| ≤ 2|||pn − p′
n||| = 2|||an||| (3.39)

and, by using (3.35), (3.36) becomes

(
|||̂tn+1|||

2 + λn

k∑

i=1

ωiεi
1− εi

‖p̂i,n‖
2
i + λn

k∑

i=1

ωiεi
1− εi

‖pi,n − pi,n−1‖
2
i +

1

4
(2− λn)λn|||tn − zn|||

2
)1/2

≤
(
|||̂tn|||

2 + λn

k∑

i=1

ωiεi
1− εi

‖p̂i,n−1‖
2
i

)1/2
+∆n (3.40)

where

∆n = λn(|||an|||+ |||bn|||) + (2λn)
1/2

( k∑

i=1

ωiεi
1− εi

‖ai,n‖
2
i

)1/2
. (3.41)
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Since, due to Assumption (ii), (λn)n∈N is decreasing, (3.40) leads to

(
|||̂tn+1|||

2 + λn

k∑

i=1

ωiεi
1− εi

‖p̂i,n‖
2
i

)1/2
≤

(
|||̂tn|||

2 + λn−1

k∑

i=1

ωiεi
1− εi

‖p̂i,n−1‖
2
i

)1/2
+∆n. (3.42)

Since Assumption (iii) holds and (λn)n∈N is bounded, the above expression of (∆n)n∈N shows that it
is a nonnegative summable sequence. Then, as (λn)n∈N converges to a positive limit, Lemma 3.1(ii)
allows us to claim that (|||̂tn|||

2 + λn−1
∑k

i=1
ωiεi
1−εi

‖p̂i,n−1‖
2
i )n≥1 is a convergent sequence. In turn,

as limn→+∞∆n = 0, we deduce from (3.40) and (3.42) that

λ

k∑

i=1

ωiεi
1− εi

‖pi,n − pi,n−1‖
2
i +

1

4
(2− λ0)λ|||tn − zn|||

2

≤ λn

k∑

i=1

ωiεi
1− εi

‖pi,n − pi,n−1‖
2
i +

1

4
(2− λn)λn|||tn − zn|||

2 → 0, (3.43)

By using now (3.37), we have

( k∑

i=1

ωiεi
1− εi

‖p′i,n − pi,n−1‖
2
i +

1

4
(2− λ0) |||tn − zn|||

2
)1/2

≤
( k∑

i=1

ωiεi
1− εi

‖pi,n − pi,n−1‖
2
i +

1

4
(2 − λ0)|||tn − zn|||

2
)1/2

+
( ε

1− ε

)1/2
|||an||| → 0 (3.44)

where ε = max1≤i≤k εi. This entails that

ν
(
T (tn, PKk

pn−1)− (tn, PKk
pn−1)

)
→ 0 (3.45)

where ν is the norm given by (3.16). Appealing to Lemma 3.2(ii), if (tnℓ
, PKk

pnℓ−1)ℓ∈N is a weakly
converging subsequence of (tn, PKk

pn−1)n∈N, we deduce from the demiclosedness principle [11]
that its limit belongs to FixT . As a result of Lemma 3.1(iii), we conclude that

(tn, PKk
pn−1) ⇀ (̃t, p̃) ∈ FixT . (3.46)

By using Lemma 3.2(i), we have thus JγAt̃ ∈ zer(A+B).

Remark 3.4

(i) In Algorithm (3.30), (λn)n∈N and (ε1, . . . , εm) correspond to relaxation and inertia parame-
ters, respectively. The sequences (ai,n)n∈N with i ∈ {1, . . . ,m} and (bn)n∈N model possible
errors in the computation of Jγ(1−εi)Ai

and JγB .

(ii) When (∀i ∈ {1, . . . ,m}) εi = 0, weaker conditions than (ii) and (iii) are known [17] to be
sufficient to prove the convergence result, namely

(a)
∑

n∈N λn(2− λn) = +∞

(b)
∑

n∈N λn(|||an|||+ |||bn|||) < +∞.
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Stronger convergence results can be deduced from the previous proposition:

Proposition 3.5 Suppose that the assumptions of Proposition 3.3 hold. Let (tn)n∈N and (pn)n≥−1

be sequences generated by Algorithm (3.30). Then, (pn)n∈N and (yn)n∈N =
(
JγB(2pn − tn)

)
n∈N

both converge weakly to ỹ ∈ zer(A+B).

Proof. We proceed similarly to the proof in [7, Theorem 25.6] for the convergence of the standard
Douglas-Rachford algorithm, which is inspired from [26, 49].
By using the same notation as in the proof of Proposition 3.3, it can be deduced from (3.46) that

(∀i ∈ {1, . . . ,m}) (1− εi)ti,n + εipi,n−1 ⇀ (1− εi)t̃i + εip̃i (3.47)

(since i > k ⇒ εi = 0), which implies that
(
(1− εi)ti,n + εipi,n−1

)
n∈N

is a bounded sequence. For
every i ∈ {1, . . . ,m}, as a consequence of the nonexpansivity of Jγ(1−εi)Ai

, (p′
n)n∈N as defined by

(3.31) is bounded. Hence, there exists a subsequence (p′
nℓ
)ℓ∈N of (p′

n)n∈N and ỹ ∈ H such that

p′
nℓ

⇀ ỹ. (3.48)

Due to (3.37) and Assumption (iii) of Proposition 3.3, we have also

pnℓ
⇀ ỹ (3.49)

and, by using (3.46),
(∀i ∈ {1, . . . , k}) ỹi = p̃i. (3.50)

Furthermore, we have

(∀n ∈ N) |||pn − yn||| =
1

2
|||tn −RγB(2pn − tn)|||

≤
1

2

(
|||tn − zn|||+ |||zn −RγB(2pn − tn)|||

)

≤
1

2
|||tn − zn|||+ |||an||| (3.51)

where (3.39) has been used to get the last inequality. In addition, according to (3.45), |||tn−zn||| →
0 and we know that an → 0. Hence, (3.51) yields

pn − yn → 0 (3.52)

p′
n − yn → 0. (3.53)

This implies that
ynℓ

⇀ ỹ. (3.54)

In turn, (3.31) and the relation defining (yn)n∈N can be rewritten as

(∀n ∈ N) un ∈ γA(p′
n) (3.55)

vn ∈ γB(yn) (3.56)

where

(∀i ∈ {1, . . . ,m}) ui,n = ti,n +
εi

1− εi
pi,n−1 −

1

1− εi
p′i,n (3.57)

vn = 2pn − tn − yn. (3.58)

11



By using (3.10), (3.47), (3.48) and (3.50), it follows that

unℓ
⇀ t̃− ỹ (3.59)

while (3.46), (3.49) and (3.54) lead to

vnℓ
⇀ ỹ − t̃. (3.60)

On the other hand,

(∀n ∈ N)(∀i ∈ {1, . . . ,m}) ui,n + vi,n = pi,n − yi,n +
εi

1− εi
(pi,n−1 − p′i,n) + ai,n. (3.61)

According to (3.45), (∀i ∈ {1, . . . , k}) p′i,n − pi,n−1 → 0, and it follows from (3.52) that

un + vn → 0. (3.62)

In summary, we have built sequences (p′
n,un)n∈N of gra(γA) and (yn,vn)n∈N of gra(γB) satisfying

(3.48), (3.53), (3.54), (3.59), (3.60) and (3.62). By invoking now [8, Corollary 3], it can be deduced
that

t̃− ỹ ∈ γA(ỹ) (3.63)

ỹ − t̃ ∈ γB(ỹ). (3.64)

Summing the two inclusion relations leads to ỹ ∈ zer(A+B).
To end the proof, it is sufficient to note that (3.63) is equivalent to ỹ = JγAt̃. This shows that
(pn)n∈N cannot have a weak cluster point other than JγAt̃. We have then pn ⇀ ỹ and the weak
convergence of (yn)n∈N follows from (3.52).

