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Alternative design of DeepPDNet in the context of
image restoration

Mingyuan Jiu ∗ Nelly Pustelnik †

February 22, 2022

Abstract

This work designs an image restoration deep network relying on unfolded Chambolle-
Pock primal-dual iterations. Each layer of our network is built from Chambolle-Pock
iterations when specified for minimizing a sum of a `2-norm data-term and an analysis
sparse prior. The parameters of our network are the step-sizes of the Chambolle-Pock
scheme and the linear operator involved in sparsity-based penalization, including im-
plicitly the regularization parameter. A backpropagation procedure is fully described.
Preliminary experiments illustrate the good behavior of such a deep primal-dual net-
work in the context of image restoration on BSD68 database.

1 Introduction

Image restoration is a well-studied image processing task where there are still remaining
obstacles to be raised, among them, the design of faster algorithms to accurately restore
very large-scale images and the automatic adjustment of hyperparameters.

During the past twenty years, major improvements were made possible in this field with
the rise of proximal methods, especially primal-dual proximal methods, allowing to handle
with analysis sparse penalization in variational formulations and that drastically improved
the quality of the restoration (e.g. total-variation [1], sparse penalization applied on frame
coe�cients [2], non-local TV [3, 4]). However, the question of the hyperparameters selection,
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which has a major impact on the restoration result, stays a challenging task (see a contrario
SURE-based approaches [5, 6]).

A more recent alternative to nonsmooth optimization relies on supervised neural network
learning. The design can be made empirically, with a Plug-and-play (PnP) strategy, or in an
unrolled/unfolded fashion (see [7, 8, 9, 10] for review papers). The first class of approaches
leads to good performance but su↵ers from its “black-box” lack of interpretation. The sec-
ond and third ones appear to be more intuitive for experts in the field of image restoration
because their architectures rely on the combination of an objective function and an algo-
rithm, and may benefit from the inverse problem literature knowledge. The pioneering work
of unrolled algorithm for image analysis is the work by Gregor and LeCun [11] in a context
of sparse coding relying on forward-backward iterations. A large number of contributions
were then related to PnP strategy into ADMM iterations [12, 13, 14, 15, 16, 17, 18, 19] or
into primal-dual proximal (PDGH) splitting techniques [20, 21]. Unfolded proximal interior
point iterations have been studied in [22], and more recently, several unfolded proximal
primal-dual iterations have been proposed such as in [23, 24].

Context – Similarly as in [24], this work focuses on a restoration problem where

z = Ax + " (1)

involving a linear degradation A 2 RM⇥N and a Gaussian random degradation " ⇠

N (0,↵2IM) with a standard deviation ↵, and where the neural network architecture is built
from unrolled iterations of Condat-Vũ iterations [25, 26] associated to the minimization
formulation of this form:

bx� 2 Argmin
x2RN

1

2
kAx� zk22 + �g(Dx), (2)

where D 2 RP⇥N denotes the analysis sparsifying transform and g : RP
!] � 1,+1] is

typically a proper convex lower-semi continuous function, which models a sparse penaliza-
tion [27, 28] (i.e. a `1-norm or a `1,2-norm that favors coupling between coe�cients), and
� > 0 stands for the regularization parameter acting as a trade-o↵ between the data-fidelity
term and the penalization.

Contributions and outline – Considering Condat-Vũ iterations, the data-fidelity term
can be either activated through a gradient step or through a proximal step leading to two
di↵erent networks. In [24], the activation as a gradient step has been explored while the
contribution of this work focuses on its proximal activation, related to Chambolle-Pock it-
erations. Our contribution aims first to provide the associated neural network architecture
(cf. Section 2), to derive a backpropagation procedure in order to learn the algorithmic pa-
rameter step-sizes and the linear operator D (and implicitly the regularization parameter �)
as described in Section 3, and finally to illustrate the good behaviour of the proposed Prox-
imal activation (PA) DeepPDNet in the context of image restoration on BSD68 database
(cf. Section 4).
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2 Proximal activation of DeepPDNet

The design of our neural network relies on a criterion based on a reformulation of (2) in
order to facilitate the joint learning of � and D, which writes

bx 2 Argmin
x2RN

1

2
kAx� zk22 + h(Lx). (3)

where L 2 RP⇥N implicitly combines the information of � and D and where h is a convex,
lower semi-continuous, and proper function from RP to ]�1,+1].

