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Abstract
Budding yeast cells exist in two mating types, a and α, which use peptide pheromones to

communicate with each other during mating. Mating depends on the ability of cells to polar-

ize up pheromone gradients, but cells also respond to spatially uniform fields of pheromone

by polarizing along a single axis. We used quantitative measurements of the response of a

cells to α-factor to produce a predictive model of yeast polarization towards a pheromone

gradient. We found that cells make a sharp transition between budding cycles and mating

induced polarization and that they detect pheromone gradients accurately only over a nar-

row range of pheromone concentrations corresponding to this transition. We fit all the

parameters of the mathematical model by using quantitative data on spontaneous polariza-

tion in uniform pheromone concentration. Once these parameters have been computed,

and without any further fit, our model quantitatively predicts the yeast cell response to pher-

omone gradient providing an important step toward understanding how cells communicate

with each other.

Author Summary

Budding yeast cells exist in two mating types, a and α, which use peptide pheromones to
communicate with each other during mating. Mating depends on the ability of cells to
polarize up pheromone gradients, but cells also respond to spatially uniform fields of pher-
omone by polarizing along a single axis. We used quantitative measurements of the
response of a cells to α-factor to produce a predictive model of yeast polarization towards
a pheromone gradient. We found that cells make a sharp transition between budding
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cycles and mating induced polarization, and that they detect pheromone gradients accu-
rately only over a narrow range of pheromone concentrations corresponding to this transi-
tion. We fit all the parameters of the mathematical model by using quantitative data on
spontaneous polarization in uniform pheromone concentration. Once these parameters
have been computed, and without any further fit, our model quantitatively predicts the
yeast cell response to pheromone gradient providing an important step toward under-
standing how cells communicate with each other.

Introduction
Many events in plant and animal development depend on the ability of cells to interact with
only one of many potential partners. Examples include the interaction of neuronal growth
cones with target cells [1], myotube fusion and vascular guidance [2, 3], the growth of pollen
tubes to reach ovules [4], and the mating of many fungi, including budding yeast [5, 6]. These
phenomena are based on the capacity of cells to polarize in response to spatially inhomoge-
neous external signals.

Cells polarize when they switch from behaving isotropically to showing a preferred axis [7].
While the biochemical basis of polarization can vary greatly, in its early stages polarization is
always characterized by an inhomogeneous distribution of specific molecular markers. Cell
polarization can be driven by internal or external asymmetries. As an example, an external gra-
dient can cause chemotropism, the directed growth of cells along a chemical gradient. In mat-
ing yeast, the external signal is a pheromone gradient, which causes the cell to polarize its
growth towards the source of pheromone produced by the mating partner, [6, 8–10].

In nature, the budding yeast, Saccharomyces cerevisiae, is mostly found as diploid cells. Hap-
loids exist in two mating types, a and α, which can proliferate asexually or mate with each
other to form diploids. The a cells secrete a-factor and bear an α-factor receptor, whereas α
cells secrete α-factor and detect a-factor. Both mating types express a common signal transduc-
tion pathway that is triggered by the binding of mating pheromones to their mating type-spe-
cific, G protein-coupled receptors. The signal passes through a MAP kinase cascade, inducing
gene expression and polarized growth; polarization transforms ovoid cells into pear-shaped
shmoos that grow towards each other (chemotropism) and fuse with each other at their tips
(Fig 1A and 1B), [11]. The two pheromones are chemically distinct: α-factor is an unmodified
13 amino acid peptide, whereas a-factor is a 12 amino acid peptide that carries a C-terminal
farnesyl group, which makes it extremely hydrophobic and difficult to work with. In wild type
a cells, α-factor is degraded by a protease Bar1, which modifies the effective pheromone con-
centration experienced by the cell, but our experiments, which aim to expose cells to known
pheromone concentrations are performed in a cells lacking Bar1.

The components of the signaling pathway and many of the connections between them are
now well known: in the 1990s Hartwell and his colleagues showed that mating depends on
communication between a and α cells (“courtship”) [12, 13], Segall [14] demonstrated that
cells polarize up pheromone gradients and more recently the level of noise in the signaling
pathway has been measured [15, 16]. Thanks to these studies, budding yeast has taken center
stage for quantitative and modeling approaches to understanding of cell polarization. Impor-
tantly, yeast cells can also polarize in the absence of any gradient of signaling molecules. This
happens once during each cell division cycle when a bud site is determined, and also when
unbudded, haploid cells form a shmoo in response to a spatially uniform pheromone concen-
tration. Shmooing and budding are distinct types of polarization. The choice of the budding
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Fig 1. Basics of yeast mating andmodel. A)Mating as a developmental switch. Exposing haploid cells to pheromone makes them exit the cell division
cycle, polarize towards, and fuse with a cell of the opposite mating type to form a diploid cell. Cells recover and resume budding if the pheromone signal
disappears. The polarisome protein, Spa2 (shown in green and red), concentrates at the incipient bud site, at the bud tip as cells grow, at the bud neck during
cytokinesis, and at the shmoo tip and fusion site during mating. We use the rate of accumulation of a fluorescent protein expressed from the FUS1 promoter,
a gene induced by pheromone stimulation, as a readout of pheromone-induced signaling.B) The pheromone response pathway of a cells. α-factor diffuses
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site relies on historical marks as well as internal feedback loops; each division event leaves a
localized scar with specific molecular markers (including the Bud1 protein) that localize the
next polarization event. At very high pheromone concentrations, far above the Kd of the phero-
mone receptor, the same marks can be used to direct shmooing, because at such high concen-
tration polarity markers accumulated at the budding site (historical mark) have no time to
decay [12, 13]. But at physiological pheromone concentrations, cells shmoo randomly with
respect to the direction they would have budded (Fig H in S1 Text). This independence from
known historical marks makes shmooing in uniform fields a convenient phenomenon to
develop and test models for polarization in response to external signals.

