
HAL Id: hal-03581418
https://inria.hal.science/hal-03581418

Submitted on 19 Feb 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mapping Tree-shaped Workflows on
Memory-heterogeneous Architectures

Svetlana Kulagina, Henning Meyerhenke, Anne Benoit

To cite this version:
Svetlana Kulagina, Henning Meyerhenke, Anne Benoit. Mapping Tree-shaped Workflows on Memory-
heterogeneous Architectures. [Research Report] RR-9458, Inria Grenoble Rhône-Alpes. 2022, pp.1-20.
�hal-03581418�

https://inria.hal.science/hal-03581418
https://hal.archives-ouvertes.fr

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
94

58
--

FR
+E

N
G

RESEARCH
REPORT
N° 9458
February 2022

Project-Team ROMA

Mapping Tree-shaped
Workflows on
Memory-heterogeneous
Architectures
Svetlana Kulagina, Henning Meyerhenke, Anne Benoit

RESEARCH CENTRE
GRENOBLE – RHÔNE-ALPES

Inovallée
655 avenue de l’Europe Montbonnot
38334 Saint Ismier Cedex

Mapping Tree-shaped Workflows on
Memory-heterogeneous Architectures

Svetlana Kulagina∗, Henning Meyerhenke∗, Anne Benoit†

Project-Team ROMA

Research Report n° 9458 — February 2022 — 20 pages

Abstract: Directed acyclic graphs are commonly used to model scientific workflows, by expressing
dependencies between tasks, as well as the resource requirements of the workflow. As a special
case, rooted directed trees occur in several applications, for instance in sparse matrix computations.
Since typical workflows are modeled by huge trees, it is crucial to schedule them efficiently, so that
their execution time (or makespan) is minimized. Furthermore, it might be beneficial to distribute
the execution on several compute nodes, hence increasing the available memory, and allowing us to
parallelize parts of the execution. To exploit the heterogeneity of modern clusters in this context, we
investigate the partitioning and mapping of tree-shaped workflows on target architectures where
each processor can have a different memory size. Our three-step heuristic adapts and extends
previous work for homogeneous clusters [Gou et al., TPDS 2020]. The changes we propose concern
the assignment to processors (which considers the different memory sizes) and the availability of
suitable processors when splitting or merging subtrees. We evaluate our approach with extensive
simulations and demonstrate that exploiting the heterogeneity in the cluster reduces the makespan
significantly compared to the state of the art for homogeneous memory.

Key-words: Tree partitioning, Workflows, Mapping, Memory constraint

∗ Department of Computer Science, Humboldt-Universität zu Berlin, Germany
† Roma project-team, LIP laboratory, ENS Lyon, France

Placement de workflows de type arbre sur des
architectures à mémoire hétérogène

Résumé : Les graphes acycliques dirigés sont couramment utilisés pour
modéliser les applications de type workflow, en exprimant les dépendances en-
tre les tâches, ainsi que les besoins en ressources. En cas particulier, les arbres
dirigés enracinés apparaissent dans plusieurs applications, par exemple dans les
calculs de matrices creuses. Comme les workflows typiques sont modélisés par de
grands arbres, il est crucial de les ordonnancer efficacement, afin de minimiser
leur temps d’exécution (ou makespan). En outre, il peut être avantageux de
répartir l’exécution sur plusieurs nœuds de calcul, ce qui augmente la mémoire
disponible et nous permet de paralléliser certaines parties de l’exécution. Afin
d’exploiter l’hétérogénéité des clusters modernes dans ce contexte, nous étudions
le partitionnement et le placement d’arbres sur des plates-formes où chaque pro-
cesseur peut avoir une taille de mémoire différente. Notre heuristique en trois
étapes adapte et étend les travaux précédents pour les clusters homogènes [Gou
et al., TPDS 2020]. Les changements que nous proposons concernent l’affectation
aux processeurs (qui prend en compte les différentes tailles de mémoire) et la
disponibilité des processeurs convenables lors de la division ou de la fusion de
sous-arbres. Nous évaluons notre approche à l’aide de simulations et démontrons
que l’exploitation de l’hétérogénéité du cluster réduit considérablement le make-
span par rapport à l’état de l’art pour la mémoire homogène.

Mots-clés : Partitionnement d’arbres, Workflows, Placement, Contrainte
mémoire

Mapping Tree-shaped Workflows on Memory-heterogeneous Architectures 3

1 Introduction
In many scientific disciplines, singular tasks revolving around the computation
of one particular problem have made way to more complicated workflows that
consist of many individual tasks. Such workflows are often represented as di-
rected acyclic graphs (DAGs), with nodes of the graph representing the tasks
and the edges their dependencies. One common form of such DAGs is a rooted
directed tree, which we consider in this paper. These tree-shaped workflows
occur in a variety of applications, for example in sparse matrix factorizations
and computational physics [16, 10].

Running such workflows efficiently in parallel, e. g. on a compute cluster
where processors have their own local memory and communicate via the net-
work, requires a good scheduling strategy. Such a strategy would distribute
singular tasks or whole subtrees to computing nodes in a way that fulfills a goal.
Our focus regarding schedule quality is on the total execution time, expressed
by the makespan of the schedule. To this end, we assume the workflow and
its properties to be known before scheduling. Previous work [10] for completely
homogeneous clusters (or other homogeneous platforms) showed the correspond-
ing scheduling problem to be NP-complete and proposed several variants of a
successful three-step heuristic. In summary, these steps are (i) to partition the
tree into subtrees, minimizing the makespan and not taking the memory limit
into account, (ii) to further partition subtrees too big for the memory limit, and
finally (iii) to ensure that the number of subtrees is less than or equal to the
number of processors.