2.1 Chambolle-Pock iterations

The Chambolle-Pock iterations [29], in the specific context of (3), reads, for every k > 0,

8
><

>:

y[k+1] = prox�h⇤
�
y[k] + �Lx[k]

�

x[k+1] = (⌧A⇤
A+ I)�1(⌧A⇤z + x[k] � ⌧L

⇤y[k+1])

x[k+1] = x[k+1] + ✓(x[k+1]
� x[k])

(4)

where ✓, ⌧ and � are algorithmic parameters and where prox denotes the proximity operator
[30] which is defined for a proper convex lower semi-continuous function f : H!]�1,+1],
when H models a real Hibert space, as for every x 2 H, proxf (x) = argmin

y2H

1
2ky�xk22+f(y).

h
⇤ is the Fenchel-Rockafellar conjugate function of h and we recall that proxh⇤ can be

easily computed from proxh using Moreau identity prox�h⇤(y) = y � �proxh/�(y/�). Under
technical assumptions, especially involving the choice of the step-size ⌧ and �, the relaxation
parameter ✓, and the norm of L, the sequence (x[k])k2N is insured to converge to bx.

2.2 Reformulation of Chambolle-Pock iterations

As a preliminary step to understand our neural network architecture, we propose to rewrite
Chambolle-Pock iterations (4) when ✓ = 0 as it follows:

8
><

>:

y[k+1] = prox�h⇤
�
y[k] + �Lx[k]

�

x[k+1] = (⌧A⇤
A+ I)�1(⌧A⇤z + x[k] � ⌧L

⇤(y[k] + �Lx[k])

+�⌧L
⇤prox��1h

�
�
�1y[k] + Lx[k])

� (5)

3



or equivalently, 8
>>>>>><

>>>>>>:

h[k+1]
1 = ⌧A

⇤z + x[k] � ⌧L
⇤(y[k] + �Lx[k])

h[k+1]
2 = prox��1h

�
�
�1y[k] + Lx[k]

�

h[k+1]
3 = prox��h⇤

�
y[k] + �Lx[k])

�

x[k+1] = (⌧A⇤
A+ Id)�1(h[k+1]

1 + �⌧L
⇤h[k+1]

2 )

y[k+1] = h[k+1]
3

(6)

providing a link between Chambolle-Pock iterations and the following feed-forward network
architecture:

u[K] = H
[k]
⌘
[K]
�
G

[K]
. . . G

[2]
H

[1]
⌘
[1](G[1]u[1] + b

[1]) . . .+ b
[K]
�
. (7)

where u[k] =
�
(x[k])>, (y[k])>

�>
and having a hidden layer with three nodes denoted

h[k]
1 , h[k]

2 , h[k]
3 , and

8
>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>:

G
[k] =

0

B@
Id� ⌧�L

⇤
L �⌧L

⇤

L �
�1

�L Id

1

CA

b
[k] =

0

B@
⌧A

⇤z

0

0

1

CA

⌘
[k] =

0

B@
Id

prox��1h

prox�h⇤

1

CA

H
[k] =

 
(⌧A⇤

A+ Id)�1 (⌧A⇤
A+ Id)�1

�⌧L
⇤ 0

0 0 Id

!
.