Several studies have proposed mathematical models that incorporate many aspects of the
molecular mechanisms involved in pheromone-induced polarization. Although some of these
models have been tested for their ability to fit quantitative data [17–24], they have not been
quantitatively assessed for their ability to make accurate predictions with no additional free
parameter. In this work we aimed at providing a simple and predictively useful mathematical
description of how yeast cells respond to pheromone gradients. To test the predictive power of
the model, we adopted the following strategy. We built a phenomenological model that used a
minimal set of unknown parameters. This model was first introduced in [25], then studied in
[26, 27] but not tested for its ability to predict experimental data. We used the polarization of
cells exposed to an isotropic concentration of pheromone (no gradient) to fit the three
unknown parameters of the model. Without further modifying these parameter values, we
then used our model to predict the ability of yeast to polarize in the direction of pheromone
gradients and compared the predictions to data for yeast polarizing in gradients formed in
microfluidic devices. The simulated data matches fairly well with the experimental data, includ-
ing the observation that, in pheromone gradient, cells can only polarize accurately over a nar-
row range of pheromone concentrations.

Results

Model description
We consider a two-dimensional model based on a long-range spatial coupling between sites on
the membrane. Although the precise mechanism of such a coupling is still debated, transport
of signaling molecules along actin filaments might be a good candidate to explain it. Although
actin filaments are not essential to localize polarity markers in cell attempting to bud, they are
necessary for stable pheromone-induced polarization [28, 29]. Our model is based on the active
transport of components along cytoskeletal filaments, which directly or indirectly affect Cdc42
distribution. Cdc42, a positive regulator of actin filament nucleation, and actin filaments can
generate a positive feedback loop in the following way: actin-based, active transport of mole-
cules towards the membrane (mostly associated with vesicle transport) can modify the Cdc42

through the cell wall and binds to the α-factor receptor (Ste2, a G protein-coupled receptor (GPCR)), which activates a trimeric G protein. The G protein
recruits and activates two scaffolding proteins. One (Far1) recruits the actin polymerization machinery that leads to cell polarization and activates the kinase
that activates the MAP kinase cascade. The other (Ste5) is responsible for the assembly of a MAP kinase cascade that activates the MAP kinase Fus3,
leading to the induction of mating genes. Once phosphorylated by Fus3, Far1 arrests the cell cycle in G1.C) A two-dimensional model of cell polarization.
The left panel shows a cell, the right a more detailed view introducing the various parameters in the model. Actin is polymerized into short filaments, that
interact with each other and these are bundled together to form actin cables that cross the cell. The nucleation of filaments is proportional to both the local
density of Cdc42 and to the concentration of pheromone. The endocytosis of markers at the membrane is described by very simple attachment/detachment
dynamics (kon and koff) and their diffusion in the plane of the membrane is described by a diffusion constant, Dm, while their diffusion in the cytoplasm is
described by a separate constant, Db. D) According to the fact that a polarisome occupies approximately 10% of the total membrane length, [12], we divide
the membrane into 10 subregions (sectors). At each time point, κ(t,.), the parameter that describes the dynamics of the pheromone receptor, has a constant
value within one segment. E) The temporal evolution of the effective pheromone receptor activity κ is ruled by an Ornstein-Uhlenbeck process. The
parameter λ is the the noise damping. The parameter σ is the standard deviation of the instantaneous change of κ(t).

doi:10.1371/journal.pcbi.1004795.g001
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distribution which in turn determines the density of actin filaments at the membrane. There
are numerous models for spontaneous polarization (see [9] for a discussion of the different
possible feedback loops from a biological viewpoint). Polarization can be modeled by reaction-
diffusion systems, Turing instabilities [30–33], recruitment of polarization molecules [34–39],
and depletion of limiting components [40].

To minimize the number of parameters, we opt for a coarse-grained description of the actin
cytoskeleton as an advection field accounting for long-range spatial coupling. We also consider
a random motion of Cdc42 within the cytoplasm together with endocytosis at the membrane
and we respectively denote by n(t, x) and c(t, x) the concentrations of Cdc42 and of actin fila-
ments in the cytoplasm and by μ(t, s) the concentration of Cdc42 on the plasma membrane.
The model reads as:

@tn ¼ Db Dn� wr � nrcð Þ ; for k x k< R ;

@tm ¼ Dm @ssmþ kon n� koff m ; for k x k¼ R ;
ð1Þ

(

where kon and koff are the attachment and detachment rates of Cdc42 at the membrane and the
cell is described by a disk of radius R. Active transport is modeled as the gradient of the concen-
tration of filaments in the cytoplasm, χrc. The parameter χ can be interpreted as a correlation
length and the term χrc as a long-range spatial coupling. We suppose that the nucleation of
new filaments occurs at the plasma membrane, under the combined action of Cdc42 and the
pheromone signal (Fig 1C). After a dimensional analysis, the model that describes the cytoskel-
etal density reads as:

�D cþ Z c ¼ 0 ; for k x k< R ;

�rc � ~ex ¼ k
S

S0 þ S
m ; for k x k¼ R ;

ð2Þ

8><
>:

where~ex is the unit outward normal vector, S is the pheromone-generated signal at the mem-
brane, and c and κ are dimensionless numbers. The Michaelis-Menten ratio S/(S0 + S) accounts
for the maximal number of receptors on the cell membrane, see [41]. In this models (1) and
(2), μ is the concentration of the total Cdc42 on the membrane, including non-active Cdc42,
and it depends on actin cables, described by c. Then S gives the activation of the membrane
bound Cdc42 and leads to actin polymerization (and thus controls c). A more realistic model
might have been to explicitly distinguish active and inactive Cdc42 with two different variables,
which would have introduce more parameters. In our model total membrane Cdc42 is μ and
active Cdc42 is Sμ. Our approach has the advantage of minimizing the number of parameters
while accounting for Cdc42 activation.

These equations are complemented by initial conditions and by an additional boundary
condition on the cell membrane which guarantees the conservation of the total Cdc42 pool (S1
Text).

