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Abstract

Both genetic and epigenetic alterations contribute to Facio-Scapulo-Humeral Dystrophy (FSHD), which is linked to the
shortening of the array of D4Z4 repeats at the 4q35 locus. The consequence of this rearrangement remains enigmatic, but
deletion of this 3.3-kb macrosatellite element might affect the expression of the FSHD-associated gene(s) through position
effect mechanisms. We investigated this hypothesis by creating a large collection of constructs carrying 1 to .11 D4Z4
repeats integrated into the human genome, either at random sites or proximal to a telomere, mimicking thereby the
organization of the 4q35 locus. We show that D4Z4 acts as an insulator that interferes with enhancer–promoter
communication and protects transgenes from position effect. This last property depends on both CTCF and A-type Lamins.
We further demonstrate that both anti-silencing activity of D4Z4 and CTCF binding are lost upon multimerization of the
repeat in cells from FSHD patients compared to control myoblasts from healthy individuals, suggesting that FSHD
corresponds to a gain-of-function of CTCF at the residual D4Z4 repeats. We propose that contraction of the D4Z4 array
contributes to FSHD physio-pathology by acting as a CTCF-dependent insulator in patients.
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Introduction

The subtelomeric regions that lie between the telomeres and the

proximal gene-rich regions display a variable size distribution and

contribute to genome evolution but also human disorders [1]. In

the Facio-Scapulo-Humeral Dystrophy (FSHD), the contraction of

an array of macrosatellite elements at the 4q35 locus is associated

with pathological cases [2]. Normal 4q35 chromosome end carries

11 to up to 100–150 integral copies of the 3.3 kb D4Z4 sequence

while in FSHD patients, the pathogenic allele has only 1 to 10

repeats [3,4]. This autosomal dominant disorder is the third most

common myopathy, clinically described as a progressive and

asymmetric weakening of the muscles of the face, scapular girdle

and upper limbs [5]. The nature and function of the genes causing

the pathology are still controversial [6,7,8]. Indeed, the pathogenic

alteration does not reside within a specific gene but the FSHD-

associated gene(s) might be rather regulated in cis or trans by

chromatin modifications and epigenetic alterations linked to the

number of repeats [9]. Several molecular mechanisms have been

proposed to explain FSHD pathogenesis [9,10] such as the

implication of position effect variegation (PEV) or telomeric

position effect (TPE) [9,10]. However, these hypotheses have

never been formally demonstrated.

D4Z4 belongs to a family of repetitive DNA sequences present

at different loci in the human genome including the 10qter, which

is 98% homologous to the 4q35 region. The array of D4Z4 on

chromosome 10 is also polymorphic but is not associated with any

disease [11,12]. Intriguingly, the main difference between the

10qter and the 4q35 locus resides in their respective subnuclear

positioning [13,14] suggesting that the FSHD pathogenesis might

result from inappropriate chromatin interactions [15] depending

on the number of D4Z4 elements in a particular subnuclear

context.

In order to understand the molecular mechanisms leading to

FSHD, we investigated the functional properties of the D4Z4

subtelomeric repeat by engineering different cellular models that

mimic the basic organization of the 4q35 locus. We found that a

single D4Z4 behaves as a potent insulator interfering with

enhancer-promoter communication and shielding from chromo-

somal position effect (CPE). This last property depends upon

CTCF and A-type Lamins. Intriguingly, both CTCF binding and

insulation activity are lost upon multimerization of the repeats
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suggesting that FSHD results from an inappropriate insulation

mechanism and a CTCF-gain of function. The implication for

FSHD pathogenesis is discussed.

Results

D4Z4 Behaves as an Insulator Element
In order to investigate the function of the D4Z4 subtelomeric

repeat in the protection against CPE or TPE, we first asked

whether a single repeat interferes in cis with the expression of an

eGFP reporter gene using constructs stably integrated into the

C33A human cells either randomly or at chromosome ends after

telomeric fragmentation (Figure S1A). Chromosomal or Telomeric

position effects (CPE or TPE respectively) are monitored by flow

cytometry analysis (FACS) and manifest as variability from

population to population in the percentage of cells expressing

the eGFP reporter. In cells stably transfected with the T construct,

telomere proximity reduces the percentage of eGFP positive cells

compared to the pCMV vector that integrates randomly

(Figure 1A, Figure S1B) both in polyclonal populations of

transfected cells and in isolated clones as previously published

[16,17]. When inserted between a de novo formed telomere and

eGFP, a single D4Z4 has little effect on the expression of the

reporter gene as indicated by the slight increase in eGFP positive

cells in the population of cells carrying the T1X compared to cells

containing the T construct (Figure 1A, Figure S1B). By contrast,

D4Z4 significantly increases the expression of the reporter

construct inserted randomly in the genome (C1X vs pCMV,

Figure 1A, p,0.0001 using a Student’s t-test, Figure S1B). This

effect is not attributable to an increased distance between the

genomic environment at the site of integration and the reporter

gene since progressive silencing is also observed after insertion of

3.5 kb of heterologous DNA (data not shown). Importantly, this

potent effect of D4Z4 on the expression of eGFP is not dependent

upon the cell type since similar results were obtained in human

rhabdomyosarcoma cells (TE671) and mouse myoblasts (C2C12)

(Figure S1C). This first observation suggests that D4Z4 acts either

as an enhancer or an insulator by activating the eGFP reporter

gene or protecting its expression from surrounding sequences. By

cloning the D4Z4 element upstream of the eGFP reporter or

upstream of the HyTK resistance gene, we showed that D4Z4 does

not enhance the eGFP expression and concluded that it may act as

an insulator (Figure S2).