Under some restrictive assumptions, a linear convergence property can also be proved:

Proposition 3.6 Let γ ∈ ]0,+∞[, (ε1, . . . , εm) ∈ [0, 1[m and (λn)n∈N be a sequence of reals. Let

(tn)n∈N and (pn)n≥−1 be sequences generated by Algorithm (3.30) when an ≡ 0 and bn ≡ 0.

Suppose that the following hold.

(i) zer(A+B) 6= ∅

(ii) There exists λ ∈]0, 2] such that (∀n ∈ N) λ ≤ λn+1 ≤ λn ≤ 2.

(iii) For every i ∈ {1, . . . ,m}, (εi > 0 ⇔ i ≤ k).

(iv) For every i ∈ {1, . . . , k}, Jγ(1−εi)Ai
is (1+τAi

)-cocoercive and that RγB is (1+τB)−1/2-strictly

contractive, where (τA1 , . . . , τAk
, τB) ∈ ]0,+∞[k+1

and

(∀i ∈ {1, . . . , k}) λ > 2
(
1−

2τAi

εi τB

)
. (3.65)

Then, there exists ρ ∈]0, 1[ such that

(∀n ∈ N) |||tn+1 − t̃|||2 + λn

k∑

i=1

ωiεi
1− εi

‖pi,n − p̃i‖
2
i ≤ ρn

(
|||t1 − t̃|||2 + λ0

k∑

i=1

ωiεi
1− εi

‖pi,0 − p̃i‖
2
i

)

(3.66)
where (̃t, p̃) is the unique fixed point of the operator T defined by (3.11)-(3.14).
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Proof. Let (̃t, p̃) ∈ FixT , and set

(∀i ∈ {1, . . . ,m}) p̃′i =

{
p̃i if i ≤ k

JγAi
t̃i otherwise

(3.67)

and (∀i ∈ {k + 1, . . . ,m}) τAi
= 0. Let n be any positive integer. For every i ∈ {1, . . . ,m}, as a

consequence of the cocoercivity of Jγ(1−εi)Ai
, we get

(1 + τAi
)‖pi,n − p̃′i‖

2
i ≤ 〈pi,n − p̃′i | (1− εi)(ti,n − t̃i) + εi(pi,n−1 − p̃i)〉i

⇒ −(1− εi)〈pi,n − p̃′i | ti,n − t̃〉i ≤ −
(
1−

εi
2
+ τAi

)
‖pi,n − p̃′i||

2
i +

εi
2
‖pi,n−1 − p̃i‖

2
i . (3.68)

Furthermore, since RγB has been assumed strictly contractive, we have

(1 + τB)|||RγB(2pn − tn)− t̃|||2 = (1 + τB)|||RγB(2pn − tn)−RγB(2p̃′ − t̃)|||2

≤ |||2(pn − p̃′)− tn + t̃|||2 = 4|||pn − p̃′|||2 + |||tn − t̃|||2 − 4〈〈pn − p̃′ | tn − t̃〉〉. (3.69)

Combined with (3.68), this yields

(1 + τB)|||RγB(2pn − tn)− t̃|||2

≤ − 2

m∑

i=1

ωi
εi + 2τAi

1− εi
‖pi,n − p̃′i‖

2
i + |||tn − t̃|||2 + 2

k∑

i=1

ωiεi
1− εi

‖pi,n−1 − p̃i‖
2
i

≤ − 2

k∑

i=1

ωi
εi + 2τAi

1− εi
‖pi,n − p̃i‖

2
i + |||tn − t̃|||2 + 2

k∑

i=1

ωiεi
1− εi

‖pi,n−1 − p̃i‖
2
i . (3.70)

By using (3.37), we have then

(1 + τB)|||tn+1 − t̃|||2

≤ (1 + τB)
((

1−
λn

2

)
|||tn − t̃|||2 +

λn

2
|||RγB(2pn − tn)− t̃|||2

)

≤
(
1 + τB

(
1−

λn

2

))
|||tn − t̃|||2 + λn

k∑

i=1

ωiεi
1− εi

‖pi,n−1 − p̃i‖
2
i

− λn

k∑

i=1

ωi
εi + 2τAi

1− εi
‖pi,n − p̃i‖

2
i . (3.71)

By using Assumption (ii), it can be deduced that

(
1 + min

{
τB,

(2τAi

εi

)
1≤i≤k

})(
|||tn+1 − t̃|||2 + λn

k∑

i=1

ωiεi
1− εi

‖pi,n − p̃i‖
2
i

)

≤
(
1 + τB

(
1−

λ

2

))(
|||tn − t̃|||2 + λn−1

k∑

i=1

ωiεi
1− εi

‖pi,n−1 − p̃i‖
2
i

)
. (3.72)

By setting now

ρ =
1 + τB

(
1− λ

2

)

1 + min{τB , (2τAi
/εi)1≤i≤k}

(3.73)
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(3.66) is obtained by induction. The fact that ρ ∈]0, 1[ follows from (3.65). The uniqueness of
(̃t, p̃) is a straightforward consequence of (3.66) and Lemma 3.2(i).

Remark 3.7 If (∀i ∈ {1, . . . , k}) Ai = ∂fi where fi ∈ Γ0(Hi) is κfi-strongly convex with κfi ∈
]0,+∞[, then Jγ(1−εi)Ai

= proxγ(1−εi)fi is (1 + τAi
)-cocoercive with τAi

= γ (1 − εi)κfi . (see [15,
Proposition 2.5], for example). On the other hand, let B = ∂g where

(∀x ∈ H) g(x) = h(x) +
κg
2
|||x|||2, (3.74)

h ∈ Γ0(H) has a β-Lipschitz continuous gradient and (β, κg) ∈ ]0,+∞[2. Then, it is readily shown
that RγB = rproxγg is (1 + τB)−1/2-strictly contractive with τB =

(
(1− γκg)

2 + 4γκg(1 + γβ(1 +

γκg))
−1

)−1
(1 + γκg)

2 − 1 (see the appendix).

4 Zero of a sum of an arbitrary number of maximally monotone

operators

Let (G, ‖ · ‖) be a real Hilbert space and let 〈· | ·〉 be the scalar product of G. Let E be a closed
linear subspace of G and let

L : G → H : y 7→ (L1y, . . . , Lmy) (4.1)

where, for every i ∈ {1, . . . ,m}, Li ∈ B (G,Hi) is such that Li(E) is closed. Thus,

(
∀(x, y) ∈ H× G

)
〈〈x,Ly〉〉 =

m∑

i=1

ωi〈xi, Liy〉i = 〈

m∑

i=1

ωiL
∗
ixi, y〉. (4.2)

This shows that the adjoint of L is

L∗ : H → G : (x1, . . . , xm) 7→
m∑

i=1

ωiL
∗
ixi. (4.3)

In this section, the following problem is considered:

find ỹ ∈ zer
( m∑

i=1

ωiL
∗
i ◦Ai ◦ Li +NE

)
(4.4)

where, for every i ∈ {1, . . . ,m}, Ai : Hi → 2Hi is a maximally monotone operator. Since

(∀y ∈ G) NE(y) =

{
E⊥ y ∈ E

∅ otherwise,
(4.5)

Problem (4.4) is equivalent to Problem (1.2).
An algorithm derived from Algorithm (3.30) can be applied to solve Problem (4.4).
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Proposition 4.1 Let γ ∈ ]0,+∞[, (ε1, . . . , εm) ∈ [0, 1[m, and (λn)n∈N be a sequence of reals.

For every i ∈ {1, . . . ,m}, let (ai,n)n∈N be a sequence in Hi. Let {yn}n∈N ⊂ E, {cn}n∈N ⊂ E,

{tn}n∈N ⊂ H and {pn}n≥−1 ⊂ H be generated by the routine:

Initialization⌊
(ti,0)1≤i≤m ∈ H, (pi,−1)1≤i≤m ∈ H

y0 ∈ Argminz∈E
∑m

i=1 ωi‖Liz − ti,0‖
2
i

For n = 0, 1, . . .