First, we tried to fix the parameter values from literature and dimensioning arguments. The
sensitivity of the model output to the choice of these parameters will be described and dis-
cussed later on in the article. We observed that changing the concentration of actin filaments
in the cytoplasm c into c/κ in Eq (2) leads to replace the advection speed χ by κχ in Eq (1).
Hence, in the absence of noise, κ can be fixed arbitrarily, and its value will be discussed below.
The observation that, without any pheromone, 13% of the Cdc42 molecules are on the mem-
brane at steady state [36, 42], sets the value of the ratio of attachment and detachment rates of
Cdc42 at the membrane, kon/koff * 0.16μm (S1 Text). This simple model has only two
unknown parameters koff, the endocytosis rate, and χ, the advection speed accounting for long-

A Predictive Model for Yeast Cell Polarization in Pheromone Gradients

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004795 April 14, 2016 5 / 21



range spatial correlation (Table 1 and S1 Text). However this model accounts for a number of
molecular processes in an effective manner, which we describe now. At the molecular scale,
processes that take place once the pheromone binds some receptor molecule on the cell mem-
brane mostly rely on chemical reactions involving a small number of molecules, such as the tri-
meric G proteins that interact with the pheromone receptor and regulate Cdc42. The
activation and inactivation of the pheromone receptors, which reflects a mixture of binding,
unbinding, lateral diffusion, and endocytosis are summarized by the parameter κ. Importantly,
the activation and inactivation might fluctuate over time and space, [24, 43–45]. These fluctua-
tions cannot be accounted for by a constant parameter, hence κ takes non constant values.
More precisely, we assume that the phenomenological parameter κ which we call the effective
pheromone receptor activity is described by a stochastic process. We opt for the minimal Orn-
stein-Uhlenbeck stochastic process. The stationary measure is indeed a Gaussian distribution
with only two parameters which will be determined from experiments (S1 Text). The spatial
correlation length of the fluctuations of this stochastic process (Fig 1D and 1E), can be fixed
considering that a polarisome (the local concentration of proteins that induces cell polariza-
tion) occupies approximately 10% of the total membrane equatorial permiter length, [42] (S1
Text). The damping coefficient of the noise, λ (Fig 1E), which reflects the combined action of
pheromone binding and unbinding, and the lateral diffusion and endocytosis of the receptor, is
dominated by the fastest of these processes. Physical arguments provide bounds for 1/λ, which
corresponds to a relaxation delay: the literature, see [46] e.g., argues that the half time for
receptor endocytosis, at least at high pheromone concentrations, is on the order of ten to
twenty minutes. Here we suppose that 1/λ* 10 min. In addition to the previous source in
noise in the effective pheromone receptor activity, κ, whose variation represents noise in both
space and time within a single cell, we consider a second source of noise to describe the cell-to-
cell variability in the total Cdc42 poolM. Indeed the value of the total Cdc42 pool might fluctu-
ate between cells. We observe that changing the three parameters (M, κ, χ), which are respec-
tively the total Cdc42 pool, the effective pheromone receptor activity and the advection speed,
in (αM, κ/α, χ) does not affect the solution (n, μ) of the models (1)–(2) which describes the
Cdc42 concentration. Consequently we consider that the mean effective pheromone receptor
activity, κmean, follows a normal distribution with mean arbitrarily fixed to the value 13% ×M

Table 1. The sixteen parameters involved in the model with their definitions, their values, and the source fromwhich the value is derived.

R Cell radius 2.5 μm [66]

Rn Nuclear radius 1 μm [66]

Db Bulk (cytoplasmic) diffusion coefficient 1.4 μm2/s [32]

M Total Cdc42 content 103 [42]

S0 Kd of pheromone receptor 6 nM [41]

η Actin depolymerisation rate 10−3 s−1 [67]

koff Endocytosis rate 0.12 s−1 Fitted

kon Exocytosis rate kon = koff × (0.16 μm) [36, 42]

Dm Membrane diffusion coefficient
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dm=koff

p � 0:37mm [42]

κmean Mean effective pheromone receptor activity 13, it is arbitrary since only κχ affects the system Free

2πR/N Correlation length of the noise for κ 10% of the cell perimeter [42]

λ Damping coefficient of κ λ−1* 10 mn [68]

σ Standard deviation of κ σ2/2λ = 13, stationary noise intensity assumption [69]

δ Cell-to-cell variability 0.2 Fitted

χ Actin-based transport coefficient 2.5 ×105 μm2/s Fitted

(n0(x), μ0(s)) Initial condition Steady state at S = 0 nM Nature of the experiments and [36, 42]

doi:10.1371/journal.pcbi.1004795.t001
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and standard deviation δ. This latter parameter is unknown and describes a longer term varia-
tion between cells.

Finally, the complete model including the noise on the effective pheromone receptor activity
involves three unknown parameters, two of them have a significant impact, the advection
speed accounting for long-range spatial correlation, χ, and the endocytosis rate, koff (Table 1
and S1 Text).

We now present the experiments that have been designed to estimate the values of the three
missing parameters: the advection speed accounting for long-range spatial correlation, χ, the
Cdc42 endocytosis rate, koff, and the cell-to-cell variability, δ.

Cells respond precisely to pheromone
Budding yeast can polarize spontaneously in the absence of an external pheromone gradient,
[9, 34–36, 42, 47]. To estimate the values of the missing parameters involved in our model we
used data from measuring the fraction of cells which polarize and the delay before polarization
as a function of the applied, spatially uniform pheromone concentration. Previous work has
shown that transition between budding and shmooing occurs at a low pheromone concentra-
tion, around 1 nM [44, 48], and it is known that the delay before cells shmoo rises as the phero-
mone concentration falls. To precisely measure the fraction of cells that polarized and the
delay before polarization, we used a microfluidic device to apply stable low pheromone concen-
trations for long periods (up to 10 hours) and followed individual cells by light microscopy
(Fig 2A, S1 Text and Fig A in S1 Text).

We followed cell polarization by fluorescently tagging Spa2, a component of the polarisome
[49–51]. The polarisome is located at sites of polarized cell growth (the tips of buds and
shmoos, and the site of cell division [52]), and appears there before cells switch from isotropic
to anisotropic growth.