Yet, more and more compute clusters are heterogeneous, e. g. due to hard-
ware updates, a combination of clusters, or an intentional configuration where
some compute nodes have special capabilities. It is for instance quite common
in large clusters to have a few “fat” nodes with a particularly large memory.1

Thus, to adapt the scheduling algorithm to variable memory constraints is very
relevant. Yet, maybe with the exception of He et al. [11], there are no scheduling
algorithms in the literature tailored to the problem of scheduling tree-shaped
workflows on memory-heterogeneous architectures. And while He et al. [11]
design their algorithm with heterogeneity in mind, their experimental setup
and results do not consider memory-heterogeneous architectures, which are our
focus.

In this paper, we present a partitioning and mapping heuristic (called Het-
Part – short for heterogeneous tree partitioning) for tree-shaped workflows that
exploits memory heterogeneity. To this end, after discussing related work (Sec-
tion 2), we formalize the scheduling problem in Section 3. The algorithmic con-
tribution, described in Section 4, consists of a three-step heuristic that builds
upon the work by Gou et al. [10] for the homogeneous case. We adapt two of
these steps: (i) the assignment of tasks to processors, which now considers the
different memory sizes, and (ii) when splitting or merging subtrees, we take the
availability of suitable processors into account, i.e., those with sufficient mem-

1One of many possible examples is the JUWELS cluster of Forschungszentrum Jülich,
https://apps.fz-juelich.de/jsc/hps/juwels/configuration.html.

RR n° 9458

https://apps.fz-juelich.de/jsc/hps/juwels/configuration.html

4 Kulagina, Meyerhenke, Benoit

ory. To evaluate the benefit from exploiting heterogeneity with HetPart, we
employ simulations on real-world as well as randomly generated trees in Sec-
tion 5. As standard of reference, we choose the state-of-the-art algorithm by
Gou et al. [10]. For a fair comparison, we use the same heterogeneous target
architecture and let the reference algorithm work on it in different scenarios re-
garding hardware consumption. Our experimental results on a cluster with four
different memory sizes show that HetPart reduces the makespan on average
by 15.5% and 25.0%, respectively, compared to the two best homogeneous sce-
narios. Where the improvement by HetPart is only 15.5%, the corresponding
homogeneous scenario has the major drawback of not producing a valid solution
for more than 20% of the instances.

2 Related Work

Scheduling and mapping collections of tasks on various types of computing plat-
forms has been a focus of research interest since the 1990s. Many different kinds
of applications have been considered over time, ranging from independent tasks
to graphs of tasks, where tasks may have dependence constraints. Earlier works
schedule various forms of workflows, such as pipeline workflows [5] and bags
of tasks [4]. However, current consensus seems to be that a workflow is best
described with a directed acyclic graph (DAG) [1, 15], which is the most general
representation of dependence constraints. Rooted task trees are a common spe-
cial case of DAGs, where each task (except the root) has a single parent node.
Such trees arise in particular from sparse linear algebra applications [7, 16].

The goal is usually to be able to execute the whole application as fast as
possible, hence minimizing the makespan, or total execution time. Several other
objective functions have been studied, as for instance minimizing the through-
put or latency of pipelined applications [5], focusing on fault tolerance [3], and
also energy efficiency [2]. Recently, an important focus is put on memory op-
timization, since memory and I/O become a bottleneck [13, 8]. Some of these
optimization goals may be antagonistic, and one may want to consider several
of them simultaneously. This can be done either by finding Pareto-optimal
solutions aiming at optimizing all objectives, or by fixing constraints on some
objectives and optimizing only one. This latter approach is particularly suitable
when objectives are of different nature, as in [5].

In the current work, the main optimization objective is to minimize the
makespan. As each processor has a limited amount of memory, one must ensure
that a constraint on memory is not violated, by carefully mapping parts of the
applications on each processor such that a processor can handle its part within
its own memory limit. Hence, one must partition the tree, map each subtree
on its own processor, and then schedule the subtrees without exceeding the
processor’s memory. Given a tree, an exact scheduling algorithm with minimum
memory requirement was designed [13]. An algorithm was also designed to
minimize the I/O volume when parts of data need to be evicted from memory
(MinIO problem). We choose not to evict data from memory in our case, but

Inria

Mapping Tree-shaped Workflows on Memory-heterogeneous Architectures 5

rather we aim at using several processors to process the application. The focus
of our work is hence on the partitioning of the tree, and mapping of subtrees onto
processors. We then reuse, for each subtree, the optimal scheduling algorithm
that minimizes the memory requirement.

The partitioning of various forms of graphs has been reviewed [6], and in
particular, the partitioning of DAGs is difficult [12]. However, for the case
when the strict condition of balanced weights of parts of the graph is relaxed,
approaches to its partitioning were proposed [9].

Note that the problem of makespan minimization of a tree of tasks, by par-
titioning the tree so that each part fits (memory-wise) onto a processor, has
already been tackled in the case of homogeneous processors [10]. As pointed
out in Section 1, recent work by He et al. has attempted to extend this ap-
proach to heterogeneous architectures [11]. Their work leaves several important
questions open, though: (i) the experiments seem to be on a system with ho-
mogeneous memories only, and (ii) the descriptions regarding the subroutine
FitMemory are not sufficient for a reimplementation. Our work differs from
theirs in several respects. As an example, one of our main contributions is a
new merging procedure accounting for heterogeneous memories, while He et al.
use the homogeneous merge from [10].

3 Model

3.1 Application model

We consider workflows that come in the form of rooted trees τ = (V,E), as
motivated in the introduction (see also [10]). The tree vertices, numbered from
1 to n, correspond to the tasks, where each task is the smallest non-changeable
workflow entity. Hence, each task vi ∈ V (1 ≤ i ≤ n) requires wi operations to
be performed. Vertex vr ∈ V (1 ≤ r ≤ n) is the root of the tree.