For i = 1, . . . ,m⌊
pi,n = Jγ(1−εi)Ai

(
(1− εi)ti,n + εipi,n−1

)
+ ai,n

cn ∈ Argminz∈E
∑m

i=1 ωi‖Liz − pi,n‖
2
i

For i = 1, . . . ,m⌊
ti,n+1 = ti,n + λn

(
Li(2cn − yn)− pi,n

)

yn+1 = yn + λn(cn − yn).

(4.6)

Suppose that the following assumptions hold.

(i) zer
(∑m

i=1 ωiL
∗
i ◦ Ai ◦ Li +NE

)
6= ∅

(ii) There exists λ ∈]0, 2[ such that (∀n ∈ N) λ ≤ λn+1 ≤ λn < 2.

(iii) (∀i ∈ {1, . . . ,m})
∑

n∈N ‖ai,n‖i < +∞.

Then
(
(L1yn, . . . , Lmyn)

)
n∈N

,
(
(L1cn, . . . , Lmcn)

)
n∈N

, and (pn)n∈N converge weakly to (L1ỹ, . . . , Lmỹ)
where ỹ is a solution to Problem (4.4).

Proof. By using (4.5) and the definition of A in (3.2), we have the following equivalences

ỹ ∈ zer
( m∑

i=1

ωiL
∗
i ◦Ai ◦ Li +NE

)
= zer(L∗ ◦A ◦L+NE)

⇔ ỹ ∈ E and
(
∃z ∈ A(Lỹ), L∗z ∈ E⊥

)

⇔ ỹ ∈ E and
(
∃z ∈ A(Lỹ), z ∈ L(E)⊥

)

⇔ ỹ ∈ E and Lỹ ∈ zer(A+ND) (4.7)

where D = L(E). Hence, Problem (4.4) reduces to finding a zero of A+ND. This latter problem
is a specialization of Problem (3.1) when B = ND. We have then JγB = Jγ∂ιD = proxιD = PD.
According to Proposition 3.3, under Assumptions (i)-(iii), the algorithm:

Initialization⌊
t0 ∈ H,p−1 ∈ H

For n = 0, 1, . . .

For i = 1, . . . ,m⌊
pi,n = Jγ(1−εi)Ai

(
(1− εi)ti,n + εipi,n−1

)
+ ai,n

dn = PD pn

xn = PD tn

tn+1 = tn + λn

(
2dn − xn − pn

)

(4.8)
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allows us to generate a sequence (tn)n∈N converging weakly to t̃ such that JγAt̃ ∈ zer(A + ND).
As a consequence,

JγAt̃ ∈ D. (4.9)

According to the fixed point properties of the Douglas-Rachford algorithm,

t̃ = (2PD − Id )(2JγA t̃− t̃). (4.10)

Due to (4.9), (4.10) is equivalent to
PD t̃ = JγAt̃. (4.11)

By using the weak continuity of PD, it can be deduced that

xn = PDtn ⇀ PD t̃ = JγAt̃. (4.12)

In other words, (xn)n∈N converges weakly to Lỹ = JγAt̃ where ỹ ∈ E is a solution to Problem (4.4).
In addition, (xn)n>0 can be computed in a recursive manner through the relation

(∀n ∈ N) xn+1 = PDtn+1 = PDtn + λn(2dn − xn − PDpn) = xn + λn(dn − xn) (4.13)

where we have used the fact that (xn)n≥0 and (dn)n≥0 are sequences of D. Algorithm (4.8) then
becomes

Initialization⌊
t0 ∈ H,p−1 ∈ H

x0 = PDt0

For n = 0, 1, . . .

For i = 1, . . . ,m⌊
pi,n = Jγ(1−εi)Ai

(
(1− εi)ti,n + εipi,n−1

)
+ ai,n

dn = PD pn

tn+1 = tn + λn

(
2dn − xn − pn

)

xn+1 = xn + λn(dn − xn).

(4.14)

According to Assumption (ii), (λn)n∈N converges to a positive limit, and we deduce from (4.13)
that dn ⇀ Lỹ. In turn, the last update equation in Algorithm (4.8) yields pn ⇀ Lỹ.

Finally, it can be noticed that, for every u ∈ H, v = PDu if and only if v = Lw where

w ∈ Argminz∈E |||Lz − u|||. (4.15)

Since by construction (xn)n∈N and (dn)n∈N are sequences in D, for every n ∈ N, there exists
yn ∈ E and cn ∈ E such that xn = Lyn and dn = Lcn. Hence, Algorithm (4.6) appears as an
implementation of Algorithm (4.14).

Algorithm (4.14) requires to compute the linear projection onto D = L(E) which amounts to
solving the quadratic programming problem (4.15) for any u ∈ H. Note that w ∈ G is a solution
to (4.15) if and only if (

w,L∗(Lw − u)
)
∈ E × E⊥. (4.16)

This shows that this problem can also be formulated in terms of the generalized inverse of L w.r.t.
E. In particular, if L∗L =

∑m
i=1 ωiL

∗
iLi is an isomorphism on G, for every u ∈ H, there exists a

unique w ∈ G satisfying (4.16) (since z 7→ |||Lz − u|||2 is strictly convex).
In this case, a stronger convergence result can be obtained as stated below.
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Corollary 4.2 Suppose that the assumptions of Proposition 4.1 hold and that
∑m

i=1 ωiL
∗
iLi is an

isomorphism. Let (yn)n∈N be a sequence generated by Algorithm (4.6). Then (yn)n∈N converges

weakly to a solution to Problem (4.4).

Proof. According to Proposition 4.1,
Lyn ⇀ Lỹ (4.17)

where ỹ is a solution to Problem (4.4). By recalling that any bounded linear operator is weakly
continuous, we have therefore

L∗Lyn ⇀ L∗Lỹ (4.18)

and, consequently,
yn = (L∗L)−1L∗Lyn ⇀ (L∗L)−1L∗Lỹ = ỹ. (4.19)

The assumption that
∑m

i=1 ωiL
∗
iLi is an isomorphism may be restrictive. However, a variant

of Algorithm (4.6) allows us to relax this requirement.

Proposition 4.3 Let γ ∈ ]0,+∞[, (ε1, . . . , εm) ∈ [0, 1[m, α ∈ ]0,+∞[, and (λn)n∈N be a sequence

of reals. For every i ∈ {1, . . . ,m}, let (ai,n)n∈N be a sequence in Hi. Let {yn}n∈N ⊂ E, {cn}n∈N ⊂
E, {rn}n∈N ⊂ G, {tn}n∈N ⊂ H, and {pn}n≥−1 ⊂ H be generated by the routine:

Initialization
(ti,0)1≤i≤m ∈ H, (pi,−1)1≤i≤m ∈ H, r0 ∈ G

y0 = argminz∈E
∑m

i=1 ωi‖Liz − ti,0‖
2
i + α‖z − r0‖

2

For n = 0, 1, . . .

For i = 1, . . . ,m⌊
pi,n = Jγ(1−εi)Ai

(
(1− εi)ti,n + εipi,n−1

)
+ ai,n

cn = argminz∈E
∑m

i=1 ωi‖Liz − pi,n‖
2
i + α‖z − rn‖

2

For i = 1, . . . ,m⌊
ti,n+1 = ti,n + λn

(
Li(2cn − yn)− pi,n

)

rn+1 = rn + λn(2cn − yn − rn)
yn+1 = yn + λn(cn − yn).

(4.20)

Suppose that Assumptions (i)-(iii) in Proposition 4.1 hold. Then, (yn)n∈N converges weakly to a

solution to Problem (4.4).

Proof. Problem (4.4) can be reformulated as

find ỹ ∈ zer
(m+1∑

i=1

ωiL
∗
i ◦ Ai ◦ Li +NE

)
where Am+1 = 0 and Lm+1 = Id . (4.21)

In this case, for every ωm+1 ∈ ]0,+∞[, the self-adjoint operator
∑m+1

i=1 ωiL
∗
iLi =

∑m
i=1 ωiL

∗
iLi +

ωm+1 Id is an isomorphism. By applying a version of Algorithm (4.6) to the above problem with
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m+ 1 operators, we get:

Initialization
(ti,0)1≤i≤m+1 ∈ H1 × · · · × Hm × G, (pi,−1)1≤i≤m+1 ∈ H1 × · · · × Hm × G

y0 ∈ Argminz∈E
∑m

i=1 ωi‖Liz − ti,0‖
2
i + ωm+1‖z − tm+1,0‖

2

For n = 0, 1, . . .