We observed that cells shmooed at concentrations above 1nM pheromone (Fig 2B and Fig B
in S1 Text). Like others [48, 53, 54], we saw little cell-to-cell variability: at 0.6 nM α-factor, 96%
of cells budded after a delay; at 1 nM, buds and shmoos were equally common; and at 2 nM,
93% of the cells shmooed (Fig 2B and Fig B in S1 Text). The delay before cells budded rose as
the pheromone concentration rose, but the delay before they shmooed fell (Fig 2C). Once cells
had shmooed, they did not subsequently bud, even after 16 hours of incubation with phero-
mone (see Fig B in S1 Text and MP unpublished data). The failure of cells to shmoo at low
pheromone concentrations (< 1 nM) could reflect competition between budding and shmoo-
ing. We eliminated this possibility by applying a pheromone-independent G1 arrest and then
exposing cells to α-factor. Cells that had been arrested by removing their G1 cyclins required
the same concentration of α-factor to induce shmooing as cycling cells (Fig 2D) and the timing
for polarization was also similar (Fig 2E).

Parameter estimation from uniform pheromone concentration
experiments
In the experiments described above, cells were suddenly exposed, at time zero, to a wide range
of temporally stable concentrations of pheromone. Therefore, in our numerical simulations we
assumed an initial distribution of Cdc42 corresponding to a steady state pheromone concentra-
tion, S = 0 nM, at the cell membrane (S1 Text). Furthermore, we considered that 13% of the
Cdc42 molecules were on the membrane, see [36, 42].

For a concentration of pheromone S = 1 nM, by using standard finite volume method (for
more details see [55] and S1 Text), we ran simulations with the model for several values of the
parameter accounting for long-range spatial correlation, χ, and the Cdc42 endocytosis rate,
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Fig 2. The response of bar1Δ cells response to homogenous stimulation by α-factor. A) Schematic of a device to produce a range of pheromone
concentrations by using chaotic mixers in dilution chambers. The diagram shows a plan view (left) and cross sections at two magnifications (right). Structured
micro channels allow fast mixing and thus permit serial dilutions in a small device. A lectin (concanavalin A) binds yeast cells to the coverslip that forms the
roof of the chamber. They receive a constant flow of pheromone, allowing them to be exposed to concentrations that are stable over several hours and can
be measured by quantifying the emission of a fluorescent dextran mixed with the pheromone (see Experimental Procedures in S1 Text and Fig A in S1 Text

A Predictive Model for Yeast Cell Polarization in Pheromone Gradients
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koff. In each numerical simulation we computed the cytoplasmic and membrane Cdc42 con-
centrations. We observed that different parameter values gave different regimes: homogeneous
(unpolarized state) and heterogeneous (polarized state) membrane Cdc42 concentrations,
(Fig 3A and 3B).

Next, for different values of the advection speed χ accounting for long-range spatial correla-
tion and of the Cdc42 endocytosis rate koff and for each concentration of pheromone (on a log-
arithmic scale, from log S = 0 to 1 with an increment of 0.25, where S is expressed in nM), we
ran 300 simulations with random values of the effective pheromone receptor activity κ, with
different values of the longer term variation between cells δ, and we computed the time
required for polarization (Fig 3C). By using an optimization procedure (Fig 3D and S1 Text),
we found that the best values of the spatial correlation length, the Cdc42 endocytosis rate

and the cell-to-cell variability were respectively χopt = 2.5 × 105 μm2/s, koptoff ¼ 0:12 s−1 and
δopt = 0.2. For these three optimized parameter values we have plotted the average numerical
polarization delay values (Fig 3E) and the ratio of cells that polarized in a time span of 10 hours
(Fig 3F). The good agreement between the simulations and the experimental data, for both the
mean and the standard deviation, demonstrated that we had built a model that quantitatively
described yeast cell behavior in uniform pheromone concentrations.

With these experiments we were able to determine the values of all of the three unknown
parameters. We next asked whether our model, without changing any parameter value, could
quantitavely predict cells’ response to pheromone gradients.

Directional response to pheromone gradient
We used laminar flow chambers to measure the response of bar1Δ cells to well-defined phero-
mone gradients (Fig 4A and Figs C, D and E in S1 Text). These experiments led to five conclu-
sions: i) The transition between budding and shmooing occurred at the same concentration
(1 nM) as it does for cells in homogeneous pheromone concentrations (compare Fig 4B with
Fig 2B), ii) cells could only detect gradients accurately over a narrow range, with mean phero-
mone concentrations ranging from 0.7 to 2.5 nM, (Fig 4C), iii) the accuracy of gradient detec-
tion fell as the gradient became shallower than a 5% difference in concentration between the
two sides of the cell (Fig E in S1 Text), iv) even extremely steep gradients could not increase the
range of concentrations that allowed bar1Δ cells to respond accurately to gradients (Fig E in S1
Text), and v) cells detected gradients most precisely at the mean concentration (1 nM) that
equalled the lowest concentration that induced shmooing in an isotropic field of pheromone
(compare Fig 2B with Fig 4C).