Insulators are DNA sequences with two distinct properties.

They can protect expression from the spreading of silent

chromatin and CPE and they can uncouple promoter transcrip-

tional activity from silencer and enhancer elements when inserted

in between [18]. In order to discriminate between chromatin

insulation and enhancer blocking activity for D4Z4, we performed

enhancer blocking assays [19] by cloning D4Z4 in sense (pNI-

D4Z4-S) and antisense (pNI-D4Z4-AS) orientation into the pNI

vector between the enhancer and the reporter (Figure 1B). D4Z4

reduced the colony number in an orientation-independent way

suggesting that it interferes with transcriptional enhancement. In

order to distinguish insulation from repression, the right b-globin

insulator (59HS4) protecting from the influence of regulatory

elements at the site of integration was replaced by D4Z4 (p-E-

D4Z4-S). In this configuration, the number of G418-resistant

colonies is similar to the control indicating that D4Z4 is not a

repressor but showing that it protects the c-Neo gene from the

influence of repressive chromatin at the site of integration also in

this context. Lastly, we tested the ability of D4Z4 to enhance gene

expression by removing the 59 HS2 enhancer (E) in sense (pD4Z4-

S) and antisense (pD4Z4-AS) constructs. In this assay, D4Z4 does

not activate c-Neo expression. We conclude from these experiments

that a single D4Z4 is unable to activate or repress the expression of

a reporter gene in a sense or antisense orientation, while it is able

to block enhancer-promoter communications (Figure 1B). Overall,

our findings indicate that D4Z4 acts both as a transcriptional

insulator (boundary element) protecting against the repressive

influence of various chromosomal contexts and as an enhancer

insulator interfering with enhancer-promoter communication. The

59 HS4 insulator of the chicken b-globin locus [19] behaves similarly

in our randomly integrated construct settings, albeit at a lower

efficiency against CPE (Figure 1A).

Next, we mapped the portion of D4Z4 responsible for this

insulation activity by studying eGFP expression in constructs

encompassing various truncated forms of D4Z4. Approximately

half of the anti-silencing activity of D4Z4 is present within a 432-

bp region (position 382 to 814, C1XDB1-3, Figure 2, p,0.0001

compared to pCMV using a Student’s t-test,) called hereafter the

proximal insulator. Interestingly, in contrast to the full-length

D4Z4 element, this proximal insulator also counteracts TPE

suggesting an antagonistic effect between the proximal insulator

and a distal silencer in a telomeric context (T1XDB1-3, Figure 2).

In agreement with this possibility, a construct containing the distal

sequence (position 1549 to 3303) inserted either randomly

(C1XDF) or terminally (T1XDF) is more repressed than the

control eGFP. Moreover, a D4Z4 sequence deleted of a distal

623 bp fragment (DE, deletion from position 2269 to 2892)

recapitulates the insulator activity of the 1–1381 proximal

fragment (Figure 2).

Thus, we conclude that much of the insulator activity against

CPE and TPE is concentrated in the 432-bp proximal insulator

while a silencer might be present in the distal portion of D4Z4.

CTCF Binds to the Insulator Portion of D4Z4
Since in human cells, most insulators are bound by the

multivalent CTCF protein [20,21], we searched in silico for CTCF

binding sites across the 3.3 kb D4Z4 sequence using the consensus

binding site at the chicken b-globin locus [22,23]. Remarkably, the

best matches were found within the proximal insulator, at position

Author Summary

Facio-Scapulo-Humeral Dystrophy (FSHD) is the third most
common myopathy with an autosomal-dominant mode of
inheritance. FSHD is caused by contraction of an array of
repeated sequences, D4Z4, in the terminal region of
chromosome 4 (4q35 locus). This genetic disease is not
caused by classical mutations within the sequence of a
gene but rather is associated with a change in the
organization of the chromatin fiber. Because of the
complexity of the region implicated in the disease, the
exact pathogenic mechanism is still unclear. Our goal was
to engineer genomic tools that would reproduce the
organization of the chromosomal region linked to FSHD in
order to understand the biological function of the D4Z4
repeat using cellular models. We have identified a new
mechanism for the regulation of the D4Z4 array depending
on both the number of repeats and the presence of CTCF
and A-type Lamins. Our work reveals that D4Z4 acts as a
potent insulator element that protects from the influence
of repressive chromatin in patient cells but not in controls.
Besides the importance of these findings for the under-
standing of this complex muscular dystrophy, our work
also uncovers a new insulator element that regulates
chromatin in human cells.

CTCF and Lamins A/C Regulate D4Z4 in FSHD Cells
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468–481 and 476–489 (Figure S3A). Gel retardation assays were

carried out to determine whether the sequence containing these

two overlapping sites is capable of binding to CTCF (Figure S3B).

The mobility was compared to the chicken b-globin FII 59HS4 site

[22,23] and we showed that both fragments produced a DNA-

protein complex when incubated with nuclear extracts. These

complexes can be disrupted by incubation with excess of

unlabelled probes corresponding to the chicken b-globin FII or

mouse TAD1 [24] CTCF sites suggesting that CTCF specifically

binds to the 59 end of D4Z4 (Figure S3B).

Furthermore, chromatin immunoprecipitation experiments

(ChIP) reveal a nearly 8-fold enrichment for CTCF at this

proximal insulator compared to an unrelated gene (Figure 3).