The edges, in turn, model precedence constraints between tasks. We assume
all precedence constraints to be oriented towards the leaves, which is no limi-
tation [10]. A precedence vj → vi (hence, (vj , vi) ∈ E) means that the task vi
cannot start before receiving an input file (or, more generally, input data) from
its parent task vj . The size of the (single) input file received by vi is denoted
as fi (for the root, fr = 0). The task also requires some memory to be executed;
its size is denoted by mi for task vi.

Given a tree workflow, Dmax is the maximum memory requirement of a node

in this tree: Dmax = maxvi∈V

{
fi +mi +

∑
j:(vi,vj)∈E fj

}
. For each node, the

memory requirement includes the size of all files to be sent to its children.

3.2 Platform model

The target computing environment is a cluster consisting of a finite number l
of processing units, called processors, and denoted by p1, . . . , pl. Each pair of

RR n° 9458

6 Kulagina, Meyerhenke, Benoit

processors can communicate with each other via some network, and communi-
cation operations can happen in parallel. We assume that the system-specific
bandwidth is always available for transferring input files to the responsible pro-
cessor. All data generated during the execution of a task on processor pu are
stored on pu, 1 ≤ u ≤ l. Tasks are non-preemptive and atomic: a processor
executes a single task at a time.

For 1 ≤ u ≤ l, let Mu be the size of the main memory of processor pu.
Task vi can be processed by pu only if all the data required to execute the
task fits into the processor’s memory, i.e., Mu ≥ fi +mi +

∑
j:(vi,vj)∈E fj +mi.

While processors may have memories of different sizes, we consider a platform
with processors computing at an identical speed s (number of operations per
seconds), hence any processor can execute task vi (1 ≤ i ≤ n) within time wi

s .
For (vi, vj) ∈ E, if task vi is mapped on processor pu and task vj is mapped

on processor pv, the input file for vj is sent through the communication network,

which has a bandwidth β. Hence, the time to send the file from vi to vj is
fj
β .

3.3 Constraints and scheduling objectives

In order to benefit from the parallel platform, the idea is to partition the tree τ
into subtrees, and then map each subtree onto its own processor. Each sub-
tree τ` is identified by its root root(τ`) = vi, with 1 ≤ i ≤ n. We denote by
tasks(i) the set of tasks included in subtree τ`. The processor handling τ` is pu,
with u = proc(i), and it should be able to process the whole subtree within
its own memory. Depending on the order in which tasks are processed, the re-
quired memory may differ. However, it is possible, given a subtree, to obtain its
minimum memory requirement Mmin and the corresponding traversal (in which
order tasks should be executed), using the MinMemory algorithm [13]. Hence,
we denote by Mmin(i) the minimum memory required to execute the subtree τ`
rooted in vi. We are now ready to express the memory constraint: for each
subtree τ` rooted in vi, Mmin(i) ≤Mproc(i).

Given a valid partitioning and mapping (i.e., a set of subtrees and a map-
ping of subtrees onto processors such that each subtree fits into the processor’s
memory), one can compute the corresponding execution time of the tree, or
makespan. Let desc(i) be the indices of tasks that are not in τ` (rooted in vi),
but that have a parent in τ`. These tasks are the root of subtrees that are
descendants of τ`, and hence the processor in charge of τ` will need to send files
to the processors in charge of these subtrees.

The makespan can then be computed recursively, where MS(i) denotes the
makespan of the subtree rooted in vi. The makespan for the whole tree is then
MS(r). Note that for the subtree rooted in vr, we have fr = 0.

MS(i) =
fi
β

+
∑

k∈tasks(i)

wk
s

+ max
j∈desc(i)

MS(j). (1)

The first term corresponds to the incoming communication. The second term is
the time to process all tasks on processor proc(i) (no communication to be paid

Inria

Mapping Tree-shaped Workflows on Memory-heterogeneous Architectures 7

within the same processor). Finally, the last term corresponds to the longest
makespan of descendant subtrees, which are processed in parallel (and hence
the longest one determines the makespan).

3.4 Problem complexity

The HetMemPartMap problem targeted in this paper is the following. Given
a task tree and a platform with heterogeneous memories, the goal is to partition
the tree into subtrees, to map each subtree onto a processor, such that the
memory constraint on each processor is respected (for the subtree rooted in vi,
Mmin(i) ≤Mproc(i)), and the makespan MS(r) is minimized.

The problem was shown to be NP-complete for a fully homogeneous platform
in [10], and considering platforms with heterogeneous memories only makes it
more difficult. In the following, we focus on the design of an efficient heuristic
for such platforms.

4 Heuristic Strategies

In this section, we describe HetPart, a polynomial-time heuristic for the Het-
MemPartMap problem. Following the idea of [10], the heuristic works in three
steps: (1) partition the tree into subtrees to minimize the makespan; (2) assign
the trees to fitting processors and further partition the subtrees that do not fit
into memory; (3) adjust the number of subtrees to comply with the number of
nodes in the target platform, and possibly reassign the new subtrees to different
processors. Unlike the work of Ref. [10], we need to fix the assignment of each
subtree to a specific processor, since processors have different memories. Fur-
thermore, we need to consider which processors are still available when taking
a partitioning decision in Step 2 or a merging decision in Step 3.

4.1 Minimizing Makespan

In the first step, the objective is to split the tree into a number of subtrees with
the aim to minimize the overall makespan. Several heuristics are designed for
this case in Ref. [10]. The memory constraint is not the focus in this step yet.