for more details).B) The behavior of cells in micro-channels at various pheromone concentrations. We assessed cell behavior at each pheromone
concentration by following cells over time and overlaying differential interference contrast and Spa2-YFP images (see Fig B in S1 Text for images). The graph
quantifies the bud/shmoo transition in spatially uniform fields of pheromone and summarizes data from about 4000 cells (on each curve (red and green), at
least 160 cells (MP 384) were used to obtain the averages shown for each pheromone dose) in seven independent dilution chambers. The inset shows the
standard deviation of the fraction of different events between experiments. The measured dissociation constant of α-factor from Ste2 is indicated (Kd) [41].
The half maximal point of the sigmoidal fit is 1.02 ± 0.03 nM and the Hill coefficient for the transition between budding and shmooing is 6.5 ± 0.6 (95%
confidence interval). C)Quantification of polarization delays. Time was measured from the end of the first cytokinesis after the onset of pheromone treatment.
Cells were considered polarized when a stable focused Spa2 cap was formed. Only those cells whose progenitors had completed cytokinesis during the first
three hours after the start of pheromone treatment were considered. At least 52 cells (MP 384) were used to obtain the averages shown for each point.D and
E) Cells arrested in G1 by G1 cyclin depletion were placed in exponential dilution chambers together with wild type cycling cells (using a fluorescent cell wall
marker to distinguish the two strains). Experiments and measures are similar to those shown in B) and C). The transition to shmooing occurs at exactly the
same concentration for G1 arrested and cycling cells (G1 arrested cells that do not shmoo grow isotropically, forming large spherical cells). Because Cln-
depleted cannot leave G1 and cells arrested in G1 never polarize except when they form a shmoo, we do not show the delay before rebudding for wild type
cells. The delay before shmooing is similar for cycling cells and for G1-arrested cells. In graph D) each point corresponds to an average value computed over
66 cells (MP 384 and MP 1333) and in graph E) over 52 cells (MP 384 and MP 1333).

doi:10.1371/journal.pcbi.1004795.g002
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Fig 3. Model behavior andmodel parameters value selection. A and B) Increasing the strength of pheromone stimulation (S) leads to increasing levels of
spatial segregation and for a given S, depending on the spatial correlation length χ and the endocytosis rate koff the cell will polarize or not. Shown are
kymographs from simulations (y axis, membrane position; x axis, time). Particle density is in absolute value. On the left we see an unpolarized cell and a
polarized one on the right. C) Representation of mean time polarization isovalues for S = 1 nM as a function of the spatial correlation length χ and the
endocytosis rate koff. If the numerical simulations did not lead to a polarized state before 10 hours, we considered the cell to be non-polarized. D)
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We simulated mean pheromone concentrations varying, on a logarithmic scale, from log
S = 0 to 1 with an increment of 0.25, where S is expressed in nM, with a concentration gradient
across the cell equal to 10% of the mean pheromone concentration (the slope for which we had
the most accurate experimental data). For each pheromone level we ran 300 simulations for
our model with the parameter values obtained previously and with the same constant initial
condition. Note that the effective pheromone receptor activity κ takes random values since it is
modeled by a stochastic process as was previously explained. We computed the angle between
the localization of the polar cap and the direction of the pheromone gradient at the first time
point corresponding to a polarized state (according to our numerical criterion). The results
were then averaged for a given pheromone concentration (Fig H in S1 Text). These simulations
recapitulated the main experimental observations. In particular, polarization occurred at 1 nM,
and was accurately oriented over a narrow range of mean concentration with an optimal detec-
tion of the gradient occurring at the mean concentration (1 nM) that equaled the lowest con-
centration that induced numerical polarization in an isotropic field of pheromone. This
demonstrates that our simple phenomenological model is rich enough to quantitatively predict
the response of yeast cells to pheromone gradients.

Sensitivity analysis
To assess the robustness of the model output to the parameter values, we performed a sensitiv-
ity analysis for the unknown parameters involved in the model, see Table 1 for a description of
all the parameters involved in the model. We fixed the parameters whose values were available
in the literature: the cell radius R, the cell nucleus radius Rn, the bulk diffusion coefficient of
Cdc42 Db, the diffusion coefficient of Cdc42 on the plasma membrane Dm, the actin depoly-
merisation rate η and the effective kd of the pheromone receptor S0. Moreover, we observed
that varying the parameters η and Rn had a negligible effect. Furthermore, since changing the
value of the total Cdc42 poolM was equivalent to changing the value of either the effective
parameter κmean, which reflects the dynamics of the signal transduction cascade, or the coeffi-
cient which can be interpreted as a spatial correlation length χ, we considered the value ofM as
fixed. We then assessed the sensitivity of the model predictions to the endocytosis and exocyto-
sis rates, to χ, to the initial conditions, and to the parameters associated to the stochastic pro-
cess describing the fluctuations of the effective pheromone receptor activity, namely the spatial
correlation length 2π/N, the damping coefficient λ, the standard deviation σ, of the noise inten-
sity and the standard deviation of the fluctuations of the mean effective pheromone receptor
activity κmean which is also the cell-to-cell variability δ.

The model appeared to be very sensitive to the two unknown parameters χ, koff describing
the long-range spatial correlation activity and the endocytosis rate (and hence the exocytosis
rate kon which is derived from these two). Indeed, the experimental values for the polarization
delay and the fraction of cells that polarized are matched only for a very narrow range of values
of these two parameters (Fig 3A–3D). When the parameters were not in this narrow range, the

Representation of the cost function (labeled as fit quality) depending on χ and koff, allowing us to determine the optimal pair of values (χ, koff that fit the data
(Fig 2C). E) For the optimal values of χopt = 2.5 × 105 μm2/s, kopt

off ¼ 0:12 s−1 and δopt = 0.2, we show the simulated timing of polarization for solutions to our
model under varying pheromone concentration compared to the experimental data for polarization timing. The inset shows the standard deviation of the
timing of polarization for solutions to our model under varying pheromone concentration compared to the experimental data for polarization timing. F) For the
same optimal parameters ðwopt; kopt

off ; d
optÞ, we represent the numerical fraction of cells which polarize under varying pheromone concentration. Before fitting the

model parameters with the data, we defined the numerical criterion for polarization. Following [42], we considered that polarization occurred when more than
50% of the total membrane protein pool was located in a window of 10% of the membrane. Hence, a numerical simulation corresponded to a polarization
state if there existed a time for which more than 50% of the total membrane Cdc42 was located in less than 10% of the perimeter of the cell boundary (S1
Text).

doi:10.1371/journal.pcbi.1004795.g003
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Fig 4. Response to pheromone gradients andmodel prediction. A) Producing pheromone gradients in a laminar flow chamber. Pheromone mixed with a
fluorescent dextran and a dilution buffer enters through two ports and diffusion between the two fluid streams creates a temporally stable, gradient (see
Experimental Procedures in S1 Text, and Fig C in S1 Text for more details). The left hand view is from the top of the apparatus and right hand views are two
different magnifications of a cross-section, showing the cells attached to the coverslip that forms the roof of the chamber. B) The transition between budding
and shmooing, quantified as in Fig 2B. The lightly shaded, thick curves show the data from spatially uniform pheromone concentrations (Fig 2B) for
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model displayed either no polarization at all or the wrong polarization dynamics in response to
uniform pheromone concentration and hence did not have any predictive power for the
response to gradients.