(8)

2.3 Chambolle-Pock DeepPDNet

Given the training set S = {(xs, zs)|s = 1, . . . , I} where xs is the undegraded image and
zs is its degraded counterpart following degradation model (1). We build an inverse prob-
lem solver fb⇥ relying on a neural network architecture involving the parameters b⇥. The
estimation of these parameters relies on the following standard empirical loss:

b⇥ 2 Argmin
⇥

E(⇥) :=
1

I

IX

s=1

kxs � f⇥(A
⇤zs)k

2
2 (9)

where the proposed network writes, for every u 2 RN ,

f⇥(u) = H
[K]

⌘
[K]
�
G

[K]
. . . H

[1]
⌘
[1](G[1]u + b

[1]) . . .+ b
[K]
�
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with b⇥ = {b�[k]
, b⌧ [k], bL[k]

}1kK and
8
>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>:

G
[k] =

0

B@
Id� ⌧

[k]
�
[k]
L
[k]⇤

L
[k]
�⌧

[k]
�
L
[k]
�⇤

L
[k] (�[k])�1

�
[k]
L
[k] Id

1

CA

b
[k] =

0

B@
⌧
[k]
A

⇤zs
0

0

1

CA

⌘
[k] =

0

B@
Id

proxh/�[k]

prox�[k]h⇤

1

CA

H
[k] =

 
(⌧ [k]A⇤

A+ Id)�1
�
[k]
⌧
[k](⌧ [k]A⇤

A+ Id)�1
�
L
[k]
�⇤

0

0 0 Id

!

(10)

and the first and last layers are:
8
>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>:

G
[1] =

0

B@
Id� ⌧

[1]
�
[1]
�
L
[1]
�⇤
L
[1]

L
[1]

�
[1]
L
[1]

1

CA

G
[K] =

 
Id� ⌧

[K]
�
[K]

L
[K]⇤

L
[K]

�⌧
[K]

L
[K]⇤

L
[K] (�[K])�1

!

b
[K] =

 
⌧
[K]

A
⇤zs

0

!

⌘
[K] =

 
Id

proxh/�[K]

!

H
[K] =

⇣
(⌧ [K]

A
⇤
A+ Id)�1

�
[K]

⌧
[K](⌧ [K]

A
⇤
A+ Id)�1

L
[K]⇤

⌘
,

(11)

The dual variable in the first layer is set to y[1] = 0, and the last layer is also modified to
only output the primal variable, since the ground-truth of dual variable is not known.

3 Learning procedure

The estimation of b⇥ = {b�[k]
, b⌧ [k], bL[k]

}1kK relies on a gradient based strategy for each
parameter and whose iterations are, for every ` = 0, 1, . . ., and every layer k,

8
><

>:

⌧
[k]
`+1 = ⌧

[k]
` � �⌧

@E
@⌧ [k]

�
[k]
`+1 = �

[k]
` � ��

@E
@�[k]

L
[k]
`+1 = L

[k]
` � �L

@E
@L[k]

(12)

for some learning rate � > 0. The computation of @E
@✓[k]

where ✓ models either ⌧ , �, or L

relies on a backpropagation procedure such as:

@E

@✓[k]
=

@E

@u[K]

@u[K]

@u[K�1]
. . .

@u[k+1]

@u[k]

@u[k]

@✓[k]
(13)
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We set 8
><

>:

v[k] = G
[k]u[k�1] + b

[k]

w[k] = ⌘
[k](v[k])

u[k] = H
[k]w[k]

leading to
@u[k]

@u[k�1]
= H

[k]d⌘
[k](v[k])

dv[k]
G

[k] (14)

and
@u[k]

@✓[k]
= H

[k]

 
@⌘

[k](v[k])

@v[k]

✓
@G

[k]

@✓[k]
u[k�1] +

@b
[k]

@✓[k]

◆
+

@⌘
[k](v[k])

@✓[k]

!

| {z }
@w[k]

@✓[k]

+
@H

[k]

@✓[k]
w[k] (15)

The learning procedure is summarized in Algorithm 1.