For i = 1, . . . ,m+ 1⌊
pi,n = Jγ(1−εi)Ai

(
(1− εi)ti,n + εipi,n−1

)
+ ai,n

cn ∈ Argminz∈E
∑m

i=1 ωi‖Liz − pi,n‖
2
i + ωm+1‖z − pm+1,n‖

2

For i = 1, . . . ,m+ 1⌊
ti,n+1 = ti,n + λn

(
Li(2cn − yn)− pi,n

)

yn+1 = yn + λn(cn − yn).

(4.22)

Setting α = ωm+1, defining (∀n ∈ N) rn = tm+1,n, and setting also εm+1 = 0 and am+1,n ≡ 0 yields
pm+1,n ≡ tm+1,n, and Algorithm (4.20) is derived.

Remark 4.4 Another variant of Algorithm (4.6) which allows us to take into account errors in
the computation of the projection onto D is the following:

Initialization⌊
(ti,0)1≤i≤m ∈ H, (pi,−1)1≤i≤m ∈ H

For n = 0, 1, . . .

For i = 1, . . . ,m⌊
pi,n = Jγ(1−εi)Ai

(
(1− εi)ti,n + εipi,n−1

)
+ ai,n

cn − bcn ∈ Argminz∈E
∑m

i=1 ωi‖Liz − pi,n‖
2
i

yn − byn ∈ Argminz∈E
∑m

i=1 ωi‖Liz − ti,n‖
2
i

tn+1 = tn + λn

(
L(2cn − yn)− pn

)
.

(4.23)

Under the assumptions of Proposition 4.1 and provided that the error sequences (byn)n∈N and
(bcn)n∈N are such that

+∞∑

n=0

‖byn‖+ ‖bcn‖ < +∞ (4.24)

the same convergence results as for Proposition 4.1 can be proved. Note however that this algorithm
requires two projections onto L(E) at each iteration. Algorithm (34) in [18] is a special case of
this algorithm corresponding to the case when ε1 = . . . = εm = 0, H1 = . . . = Hm = E = G,
L1 = . . . = Lm = Id , and byn ≡ bcn ≡ 0.

5 Application to convex optimization

In this section, the following optimization problem is considered:

minimize
y∈E

m∑

i=1

fi(Liy) (5.1)
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where, for every i ∈ {1, . . . ,m}, fi ∈ Γ0(Hi). As a preliminary result, it can be noticed that:

Proposition 5.1 If there exists y ∈ E such that

(∀i ∈ {1, . . . ,m}) Liy ∈ dom fi (5.2)

and lim
y∈E,‖L1y‖1+ ···+‖Lmy‖m→+∞

f1(L1y)+ · · · + fm(Lmy) = +∞, then the set of solutions to Prob-

lem (5.1) is nonempty.

Proof. Problem (5.1) is equivalent to

minimize
x∈D

f(x) where D = L(E). (5.3)

As a consequence of classical results of convex analysis [28, Proposition II.1.2], the set of solutions
to Problem (5.3) is nonempty if domf ∩D = domf ∩L(E) 6= ∅ and

lim
x∈D, |||x|||→+∞

f(x) = +∞ (5.4)

which yields the desired result.
An algorithm derived from Algorithm (4.6) can be applied to solve Problem (5.1). In the

following, (ωi)1≤i≤m are positive constants, as in the previous section.

Proposition 5.2 Let (ε1, . . . , εm) ∈ [0, 1[m and (λn)n∈N be a sequence of reals. For every i ∈
{1, . . . ,m}, let (ai,n)n∈N be a sequence in Hi. Let {yn}n∈N ⊂ E, {cn}n∈N ⊂ E, {tn}n∈N ⊂ H and

{pn}n≥−1 ⊂ H be generated by the routine:

Initialization⌊
(ti,0)1≤i≤m ∈ H, (pi,−1)1≤i≤m ∈ H

y0 ∈ Argminz∈E
∑m

i=1 ωi‖Liz − ti,0‖
2
i

For n = 0, 1, . . .

For i = 1, . . . ,m⌊
pi,n = prox (1−εi)fi

ωi

(
(1− εi)ti,n + εipi,n−1

)
+ ai,n

cn ∈ Argminz∈E
∑m

i=1 ωi‖Liz − pi,n‖
2
i

For i = 1, . . . ,m⌊
ti,n+1 = ti,n + λn

(
Li(2cn − yn)− pi,n

)

yn+1 = yn + λn(cn − yn).

(5.5)

Suppose that the following assumptions hold.

(i) 0 ∈ sri
{
(L1z − x1, . . . , Lmz − xm)

∣∣ z ∈ E, x1 ∈ dom f1, . . . , xm ∈ dom fm
}
.

(ii) There exists λ ∈]0, 2[ such that (∀n ∈ N) λ ≤ λn+1 ≤ λn < 2.

(iii) (∀i ∈ {1, . . . ,m})
∑

n∈N ‖ai,n‖i < +∞.

If the set of solutions to Problem (5.1) is nonempty, then
(
(L1yn, . . . , Lmyn)

)
n∈N

,
(
(L1cn, . . . , Lmcn)

)
n∈N

,

and (pn)n∈N converge weakly to (L1ỹ, . . . , Lmỹ) where ỹ is a solution to Problem (5.1).
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Proof. Problem (5.1) is equivalent to

minimize
y∈G

f(Ly) + ιE(y). (5.6)

A necessary and sufficient condition [53, Theorem 2.5.7] for ỹ to be a solution to the above problem
is:

ỹ ∈ zer ∂(f ◦L+ ιE). (5.7)

Provided that
0 ∈ sri

{
Lz − x

∣∣ z ∈ E, x ∈ domf
}

(5.8)

we have [53, Theorem 2.8.3]

∂(f ◦L+ ιE) = L∗ ◦ ∂f ◦L+ ∂ιE . (5.9)

Due Assumption (i), (5.8) is obviously satisfied and (5.7) is therefore equivalent to

ỹ ∈ zer(L∗ ◦ ∂f ◦L+ ∂ιE) = zer
( m∑

i=1

L∗
i ◦ ∂fi ◦ Li +NE

)
(5.10)

where we have used the fact that ∂f = (ω−1
1 ∂f1) × · · · × (ω−1

m ∂fm), which follows from the
definition of the norm in (2.1). So, Problem 5.1 appears as a specialisation of Problem 4.4 when
(∀i ∈ {1, . . . ,m}) Ai = ∂fi/ωi. Algorithm (5.5) is then derived from Algorithm (4.6) (with γ = 1)
since J(1−εi)Ai

= prox(1−εi)fi/ωi
and its convergence follows from Proposition 4.1.

When
∑m

i=1 ωiL
∗
iLi is an isomorphism on G, a stronger convergence result can be deduced from

Corollary 4.2.

Corollary 5.3 Suppose that the assumptions of Proposition 5.2 hold and that
∑m

i=1 ωiL
∗
iLi is an

isomorphism. Let (yn)n∈N be a sequence generated by Algorithm (5.5). If the set of solutions to

Problem (5.1) is nonempty, then (yn)n∈N converges weakly to an element of this set.

A variant of Algorithm (5.5) is applicable when
∑m

i=1 ωiL
∗
iLi is not an isomorphism.

Proposition 5.4 Let (ε1, . . . , εm) ∈ [0, 1[m, α ∈ ]0,+∞[, and (λn)n∈N be a sequence of reals.