Under these ChIP conditions, other known CTCF sites [25] on

chromosomes 6 and 20 show a high level of enrichment, while no

enrichment was observed for D4Z4 regions located distally to the

insulator, the adjacent eGFP gene or for an unrelated region on

chromosome 7 (Figure 3). Importantly, this enrichment is lost in

CTCF-depleted cells (Figure S3C, D).

CTCF Is Necessary but not Sufficient for D4Z4 Insulation
Then, we tested the putative effect of CTCF on the insulator

activity of D4Z4 by transfecting the cells with different siRNAs that

inhibit the expression of the CTCF gene (Figure S4A). The

percentage of eGFP positive cells and intensity of fluorescence

decrease in C1X cells subjected to a CTCF knock-down (KD)

(Figure 4A) and in cells containing short fragments encompassing

the proximal D4Z4 insulator fragment either at the telomere

(Figure 4B) or at random sites (Figure 4A, Figure S4C) suggesting

that the knock-down of CTCF alters the anti-silencing properties of

Figure 1. A single D4Z4 acts as a boundary that interferes with position effect and enhancer-promoter communication. A. The
different constructs carry a hygromycin resistance gene fused to the herpes simplex virus type 1 thymidine kinase suicide gene (HyTK, white box) and
an eGFP reporter gene (speckled box), each driven by a CMV promoter (pr). In the T construct, a telomere seed (grey triangles) is added downstream
of the eGFP reporter gene in order to create a de novo telomere after random integration followed by a telomeric fragmentation [47]. A single D4Z4
repeat (black box) is cloned downstream of the eGFP gene in pCMV construct (C1X) or between eGFP and the telomere seed in T construct (T1X). We
further compared D4Z4 with the canonical chicken 59 HS4 boundary [19] by cloning this latest sequence into the vectors used for de novo telomere
seeding (59HS4-T) or for random integration (59HS4). Each constructs were linearized and transfected into the human cervical carcinoma cells (C33A).
The level of eGFP was measured by flow cytometry (FACS) for an extended period of time in the presence or absence of Hygromycin B (Figure S1A).
Histograms show the average percentage of eGFP positive cells from day 18 to day 29 of three independent transfections 6S.D. shown by error bars,
when eGFP expression reaches a plateau (Figure S1B). The integrity of each construct was verified in stable populations of cells (Figure S1D). B. In
order to evaluate the enhancer blocking activity of D4Z4, we used the test previously described [19]. The K562 human erythroleukemia cell line was
stably transfected with the constructs shown on the left. Each construct carries the neomycin resistance gene driven by the human A b-globin
promoter (c-Neo) flanked with the mouse 59HS2 enhancer (E). Most constructs contain the 59HS4 insulator upstream of the promoter in order to block
from the influence of regulatory elements at the site of integration. For each assay, colony number was normalized to the un-insulated control (pNI).
Data are the average of three independent transfections. The mean values with S.D. are plotted. As controls, the following constructs, kindly provided
by Dr. G. Felsenfeld, were used: pNI, no insert; pJC3-4, 2.3 kb of l DNA; pJC5-4, chicken b-globin 1.2 kb 59HS4 insulator [19].
doi:10.1371/journal.pgen.1000394.g001

CTCF and Lamins A/C Regulate D4Z4 in FSHD Cells
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D4Z4. Of note, the effect of CTCF depletion observed with

different siRNAs renders unlikely an off-target activity and does

not significantly increases apoptosis in the time frame of the assay

(Figure S4B). Moreover, it is also specific for CTCF since the

reduced levels of another factor reported to bind to D4Z4, YY1 [7],

or proteins involved in the insulation properties of the chicken

59HS4, USF1 and 2 [26], have no effect on eGFP expression

(Figure S4E). Noteworthy, at the chicken 59 HS4 insulator, CTCF

is only involved in the enhancer blocking activity [27] and

consistently, CTCF depletion does not modify the expression of

the eGFP reporter protected by this insulator in our system

suggesting that the mechanisms involved in the regulation of the

59HS4 insulator and D4Z4 are different.

Finally, there is no effect of CTCF KD in cells carrying a D4Z4-

less construct (pCMV), showing that depletion of this protein does

not alter the expression of our eGFP reporter in general but

specifically impairs the insulator activity of D4Z4 (Figure 4A).

Overall, these results show that CTCF is required for the

insulation activity of D4Z4. Nevertheless, if CTCF is necessary for

this property, it does not appear to be sufficient, since truncated

forms of D4Z4 containing the 59 CTCF site only partially

recapitulate the anti-silencing function of the whole repeat.

A-Type Lamins Bind to D4Z4 and Contribute to Its
Insulation Activity

Since the localization of the 4q35 locus at the nuclear periphery

is compromised in cells carrying a homozygous mutation of the

LMNA gene [13], we hypothesized that A-type Lamins may

contribute to D4Z4 functions and we investigated this possibility by

transfecting pools of siRNAs in different populations (Figure 4C,D).

