Nonlinear denoising for characterization of solid friction under low confinement pressure - ENS de Lyon - École normale supérieure de Lyon Accéder directement au contenu
Article Dans Une Revue Physical Review E Année : 2019

Nonlinear denoising for characterization of solid friction under low confinement pressure

Résumé

The present work investigates paper-paper friction dynamics by pulling a slider over a substrate. It focuses on the transition between stick-slip and inertial regimes. Although the device is classical, probing solid friction with the fewest contact damage requires that the applied load should be small. This induces noise, mostly impulsive in nature, on the recorded slider motion and force signals. To address the challenging issue of describing the physics of such systems, we promote here the use of nonlinear filtering techniques relying on recent nonsmooth optimization schemes. In contrast to linear filtering, nonlinear filtering captures the slider velocity asymmetry and, thus, the creep motion before sliding. Precise estimates of the stick and slip phase durations can thus be obtained. The transition between the stick-slip and inertial regimes is continuous. Here we propose a criterion based on the probability of the system to be in the stick-slip regime to quantify this transition. A phase diagram is obtained that characterizes the dynamics of this frictional system under low confinement pressure.
Fichier principal
Vignette du fichier
Colas_friction_signal_revision3.pdf (5.77 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02271333 , version 1 (26-08-2019)

Identifiants

Citer

Jules Colas, Nelly Pustelnik, Cristobal Oliver, Patrice Abry, Jean-Christophe Géminard, et al.. Nonlinear denoising for characterization of solid friction under low confinement pressure. Physical Review E , 2019, 42, pp.91. ⟨10.1103/PhysRevE.100.032803⟩. ⟨hal-02271333⟩
53 Consultations
136 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More