For every i ∈ {1, . . . ,m}, let (ai,n)n∈N be a sequence in Hi. Let {yn}n∈N ⊂ E, {cn}n∈N ⊂ E,

{rn}n∈N ⊂ G {tn}n∈N ⊂ H and {pn}n≥−1 ⊂ H be generated by the routine:

Initialization
(ti,0)1≤i≤m ∈ H, (pi,−1)1≤i≤m ∈ H, r0 ∈ G

y0 = argminz∈E
∑m

i=1 ωi‖Liz − ti,0‖
2
i + α‖z − r0‖

2

For n = 0, 1, . . .

For i = 1, . . . ,m⌊
pi,n = prox 1−εi

ωi
fi

(
(1− εi)ti,n + εipi,n−1

)
+ ai,n

cn = argminz∈E
∑m

i=1 ωi‖Liz − pi,n‖
2
i + α‖z − rn‖

2

For i = 1, . . . ,m⌊
ti,n+1 = ti,n + λn

(
Li(2cn − yn)− pi,n

)

rn+1 = rn + λn(2cn − yn − rn)
yn+1 = yn + λn(cn − yn).

(5.11)
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Suppose that Assumptions (i)-(iii) in Proposition 5.2 hold. If the set of solutions to Problem (5.1)
is nonempty, then (yn)n∈N converges weakly to an element of this set.

Proof.
By proceeding similarly to the proof of Proposition 5.2, it can be deduced from Proposition 4.3

that the sequence (yn)n∈N generated by Algorithm (5.11) converges to a solution to Problem (5.1)
when such a solution exists.

Remark 5.5

(i) When H is finite dimensional, Assumptions (i) in Proposition 5.2 takes the form

∃y ∈ E, L1y ∈ ri dom f1, . . . , Lmy ∈ ri dom fm. (5.12)

Indeed, in this case, we have (see Proposition 3.6 in [21]):

0 ∈ sri{D − domf} = ri{D − domf} = riD − ri domf = D − ri domf

⇔ D ∩ ri domf 6= ∅. (5.13)

(ii) We have seen that Problem (5.1) can be put under the form of Problem (5.3). The dual
formulation of this problem is

minimize
x∈H

ι∗D(−x) + f∗(x). (5.14)

Recall that ι∗D = ιD⊥ . The dual problem can thus be rewritten as

minimize
x∈D⊥

f∗(x). (5.15)

Algorithm (4.8) can again be used to solve the dual problem. However, since PD⊥ = Id −PD

and, (∀γ > 0) (∀i ∈ {1, . . . ,m}) proxγf∗

i
= Id −γ proxfi/γ(·/γ) [23, Lemma 2.10], the result-

ing algorithm for the dual problem takes a form very similar to the algorithm proposed for
the primal one.

6 Connections with some other parallel splitting optimization al-

gorithms

Firstly, is interesting to note that PPXA (Algorithm 3.1 in [21]) is a special case of Algorithm (5.5)
corresponding to the case when ε1 = . . . = εm = 0, H1 = . . . = Hm = E = G, and L1 = . . . =
Lm = Id .

In order to better emphasize the link existing with other algorithms, it will appear useful to
rewrite Algorithm (5.5) in a different form.
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Proposition 6.1 Let (ε1, . . . , εm) ∈ [0, 1[m and (λn)n≥−2 be a sequence of reals. Algorithm (5.5)
with (pi,−1)1≤i≤m = (L1y0, . . . , Lmy0) is equivalent to the following routine:

Initialization

λ−2 = λ−1 = 1
(ei,0)1≤i≤m ∈ H

u0 ∈ Argminz∈E
∑m

i=1 ωi‖Liz + ei,0‖
2
i

For i = 1, . . . ,m
ℓi,0 = 0
wi,−1 = 0
wi,0 = Liui,0

For n = 0, 1, . . .

un+1 ∈ Argminz∈E
∑m

i=1 ωi‖Liz − λn−1wi,n + ei,n‖
2
i

For i = 1, . . . ,m⌊
vi,n+1 = Liun+1

wi,n+1 = prox 1−εi
ωi

fi

(
(1− εi)(vi,n+1 + ei,n − ℓi,n) + εiwi,n

)
+ ai,n

kn+1 ∈ Argminz∈E
∑m

i=1 ωi‖Liz − ei,n + λn−2wi,n−1‖
2
i

For i = 1, . . . ,m⌊
ℓi,n+1 = (1− λn)Likn+1

ei,n+1 = vi,n+1 + ei,n − λnwi,n+1 + ℓi,n+1.

(6.1)

Suppose that Assumptions (i), (ii) and (iii) in Proposition 5.2 hold. If the set of solutions to

Problem (5.1) is nonempty, then
(
(v1,n, . . . , vm,n)

)
n>0

converges weakly to (L1ỹ, . . . , Lmỹ) where

ỹ is a solution to Problem (5.1).

Proof. Let us start from Algorithm (4.8) and express it as follows: for every n ∈ N,





(∀i ∈ {1, . . . ,m}) pDi,n + p⊥i,n = prox 1−εi
ωi

fi

(
(1− εi)(t

D
i,n + t⊥i,n) + εi(p

D
i,n−1 + p⊥i,n−1)

)
+ ai,n

dn = pD
n

xn = tDn
tDn+1 = tDn + λn

(
2dn − xn − pD

n

)

t⊥n+1 = t⊥n − λnp
⊥
n

(6.2)
where pD

n (resp p⊥
n ) denotes the projection of pn onto D (resp. D⊥), and pDi,n (resp. p⊥i,n) is its i-th

component in Hi, a similar notation being used for the other variables. The above set of equations
can be rewritten as





(∀i ∈ {1, . . . ,m}) pDi,n + p⊥i,n = prox 1−εi
ωi

fi

(
(1− εi)(t

D
i,n + t⊥i,n) + εi(p

D
i,n−1 + p⊥i,n−1)

)
+ ai,n

tDn+1 = tDn + λn

(
pD
n − tDn

)

t⊥n+1 = t⊥n − λnp
⊥
n .

(6.3)
Let us now introduce sequences (wn)n∈N and (en)n∈N such that

wn = pn−1 (6.4)

e⊥n = t⊥n . (6.5)
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Then, for every n ∈ N, (6.3) becomes





(∀i ∈ {1, . . . ,m})

wD
i,n+1 + w⊥

i,n+1 = prox 1−εi
ωi

fi

(
(1− εi)

(
(1− λn−1)t

D
i,n−1 + λn−1w

D
i,n + e⊥i,n

)
+ εi(w

D
i,n + w⊥

i,n)
)

+ai,n
tDn+1 = (1− λn)t

D
n + λnw

D
n+1

e⊥n+1 = e⊥n − λnw
⊥
n+1

(6.6)
provided that λ−1 = 1 (thus allowing us to choose tDi,−1 arbitrarily) since p−1 = (L1y0, . . . , Lmy0) =

x0 ∈ D ⇔ wD
0 = p−1 = x0 = tD0 . In addition, for every n ∈ N, set

eDn+1 = λn−1p
D
n−1 − tDn+1

= λn−1w
D
n − tDn+1. (6.7)

Then, we have: for every n ∈ N,

tDn+1 = (1− λn)t
D
n + λnw

D
n+1

⇔ eDn+1 = (1− λn)(e
D
n − λn−2w

D
n−1) + λn−1w

D
n − λnw

D
n+1 (6.8)

provided that λ−2 = 1 and wD
−1 − eD0 = wD

0 . By using the two previous relations, we see that
(6.6) is equivalent to





(∀i ∈ {1, . . . ,m})

wD
i,n+1 + w⊥

i,n+1 = prox 1−εi
ωi

fi

(
(1− εi)

(
(1− λn−1)(λn−3w

D
i,n−2 − eDi,n−1) + λn−1w

D
i,n + e⊥i,n

)

+εi(w
D
i,n + w⊥

i,n)
)
+ ai,n

eDn+1 = (1− λn)(e
D
n − λn−2w

D
n−1) + λn−1w

D
n − λnw

D
n+1

e⊥n+1 = e⊥n − λnw
⊥
n+1.