Depletion of A-type Lamins (Figure S4D) decreases the percentage

of eGFP positive cells and intensity of fluorescence in cells carrying

a randomly inserted eGFP reporter protected by the D4Z4

insulator (C1X, C1XDB1-3; C1XDE cells, Figure 4C, Figure

S4C). Interestingly, decreased insulation is also observed in cells

containing the proximal D4Z4 insulator element at chromosome

ends (T1XDB1-3, T1XDE, Figure 4D) suggesting that A-type

Lamins are necessary for the proper anti-silencing function of

D4Z4 and participate in the protection against TPE in the absence

of the distal silencer element. However, LMNA knock-down does

Figure 2. Mapping of the regulatory fragments within D4Z4. A. Schematic representation of the D4Z4 element from position 1 to 3303 given
relative to the two flanking KpnI sites (K) (to scale). The different regions within D4Z4 are indicated: LSau repeat (position 1–340), Region A (position
869–1071), hhspm3 (position 1313–1780), DUX4 ORF (position 1792–3063). The different restriction sites used for the cloning of D4Z4 subfragments
are indicated (B: BamHI; Bl: BlpI; F: FseI; E: EheI). B. Different fragments obtained after digestion of D4Z4 were cloned downstream of the eGFP reporter
(‘‘C’’ constructs) or between the reporter gene and the telomeric seed (‘‘T’’ constructs). Linearized plasmids were transfected into C33A cells and the
percentage of eGFP positive cells was monitored by flow cytometry for an extended period of time. The histogram represents the mean value of the
percentage of eGFP positive cells from day 18 to day 29 when eGFP expression reaches a plateau6S.D shown by error bars. Fragments DB2-3
(position 1 to 382), DB1-2 (position 814 to 1381) and DF (position 1549 to 3303) do not abrogate TPE or CPE while fragment DB1 (position 1 to 1381),
DB1-3 (position 382 to 814) and DE (deleted of a distal 623 bp fragment from position 2269 to 2892) protect from CPE and TPE. Asterisks denote
statistically significant values relative to control vectors (pCMV or T) (Student’s t test). * p,0.001; **p,0.005; *** p,0.05.
doi:10.1371/journal.pgen.1000394.g002

CTCF and Lamins A/C Regulate D4Z4 in FSHD Cells
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not change the level of eGFP in the absence of D4Z4 (T construct)

or in the presence of the 59-HS4 insulator at chromosome ends (59

HS4-T, Figure 4D). This effect is not merely the consequence of

disruption of the nuclear periphery or depletion of components of

the lamina since the knock-down of B-type Lamins (LMNB) or the

Lamin A-associated protein, BAF1 has not effect on eGFP

expression (Figure S4E). Then, we investigated by ChIP whether

A-type Lamins associate with D4Z4-tagged telomeres in our

cellular model. We found that Lamins A/C are specifically

enriched along the D4Z4 repeat with a peak at the proximal

insulator sequence where CTCF is bound (Figure 3) and

concluded from this analysis that D4Z4 interacts with A-type

Lamins. These results show that Lamins A/C are involved in the

anti-silencing activity of D4Z4 and uncovers the involvement of

both CTCF and A-type Lamins in the regulation of an insulator in

human cells.

The Multimerization of D4Z4 Suppresses Protection
against Silencing and CTCF Binding

Since D4Z4 is repeated in tandem at several chromosomal loci,

including the 4q subtelomeres where it is linked to FSHD, we

explored whether the multimerization of D4Z4 alters its properties.

At telomeres, adding up to 12 copies of D4Z4 slightly weakens

telomeric silencing suggesting that a large D4Z4 array may act as a

fuzzy boundary shielding from the repressive effect of telomeric

chromatin when D4Z4 directly abuts the telomere (Figure 5A).

However, this situation might not directly reflect the natural

genomic context since the distance between D4Z4 and the telomere

is estimated to be around 25–50 kb and other subtelomeric

sequences might also exert an effect on the D4Z4 arrays.

We showed that adding up to 8 D4Z4 elements progressively

abolishes the insulation activity in randomly integrated constructs

suggesting that the repeated element looses its anti-silencing

activity upon multimerization (Figure 5A). Consistent with this

hypothesis, loss of anti-silencing correlates with the loss of CTCF

binding (Figure 5B) and a slight increase in the trimethylation of

lysine 9 residues on histone H3 tails, a mark of silenced chromatin

(Figure S5). Impressively, the gain in CTCF binding was also

observed in myoblasts from FSHD patients compared to controls

suggesting that the binding of CTCF to the D4Z4 repeats is a

molecular marker of FSHD muscle (Figure 5C). We propose that

reduction of the D4Z4 array in FSHD patients allows the binding

of CTCF and provokes changes in the biological function of D4Z4

that switches from a repressor to an insulator protecting the

expression of the FSHD gene(s).

Discussion

By analyzing the behavior of the D4Z4 subtelomeric element in

various chromosomal settings, we demonstrated that this repeat

behaves as a CTCF and A-type Lamins-dependent transcriptional

insulator. These features are specific for D4Z4 since they are not

shared by the CTCF-dependent 59HS4 b-globin insulator where

CTCF only shields against enhancer-promoter communication

[27]. As a single repeat, D4Z4 binds to CTCF and A-type Lamins,

behaves as a transcriptional insulator, preventing both the

communication between a cis-regulatory element and a promoter

(enhancer blocking activity) and protecting against chromosomal

position effect (anti-silencing activity) (Figure 6). Upon multi-

merization of D4Z4, CTCF binding is impaired. Thus, the

experiments presented here reveal a novel mode of chromatin

regulation controlled by the number of D4Z4 repeats. Further-

more, our data uncover a novel property for A-type Lamins in the

protection against CPE in human cells as observed in Drosophila

[28,29,30] and suggested by the previous co-purification of A-type

Lamins and CTCF in HeLa cells [31].