Algorithm 1: Learning algorithm for PA-DeepPDNet

Input: Set b⇥0 = {b�[k]
0 , b⌧ [k]0 , bL[k]

0 }1kK .

Set G[k]
0 , b[k]0 , ⌘[k]0 , H [k]

0 according to (10) and (11).
Set �✓ > 0, where ✓ either denotes �, ⌧ , or L.

Data: Set u[1]s = A
⇤zs, s = {1, . . . , I}

1 for ` = 0, . . . , itermax do

2 Select one (or several) training sample u[1]s = A
⇤zs.

3 Compute u[K]
s = fb⇥`

(u[1]s ).

4 t 
dE

du
[K]
s

according to Eq. (16).

5 for k = K, . . . , 1 do

6 Compute du
[k]
s

d✓
[k]
`

according to (15).

7 Compute @E

@✓
[k]
`

according to (13): dE

d✓
[k]
`

 t⇥
du

[k]
s

d✓
[k]
`

.

8 Backpropagate considering (14): t t⇥
du

[k]
s

du
[k�1]
s

.

9 end

10 For every k, update the parameter ✓[k]:

11 ✓
[k]
`+1  ✓

[k]
` � �✓

@E

@✓
[k]
`

.

12 end

We give a closed form for each involved derivation in Algorithm 1:
• The error of loss E w.r.t. u[K]

s is

@E

@u[K]
=

2

I
(u[K]

� x). (16)
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• In the specific case where h = k · k1, the error of the hidden variable w[k] w.r.t. v[k] =

(v[k]1 , v[k]2 , v[k]3 ) is defined as:

@⌘
[k](v[k])

@v[k]
= (r>1 , r

>

2 , r
>

3 )
>
2 RN+2P (17)

where r1 = (1, 1, . . . , 1) 2 RN , and for every p 2 {1, . . . , P},

r2,p =

8
><

>:

1 if |v[k]2,p| >
1

�[k]

0 if |v[k]2,p| <
1

�[k]

[0, 1] if v[k]2,p = ±
1

�[k] ,

r3,p =

8
><

>:

0 if |v[k]3,p| > 1

1 if |v[k]3,p| < 1

[0, 1] if v[k]3,p = ±1.

(18)

• Since w[k] = (w[k]
1 ,w[k]

2 ,w[k]
3 ), are respectively the identity, the proximity operator of `1-

norm and the proximity operator of the conjugate of the `1-norm (corresponding to proxh/�[k]

and prox�[k]h⇤), so their sub-di↵erential w.r.t. �[k]
` are:

@w[k]
1

@�
[k]
`

= 0,
@w[k]

3

@�
[k]
`

= 0, (19)

@w[k]
2,p

@�
[k]
`

=

8
>>>>>><

>>>>>>:

0 |v[k]2,p| <
1

�[k]

1
�[k]2 v[k]2,p >

1
�[k]

�
1

�[k]2 v[k]2,p < �
1

�[k]

[0, 1
�[k]2 ] v[k]2,p =

1
�[k]

[� 1
�[k]2 , 0] v[k]2,p = �

1
�[k]

(20)
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z: 11.58 dB NLTV [3]: 23.76 dB MWCNN [31]: 17.75 dB

IRCNN [15]: 23.80 dB DeepPDNet [24]: 22.52 dB PA-DeepPDNet: 23.96 dB

Figure 1: Visual comparisons on BSD68 dataset for di↵erent methods with a uniform 5⇥ 5 blur
and a Gaussian noise with ↵ = 75. The images respectively correspond to the clean image, the
degraded one z, the restored ones by NLTV, MWCNN, IRCNN and the DeepPDNet and the
proposed PA-DeepPDNet (K = 10), as well as the PSNR below the image. The region in the blue
box are the zoomed region in the red box.

