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Drowsiness detection from polysomnographic data using
multivariate selfsimilarity and eigen-wavelet analysis

Charles-Gérard Lucas1, Patrice Abry1, Herwig Wendt2 and Gustavo Didier3

Abstract— Because drowsiness is a major cause in vehicle
accidents, its automated detection is critical. Scale-free temporal
dynamics is known to be typical of physiological and body
rhythms. The present work quantifies the benefits of applying a
recent and original multivariate selfsimilarity analysis to several
modalities of polysomnographic measurements (heart rate,
blood pressure, electroencephalogram and respiration), from
the MIT-BIH Polysomnographic Database, to better classify
drowsiness-related sleep stages.

Clinical relevance— This study shows that probing jointly
temporal dynamics amongst polysomnographic measurements,
with a proposed original multivariate multiscale approach,
yields a gain of above 5% in the Area-under-Curve quanti-
fying drowsiness-related sleep stage classification performance
compared to univariate analysis.

I. INTRODUCTION

Context: Physiology, selfsimilarity and drowsiness. Phys-
iological and body temporal rhythms are well-described by
arhythmic or scale-free dynamics. This is notably the case of
infraslow brain activity [1], [2], [3], heart rate variability [4],
[5], [6], [7], [8], human gait variability [9], [10] or sleep-
stage dynamics [11]. Such scale-free dynamics are often
well-modeled by selfsimilarity and quantified by the cor-
responding so-called selfsimilarity or Hurst exponent [12].
However, physiological data very often consist of several
time series recorded jointly to study one same biological
mechanisms or a pathology. This is for instance the case for
polysomnographic measurements, of interest here, aiming to
characterize sleep stages and to quantify sleep quality, from
several non-invasive modalities related to cardiovascular,
respiratory or macroscopic brain activities. However, most
often, selfsimilarity is assessed in individual time series,
resulting in a collection of univariate analyses. This is mostly
due to the fact that, up to a recent past, selfsimilarity
was defined only in univariate settings and modeled by the
univariate fractional Brownian motion. However, recently a
proper definition of multivariate selfsimilarity was proposed
[13] together with multivariate eigen-wavelet-based analysis
[14], [15]. The present work thus aims to show the poten-
tial of multivariate selfsimilarity in physiological and body
rhythm analyses through the example of drowsiness detection
from polysomnographic data.
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Related work: Drowsiness detection. Drowsiness is usu-
ally defined as an intermediate state between wake and
sleep [16]. Drowsiness is documented to play a major role
in vehicle accidents. Therefore, drowsiness detection from
portable non-invasive biomedical measurements constitutes
a significant societal stake. It has often been performed
from electromyogram data, ECG data or EEG data, making
use of non-linear statistical signal processing tools such as
sample entropy, selfsimilarity, multifractality, cf., e.g., [16],
[17], [18], [19], yet leaving essentially unexplored the use
of multivariate scale-free dynamics (see a contrario [11]).
Goals, contributions and outline. The present work aims
to quantify the benefits of using the recently devised multi-
variate selfsimilarity-based eigen-wavelet analysis [14], [15]
to detect drowsiness in polysomnographic data. To that end,
the estimation of a set of M selfsimilarity exponents from M-
variate data using a multivariate wavelet eigen-value based
analysis is decribed in Section II. These tools are applied
to M = 4-variate polysomnographic data, obtained from the
MIT-BIH Polysomnographic Database, well-documented in
[20], [21] and described in Section III. Drowsiness detection
performance are reported in Section IV.

II. MULTIVARIATE EIGEN-WAVELET ANALYSIS

Multiscale or Wavelet spectrum. The M-variate time series
to be analyzed are denoted Y = {Y1(t), . . . ,YM(t)}t∈R. In
the next sections, Y will correspond to the collection of
polysomnographic signals used to detect drowsiness.