4.2 Fitting into Memory

After the tree has been partitioned with the aim to minimize the makespan,
the subtrees need to be allocated to processors while respecting the memory
constraints. Gou et al. [10] suggest three fitting methods that all cut the existing
subtrees further until they reach the (unique) memory constraint. Building on
the FirstFit method, we propose the new BiggestFit algorithm (shown in
Algorithm 1), which additionally considers the memory size of each processor.

We use a max-priority queue Q to keep the subtrees in S “ordered” according
to their memory consumption. For the processors, we sort them by memory sizes

RR n° 9458

8 Kulagina, Meyerhenke, Benoit

Algorithm 1 BiggestFit

1: procedure BiggestFit(S, M) . Input: subtrees S and proc. memory
limits M

2: Init PQ Q with S; . max-priority queue
3: M .sort(desc); . Sort processors by mem size
4: while not Q.empty() and not M .empty() do
5: s← Q.extractMax(); m←M .head();
6: (Sfitted, Srem)← MemFit(s, m);
7: Q.add(Srem); . Reinsert remaining subtrees
8: ScheduleOn(Sfitted, m);
9: M .remove(m); . Remove assigned processor

10: end while
11: while not Q.empty() do . No more procs., but further split subtrees
12: s← Q.extractMax(); m← min(M); . m is the memory of smallest

proc.
13: (Sfitted, Srem)← MemFit(s, m);
14: Q.add(Srem); . Reinsert remaining subtrees in Q
15: end while
16: end procedure

(from largest to smallest) in a dynamic array M . At each iteration of the while
loop (Line 4), we fit the currently largest subtree s into the current processor
with memory m. This is done using any memory fitting algorithm (referred to
as MemFit), and currently we use FirstFit [10]. This algorithm checks the
memory required by subtree s, and if it does not fit entirely within memory m,
it splits the subtree in order to increase the makespan as little as possible.
The result is a subtree that fits within m (denoted as Sfitted), and it may also
generate new subtrees (denoted as Srem) that are added to the set of subtrees
still in need to be assigned to a processor (in the priority queue Q). If Srem is
empty (the original subtree fits within m, and hence Sfitted = s), then this step
is ignored.

Thanks to this MemFit algorithm, Sfitted can now fit within memory m,
and we assign it to the corresponding processor that is removed from the array
of available processors (Lines 8 and 9). If all processors have been assigned a
subtree but there still remain some subtrees in Q, we take care of them in the
second while loop (Line 11). We further split the subtrees with the memory m
of the smallest processor as a threshold. All these trees are left unassigned, and
we will merge subtrees in the next step in order to be able to assign each subtree
to a processor.

4.3 Adjusting the Number of Subtrees

After the tree has been partitioned into subtrees (for makespan minimization,
Step 1) and after further splitting the subtrees to fit into the respective memories
(Step 2), we need to adjust the number of the resulting subtrees to match the

Inria

Mapping Tree-shaped Workflows on Memory-heterogeneous Architectures 9

number of processors. This is mandatory if there are still unassigned subtrees
after BiggestFit has been applied on the tree: in this case, we need to decrease
the number of subtrees so that each one can be assigned to a processor. However,
note that this step may also increase the number of subtrees instead – in case
all subtrees have been assigned and there remain some idle processors.

4.3.1 Decreasing the number of subtrees.

Should the previous step have yielded more trees than there are processors,
some of them need to be merged. To this end, we propose the HeterMerge
heuristic (Algorithm 2). We first construct the quotient tree T of τ , where each
subtree in τ becomes a vertex in T and resulting multi-edges between vertices
in T are merged and (re)weighted accordingly. The general idea is very similar
to Ref. [10]: as candidate merge operations, we either try merging a leaf to its
parent and only sibling (Case 1), or only to its parent (Case 2).

The main difference to the homogeneous case is that we need to choose the
processor on which the resulting merged tree is to be executed. This choice
is done through the ChooseProcessor procedure (see Algorithm 3). If at
least one of the subtrees has been assigned already (Line 3), then we select
the processor with smallest memory that is able to hold the merged subtree
(Line 4). Otherwise, if we were not able to find a processor, we are looking for
an available processor to handle the merged subtree. Such processors may have
been released in a previous merge iteration. This processor must have enough
memory to process the merged subtree, and if there are several candidates, we
pick the one with the smallest memory to keep larger processors for further
iterations (Line 7). If no suitable processor can be found, we return −1 and this
merge is not possible.

Since the processors have identical computing speeds (and only memories
of different size), the makespan after a merge can be computed by applying
Eq. (1). More precisely, we compute the difference ∆i between the makespans
before and after the merge of node i. Finally, in Lines 23 to 38 of Algorithm 2,
we perform the merge that results in the smallest increase of the makespan (if
there is at least one valid merge), and we iterate as long as merges are possible,
until all subtrees have been successfully assigned to processors. When no further
merges are possible, Algorithm 2 breaks in Line 20.

4.3.2 Increasing the number of subtrees.

If all subtrees have already been assigned to processors but there are still some
idle processors, some subtrees can be further broken down if it improves the
makespan. We employ the SplitAgain algorithm from [10] with a single mod-
ification: we check if the resulting subtree fits into the memory of any free
processor before assigning the subtree to this free processor.