The association between the CTCF-dependent 59 HS4 insulator

and the nucleolus [31] and recent data showing that Cohesins

Figure 3. CTCF and A-type Lamins bind to D4Z4 in vivo. We searched in silico for CTCF binding sites across the 3.3 kb D4Z4 sequence (Genbank
accession number AF117653) using the consensus binding site at the chicken b-globin locus [22,23]. Two sites were identified at the 59 end of D4Z4
and the binding was investigated by ChIP using antibodies to CTCF. We also investigated the involvement of A-type Lamins using specific antibodies.
Enrichment of the immunoprecipitated DNA fraction with antibodies compared to input DNA was determined after real-time Q-PCR amplification (y-
axis) for different primer pairs. Values were normalized to the Histone H4 internal standard. Each bar is the average of at least three independent
experiments with the S.D. shown by error bars. ‘‘eGFP’’ amplifies the eGFP sequence. The position of the primers within D4Z4 is indicated (sets 1–4).
Using high-throughput analysis, numerous CTCF binding sites were recently identified and many of these sites also correspond to Cohesins
enrichment [25]. We then asked if Cohesins/CTCF complex also contains A-Type Lamins and amplified DNA immunoprecipitated with Lamins A/C
antibodies with primers corresponding to chromosome 6 (Chr 6). We observed a strong enrichment for CTCF but not Lamins at this site suggesting
that CTCF/Cohesins and CTCF/Lamins bind distinct sites. A sequence on chromosome 20 (Chr 20) was reported as a site for CTCF only and does not
bind A-type Lamins. Chr 7 primers are CTCF-negative control. Asterisks denote statistically significant values (** p,0.001; *p,0.005; Student’s t test).
doi:10.1371/journal.pgen.1000394.g003

CTCF and Lamins A/C Regulate D4Z4 in FSHD Cells
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[25,32] or Emerin and B-type Lamins [33] can colocalize with

CTCF throughout the genome, suggest that this protein interacts

with different key components of the nuclear architecture to

mediate transcriptional insulation and organization of human

chromosomes. In agreement with the possible existence of different

classes of CTCF-dependent insulators, we have been unable to

detect a significant enrichment of Lamins A/C at the CTCF sites at

chromosomes 6 and 20 (Figure 3) and the KD of nucleolin or SCC1

[25] has no effect on the antisilencing activity of D4Z4 (Figure S6).

Together with a recent publication on an unrelated macrosatellite

repeat on the X chromosome [34], our work further extends the

notion that CTCF is implicated in the functional organization of the

genome by showing that it interacts also with repeated elements and

suggests a genome-wide role in the formation of chromatin

boundaries at the transition between transcribed regions and

silenced chromatin through the association with different special-

ized complexes and may thereby direct the corresponding

chromosome segment to specialized subnuclear compartments.

Importantly, we showed that CTCF is specifically recruited to

the 4q35 region of FSHD patients. Similar observations were

made by G. Fillipova & colleagues (personnal communication).

The relationship between a reduced number of D4Z4 sequences

and a gain-of-function of a CTCF-dependent insulation activity

suggests an alternative mechanism for FSHD physiopathology

based on a switch of activity from a repressor to an insulator

element (Figure 6). Indeed, most FSHD patients have less than 11

copies of D4Z4 at 4q35 and the severity of the disease negatively

correlates with the number of residual repeats [35,36]. The

shortening of the array would both eliminate the silencer

properties of D4Z4 [7] and unmask an insulator function that

may protect the FSHD genes from silencing emanating either

from the 4q terminus or the b-satellite-rich region on the 4qA

allele that was reported to co-segregate with the disease [37,38].

Noticeably, in the human genome, b-satellite elements are often

found in the vicinity of D4Z4 repeats [39] raising the possibility for

a role of the D4Z4 insulator as a barrier between euchromatin and

heterochromatin-like sequences. Since the D4Z4 array is hyper-

methylated when present in high copy number [40] and since

CTCF binding can be compromised by DNA methylation [22,41]

or block the spreading of this DNA modification [21], a likely

Figure 4. Depletion in CTCF or A-type Lamins abrogates D4Z4 anti-silencing activity. The involvement of CTCF and A-type lamins in the
insulating activity of D4Z4 was studied by knocking-down their expression. A. Different populations of cells transfected with randomly integrated
constructs were transfected with siRNA against CTCF (CTCF) or negative control siRNA (mock) and the level of eGFP was monitored by FACS. The
mean value6S.D of three independent experiments are presented. B. Telomeric constructs harboring protection against TPE (T1XDB1-3, T1XDE) and
control (T, T-59 HS4) were transiently transfected with pools of siRNA against CTCF. The expression of the eGFP reporter gene was analyzed by FACS.
C. D. The different constructs allowing the protection against CPE (C1X, C1XDB1-3, C1XDE, pCMV-59 HS4) (panel C) or protection against TPE (T1XDB1-
3, T1XDE) (panel D) were transiently transfected with siRNA against Lamins A/C and the expression of the eGFP reporter gene was measured by FACS.
Asterisks denote statistically significant values relative to control siRNA (Student’s t test). **p,0.01; *p,0.001.
doi:10.1371/journal.pgen.1000394.g004
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hypothesis is that CTCF binding modulates the biological function

of D4Z4 in cooperation with changes in the pattern of DNA

methylation. However, in agreement with previous observation

[42,43], the silencing activity observed upon multimerization of

D4Z4 does not seem to be associated with a massive heterochro-

matinization of the array of repeats (Figure S5). Therefore, we

propose a model in which the loss of CTCF binding changes the

spatial configuration of the region rather than the condensation of

the chromatin of the locus.