(6.9)
By introducing intermediate variables vn+1 and ℓn+1, this can be rewritten as





vn+1 = λn−1w
D
n − eDn

(∀i ∈ {1, . . . ,m}) wD
i,n+1 + w⊥

i,n+1

= prox 1−εi
ωi

fi

(
(1− εi)(vi,n+1 + eDi,n + e⊥i,n − ℓi,n) + εi(w

D
i,n +w⊥

i,n)
)
+ ai,n

ℓn+1 = (1− λn)(e
D
n − λn−2w

D
n−1)

eDn+1 = vn+1 + eDn − λnw
D
n+1 + ℓn+1

e⊥n+1 = e⊥n − λnw
⊥
n+1

(6.10)
where an appropriate initialization is

λ−2 = λ−1 = 1 (6.11)

ℓ0 = 0 (6.12)

wD
−1 = 0, wD

0 = −eD0 . (6.13)
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Eqs (6.10)-(6.13) obviously yield the following algorithm:

Initialization

λ−2 = λ−1 = 1
ℓ0 = 0

e0 ∈ H

w−1 = 0, w0 = −PD e0

For n = 0, 1, . . .

vn+1 = PD(λn−1wn − en)

ℓn+1 = (1− λn)PD(en − λn−2wn−1)
For i = 1, . . . ,m⌊

wi,n+1 = prox 1−εi
ωi

fi

(
(1− εi)(vi,n+1 + ei,n − ℓi,n) + εiwi,n

)
+ ai,n

en+1 = vn+1 + en − λnwn+1 + ℓn+1.

(6.14)

By setting now w0 = Lu0 and, for every n ∈ N, vn+1 = Lun+1 and ℓn+1 = (1 − λn)Lkn+1 where
(un)n≥0 and (kn)n>0 are sequences of E, Algorithm (6.1) is obtained.

Since the assumptions of Proposition 5.2 hold, xn = tDn ⇀ Lỹ where Lỹ is a minimizer of f
over D. It can be deduced from (6.8) that λn(w

D
n+1 − tDn ) ⇀ 0. In addition, from the definition

of vn+1 and (6.7), for every n ∈ N
∗,

vn+1 = λn−1w
D
n − λn−2w

D
n−1 + tDn

= λn−1(w
D
n − tDn−1)− λn−2(w

D
n−1 − tDn−2) + λn−1t

D
n−1 − λn−2t

D
n−2 + tDn . (6.15)

Due to Assumption (ii) in Proposition 5.2, λn−1t
D
n−1−λn−2t

D
n−2 ⇀ 0, which allows us to conclude

that vn+1 ⇀ Lỹ.

Similarly to Corollary 5.3, we have also:

Corollary 6.2 Suppose that the assumptions of Proposition 5.2 hold and that
∑m

i=1 ωiL
∗
iLi is an

isomorphism. Let (un)n∈N be a sequence generated by Algorithm (6.1). If the set of solutions to

Problem (5.1) is nonempty, then (un)n∈N converges weakly to an element of this set.

Note that Algorithm (6.1) may appear somewhat less efficient than Algorithm (5.5) in the sense
that it requires to compute two projections on D at each iteration. This disadvantage no longer
exists in the unrelaxed case (λn ≡ 1) where Algorithm (6.1) takes a simplified form.
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Proposition 6.3 Let (ε1, . . . , εm) ∈ [0, 1[m. Algorithm (6.1) with λn ≡ 1 is equivalent to the

following routine:

Initialization

(ei,0)1≤i≤m ∈ H

u0 = argminz∈E
∑m

i=1 ωi‖Liz + ei,0‖
2
i

For i = 1, . . . ,m⌊
wi,0 = Liu0

For n = 0, 1, . . .

un+1 = argminz∈E
∑m

i=1 ωi‖Liz − wi,n + ei,n‖
2
i

For i = 1, . . . ,m
vi,n+1 = Liun+1

wi,n+1 = prox 1−εi
ωi

fi

(
(1− εi)(vi,n+1 + ei,n) + εiwi,n

)
+ ai,n

ei,n+1 = vi,n+1 + ei,n − wi,n+1.

(6.16)

Suppose that the following assumptions hold.

(i) (0, . . . , 0) ∈ sri
{
(L1z − x1, . . . , Lmz − xm)

∣∣ z ∈ E, x1 ∈ dom f1, . . . , xm ∈ dom fm
}
.

(ii) (∀i ∈ {1, . . . ,m})
∑

n∈N ‖ai,n‖i < +∞.

(iii)
∑m

i=1 ωiL
∗
iLi is an isomorphism.

If the set of solutions to Problem (5.1) is nonempty, then (un)n∈N converges weakly to an element

of this set.

The above algorithm when E = G, ε1 = . . . = εm = 0, ω1 = . . . = ωm and (ai,n)1≤i≤m ≡ (0, . . . , 0)
was derived in [45] from the Douglas-Rachford algorithm by invoking a duality argument. We have
here obtained this algorithm by following a different way. In addition, the convergence result stated
in Proposition 6.3 is not restricted to finite dimensional Hilbert spaces and it allows us to take
into account an error term

(
(ai,n)1≤i≤m

)
n∈N

in the computation of the proximity operators of the
functions (fi)1≤i≤m and to include inertia parameters. It can also be noticed that Algorithm (5.5)
may appear more flexible than Algorithm (6.16) since it offers the ability of using relaxation
parameters (λn)n∈N.

Similarly to the derivation of Algorithm (5.11), when Assumption (iii) of Proposition 6.3 is not
satisfied a variant of Algorithm (6.16) can be employed to solve Problem (5.1).
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Proposition 6.4 Let (ε1, . . . , εm) ∈ [0, 1[m and α ∈ ]0,+∞[. For every i ∈ {1, . . . ,m}, let

(ai,n)n∈N be a sequence in Hi. Let {un}n∈N ⊂ E, {vn}n∈N ⊂ H {wn}n∈N ⊂ H and {en}n∈N ⊂ H

be generated by the routine:

Initialization

(ei,0)1≤i≤m ∈ H

u0 = argminz∈E
∑m

i=1 ωi‖Liz + ei,0‖
2
i + α‖z‖2

For i = 1, . . . ,m⌊
wi,0 = Liu0

For n = 0, 1, . . .

un+1 = argminz∈E
∑m

i=1 ωi‖Liz − wi,n + ei,n‖
2
i + α‖z − un‖

2

For i = 1, . . . ,m
vi,n+1 = Liun+1

wi,n+1 = prox 1−εi
ωi

fi

(
(1− εi)(vi,n+1 + ei,n) + εiwi,n

)
+ ai,n

ei,n+1 = vi,n+1 + ei,n − wi,n+1.

(6.17)

Suppose that Assumptions (i) and (ii) of Proposition 6.3 hold. If the set of solutions to Prob-

lem (5.1) is nonempty, then (un)n∈N converges weakly to an element of this set.

Proof. Problem (5.1) can be reformulated as

minimize
y∈E

m+1∑

i=1

fi(Liy) (6.18)

where fm+1 = 0 and Lm+1 = Id . Hence, for every ωm+1 ∈ ]0,+∞[,
∑m+1

i=1 ωiL
∗
iLi =

∑m
i=1 ωiL

∗
iLi+

ωm+1 Id is an isomorphism. By applying a version of Algorithm (6.16) to the above problem with
m+ 1 potentials, we get:

Initialization

(ei,0)1≤i≤m+1 ∈ H1 × · · · × Hm × G
u0 = argminz∈E

∑m
i=1 ωi‖Liz + ei,0‖

2
i + ωm+1‖z + em+1,0‖

2

For i = 1, . . . ,m+ 1⌊
wi,0 = Liu0

For n = 0, 1, . . .

un+1 = argminz∈E
∑m

i=1 ωi‖Liz − wi,n + ei,n‖
2
i + ωm+1 ‖z − wm+1,n + em+1,n‖

2

For i = 1, . . . ,m+ 1
vi,n+1 = Liun+1

wi,n+1 = prox 1−εi
ωi

fi

(
(1− εi)(vi,n+1 + ei,n) + εiwi,n

)
+ ai,n

ei,n+1 = vi,n+1 + ei,n −wi,n+1.