RR n° 9458

10 Kulagina, Meyerhenke, Benoit

Algorithm 2 Merge for heterogeneous memories

1: procedure HeterMerge(τ , C, S, P)
2: . Input: tree τ , cut edges C, subtrees S, and set of processors P
3: T ← quotient tree according to τ and C;
4: A← binary array of length |P |, initialized with 1s; . A[u] = 1 ↔ proc.
u has been assigned a subtree

5: toMerge ← |S| − |P |; . Number of subtrees not yet assigned to a proc.
6: while toMerge > 0 do
7: ∆min ← −∞;
8: for each node i ∈ T except the root do
9: j ← parent(i);

10: if i is a leaf and i has only one sibling k then . Case 1
11: p← ChooseProcessor(i, j, k, A);
12: ∆i ← estimated increase in MS(r) if i, j and k are merged

onto p;
13: else . Case 2
14: p← ChooseProcessor(i, j, 0, A);
15: ∆i ← estimated increase in MS(r) if i and j are merged onto

p;
16: end if
17: if p 6= −1 and ∆i < ∆min then ∆min ← ∆i; pmin ← p; imin ← i;
18: end if
19: end for
20: if ∆min = −∞ then break; . No further improvement possible
21: end if
22: . Now, imin, pmin,∆min correspond to a possible merge, leading to

the smallest increase in makespan
23: if imin is a leaf and imin has only one sibling then . Case 1
24: Merge imin to its parent j and sibling k in τ ; Update T and C;
25: Assign the merged subtree to pmin; . And free other procs. next
26: if 0 < proc(i) 6= pmin then A[proc(i)]← 0;
27: else if 0 < proc(j) 6= pmin then A[proc(j)]← 0;
28: else if 0 < proc(k) 6= pmin then A[proc(k)]← 0;
29: end if
30: toMerge← toMerge− 2;
31: else . Case 2
32: Merge imin to its parent j in τ ; Update T and C;
33: Assign the merged subtree to pmin; . And free other proc. next
34: if 0 < proc(i) 6= pmin then A[proc(i)]← 0;
35: else if 0 < proc(j) 6= pmin then A[proc(j)]← 0;
36: end if
37: toMerge← toMerge− 1;
38: end if
39: end while
40: return (MS(r), C);
41: end procedure

Inria

Mapping Tree-shaped Workflows on Memory-heterogeneous Architectures 11

Algorithm 3 Choose the most suitable processor for the merge

1: procedure ChooseProcessor(i, j, k, A)
2: . Input: node i, its parent j, its only sibling k if k 6= 0, processor array A
3: if proc(i) 6= 0 or proc(j) 6= 0 or proc(k) 6= 0 then . At least one of the

subtrees is assigned to a processor
4: Let p be the proc. with min. memory among those assigned to i, j,

and k s.t. Mp ≥Mmin(i+ j + k);
5: If such a processor exists, return p;
6: end if
7: Select a processor p s.t. A[p] = 0 and Mp ≥ Mmin(i + j + k); If several

candidates, pick p with minimum memory; If no candidates, p← −1; .
Look for smallest possible fitting processor; p = −1 if no proc. found

8: return p;
9: end procedure

5 Experimental Evaluation

In this section, we describe the experimental settings and experimental results.
All results have been obtained via a simulation of the target cluster platforms.

5.1 Settings

5.1.1 Code and Machine.

All algorithms are implemented in C++ and compiled with g++ (v.11.2.0) using
the flags “-O2 -fopenmp”. They are executed on a workstation with 192 GB
RAM and 2x 12-Core Intel Xeon 6126 @3.2 GHz and CentOS 8 as OS. We will
publish the code on github after paper acceptance. The baseline algorithm
from Ref. [10], which we call HomPart, is also written in C++; it is compiled
and executed with the same infrastructure.

5.1.2 Instances.

We evaluate the algorithms on two general sets of trees: elimination trees gen-
erated from real-world sparse matrices, and randomly generated ones. The
real-world tree workflows were provided by Jacquelin et al. [13]; we consider the
set of 31 trees that were already used by Gou et al. [10] in the homogeneous
setting. To avoid overfitting to one particular instance set, we also generate a
set of random trees, derived from Prüfer sequences [17] and with random node
and edge weights.

We build eight “random” categories with 30 trees each. Within each cate-
gory, we use six different tree sizes (2K, 4K, 10K, 20K, 30K, and 50K nodes)
with five trees for each size. The categories differ in their parametrization
w. r. t. node and edge weights as well as fanout and makespan. As most others,
the category “Normal” derives its fanout from a Prüfer sequence. Its node /

RR n° 9458

12 Kulagina, Meyerhenke, Benoit

Table 1: Random trees and their generation parameters.
Category # Chil-

dren
Node Weights Makespan

Weights
Edge Weights

Mean Stddev Mean Stddev
Normal Prüfer se-

quence
(11,200) 10 (0.01,0.9) (1000,5000) 500

All large Prüfer se-
quence

(1100,
20000)

1000 (1.0,
90.0)

(100000,
500000)

50000

All small Prüfer se-
quence

(1,20) 1 (0.001,0.09) (100, 500) 5

Large node
weights

Prüfer se-
quence

(1100,
20000)

1000 (0.01,
0.9)

(1000,5000) 500

Large
makespan
weights

Prüfer se-
quence

(11,200) 10 (1.0,
90.0)

(1000,5000) 500

Large edge
weights

Prüfer se-
quence

(11, 200) 10 (0.01,
0.9)

(100000,
500000)

50000

3 children 3 +-1 (11, 200) 10 (0.01,
0.9)

(1000,5000) 500

20 children 20 +-4 (11, 200) 10 (0.01,
0.9)

(1000,
5000)

500

makespan / edge weights all result from a uniform random distribution. For
“All large”, the expected values of these weights are all multiplied by 100, while
for “All small”, they are divided by 10. The categories “Large node weights”,
“Large makespan weights”, and “Large edge weights” increase only one of these
respective weights (i.e., the mi’s, wi’s or fi’s). Finally, “3 children” and “20
children” have an expected fanout of 3 (standard deviation 1) and 20 (standard
deviation 4), respectively; their other weights are as in “Normal” in expectation.

To achieve trees with higher fanout, we changed the rate at which each num-
ber appears in the Prüfer sequence. The detailed parameters for the respective
uniform distributions are shown in Table 1.