Our results also implicate CTCF and A-type Lamins as

important players in FSHD. In agreement with this notion,

patients with FSHD display some clinical and transcriptional

resemblances to Emery-Dreifuss, a muscular dystrophy linked to

mutation in the LMNA gene [44], suggesting that the affinity of

D4Z4 for A-type lamins might contribute to the epigenetic

regulation of the 4q35 locus by providing the proper subnuclear

environment for the regulation of the gene(s) causing the

dystrophy. Together with the matrix attachment sites at the

4q35 locus [15], the subnuclear localization of the 4q35 locus at the

edge of the nucleus [13,14] and the positioning activity of D4Z4 at

the nuclear periphery (Ottaviani et al., submitted), the association

of D4Z4 to these two proteins might create functional domains

involved in insulation mechanisms. Although one cannot exclude

that soluble lamins A/C are bound to D4Z4, one can speculate

that depending on the position of the locus at the nuclear

periphery, the lamina may either provide a high concentration of

regulatory factors or favor looping between distant sequences.

With respect to FSHD, the corollary of this hypothesis is that the

Figure 5. The multimerization of D4Z4 abrogates CTCF binding and insulation activity. A. The expression of eGFP was measured by FACS
on populations of cells transfected with telomeric constructs carrying 0, 1, 4, 8 or 12 copies of D4Z4 downstream of the telomeric seed (T, T1X, T4X,
T8X, T12X) or internal constructs (pCMV, C1X, C4X, C8X) containing respectively 0, 1, 4 or 8 copies of D4Z4. The integrity of each construct was verified
in stable populations of cells after either random integration or telomeric fragmentation (Figure S1D). Histograms show the average percentage of
eGFP positive cells from day 18 to day 296S.D. shown by error bars, when eGFP expression reaches a plateau. In the different constructs containing
D4Z4 inserted at random sites (C4X, C8X), the level of eGFP is proportionally decreased when the number of repeats is increased suggesting that the
repeated element loses its anti-CPE activity upon multimerization. On the opposite, eGFP level is slightly increased at telomeres (see main text). B. The
binding of CTCF was investigated by ChIP on the different populations of cells carrying different number of D4Z4 element downstream of the eGFP
reporter gene. Input DNA and DNA fraction immunoprecipitated with antibodies to CTCF were amplified by a real-time Q-PCR method (x-axis) using
primers encompassing the 59 CTCF site. The y-axis shows the fold enrichment of CTCF in the bound fraction versus input chromatin. Each data point is
the average of at least three independent experiments with the S.D. shown by error bars. C. ChIP analysis of CTCF binding in two different control
(CT1 and CT2, .11 D4Z4 repeats) and three different myoblasts from FSHD patients (FSHD1, 5 repeats; FSHD 2, 6 repeats; FSHD 3, 7 repeats).
doi:10.1371/journal.pgen.1000394.g005
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pathogenic 4q35 allele carrying a shortened D4Z4 array might be

repositioned along the inner nuclear envelope from a repressive to

a permissive compartment modulating thereby the microenviron-

ment of the genes causing the disease.

Thus, beyond the importance of a better characterization of

D4Z4 for its relevance to the peculiar Facio-Scapulo-Humeral

dystrophy, this work reveals the existence of a human insulator

element that depends on both CTCF and A-type Lamins. In

addition, this work suggests that the mosaic nature of human

subtelomeres might directly influence the higher-order organiza-

tion of the corresponding chromosome end. This may serve as a

paradigm for our understanding of numerous pathologies linked to

subtelomeres such as idiopathic mental retardation.

Materials and Methods

Ethics Statement
This study was conducted according to the principles expressed

in the Declaration of Helsinky. The study was approved by the

Institutional Review Board. All patients provided written informed

content for the collection of samples and subsequent analysis.

Cellular Models
The pCMV and pCMVTelo plasmids are described in Koering

et al [17]. Experimental details and characterization of the cell lines

are given in Text S1.

RNA Interference
We used pre-annealed small interfering RNAs (siRNAs):

siGENOME SMARTpool reagent, human CTCF (M-020165-

01); human LMNA (NM_170707) (Dharmacon), SilencerTM

Negative Control #1 siRNA (Ambion). Transfections were

performed with DharmaFECT 1TM (Dharmacon) with 200 pmoles

siRNA for 26105cells. Efficient knock-down was determined by

quantitative RT-PCR or Western blot. See Text S1.

Chromatin Immunoprecipitation
In vivo protein-DNA cross-linking was carried out as described

[24]. Nucleoprotein complexes were sonicated to reduce DNA

fragments to 400–600 bp using a Bioruptor sonifier (Diagenode).

Immunoprecipitation was performed with a rabbit polyclonal anti-

CTCF (Upstate Biotechnologies, ref 07-729) or a goat polyclonal

anti-Lamins A/C (Santa Cruz, ref SC6215, [45,46]). After

immunoprecipitation, DNA samples were quantified using the

NanoDrop ND-1000 spectrophotometer (NanoDrop technologies)

and enrichment of the immunoprecipitated fraction was quantified

by Real Time Q-PCR (Text S1).

Supporting Information

Figure S1 Contraction of the D4Z4 array unmasks a boundary

activity. A. Description of the seeding constructs and procedure.