• The remaining gradient involved in Eq. (15) are:

@b
[k]
`

@⌧
[k]
`

=

0

@
A

⇤zs
0
0

1

A @b
[k]
`

@�
[k]
`

= 0
@b

[k]
`

@L
[k]
`

= 0 (21)

@G
[k]
`

@⌧
[k]
`

=

0

@
��

[k]
` L

[k]⇤
` L

[k]
` �L

[k]⇤
`

0 0
0 0

1

A (22)

@G
[k]
`

@�
[k]
`

=

0

B@
�⌧

[k]
` L

[k]⇤
` L

[k]
` 0

0 �(�[k]
` )�2

L
[k]
` 0

1

CA (23)

@G
[k]
`

@L
[k]
`

=

0

B@
�2⌧ [k]` �

[k]
` L

[k]⇤
` �⌧

[k]
`

1 0

�
[k]
` 0

1

CA (24)

@H
[k]
`

@�
[k]
`

=

✓
0 ⌧

[k]
` F

�1(⌧ [k]` ⇤2 + Id)�1
FL

[k]⇤
` 0

0 0 0

◆
(25)

@H
[k]
`

@L
[k]
`

=

✓
0 �

[k]
` ⌧

[k]
` F

�1(⌧ [k]` ⇤2 + Id)�1
F 0

0 0 0

◆
(26)

@H
[k]
`

@⌧
[k]
`

=

✓
F

�1
BF F

�1
CF�

[k]
L
[k]⇤ 0

0 0 0

◆
(27)

where the last expression is obtained using the specific property of circulant matrices A =
F

⇤⇤F , leading to (⌧A⇤
A+I)�1 = F

�1(⌧⇤2+I)�1
F . Consequently, B and C may be defined

as diagonal matrices where the diagonal elements are Bii =
�⇤2

ii

(⌧
[k]
[l] ⇤

2
ii+1)2

and Cii =
1

(⌧
[k]
` ⇤2

ii+1)2
.
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4 Numerical experiments

Database – In this section, we evaluate the performance of the proposed network to image
restoration task on the well-known gray version of BSD68 database [32], which contains 68
natural images of size 321⇥ 481 extracted from Berkeley dataset [32]. For the training, we
follow [33], and use 400 images of size 180⇥ 180 from the Berkeley dataset which does not
contain the 68 used for testing.

A patch-based strategy is adopted for the training procedure. We randomly collect a set
of 260000 patches of size 10 ⇥ 10 from the training dataset described previously. ADAM
strategy is used for the learning [34]. This learned local network is then slid on the test
images to obtain the restored image and evaluate the performance.

Performance Assessment –The performance are evaluated in terms of PSNR (i.e. Peak
Signal-to-Noise Ratio). Four di↵erent degradation scenarios are considered: 3⇥ 3 and 5⇥ 5
uniform blur and additional noises with standard deviation ↵ = 25, 50, and 75.

We compare the proposed PA-DeepPDNet (for Proximal Activation DeepPDNet) with
the standard TV [1], NLTV [3], EPLL [35] restoration procedures, with deep learning proce-
dures MWCNN [31], IRCNN [15], and our previous DeepPDNet [24] built from the gradient
activation of the data-fidelity term in the Condat-Vũ iterations. For the standard approaches
the regularization parameter is set by cross-validation on set12 dataset [36].

Architecture specificities – Inspired from the feature design in [24], we choose a mixture
of global and local sparse features to construct the L

[k], where each row models either a
global (dense) or local pattern (convolutional). We consider the design named f5s2n30 +
f7s3n30 + f10s10n30 leading to L[k]

2 R420⇥100. The L[k] is randomly initialized by a normal
distribution with standard deviation of 10�2.

We build a network with K = 10 layers and each layer is initialized with the same
parameters G

[k]
0 , ⌘[k]0 , b[k]0 and H

[k]
0 according to Eq. (10) and (11), where ⌧

[k]
[0] and �

[k]
[0] and

L
[k]
[0] are set to satisfy the constraint: ⌧

[k]
[0] �

[k]
[0]kL

[k]
[0]k

2
< 1. Once the network is initialized,

the parameters are updated by the proposed learning algorithm described in Sec. 3. In the
learning procedure, we adopt a mini-batch strategy with 200 samples for each batch and
8⇥ 105 maximal iterations.