5.1.3 Compute Platforms.

To evaluate how well the new heuristic HetPart exploits heterogeneity, we
create synthetic compute platforms that resemble real-world configurations and
differ in the number of nodes as well as in the distribution of resources (in par-
ticular memory) among these nodes. To make the algorithms’ job difficult, we
use a modest size: two clusters with 36 nodes each. As for resource distribution,
one cluster is 4-fold with four kinds of nodes (9 nodes of each kind), and the
other 2-fold with two kinds of nodes (18 nodes of each kind), see Table 2.

Both clusters have “fat” and “light” nodes, whereas the 4-fold cluster addi-
tionally has “moderate” and “extra-light” nodes. The “fat” nodes have three

Inria

Mapping Tree-shaped Workflows on Memory-heterogeneous Architectures 13

Table 2: Node number and memory allocation on clusters.
Cluster
conf.

extra-
light

light moderate fat

4-fold
mem 0.5Dmax Dmax 1.5Dmax 3Dmax

nodes 9 9 9 9

2-fold
mem - Dmax - 3Dmax

nodes - 18 - 18

times the memory size of the “light” ones, while the “moderate” ones have 1.5
times the memory size of the “light” ones. Finally, the “extra-light” nodes have
half the memory of the “light” ones. In their design, the ”light” nodes are
given just enough memory to handle the largest task of the workflow instances,
hence a memory Dmax. Thus, the amount of memory given to a certain tree
depends not only on the memory capacity of the cluster node, but also on the
tree’s requirements expressed by its Dmax. Note that in a real-world setting,
the memory actually available to a workflow would also be adapted to its needs.
Also, having only “light” nodes corresponds to the strict memory scenario in
Ref. [10]. All processor speeds and bandwidths are assumed equal (normalized
to 1 for speeds and to 500 for bandwidths).

5.1.4 Setup for Algorithmic Comparison.

The two major criteria for comparing HetPart with the baseline HomPart
are solution quality (makespan of the produced schedules) and running time.
To account for fluctuations in the running time, we perform three runs of each
experiment and use the arithmetic mean.

Since the homogeneous algorithm cannot exploit varying memory sizes, the
heterogeneous clusters need to be represented in a homogeneous way for Hom-
Part. The main differences stem from the memory limit imposed on each
compute node. The strictest memory limit leads to “Many Light” (ML), which
takes the 27 nodes that are at least “light”. Using only the fat nodes with their
full memories is the “Few Fat” (FF) scenario. In between these two is “Some
Moderate” (SM), which uses the “fat” and the “moderate” nodes at the memory
limit of the latter. The respective configuration of HomPart is suffixed with
ML, FF, or SM. Note that the memory would not suffice for the largest tasks if
we took all 36 nodes and treated them as “extra-light”. Figure 1 illustrates the
different cluster configurations.

Both HetPart and HomPart may use different heuristics at each phase,
in particular for the initial partitioning for makespan, where heuristics Split-
Subtrees, ASAP, and ImprovedSplit are proposed in [10]. We selected the
best combinations (regarding solution quality, on average) for our setup, both
for HetPart and for HomPart, in order to be as fair as possible. We did not
consider ImprovedSplit due to its long running time. It turns out that for
HetPart, the best results are obtained with ASAP for the first step, followed

RR n° 9458

14 Kulagina, Meyerhenke, Benoit

Figure 1: Cluster composition: the heterogeneous cluster and its corresponding
homogeneous variants. (a) 2-fold cluster and (b) 4-fold cluster.

Figure 2: Among all makespans generated by all variants of HomPart per
category, we chose the minimal one, and then computed the surplus of other
ones over it. This diagram shows these surpluses, aggregated over all categories.

by BiggestFit and HeterMerge or SplitAgain. For HomPart however,
surprisingly, using SplitSubtrees in the first step gives better results, when
combined with FirstFit in the second step, and finally Merge or SplitA-
gain. In the following, we use these combinations that respectively returned
the best results.

Figure 2 shows the aggregated results for HomPart using SplitSubtrees
and ASAP, hence confirming that the former is better in this case.

5.2 Results

We first focus on the 4-fold cluster, and in particular we study the increase of
makespan when using HomPart rather than HetPart. We report the percent-
age of increase in makespan when HomPart is used in various configurations
(ML, SM, FF). If HomPart could not find a solution, no bar is reported. The
geometric mean is used when aggregating several ratios. Note that the higher
the ratio, the more beneficial HetPart is compared to HomPart.

Inria

Mapping Tree-shaped Workflows on Memory-heterogeneous Architectures 15

Figure 3: Makespan increase in % compared to HetPart by (a) HomPart-ML,
(b) HomPart-SM, (c) HomPart-FF. The two missing bars for HomPart-ML
indicate unsuccessful runs (no solution for HomPart in this setting). Instances:
(1) sparse matrix trees, (2) normal (random trees), (3) all large, (4) all small,
(5) large node weights, (6) large makespan weights, (7) large edge weights, (8)
3 children, (9) 20 children.

5.2.1 Makespan of 4-fold cluster

Figure 3 displays the average increase of the makespan (in %) of the three
HomPart scenarios compared to HetPart. Each bar represents an instance
group. As most bars are above 0, HetPart performs best overall: averaged over
all instance groups, the best homogeneous variant HomPart-ML still increases
the makespan by 15.5%. At the same time, note that HomPart-ML is not able
to produce results for two instance groups. This robustness problem results
from the fact that finding a valid solution can become more difficult if only
light nodes are available. If we compare to the next best scenario, HomPart-
SM, which is able to solve all instances, HetPart is 25.1% better on average.
Overall, HetPart achieves high improvements in most cases but two. In case
of large edge weights (7, high communication costs) and a high-fan out with 20
children (9), HomPart performs quite well – if it is able to find a solution.