The parameter δ which models cell-to-cell variability was necessary to fit the standard devi-
ation (Fig 2B) and it had some quantitative effect on the sharpness of the fraction of cells which
polarize in uniform pheromone concentration (compare Fig 3F and Fig F in S1 Text).

The two parameters λ and σ, which are respectively the damping coefficient and the stan-
dard deviation, involved in the Ornstein-Uhlenbeck process describing the effective phero-
mone receptor activity κ, and which are linked by the relation σ2/2λ = κmean, had no effect in
the case of uniform pheromone concentration (Fig F in S1 Text). But they had some quantita-
tive, but not qualitative impact when considering variations in a realistic range of values, 1/λ
varying between 2 minutes and one hour (Fig 4D), and qualitative impact when considering
very large variations in an unrealistic range of values (Fig H in S1 Text), on the model predic-
tion in the case of the response to pheromone gradients. Both the quality of the gradient detec-
tion and the drop in the precision of orientation with increasing pheromone concentration
were affected. We observed that performing numerical simulations with different parameter
choices for the half life 1/λ from the range 1 to 20 mn has a qualitative but not quantitative
effect on the predictions of the model and that the optimal value was 3 mn (Fig 4D and Fig H
in S1 Text).

The last parameter involved in the stochastic process κ is the correlation length of the noise.
Numerically it is modeled by the number of sectors N which was assumed so far to be 10.
Changing this parameter had no effect on the polarization delay (nor on the fraction of cells
which polarize) in uniform pheromone concentration (Fig F in S1 Text) while it had a similar
effect as the damping coefficient λ on gradient response.

Finally we observed that the initial conditions also had a greater impact on gradient detec-
tion than on the polarization delay in uniform concentration (Fig G in S1 Text). When the ini-
tial conditions did not correspond to a homogeneous steady state, the predicted gradient
detection did not depend on the pheromone concentration (the gradient was either always or
never detected).

In conclusion, we observed that only a small number of parameters significantly affected the
model output. The model was particularly sensitive to the values of the two parameters, χ, the
spatial correlation length and koff, the endocytosis rate, that were estimated from the experi-
ments on cell response to uniform pheromone concentration. The model was also sensitive to
the values of the parameters involved in the stochastic process κ, namely λ, σ and N. The values
of these latter parameters were given by physical arguments.

Discussion
Diffusion, long-range spatial coupling, and receptor endocytosis have all been shown to con-
tribute to the establishment and dynamic maintenance of polarized membrane proteins during

comparison. For every cell, the difference in concentration between the two edges of the cell was > 5% (expressed relative to the mean concentration that the
cell experienced). The inset shows the standard deviation.C) The accuracy of gradient detection as a function of pheromone concentration. Accuracy is
defined as the mean cosine of the angle between the gradient and the line that connects the Spa2 polar cap to the center of the cell. D) The accuracy of
gradient detection as a function of pheromone concentration for solutions to our model. For different damping coefficients λ, the gradient detection and the
standard deviation were computed. We observe that the value of λ which fits the data the best is 101.25 which means 1/λopt � 3 mn. E)We show the timing of
polarization in representative numerical simulations of cells exposed to a uniform field and gradient field of α-factor (images are shown every 20 minutes). F)
Comparing the timing of polarization in individual cells exposed to a uniform field (top) and a gradient (bottom) of α-factor. Images were taken every 20
minutes and pseudocolored to indicate the intensity of Spa2-YFP fluorescence. Note the small unstable Spa2 spots (arrowheads) that appeared in the
homogenously stimulated cell long before a stable polar cap, which took four hours to develop. In contrast, in the gradient, a small Spa2 spot first appeared in
the direction of the gradient and then gradually grew stronger allowing the cell polarize much faster.

doi:10.1371/journal.pcbi.1004795.g004
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shmoo formation. Following earlier work [25–27], we considered a mathematical model to
describe and study these three mechanisms for membrane-protein redistribution during polar-
ity establishment in response to mating pheromone. This model, which relies on limiting
amount of critical components and describes the flux of Cdc42, incorporates stochasticity in
order to describe the large fluctuations that might appear when pheromone molecules bind a
small number of receptors on the cell membrane. All but three parameters of the model were
computed using the literature or physical considerations. We then fitted the remaining param-
eters using quantitative measurements of cell response to uniform pheromone concentration.
Using this complete set of parameters, our model quantitatively predicted directed cell polari-
zation in pheromone gradients.

Indeed cell spontaneous polarization and cell response to gradients are very different biolog-
ical experiments. For experiments in gradient, there are three outputs instead of two in uniform
concentration experiments: polarization threshold, polarization timing and direction of polari-
zation. Our experiments showed that there is a correlation between the polarization threshold
and the direction of polarization: cells polarize accurately towards the gradient only at phero-
mone concentration near the threshold of polarization. Like previous studies, [22] e.g., we
found that yeast detect gradients better at low average pheromone concentrations. But in our
case, in the absence of Bar1 proteins, gradient sensing did not occur over a large range of pher-
omone values. Furthermore, our model, which was fitted only based on information coming
from response to homogeneous pheromone concentration, was able to predict this unexpected
experimental observation.

The most striking result of our study is the predictive power of a simple phenomenological
model. In the set of experiments used to compute the values of the unknown parameters, only
two quantities were considered, the fraction of polarized cells and the timing of polarization.
These experiments, performed in homogeneous pheromone concentrations, did not contain
any information about the capacity of cells to detect gradients, which relies on the comparison
of concentrations at different points at the cell surface. In most other studies, the models are
validated based on qualitative agreement or by adjusting free parameters to reproduce quanti-
tative experimental data. In this study we go one step further in the validation of our model by
quantitatively predicting the output of a different experiment than the one used to adjust the
free parameters. This gives us confidence that our model can be used as a prototypical
phenomenological framework for cell polarization in response to external signals.