(6.19)

Then, by setting em+1,0 = 0, ωm+1 = α, εm+1 = 0, am+1,n ≡ 0, and noticing that (∀n ∈ N)
em+1,n+1 = 0, vm+1,n+1 = un+1 and wm+1,n = un, Algorithm (6.17) is obtained.

In addition, Assumption (i) in Proposition 6.3 is equivalent to assume that

V =
⋃

λ>0

{
λ(L1z − x1, . . . , Lmz − xm)

∣∣ z ∈ E, x1 ∈ dom f1, . . . , xm ∈ dom fm
}
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is a closed vector subspace of H. V ×G is therefore a closed vector subspace of H×G. But, since
dom fm+1 = G, we have

V × G =
⋃

λ>0

{λ(L1z − x1, . . . , Lmz − xm, z − xm+1) |

z ∈ E, x1 ∈ dom f1, . . . , xm ∈ dom fm, xm+1 ∈ dom fm+1}.

This shows that

0 ∈ sri
{
(L1z − x1, . . . , Lmz − xm, z − xm+1)

∣∣ z ∈ E, x1 ∈ dom f1, . . . , xm+1 ∈ dom fm+1

}
.

(6.20)
Since this condition is satisfied and Assumptions (ii) and (iii) hold, the convergence of (un)n∈N
follows from Proposition 6.3 applied to Problem (6.18).

Remark 6.5

(i) In the case when ε1 = . . . = εm = 0, Algorithm (6.16) can be derived in a more direct way
from Spingarn’s method of partial inverses [46, 47], which is recalled below:

Initialization⌊
(s0, q0) ∈ D ×D⊥

For n = 0, 1, . . .
(w′

n+1,e
′
n+1) such that w′

n+1 + e′n+1 = sn + qn and e′n+1 ∈ ∂f(w′
n+1)

sn+1 = PDw′
n+1

qn+1 = PD⊥e′n+1

(6.21)

Indeed at each iteration n ∈ N, w′
n+1 and e′n+1 are then computed as

w′
n+1 = proxf (sn + qn) (6.22)

e′n+1 = sn + qn −w′
n+1. (6.23)

By setting w′
0 = s0 and e′0 = q0 − s0, and by defining, for every n ∈ N,

v′
n+1 = sn − PDe′n = PD(w′

n − e′n) (6.24)

we have
sn + qn = v′

n+1 + PDe′n + PD⊥e′n = v′
n+1 + e′n. (6.25)

Altogether, (6.22)-(6.25) yield the following algorithm:

Initialization⌊
e′0 ∈ H

w′
0 = −PDe′0

For n = 0, 1, . . .
v′
n+1 = PD(w′

n − e′n)
w′

n+1 = proxf (v
′
n+1 + e′n)

e′n+1 = v′
n+1 + e′n −w′

n+1.

(6.26)

By setting (w′
n)n∈N = (wn)n∈N, (e′n)n∈N = (en)n∈N, and (v′

n)n>0 = (vn)n>0, the above
algorithm leads to Algorithm (6.16) when ε1 = . . . = εm = 0, in the absence of error terms.
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(ii) When ε1 = . . . = εm = α/(1 + α) and an ≡ 0, the iterations of Algorithm (6.17) can be
re-expressed as

(∀n ∈ N) un+1 = argminz∈E |||Lz −wn + en|||
2 + α‖z − un‖

2 (6.27)

wn+1 = prox f
1+α

( 1

1 + α
(Lun+1 + en) +

α

1 + α
wn

)
(6.28)

en+1 = Lun+1 + en −wn+1 (6.29)

which is equivalent to

(∀n ∈ N) un+1 = argminz∈G ιE(z) + |||Lz −wn + en|||
2 + α‖z − un‖

2 (6.30)

wn+1 = argminx∈H
1

1 + α
f(x) +

1

2
|||x−

1

1 + α
(Lun+1 + en)−

α

1 + α
wn|||

2

= argminx∈H f(x) +
1

2
|||x−Lun+1 − en|||

2 +
α

2
|||x−wn|||

2 (6.31)

en+1 = Lun+1 + en −wn+1. (6.32)

By setting γ = α−1/2 and (∀n > 0) e′n = γen, these iterations read also

(∀n ∈ N) un+1 = argminz∈G ιE(z) + 〈〈e′n | Lz〉〉+
γ

2
|||Lz −wn|||

2 +
1

2γ
‖z − un‖

2 (6.33)

wn+1 = argminx∈H γf(x)− 〈〈e′n | x〉〉+
γ

2
|||x−Lun+1|||

2 +
1

2γ
|||x−wn|||

2

(6.34)

e′n+1 = e′n + γ(Lun+1 −wn+1). (6.35)

Therefore, this algorithm takes the form of the one proposed in [5] when applied to the
optimization problem

minimize
y∈G

ιE(y) + γf(Ly). (6.36)

In other words, when ε1 = . . . = εm = α/(1+α) and an ≡ 0, Algorithm (6.17) can be viewed
as a parallelized version of the algorithm proposed in [5].

7 Numerical experiments

In order to evaluate the performance of the proposed algorithm, we present numerical experiments
relative to an image restoration problem. The considered degradation model is z = Ay + ǫ where
y ∈ R

N denotes the image to be recovered, z ∈ R
N are the observed data, A ∈ R

N×N corresponds
to a circulant-block circulant matrix associated with a blur operator, and ǫ ∈ R

N is a realization
of a random vector with independent and identically distributed components following a uniform
distribution. The restoration process is based on a variational approach aiming at finding an image
ŷ ∈ R

N as close as possible to y ∈ R
N from the observation z, and prior informations such as the

dynamic range of the pixel values and the sparsity of y in a wavelet-frame representation. The
considered optimization problem is :

find ŷ ∈ Argmin
y∈RN

‖z −Ay‖pℓp + ϑ‖Fy‖ℓ1 + ιC(y) (7.1)
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with p ≥ 1 and ϑ > 0. F ∈ R
K×N denotes the matrix associated with the frame analysis operator.

The frame is supposed to be tight, i.e. F ∗F = νF Id , for some νF > 0. C = [0, 255]N models a
dynamic range constraint. The notation ‖ · ‖ℓp stands for the classical ℓp norm:

(∀y = (ηi)1≤i≤N ∈ R
N ) ‖y‖ℓp =

( N∑

i=1

|ηi|
p
)1/p

. (7.2)

Problem (7.1) is a particular case of Problem (5.1) whenm = 3, E = R
N , f1 = ‖z−·‖pℓp , f2 = ‖·‖ℓ1 ,

f3 = ιC , L1 = A, L2 = F , and L3 = Id .
In the following, this approach is used to restore a satellite image of sizeN = 256×256 corrupted

by a Gaussian blur with a large kernel size and a noise uniformly distributed on [−30, 55]. The
latter values are not assumed to be known in the recovery process. In order to deal efficiently with
the uniformly distributed noise, the data fidelity measure f1 is chosen to be an ℓ3-norm (p = 3). F
corresponds to a tight frame version of the dual-tree transform (DTT) proposed in [14] (νF = 2)
using symmlets of length 6 over 2 resolution levels.

Algorithm (5.5) is then employed to solve (7.1). The proximity operator of f1 here takes a
closed form expression [13], whereas the proximity operator of f2 reduces to a soft-thresholding
rule (see [20] and references therein). In order to efficiently compute cn at iteration n of (5.5), fast
Fourier diagonalization techniques have been employed. It can be noticed that the qualification
condition (i) in Proposition 5.2 is satisfied since dom f1 = dom f2 = R

N and intC = ]0, 255[N 6= ∅

(see Remark 5.5(i)). The convergence to an optimal solution to Problem 7.1 is then guaranteed
by Corollary 5.3.

The original, degraded, and restored images are presented in Figure 1. The value of ϑ has
been selected so as to maximize the signal-to-noise-ratio (SNR). The SNR between an image y and
the original image y is defined as 20 log10(‖y‖ℓ2/‖y − y‖ℓ2). In our experiments, we also compare
the images in terms of structural similarity (SSIM) [50]. SSIM can be seen as a percentage of
similarity, the value 1 being achieved for two identical images.