Complexity analysis and comparison to DeepPDNet – When P � N (as considered
in this experimental section), the complexity cost for one forward layer operation can be
approximated as P 2 for DeepPDNet and 2P 2 for PA-DeepPDNet. Such complexity is con-
firmed by the experiment when the network forward procedures of the learned models are
evaluated per patch and lead to an average running time of 0.0022 (sec.) with DeepPDNet
(20 layers) and 0.0023 (sec.) with PA-DeepPDNet (10 layers)1.

1Matlab on a machine with Intel(R) i7-8550U CPU
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Results – The learned local network is slid on the image to obtain the restored images by
two fashions: i) the neighboring patches are restored independently (cf. PA-DeepPDNet-
Independent); ii) the neighboring patches have overlaps and a final average result is com-
puted for each pixel (cf. PA-DeepPDNet-Averaged), always leading to better performance.
The comparison results on the test set are shown in Tab. 1. It can be seen that: i) the
proposed PA-DeepPDNet outperforms the learned DeepPDNet; ii) when the noise standard
deviation becomes larger, the PA-DeepPDNet is better than other methods, except when
the noise level is ↵ = 25, where the proposed PA-DeepPDNet is 0.3dB lower than IRCNN.
A reasonable explanation comes from three possible reasons: i) the choice ✓ = 0 in Eq. (4),
which has been made in order to facilitate the learning but maybe at the price of a lack of
e�ciency; ii) the receptive field of the current local features, which is relatively small and
limited by the patch size (10⇥ 10); a backbone of o↵-shelf CNN module can be further in-
tegrated into the framework to improve the performance, especially when ↵ = 25; iii) when
the noise level overwhelms the blur (especially when ↵ = 75), the prior knowledge about
the blur (A in the Eq. (4) in the revision) takes more important role on the restoration and
it finally guides a better solution in the learning iterations. A deeper analysis will be done
in future work. Fig. 1 displays examples of original images, degraded images, and restored
ones by the di↵erent methods.

Method
Blur filter 3⇥ 3 Blur filter 5⇥ 5

↵ = 25 ↵ = 50 ↵ = 75 ↵ = 25 ↵ = 50 ↵ = 75
TV [1] 25.31 23.30 21.81 24.18 23.02 21.26

NLTV [3] 25.69 23.58 21.82 24.43 23.28 21.65
EPLL [35] 25.59 23.73 20.75 24.42 23.02 20.72

MWCNN [31] 25.94 24.00 17.87 24.29 23.05 17.49
IRCNN [15] 26.36 23.63 21.92 25.01 22.99 21.44

Learned DeepPDNet [24] 25.75 23.56 21.06 23.55 22.60 20.77
PA-DeepPDNet (Independent) 25.76 23.84 22.63 24.57 23.09 22.26
PA-DeepPDNet (Averaged) 26.02 24.09 22.87 24.69 23.29 22.36

Table 1: Comparison PSNR results of di↵erent methods on the BSD68 dataset from di↵erent
degradation configurations.

5 Conclusion

In this work, we propose Proximal alternative to our DeepPDNet. The backpropagation pro-
cedure is fully detailed allowing to reproduce easily this learning-based restoration strategy.
We experimented with the proposed approach on BSD68 dataset, and obtain competitive
results that are encouraging as being comparable to state-of-the-art results. However, in
future work, on one hand, an end-to-end the CNN network can be combined into frame-
work to further improve the performance; on the other hand, deeper analysis on complete
reformulation (4), including the learning of ✓, will certainly help improve the restoration
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performances. Additionally, the conclusion between PA-DeepPDNet and the learned Deep-
PDNet requires a deeper study as the boundary e↵ects are not dealt similarly.
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