Telomere seeding is based on the non-targeted introduction of

cloned telomeres into mammalian cells. The constructs carry a

hygromycin resistance gene fused to the herpes simplex virus type

1 thymidine kinase suicide gene (HyTK), an eGFP reporter gene,

both driven by CMV promoters. We inserted D4Z4 between the

reporter and the telomere in order to investigate the effect of D4Z4

on gene expression. The transfection of constructs linearized

downstream of a 1.2 kb (TTAGGG)n seed of human telomeric

repeats (BstXI site, B) allows de novo telomere formation at the

integration site while constructs lacking these repeats integrate

randomly in the host genome. Conditions of transfection of the

C33A cell line were optimized in order to have a single integration

of the transgene per cell. Successful de novo formation of eGFP-

tagged telomeres and single integration was confirmed in the

polyclonal population of transfected cells and in a set of clones by

fluorescence in situ hybridization (FISH) on metaphase spreads (as

illustrated in photographs 1, 2 for telomeric insertion and in

photographs 3, 4 for internal integration) and by detection of a

diffuse hybridization signal in Southern blot (data not shown). In

agreement with previous data, the rate of de novo telomere

formation in stably transfected cells is very high in the C33A cells

reaching 80–90% of the hygromycin resistant cells for the T and

T1X constructs. We also confirmed by Multiplex FISH analysis

that in the presence of D4Z4, the constructs do not integrate at

preferential sites (Ottaviani et al., Submitted). Three days after

transfection, Hygromycin B was added to the medium. Then, cells

were grown for an extended time in selective medium. The

percentage of eGFP-positive cells and the average level of eGFP

were monitored by Flow Cytometry (FACS) every 3 days for up to

90 days. B. Kinetics of the expression of eGFP. After 10–12 days,

the percentage of eGFP-positive cells decreases in cells containing

the T construct that plateaus at 10–20%. A low eGFP expression is

also observed in cells carrying a single D4Z4 element at a

subtelomeric position (T1X). On the opposite, the level of eGFP is

high in C1X cells and remains constant throughout the course of

the assays. C. The pCMV and C1X constructs were transfected

into C2C12 mouse myoblasts or a human rhabdomyosarcoma cell

line (TE671) and the level of eGFP was monitored by FACS for up

to 30 days. As previously described for C33A cells, D4Z4 protects

the expression of the eGFP from CPE in the different cell types

tested indicating that insulation mediated by D4Z4 is not

dependent upon the cell type. D. The integrity of each construct

was verified by Quantitative PCR from genomic DNA of

hygromycin resistant cells using different set of primers. The Ct

Figure 6. Model explaining the role of the D4Z4 insulator and
its implication in the epigenetic alteration of FSHD. In normal
cells, the multimerization of D4Z4 compromises CTCF binding and the
boundary activity is counteracted (upper panel). In this conformation,
the D4Z4 array might repress gene expression either at the 4q35 locus
or at a long distance from the array. In patients, D4Z4 acts as an
insulator that protects the expression of different loci from repressive
structures such as the 4q terminus or other subtelomeric surrounding
sequences. This boundary activity depends upon CTCF and Lamins A/C
(lower panel). The exclusion of CTCF from multiple repeats and the
presence of a silencer element within D4Z4 [7] might suggest that the
D4Z4 array behaves as a silencer. However, the presence of up to 12
copies of the repeat does not repress the expression of the neighboring
eGFP reporter in our experimental settings where the D4Z4 array
directly flanks the telomere and argues against the hypothesis that
multiple D4Z4 repress in cis the expression of genes. An alternative
explanation is that multiple D4Z4 cooperates with other elements of the
4q region to form a silencer, as suggested by the link between D4Z4
array contraction and a particular allele of 4q35 in patients [37].
doi:10.1371/journal.pgen.1000394.g006
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values obtained for each construct were normalized to the H4

promoter as an internal control and compared to the values

obtained for the T construct containing only the resistance gene,

eGFP reporter and the telomere seed. Untransfected C33A cells

were used as negative control (data not shown). For each primer

set, the average fold-increase from 3 independent cell populations

(6S.D. shown by error bars) is indicated in representative

populations of cells. The eGFP sequence and the 39 end of the

construct can be detected in the different populations while the

number of D4Z4 increases in cells transfected with vectors

containing multiple copies of the repeats.

Found at: doi:10.1371/journal.pgen.1000394.s001 (0.7 MB TIF)

Figure S2 D4Z4 does not enhance eGFP expression. In order to

test the role of D4Z4 in the control of gene expression, the repeat

was cloned upstream of the pCMV promoter driving the eGFP

reporter (1XC construct) or upstream of the pCMV promoter

driving the HyTK resistance gene (X1C construct) and compared

to the pCMV control vector or the C1X construct. When present

upstream of the eGFP reporter or the HyTK gene, D4Z4 does not

enhance the expression of the reporter indicating that D4Z4 does

not act as a transcriptional enhancer in these situations.