The simplest interpretation for the origin of the model’s predictive power is that the experi-
mental data obtained with the homogeneous pheromone concentrations gives the probability
and the timing of polarization for each pheromone concentration. This data locally fixes the
behavior of each segment of the cell periphery depending on the pheromone concentration it
experiences in the gradient, leading to the threshold behavior observed (cells only polarize
accurately if at least part of their periphery is below the threshold inducing spontaneous polari-
zation in a homogeneous pheromone concentration). Two additional elements are required for
the model to achieve its predictive power: temporal evolution and non-linear spatial interac-
tions between different parts of the cell. These elements appear in the equations that make the
core of the model. The experiments in homogeneous pheromone concentration allowed us to
fit the values of the parameters that determined the appropriate dynamical and non-linear
behavior (namely the spatial correlation length χ and the Cdc42 endocytosis rate koff) and the
cell-to-cell variability (namely δ). Due to the non-linear and non-local aspects of the model, it
is very sensitive to these parameter values. As a consequence, they could be determined pre-
cisely from the experimental data, giving the model its predictive power. Interestingly, although
we did not study the details of the dynamical aspects of the polarization process, the model
reproduces many features of this dynamics (Fig 4E and 4F). In the model, membrane
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associated Cdc42 forms moving patches with several large patches at initial time point (at 1h20
and 2h20) and eventually forms the single patch that stops moving and becomes gradually
more focused (Fig 4E). The typical behavior of Spa2 protein localization follows qualitatively
similar dynamics. Spa2 appears as weak dispersed and moving multiple spots that eventually
coalesce into one spot that stops moving and accumulates more signal (note that because the
total protein content being conserved during the simulation there is also a higher density when
the spot becomes more focused (at 6h20)). Multiple small Spa2 spots observed early in the
polarization process might correspond to a weak polarization of Cdc42 which was not directly
studied in this work. The rotation of the polar cap was also reported by [17]. Although our
model also shows initial rotation of the polar cap we did not specifically study this process.

The finding that cells accurately sense the gradient in an extremely narrow concentration
range is intriguing. This finding appears to contradict the expectations for gradient sensing in
vivo, where the presence of many different pheromone secreting cells will produce a complex
concentration landscape fluctuating across a larger range of concentrations than the narrow
window suggested by the model. But previous studies [56, 57] suggest that, thanks to the
screening effects of the Bar1 protease, cells only sense their closest neighbors, and the ability of
Bar1 to regulate the fraction of local pheromone molecules that reach the receptors could pro-
duce a narrow range of effective pheromone concentrations at the cell surface.

Our model describes spontaneous polarization in an homogeneous pheromone concentra-
tion, starting from a homogeneous initial internal state, see [25–27]. In addition to the homo-
geneous initial distribution, we tested several different initial conditions: from totally random
initial Cdc42 concentration to Gaussian variation in the initial Cdc42 concentration. Although
we could obtain results in good agreement with experimental data by using Gaussian initial
conditions with particular choice of the variance (Fig G in S1 Text), we decided not to use this
approach since it involved parameters that we were not able to estimate. Instead we added sto-
chasticity to the parameter κ, which describes the dynamics of the effective pheromone recep-
tors. This had the advantage of accounting for both the initial conditions and noise in the
signalling pathway with a minimal number of parameters. One of these parameters, the damp-
ing coefficient λ in the noise (1/λ corresponds to the mean time to reach the steady state), had
a crucial effect on the model output when considering a very large set of values (Fig H in S1
Text), but a weak effect when considering variations in a realistic range of values (Fig 4D).
When λ was too large (the steady state is reached very fast which is equivalent with removing
the stochasticity), the direction of polarization was always more accurate than what was experi-
mentally observed. On the contrary, when λ was too small (the steady state is never reached),
the direction of polarization was never accurate with respect to the gradient. The range of λ val-
ues that produced the good agreement between experiment and prediction was estimated
based on physical arguments. Indeed, 1/λ can be interpreted as the fastest timescale in the bio-
chemical signalling pathway, hence its mean value must lie between seconds and minutes, a
range of values which gives the correct model prediction for gradient sensing (we found that
the optimal value for 1/λ was 3 mn (Fig 4D)). Such an optimal value is not very different from
the value 1/λ = 10 mn which was used in the numerical simulations. Similarly to λ the parame-
ter N, which specifies the number of independent membrane domains, had a weak effect on the
model output in a realistic range of values (from 5 to 20 corresponding to the cell perimeter
divided by the polarisome size).

The model we propose has the advantage of simplicity. Although it involves sixteen parame-
ters, only three of them were unknowns, the spatial correlation length χ, the Cdc42 endocytosis
rate koff and the cell-to-cell variability, δ. The cell-to-cell variability, was fitted with the stan-
dard deviation in the delay for polarization in uniform pheromone concentration. The two
remaining parameters, χ and koff, were fitted with the data in uniform pheromone
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concentration. These two latter parameters represent the two principal aspects that control the
model: χ for the long-range spatial correlation and the endocytosis rate koff for the reaction/dif-
fusion phenomena. If we vary these two key parameters from the values that we get by fitting
the behavior of cells in uniform pheromone, we lose the fit for the gradient response data.
Indeed, for values of χ and koff away from the optimum, polarization will either polarize too
fast or too slow. If polarization is too fast, accuracy in gradient detection is lost, if polarization
occurs too slow gradient detection is better that what is observed experimentally. This shows
that the strong constraint on parameter choice obtained from in real data cells polarizing in
uniform field of pheromone makes the model predictive enough to fit the gradient response
data. It would be interesting, in future studies, to test if mutants in gradient detection also show
a shift in the parameters obtained from experiments of polarization in uniform pheromone
fields.