In the following, we take an individual look at the respective instance groups.
On sparse matrix trees (1), HetPart is 25.0% better than the best homoge-
neous scenario HomPart-SM. HomPart-ML fares comparably to HomPart-
SM (29.9% increase), while HomPart-FF is clearly the worst (42.3% increase).

On normal random trees (2), HetPart improves by at least 15.4% (against
HomPart-ML). The other two homogeneous variants perform significantly worse
(HomPart-SM: 32.9%, HomPart-FF: 86.7%).

For the categories where only weights change (and not the tree topology –
“all large” (3) and “all small” (4)), the improvement of HetPart compared to
HomPart-ML is 17.1% and 26.1% respectively. Similar results can be observed
when node weights (memory consumption per task, (5)) are large: HetPart
improves on HomPart-ML by 21.2%.

RR n° 9458

16 Kulagina, Meyerhenke, Benoit

HetPart works very well in these previous categories as the corresponding
instances allow our heuristic to distribute the tasks across the whole cluster.
The situation is somewhat different for the categories “20 children” (9) and
“large edge weights” (7). Here, all heuristics use only a subset of the cluster
since the trees cannot be parallelized and distributed that well. Evidently, the
dominance of communication over computation in these trees yields this behav-
ior. HomPart-SM performs best on both of these groups (and significantly
better than for other groups) and it is even 12.7% better than HetPart for
“large edge weights”.

As indicated before, on trees with fixed fanouts (“3 children” (8) and “20
children” (9)), HomPart-ML cannot find a solution for the majority of the
trees, hence no results are displayed in this case. The other two homogeneous
scenarios do find solutions, but they are much worse than those of HetPart.

Trees with large makespan weights (6) fall between the two poles: HetPart
yields the best results again; the improvement on HomPart-ML is rather mod-
est with 8.4%. However, HetPart fares significantly better than HomPart-SM
(29.4%) and HomPart-FF (82.7%).

Finally, note that overall, for all categories, HomPart-ML compares the
most closely to HetPart (the increase in makespan is low in section (a) of
Figure 3), but it also produces the largest number of unsolved trees. On average
over all categories, 21.8% of the trees could not be solved by HomPart-ML.
For the category ”3 children”, no tree could be solved. For ”20 children”, half
of the trees were unsolved. The other categories have 2 to 5 unsolved trees out
of 30, except for the matrix trees, where all trees could be solved.

5.2.2 Comparison between 4-fold and 2-fold cluster

To explore “how heterogeneous” a system needs to be for significant improve-
ments by HetPart, we also consider the 2-fold cluster described in Section 5.1.
The detailed results for this 2-fold cluster are available in Figure 4. Also, in Fig-
ure 5, we compare the respectively smallest improvement of HetPart against
HomPart on both clusters.

Clearly, with more heterogeneity to exploit, HetPart is able to provide a
more tangible improvement on the 4-fold cluster. In most categories, the Het-
Part improvement against the closest competitor in the 4-fold cluster (dark-
blue) lies between 15% and 30%. HetPart performs worse than the closest
HomPart only for one category (“large edge weights”, 7). In the 2-fold clus-
ter, however, HetPart wins by much smaller margins (2%-13%) and loses in 3
categories. For the matrix trees, HetPart provides tangible improvements in
both clusters (24.9% and 20.7%).

5.2.3 Running Times

As shown in Figure 6, the running time of HetPart is comparable to that of
HomPart-SM and HomPart-FF (averaged over all instance groups). More
precisely, HetPart is 9.7% faster than HomPart-SM but 7.3% slower than

Inria

Mapping Tree-shaped Workflows on Memory-heterogeneous Architectures 17

Figure 4: Makespan increase in % compared to HetPart by (a) HomPart-ML,
and (b) HomPart-FF on a 2-fold cluster. The missing bars for HomPart-ML
indicate unsuccessful runs (no solution for HomPart in this setting). Instances:
(1) sparse matrix trees, (2) normal (random trees), (3) all large, (4) all small,
(5) large node weights, (6) large makespan weights, (7) large edge weights, (8)
3 children, (9) 20 children.

Figure 5: The comparison of the minimal improvement of HetPart against
HomPart on the 4-fold cluster vs 2-fold cluster. Instances: (1) sparse matrix
trees, (2) normal (random trees), (3) all large, (4) all small, (5) large node
weights, (6) large makespan weights, (7) large edge weights, (8) 3 children, (9)
20 children.

RR n° 9458

18 Kulagina, Meyerhenke, Benoit

Figure 6: Runtime change in % (lower is better) compared to HetPart by
three homogeneous scenarios: (a) HomPart-ML, (b) HomPart-SM, (c) Hom-
Part-FF. Instances: (1) sparse matrix trees, (2) random trees, (3) all large,
(4) all small, (5) large node weights, (6) large makespan weights, (7) large edge
weights, (8) 3 children, (9) 20 children.

HomPart-FF. At the same time, as we saw above, HetPart provides a much
better solution quality. The homogeneous scenario with best quality, HomPart-
ML, is much slower. Its running time is 3.5× higher than HetPart’s. Our
experiments indicate that most time is spent merging. Smaller memory sizes as
in HomPart-ML produce trees that require extensive merging, explaining the
much longer running time. Note that we do not consider here the three largest
matrix trees due to their very long runtime.

6 Conclusions and Future Work

We have studied the problem of tree partitioning for a heterogeneous multipro-
cessor computing system, where each processor can have a different memory size.
Taking heterogeneity into account when partitioning these trees into subtrees
pays off: our new heuristic HetPart clearly improves the makespan compared
to the homogeneous state of the art. At the same time, the best homogeneous
scenario, HomPart-ML, fails to produce valid solutions in many cases due to
its inability to exploit the full memory of the cluster and it is 3.5× slower.