The discrete wavelet transform (DWT) coefficients of the
component Ym of Y , DYm(2

j,k) are defined as inner products
between Ym and dilated and translated templates ψ0(2− jt−
k) of a well-chosen reference pattern ψ0 called the mother
wavelet: DYm(2

j,k) = 〈2− jψ0(2− jt− k)|Ym(t)〉, [22].
To study scale-free dynamics, one usually forms the

wavelet spectrum S(2 j) defined, at a given scale 2 j, as a M×
M matrix of wavelet coefficients intercorrelation functions
[14], [15]:

Sm,m′(2
j),

1
n j

n j

∑
k=1

DYm′ (2
j,k)DYm′ (2

j,k)∗, (1)

where n j is the number of wavelet coefficients at scale 2 j.
In addition, for each pair of components

(Ym,Ym′), the wavelet coherence function Cm,m′(2 j) =

Sm,m′(2 j)/
√

Sm,m(2 j)Sm′,m′(2 j), measures a series of scale-
dependent correlation coefficients [23], [24].
Univariate selfsimilarity parameter estimation. The
classical univariate analysis of Y consists in estimating one



selfsimilarity parameter independently for each time series.
In other words, it amounts to using only the diagonal entry
of the matrix wavelet spectrum S(2 j). It has been well-
documented that, for the increments of univariate selfsimilar
signals such as fractional Gaussian noise, Sm,m(2 j) should
(asymptotically) behave as a power law with respect to the
scales 2 j, with scaling exponents driven by the selfsimilarity
parameters as 2HTrue

m − 1 [25]. Thus, parameter estimation
can be efficiently performed by means of linear regressions
of log2(Sm,m(2 j)) against log2(2

j) = j [26]:

ĤU
m =

(
j2

∑
j= j1

v j log2(Sm,m(2 j))

)/
2− 1

2
, m= 1, . . . ,M, (2)

with v j such that ∑ j v j = 1 and ∑ j v j = 0.
Classical multivariate selfsimilarity parameter estima-
tion. To account for cross-dependencies amongst component
temporal dynamics, a natural approach is to apply the same
procedure to each entry of the wavelet spectrum Sm,m′(2 j),
thus defining a set of cross-selfsimilarity exponents:

Ĥm,m′ =

(
j2

∑
j= j1

v j log2(Sm,m′(2
j))

)/
2− 1

2
, m,m′= 1, . . . ,M.

(3)
Eigen wavelet selfsimilarity parameter estimation. How-
ever, it has been recently documented that multivariate
selfsimilarity can be better conducted based on a change
of paradigm: Instead of considering for each pair of com-
ponents, m and m′, the behavior of Sm,m′(2 j) along scales
and then comparing between pairs of components the es-
timated selfsimilarity parameter Ĥm,m′ , as above, one can
first consider at a given scale 2 j all components together, by
computing the eigenvalues λm(2 j) of the spectrum matrix
S(2 j), and then study the behavior of these eigen-values
along scales 2 j. It has indeed been shown that for multi-
variate selfsimilar processes the eigenvalues λm(2 j) should
(asymptotically) behave as a power law with respect to the
scales 2 j, with scaling exponents related to the selfsimilarity
parameters as 2HTrue

m −1 [14], [15].
However, the practical computation of the eigenvalues of

the set of matrices S(2 j) from finite sample size multivariate
data suffers from a bias, referred to as the repulsion bias
of significant impact at coarse scales, where the number
of available wavelet coefficients becomes limited compared
to the number of components M. This recently lead to the
construction of a robust estimation based on the eigenvalues,
from a collection of estimated wavelet spectra obtained from
non-overlapping windows of width w, using an equal number
n j2 of wavelet coefficients DY (2 j,k) at each scale 2 j (with
n j2 the number of wavelet coefficients at coarsest scale 2 j2 )
[27]:

S(w)m,m′(2
j),

1
n j2

wn j2

∑
k=1+(w−1)n j2

DYm(2
j,k)DYm′ (2

j,k)∗. (4)

The log-eigenvalues λ
(w)
1 (2 j), . . . ,λ

(w)
M (2 j) of the ma-

trices S(w)(2 j) are then averaged to yield λ̄m(2 j) ,
2 j2− j

∑
2 j− j2
w=1 log2(λ

(w)
m (2 j)). Eigenwavelet-based estimates

ĤM
m of the multivariate selfsimilarity parameters are finally

obtained by linear regressions of the log-averaged eigenval-
ues λ̄m(2 j) against log2 2 j = j:

ĤM
m =

(
j2

∑
j= j1

v jλ̄m(2 j)

)/
2− 1

2
, m = 1, . . . ,M. (5)

III. DATABASIS

MIT-BIH Polysomnographic database. Data used here are
those made available in the MIT-BIH Polysomnographic
Database1, documented in [20], [21]. Data consist of a collec-
tion of 4 to 7 physiological measurements (cardiovascular,
respiratory or macroscopic brain activities, stroke volume,
oxygen saturation, eye movements or chin muscle responses)
recorded for 16 male subjects in Boston’s Beth Israel Hos-
pital Sleep Laboratory in the context of chronic obstructive
sleep apnea syndrome; the recordings of the first two subjects
are split into two consecutive portions, resulting in a total of
18 multivariate time series (sampling 250Hz, data lengths
from 77 to 390 min). Sleep stage expert annotations are
available for each 30-second long non overlapping window.
Data for the present study. Because the focus of this work
is on detecting drowsiness, defined as transitions between
the awake and stage1 stages, the goal here is to perform a
classification of these two stages. Use is thus made only of
the time windows corresponding to such annotations.

Further, to investigate the benefits of a joint analysis
based on multivariate selfsimilarity, one needs to analyze
the different modalities of polysomnographic data in the
same frequency range. Because respiratory and heart rate
rhythms contain relevant information in time scales ranging
from 1 second to 1 minute, only the infraslow brain activity
is considered and data are filtered and resampled at 4Hz.

Finally, to ensure a consistent number of features for
detection and classification, only those 4 modalities of the
polysomnographic data are used that are available for all
subjects: heart rate (HR), blood pressure (BP), electroen-
cephalogram (EEG) and respiration (RESP).

IV. SLEEP STAGE CLASSIFICATION

A. Analysis/classification set-up

1) Physiological time series analysis: Analysis is per-
formed in 2-min long sliding windows, with 75% of overlap
between successive windows, each hence containing Nw =
480 = 4×2×60 samples.

Classification will be restricted to sequences sharing the
same annotations for at least 4 consecutive 30-second win-
dows. In total, 1753 and 561 such windows are available for
the awake and stage 1 states, respectively.

The DWT coefficients DYm(2
j,k) are computed using the

least asymmetric Daubechies3 wavelet [22]. Linear regres-
sions are performed across scales ranging from 2 j1 = 21 to
2 j2 = 24 corresponding to frequencies from 1/8 to 2 Hz, or
equivalently to time scales from 1/2 to 8 seconds.

Figs. 1 and 2 plot, as an example, log-wavelet spectrum
and log-eigenvalues, for one 2-min long window, indicating

1https://physionet.org/content/slpdb/1.0.0/
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Fig. 1: Log-wavelet spectrum for one subject and one 2-min
long window.
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Fig. 2: Log-wavelet eigenvalues for one subject and one
2-min long window.

power law scaling thus selfsimilarity across the chosen
analysis scales. Scaling exponents are estimated using Eqs. 3,
2 and 5 from such functions.

2) Multifeature classification: We make use of a standard
Random Forest Classifier [28], a learning method consisting
in training a large number of decision trees from data
resampled with replacement. Each tree is trained from a
subset of features randomly selected among the N f available
features, to reduce correlation between trees. The size of the
subset list is chosen here as

√
N f as in [28], and decision is

made by majority vote.
Random Forest Classifiers are performed with Ntrees ∈

{10,25,50} trees. A diagonal cost matrix is set with co-
efficients w1 =WvNa/NW and w2 = Ns/NW , where Na is the
number of windows related to the state “awake” (class 0),
Ns is the number of windows related to the state “stage 1”
(class 1), NW = Na + Ns is the total number of windows
and Wv ∈ [0.001,6] to tune the classification false alarm rate.
Performances are assessed by cross-validation over NMC =
100 repetitions, with 80% of the available windows randomly
and independently selected for the training sets.