Found at: doi:10.1371/journal.pgen.1000394.s002 (8.3 MB TIF)

Figure S3 CTCF binds to D4Z4 in vitro. To determine whether

the candidate CTCF binding sequences (A) are capable of binding

to CTCF, gel retardation assays were carried out (B). The mobility

was compared to the chicken b globin FII 59HS4 site. The FII (lane

1) and D4Z4 CTCF site (lane 5) can be supershifted by incubation

with a CTCF antibody (star). We also used unlabelled oligonu-

cleotides corresponding to known CTCF binding sites for

competition assays. C33A nuclear extracts were incubated either

with labeled FII (lanes 1–4) or 468-S labeled oligonucleotides

(lanes 5–8) and molar excess of FII (lanes 3, 7) or TAD1 site at the

mouse TCRa-Dad1 locus [24] (lanes 4, 8). Molar excess of unlabeled

FII or TAD1 can displace the binding of CTCF from the labeled

D4Z4 sequence whereas mutant versions of FII cannot (data not

shown) suggesting that the sites at position 468–481 and 476–489

of D4Z4 bind CTCF. C. Different primer sets spanning the

construct were used to amplify input DNA and DNA fraction

immunoprecipitated with antibodies to CTCF by a real-time Q-

PCR method. The y-axis shows the fold enrichment of CTCF in

the bound fraction versus input chromatin. Each data point

indicates the average of at least three independent experiments

with the S.D. shown by error bars. A significant enrichment of more

than 7-fold was observed with primers encompassing the putative

CTCF binding site showing that CTCF interacts with the D4Z4

repeat in vivo (black bars). This enrichment is lost when chromatin

immunoprecipitation is performed on cells transfected with siRNA

against CTCF (grey bars). D. Schematic representation of D4Z4

with the position of the primers used for ChIP quantification.

Found at: doi:10.1371/journal.pgen.1000394.s003 (8.3 MB TIF)

Figure S4 Validation of CTCF and A-type Lamins knock-down.

A. C1X and pCMV cell populations were transfected with pools of

siRNA against CTCF (pool CTCF), 3 different siRNAs (CTCF 1,

2, 3) or negative control siRNA (sineg) and quantification of CTCF

and eGFP mRNA was performed by reverse transcription followed

by quantitative PCR amplification. The values were normalized to

the b-Actin standard. The percentage of CTCF or eGFP mRNA for

cells treated with CTCF siRNA vs control cells is indicated. B.

CTCF is a versatile protein that regulates numerous pathways in

human cells. In order to verify that the KD of CTCF does not

affect cell viability and subsequently, eGFP level, cell populations

were incubated with BrdU 7 days after transfection and cell cycle

was analyzed by flow cytometry. No significant difference could be

observed in cells transfected with negative control siRNA (mock)

compared to CTCF siRNA (CTCF). C. A population of cells stably

transfected with the CDE construct were transiently transfected

with negative control siRNA (mock) or siRNA against CTCF or A-

type Lamins (LMNA). The percentages of eGFP positive cells were

determined by FACs three days after transfection. The leftward

shift peak in cells transfected with siRNA to CTCF or LMNA

indicates that the intensity of the eGFP is decreased in the pool of

eGFP positive cells compared to control cells. D. Different cell

populations were transfected with pools of siRNA against products

of the LMNA gene. Depletion in A and C type lamins was

controlled by western blot on whole cell extracts 4 days (1T) or 7

days (1T+3 days) after a first transient transfection or 4 days after a

second transfection (2T) and compared to the level of both

proteins in mock-treated cells. A goat polyclonal antibody was

used for western blot and ChIP experiments. The total amount of

protein in each extract was compared by using an anti-actin

antibody E. The specificity of the CTCF and Lamins effects on the

activity of D4Z4 was compared to the effect of YY1 that was

previously reported to bind to D4Z4 [7], USF1 and 2 that

participate in the insulator activity of the chicken 59HS4 insulator

[26] and components of the nuclear Lamina, Lamin B or BAF1.

Therefore, T1XDE cells were transiently transfected with pools of

siRNA against the different genes or negative control siRNA

(mock). The % of eGFP positive cells was determined by FACS 3

to 7 days after transfection and we did not observe a significant

decrease in eGFP level in the different populations of transfected

cells. Similar results were observed for the other constructs

harboring insulator activity.

Found at: doi:10.1371/journal.pgen.1000394.s004 (0.4 MB TIF)

Figure S5 Loss of CTCF binding only slightly increases the

trimethylation of H3 K9 residues. Above the threshold of 11 copies,

the D4Z4 array is methylated at the DNA level suggesting that long

stretches of D4Z4 become more condensed. CTCF might be

important in the control of the chromatin structure and we wanted

to test if the loss of CTCF binding that we observed upon D4Z4

multimerization is accompanied by an increase in the trimethylation

lysine 9 residues on histone H3 tails. Therefore, ChIP was

performed with anti-Me3-H3K9 in cells stably transfected with

different D4Z4 vectors. Values were normalized to the histone H4

promoter as a standard and enrichments of the immunoprecipitated

DNA compared to input DNA are presented (y-axis).

Found at: doi:10.1371/journal.pgen.1000394.s005 (1.1 MB TIF)

Figure S6 Cohesins do not participate in the D4Z4 insulator

activity. Recently, high throughput techniques allowed the

identification of numerous binding sites for Cohesins [25,32,51]

throughout the human genome. Interestingly, many of these sites

also correspond to CTCF sites suggesting that the two proteins

might be involved in insulation activity. In order to see whether

Cohesins also contribute to D4Z4 activity we transfected the

T1XDE cells with siRNA against SCC1 [25] and measured the

expression of eGFP 3 to 7 days after transfection. We did not

observe a significant difference after transfection of these siRNA

suggesting that Cohesins do not contribute to the activity of D4Z4.

Found at: doi:10.1371/journal.pgen.1000394.s006 (1.1 MB TIF)

Text S1 Supplementary information.

Found at: doi:10.1371/journal.pgen.1000394.s007 (0.09 MB

DOC)
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