Note that for such an application, the Douglas-Rachford algorithm would not be a proper
choice since there is no closed form expression for the proximity operator of f1 ◦ A. Regarding
PPXA [21, Algorithm 3.1], it would be possible to split the data fidelity term as proposed in [43],
but this solution would not be as efficient as the proposed one due to the large kernel size of the
blur.

The effects of the parameters (λn)n∈N and (εi)1≤i≤m are evaluated in Figures 2(a) and (b) where
the criterion variations (‖z−Ayn‖

p
ℓp
+ϑ‖Fyn‖ℓ1)n are plotted as a function of the iteration number

n. On the one hand, it results from our experiments that for a fixed relaxation parameter λn ≡ λ,
a faster convergence is achieved by choosing λ close to 2. Recall that, according to Proposition 6.3,
there exist close connections between the proposed algorithm and SDMM when λ = 1. On the
other hand, an identical value ε = 0.4 of the inertial parameters (εi)1≤i≤m also appears to be
beneficial to the convergence profile. In particular, the introduction of inertial parameters allows
us to reduce the oscillations in the variations of the criterion.
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Original Degraded Restored
SNR = 8.56 dB SNR = 12.4 dB
SSIM = 0.43 SSIM = 0.71

Figure 1: Image restoration result.
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(a) (b)

Figure 2: Impact of the algorithm parameters on the convergence rate. (a) Relaxation parameter
when ǫ = 0.4 and λn ≡ λ with λ = 0.5 (gray solid line), λ = 1 (black dashed line), and λ = 1.9
(black solid line). (b) Inertial parameters when λ = 1.9 and εi ≡ ε with ε = 0 (gray solid line),
ε = 0.4 (black dashed line), and ε = 0.8 (black solid line).

Appendix

Proposition 7.1 Let g be the function defined as

(∀x ∈ H) g(x) = h(x) +
κ

2
|||x|||2 (7.3)

where h ∈ Γ0(H) has a β-Lipschitz continuous gradient and (β, κ) ∈ ]0,+∞[2. Then rproxg is

strictly contractive with constant (1 + κ)−1
(
(1− κ)2 + 4κ(1 + β(1 + κ))−1

)1/2
.
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Proof. From (7.3) and standard properties of the proximity operator [22, 23], we get

(∀x ∈ H) proxg x = prox h
1+κ

( x

1 + κ

)

=
1

1 + κ

(
x− prox(1+κ)h∗ x

)

⇔ rproxg x =
1

1 + κ

(
(1− κ)x− 2 prox(1+κ)h∗ x

)
. (7.4)

Then, we have

(∀(x,y) ∈ H
2) ||| rproxg x− rproxg y|||

2

=
1

(1 + κ)2

(
(1− κ)2|||x− y|||2 − 4(1− κ)〈〈x − y | prox(1+κ)h∗ x− prox(1+κ)h∗ y〉〉

+ 4 |||prox(1+κ)h∗ x− prox(1+κ)h∗ y|||2
)

≤
1

(1 + κ)2

(
(1− κ)2|||x− y|||2 + 4κ〈〈x− y | prox(1+κ)h∗ x− prox(1+κ)h∗ y〉〉

)

(7.5)

where the fact that the proximity operator is firmly nonexpansive has been used in the last in-
equality. On the other hand, according to [6, Theorem 2.1], we know that h has a 1/β-Lipschitz
continuous gradient if and only if h∗ is strongly convex with modulus β, that is

h∗ = ϕ+
β

2
||| · |||2. (7.6)

where ϕ ∈ Γ0(H). Thus,

(∀x ∈ H) prox(1+κ)h∗ x = prox (1+κ)ϕ
1+β(1+κ)

( x

1 + β(1 + κ)

)
. (7.7)

By invoking now the Cauchy-Schwarz inequality and the nonexpansivity of prox (1+κ)ϕ
1+β(1+κ)

, we deduce

that

〈〈x− y | prox(1+κ)h∗ x− prox(1+κ)h∗ y〉〉

≤ |||x− y|||
∣∣∣∣∣∣prox (1+κ)ϕ

1+β(1+κ)

( x

1 + β(1 + κ)

)
− prox (1+κ)ϕ

1+β(1+κ)

( y

1 + β(1 + κ)

)∣∣∣∣∣∣

≤
1

1 + β(1 + κ)
|||x− y|||2. (7.8)

By combining (7.5) and (7.8), we finally obtain

(∀(x,y) ∈ H
2) ||| rproxg x− rproxg y|||

2

≤
1

(1 + κ)2

(
(1− κ)2 +

4κ

1 + β(1 + κ)

)
|||x− y|||2. (7.9)

Since
1

(1 + κ)2

(
(1− κ)2 +

4κ

1 + β(1 + κ)

)
<

1

(1 + κ)2
(
(1− κ)2 + 4κ

)
= 1 (7.10)

rproxg is thus strictly contractive.

31



References

[1] M. V. Afonso, J. M. Bioucas-Dias, and M. A. T. Figueiredo. Fast image recovery using variable
splitting and constrained optimization. IEEE Trans. Image Process., 19(9):2345–2356, Sep.
2010. http://arxiv.org/abs/0910.4887.

[2] M. V. Afonso, J. M. Bioucas-Dias, and M. A. T. Figueiredo. An augmented Lagrangian
approach to the constrained optimization formulation of imaging inverse problems. IEEE

Trans. Image Process., 20(3):681–695, March 2011.

[3] F. Alvarez. Weak convergence of a relaxed and inertial hybrid projection-proximal point
algorithm for maximal monotone operators in Hilbert space. SIAM J. Optim., 14:773–782,
2003.

[4] F. Alvarez and H. Attouch. Convergence and asymptotic stabilization for some damped
hyperbolic equations with non-isolated equilibria. ESAIM Control Optim. Calc. Var., 6:539–
552, 2001.

[5] H. Attouch and M. Soueycatt. Augmented Lagrangian and proximal alternating direction
methods of multipliers in Hilbert spaces – applications to games, PDEs and control. Pacific

J. Optim., 5:17–37, 2009.

[6] H. H. Bauschke and P. L. Combettes. The Baillon-Haddad theorem revisited. Journal of

Convex Analysis, 17(4), December 2010.

[7] H. H. Bauschke and P. L. Combettes. Convex Analysis and Monotone Operator Theory in

Hilbert Spaces. Springer-Verlag, New York, 2011.

[8] H.H. Bauschke. A note on the paper by Eckstein and Svaiter on “General projective splitting
methods for sums of maximal monotone operators”. SIAM J. Control Optim., 48:2513–2515,
2009.

[9] D. P. Bertsekas and J. N. Tsitsiklis. Parallel and Distributed Computation: Numerical Meth-

ods. Athena Scientific, Belmont, MA, 1997.

[10] L. M. Briceño-Arias and P. L. Combettes. Convex variational formulation with smooth cou-
pling for multicomponent signal decomposition and recovery. Numer. Math. Theory Methods

Appl., 2:485–508, 2009.

[11] F. E. Browder. Convergence theorems for sequences of nonlinear operators in Banach spaces.
Mathematische Zeitschrift, 100:201–225, 1967.

[12] Y. Censor and S. A. Zenios. Parallel Optimization: Theory, Algorithms and Applications.

Oxford University Press, New York, 1997.

[13] C. Chaux, P. L. Combettes, J.-C. Pesquet, and V. R. Wajs. A variational formulation for
frame-based inverse problems. Inverse Problems, 23:1495–1518, 2007.

[14] C. Chaux, L. Duval, and J.-C. Pesquet. Image analysis using a dual-tree M -band wavelet
transform. IEEE Trans. Image Process.

32



[15] C. Chaux, J.-C. Pesquet, and N. Pustelnik. Nested iterative algorithms for convex constrained
image recovery problems. SIAM J. Imaging Sci., 2:730–762, 2009.
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