Receiver Operational Characteristic (ROC) curves are
computed by varying Wv during training. ROC areas-under-
curve (AUC) are used as performance score.

B. Single-feature classification

As a baseline, classification is first performed for each of
the four modalities independently, using as a single feature

the univariate selfsimilarity parameter, ĤU
m , estimated using

Eq. 2. Classification hence simply consists in comparing the
feature against a threshold, and ROC curves are computed
by varying the classification threshold as shown in Fig. 3.
AUC, reported in Table I, show that Blood Pressure yields
the best classification performance. However, single-feature
performance remains quite low.

feature ĤU
1 feature ĤU

2 feature ĤU
3 feature ĤU

4
52.71 67.59 55.15 57.44

TABLE I: AUC for univariate classifications.
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Fig. 3: ROC curves (average ± standard deviation) for
single-feature classification.

C. Multi-feature classification

The goal is now to quantify the benefits of using several
polysomnographic modalities jointly in classifying drowsi-
ness related sleep stages.

1) Features: Three different strategies to combine infor-
mation stemming from the different modalities are tested.

The simplest way consists in concatenating the four uni-
variate ĤU

m into a feature vector of dimension 4. This will be
referred to as features1. Such a joint modality classification
does not account for information related to cross-temporal
dynamics between modalities as it only makes use of features
computed independently on each modality. However, as
illustrated in Fig. 1, there exist non-negligible cross-temporal
dynamics at all scales between modalities, thus prompting for
the use of such information to improve classification.

To account for cross-temporal dynamics across modalities,
a second classification will be performed by adding to the 4
univariate features ĤU

m , the 6 = 4× 3/2 cross-selfsimilarity
parameters Ĥm,m′ (m′ 6= m) estimated from the nondiagonal
entries of the wavelet spectrum (3), resulting in a feature
vector of dimension 10 (referred to as features2).

In addition, an original contribution of this work is to
promote the use of the eigenwavelet analysis as a new
way to quantify cross-temporal dynamics. Therefore, a third
classification will be performed by adding to the 4 univariate
features ĤU

m , the 4 eigenvalue based multivariate selfsimilar-
ity parameters ĤM

m estimated as in (5), resulting in a feature
vector of dimension 8. This will be referred to as features3.

2) Performance: To compare performance between
these three different multimodal classification strategies,
Fig. 4(right plots) displays ROC curves and Table II further
reports the AUC. These results yield the following conclu-
sions. Multi-feature classifications significantly outperform
single-feature classification. For multi-feature classifications,



the performance is robust to the choice of the number of trees
in the random forest procedure. Amongst the multi-feature
classifications, the one based on the classical measures of
cross-temporal dynamics (features2) does not improve classi-
fication performance compared to the simplest concatenation
of the univariate features (features1). To the contrary, the
promoted eigen-wavelet approach to probing cross-temporal
dynamics, combined with the univariate features (features3),
improves significantly drowsiness related sleep-stage classi-
fication performance.
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Fig. 4: ROC curves (average ± standard deviation), for the
multivariate classifications with three different numbers of
trees.

AUC features1 features2 features3
Ntrees = 10 85.34±0.70 83.71±0.71 89.31±0.54
Ntrees = 25 86.25±0.64 85.29±0.85 90.11±0.54
Ntrees = 50 86.68±0.66 85.68±0.68 90.46±0.54

TABLE II: AUC (average ± standard deviation) for the
multivariate classification.

V. CONCLUSIONS

The present work has first quantified the benefits of
sleep multimodal monitoring in phase sleep classification.
Second, it has shown that compared to simply combining by
concatenation univariate features, the proposed multivariate
eigenwavelet approach strengthens sleep stage classification.
It clearly quantifies that cross-temporal dynamics amongst
modalities do carry information relevant to the sleep state
evaluation. This is because the smallest eigenvalues are able
to sense to low-intensity yet meaningful M−wise depen-
dencies amongst components that classical pairwise cross-
correlations may miss.
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