Our model does not explicitly take into account the phenomenon of receptor polarization.
Indeed, at the timescales at which polarization is first observed (one hour or more Fig G in S1
Text), receptor polarization has likely already occurred (receptor polarization within 30–60
minutes after pheromone treatment is reported in [58] e.g.). Our model suggests that long-
range spatial coupling is critical in the gradient detection process, but at the molecular level,
many different mechanisms could produce this coupling including the transport and recycling
of the pheromone receptor itself. The model’s strength is its indepedence from the details of
the molecular mechanisms that determine the long-range coupling parameter. The cost of this
simplicity is that the model will not distinguish different mutants that affect the same parame-
ter. In the future the model could be enriched with molecular details provided experimental
data are available to fit the additional parameters.

From a mathematical viewpoint, eqs (1) and (2) are very close to the Keller-Segel model for
chemotaxis. This model has been mathematically studied for four decades due to its dichoto-
mous behavior between an aggregated state and a homogeneous one ([59–63]). The main dif-
ference between the Keller-Segel model and our model is that in our case the source of the
attractive potential (the pheromone induced array of actin filaments inside the cell) from
which the positive feedback loop originates is supported by the boundary of the domain (i.e.
the cell membrane), while in the Keller-Segel model the source of the chemical potential (the
cells producing the attractant molecules) is distributed everywhere across the spatial domain
(the space in which the cells move). Our model has been mathematically studied in [26, 27]. In
the one dimensional case, its dynamics are well understood [64] and are reminiscent of the Kel-
ler-Segel model in two dimensions. In the more realistic two dimensional case, we used a
numerical approach [55] and some heuristics [27] to show that the model has a two-state
behavior which represents the two states of the cell: polarized or unpolarized. Numerical simu-
lations, [55], show that for large enough values of S, the majority of the Cdc42 molecules are
located in the neighborhood of the cell membrane, hence we postulate that

R
n(t,x)d xk = μ(t,

s). Under this assumption we can formally write the dynamics of μ(t, s) (the Cdc42 concentra-
tion on the cell membrane) by integrating eq (1) with respect to the normal coordinate (to the
membrane) and we obtain a one dimensional, convection diffusion equation in which the
advective field is given by a non-local operator (long-range spatial coupling between sites on
the membrane is modeled by a non-local positive feedback). In the particular case of a two
dimensional model, this operator is similar to the Hilbert transformH (see S1 Text). The one-
dimensional non-local convection-diffusion equation is then

@tm ¼ Db@ssmþ w @s mH k
S

S0 þ S
m
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: ð3Þ
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This equation is known to have a solution which aggregates in a finite time if χ
R
μ (the total

membrane Cdc42 mass) is large enough as compared to the values of κ and S, see [65]. In our
setting, this analysis means that for small values of the total mass,

R
μ, the cell remains unpolar-

ized while for large values it gets polarized (see Fig 3A and 3B). Investigating the spatial hetero-
geneity of the pheromone receptor activity κ and the pheromone concentration S (the
stochasticity of the celullar response and the pheromone concentration) is one contribution of
the present work.

We believe that the dichotomous behavior of the model which was observed in a two
dimensional setting would also appear in a 3D framework. Indeed as it is the case for the Kel-
ler-Segel equation, the 3D case is expected to more easily lead to polarization than the 2D case.
Finally, since the model, defined by the eqs (1) and (2), is deterministic, a mathematical chal-
lenge is to establish that these equations can be derived as the mean field limit of microscopic
stochastic processes. We leave such a justification for further work.

While our phenomenological approach has the advantage of providing a fully fitted predic-
tive model from a minimal set of experimental data, it does not account for many known bio-
logical processes which might affect polarization in the context of the real cell-cell
communication. The main outputs of the model are the dynamics and directionality of polari-
zation in a stationary pheromone concentration field. During processes involving cell-cell com-
munication, such as mating, the pheromone concentration field might vary in time. An
important task will be to add to this model a description of the dynamics of the signaling path-
way in response to these temporal fluctuations.

We propose that, like the capacity of Keller-Segel equations to describe cell aggregation
behaviors associated with chemotaxis, our model constitutes a phenomenologically minimal
framework to describe the formation of local regions of increased protein concentrations asso-
ciated with cell polarization in response to external signals.

Methods
This is a skeletal description; a more detailed one is found in S1 Text.

Yeast strains
Standard yeast manipulation methods were used. Strains used in this study are listed in
Table A in S1 Text. All the strains constructed in this study are in the W303 background unless
otherwise specified.

Microfluidic chambers
The design and fabrication of the chambers was based on standard soft lithography techniques.
Cells were bound to the chambers by cross-linking Concanavalin A, a lectin, which strongly
binds to the yeast cell wall, to the coverslips that formed the roof of the chambers. The cham-
bers and tubing were pre-coated with BSA. When several strains were to be studied in parallel
in a given chamber, they were differentially stained prior to binding to the chamber by cova-
lently labeling their cell walls N-hydroxy succinimide esters of different fluorescent dyes. The
two inlets to the chamber were coupled to two reservoirs: one containing complete synthetic
growth medium and the other containing the same growth medium plus the desired concentra-
tion of α-factor and 200 μg/ml of Texas Red conjugated dextran (MW 3000, Molecular Probes).
Using the fluorescent dextran in the pheromone flow, the flows were adjusted to be equal at the
point where they first encountered each other in the chamber (Fig A in S1 Text). We recorded
the fluorescent dextran profile (as well as cellular behavior), both to calculate the local
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pheromone concentration and to check the temporal and spatial stability of the α-factor con-
centration during the experiment (Fig C in S1 Text).

Image processing and analysis
Cell behavior was analyzed semi-automatically. Interactive scripts facilitated the analysis and
recording of various aspects of the behavior of each cell. For promoter activity, we measured
the total intensity in the YFP image from each cell. The total YFP intensity in cells treated with
a constant level of pheromone would increase linearly for hours and the slope was measured to
obtain the promoter activity for individual cells. Images of the fluorescent dextran were used to
estimate the α-factor concentration.

Supporting Information
S1 Text. Supporting Information.
(PDF)
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