Future work includes the increase of the heterogeneity level. This should in-
clude different processor speeds and different bandwidths in the cluster. Overall,
we expect similar findings for such cases: when the compute platform is suffi-
ciently heterogeneous, a heuristic taking this heterogeneity into account should
pay off. However, integrating processor speeds and bandwidths makes a corre-
sponding heuristic significantly more complicated.

Inria

Mapping Tree-shaped Workflows on Memory-heterogeneous Architectures 19

References

[1] Adhikari, M., Amgoth, T., Srirama, S.N.: A survey on scheduling strategies
for workflows in cloud environment and emerging trends. ACM Computing
Surveys (CSUR) 52(4), 1–36 (2019)

[2] Aupy, G., Benoit, A., Renaud-Goud, P., Robert, Y.: Energy-aware algo-
rithms for task graph scheduling, replica placement and checkpoint strate-
gies. In: Handbook on Data Centers, pp. 37–80. Springer (2015)

[3] Benoit, A., Le Fevre, V., Perotin, L., Raghavan, P., Robert,
Y., Sun, H.: Resilient scheduling of moldable parallel jobs to
cope with silent errors. IEEE Transactions on Computers (2021).
https://doi.org/10.1109/TC.2021.3104747

[4] Benoit, A., Marchal, L., Pineau, J.F., Robert, Y., Vivien, F.: Schedul-
ing concurrent bag-of-tasks applications on heterogeneous platforms. IEEE
Transactions on Computers 59(2), 202–217 (2009)

[5] Benoit, A., Rehn-Sonigo, V., Robert, Y.: Multi-criteria scheduling of
pipeline workflows. In: 2007 IEEE International Conference on Cluster
Computing. pp. 515–524. IEEE (2007)

[6] Buluç, A., Meyerhenke, H., Safro, I., Sanders, P., Schulz, C.: Recent ad-
vances in graph partitioning. Algorithm engineering pp. 117–158 (2016)

[7] Davis, T.A.: Direct Methods for Sparse Linear Systems. Fundamentals of
Algorithms, Society for Ind. and Applied Math., Philadelphia (2006)

[8] Eyraud-Dubois, L., Marchal, L., Sinnen, O., Vivien, F.: Parallel scheduling
of task trees with limited memory. ACM Transactions on Parallel Comput-
ing 2(2), 13 (2015)

[9] Feldmann, A.E., Foschini, L.: Balanced partitions of trees and applications.
Algorithmica 71(2), 354–376 (2015)

[10] Gou, C., Benoit, A., Marchal, L.: Partitioning tree-shaped task graphs for
distributed platforms with limited memory. IEEE Transactions on Parallel
and Distributed Systems 31(7), 1533–1544 (2020)

[11] He, S., Wu, J., Wei, B., Wu, J.: Task tree partition and sub-
tree allocation for heterogeneous multiprocessors. In: 2021 IEEE
Intl Conf on Parallel Distributed Processing with Applications, Big
Data Cloud Computing, Sustainable Computing Communications, So-
cial Computing Networking (ISPA/BDCloud/SocialCom/SustainCom).
pp. 571–577 (2021). https://doi.org/10.1109/ISPA-BDCloud-SocialCom-
SustainCom52081.2021.00084

RR n° 9458

20 Kulagina, Meyerhenke, Benoit

[12] Herrmann, J., Kho, J., Uçar, B., Kaya, K., Çatalyürek, Ü.V.: Acyclic
partitioning of large directed acyclic graphs. In: 2017 17th IEEE/ACM
international symposium on cluster, cloud and grid computing (CCGRID).
pp. 371–380. IEEE (2017)

[13] Jacquelin, M., Marchal, L., Robert, Y., Uçar, B.: On optimal tree traversals
for sparse matrix factorization. In: 2011 IEEE International Parallel &
Distributed Processing Symposium. pp. 556–567. IEEE (2011)

[14] Kulagina, S., Meyerhenke, H., Benoit, A.: Mapping Tree-shaped Work-
flows on Memory-heterogeneous Architectures. Research report 9458, Inria
(2022), https://hal.inria.fr

[15] Liu, J., Pacitti, E., Valduriez, P.: A survey of scheduling frameworks in
big data systems. International Journal of Cloud Computing 7 (01 2018).
https://doi.org/10.1504/IJCC.2018.10014859

[16] Liu, J.W.H.: The role of elimination trees in sparse factorization. SIAM
Journal on Matrix Analysis and Applications 11(1), 134–172 (1990)

[17] Prüfer, H.: Neuer Beweis eines Satzes über Permutationen. Archiv für
Mathematik und Physik 27, 142–144 (1918)

Inria

https://hal.inria.fr

RESEARCH CENTRE
GRENOBLE – RHÔNE-ALPES

Inovallée
655 avenue de l’Europe Montbonnot
38334 Saint Ismier Cedex

Publisher
Inria
Domaine de Voluceau - Rocquencourt
BP 105 - 78153 Le Chesnay Cedex
inria.fr

ISSN 0249-6399

	Introduction
	Related Work
	Model
	Application model
	Platform model
	Constraints and scheduling objectives
	Problem complexity

	Heuristic Strategies
	Minimizing Makespan
	Fitting into Memory
	Adjusting the Number of Subtrees
	Decreasing the number of subtrees.
	Increasing the number of subtrees.

	Experimental Evaluation
	Settings
	Code and Machine.
	Instances.
	Compute Platforms.
	Setup for Algorithmic Comparison.

	Results
	Makespan of 4-fold cluster
	Comparison between 4-fold and 2-fold cluster
	Running Times

	Conclusions and Future Work

