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Abstract

Belinskaya’s theorem states that given an ergodic measure-preserving transfor-
mation, any other transformation with the same orbits and an L' cocycle must be
flip-conjugate to it. Our main result shows that this theorem is optimal: for all p < 1
the integrability condition on the cocycle cannot be relaxed to being in LP. This
also allows us to answer a question of Kerr and Li: for ergodic measure-preserving
transformations, Shannon orbit equivalence doesn’t boil down to flip-conjugacy.
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A Proof of Belinskaya’s theorem

1 Introduction

Given two ergodic measure-preserving (invertible) transformations 77,75 of a stan-
dard probability space (X, u), the conjugacy problem asks whether there is a third
measure-preserving invertible transformation S such that ST} = T5S. Although
the conjugacy problem is intractable in full generality, various invariants have been
devised over the years. Two of the most important ones are the spectrum and the
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dynamical entropy. The first completely classifies compact transformations [HvN42],
while the second completely classifies Bernoulli shifts [Sin59), [Orn70].

In this paper, we are interested in natural weakenings of the conjugacy problem
obtained through the notion of orbit equivalence. Two measure-preserving transfor-
mations 17, Ty are orbit equivalent if there is a measure-preserving transformation
S such that ST15~! and T have the same orbits (such an S is called an orbit equiv-
alence between 77 and 7). A stunning theorem of Dye states that all ergodic
measure-preserving transformations of a standard probability space are orbit equiv-
alent [Dye59|, so orbit equivalence for measure-preserving ergodic transformations
is a trivial weakening of conjugacy.

In order to circumvent this indistinguishability, we will compare orbit equiva-
lences between measure-preserving transformations in a quantitative way. This fits
into the emerging field of quantitative orbit equivalence for group actions. One of its
tacit aims is to capture meaningful geometric invariants, such as Fglner functions
IDKLMT20], growth rates [Ausl6b|, etc., or ergodic theoretic invariants, such as
dynamical entropy [Aus16al.

In our setup of measure-preserving transformations, quantifications will be im-
posed on orbit equivalence cocycles. Given an orbit equivalence S between two
ergodic measure-preserving transformations 77 and 715, the orbit equivalence cocy-
cles c1,co : X — 7 are the maps uniquely defined by the following equation: for all
rzeX

STy (z) = T2 S(x) and TyS(x) = ST (). (1)

Belinskaya’s theorem is probably the first result on quantitative orbit equiva-
lence. In the litterature, it is often stated as a symmetric result on integrable orbit
equivalence of ergodic measure-preserving transformations. However, her result is
asymmetric and can be stated as follows.

Theorem 1.1 (Belinskaya [Bel68|). Let T1 and Ty be two ergodic measure-preserving
transformations, let S be an orbit equivalence between them and suppose that the
previously defined cocycle c1 is integrable, i.e.

/ le1(2)] dya < +oc.
X

Then T1 and Ty are flip-conjugate: either Ty is conjugate to To or Tfl s conjugate
to TQ.

It is natural to wonder whether Belinskaya’s theorem remains valid if one weakens
the integrability assumptions. For example, one could ask that one of the orbit
equivalence cocycle belongs to LP(X, i) for some p € (0,1).

We will consider more general integrability assumptions. Given a function ¢: Ry —
R, we say that a measurable integer-valued function f is p-integrable if

/ (11 () ) < +o0.
X

Our first main result concerns orbit equivalence of measure-preserving transforma-
tions for which one of the orbit equivalence cocycles is ¢-integrable, for some sub-
linear function ¢, that is satisfying lim; 4~ ¢(t)/t = 0. This is for example the
case for ¢(t) = tP. With this integrability condition, the conclusion of Belinskaya’s
theorem does not hold.



Theorem 1.2 (see Theorem [L.14). Let ¢ : Ry — Ry be a sublinear function and Ty
be an ergodic measure-preserving transformation. Then there is an ergodic measure-
preserving transformation Ty and an orbit equivalence S between Ty and Ty such that
the associated cocycle c1 is p-integrable but the transformations Ty and Th are not
flip-conjugate.

The fact that the hypotheses on ¢ are fairly weak gives us much freedom. For
example, the above theorem even implies that Belinskaya’s theorem does not hold if
we assume that one of the two orbit equivalence cocycles belongs to LP(X, ) for all
p € (0,1). Indeed if we consider for instance the sublinear function ¢(t) = ¢/ In(t+1),
then p-integrability implies being in LP(X, u) for all p < 1.

A symmetric way to strengthen Theorem involves the concept of p-integrable
orbit equivalence. We say that two measure-preserving transformations are -
integrable orbit equivalent if there is an orbit equivalence S such that both orbit
equivalence cocycles ¢; and co are @-integrable. In this context, we obtain a similar
conclusion to Theorem [[L2] but we have to make one additional assumption on T;.

Theorem 1.3 (see Corollary BIT)). Let ¢ : Ry — Ry be a sublinear function. Let
T be an ergodic measure-preserving transformation and assume that (T1)™ is ergodic
for some n > 2. Then there is another ergodic measure-preserving transformation
T such that T1 and Ts are p-integrable orbit equivalent but not flip-conjugate.

Concrete examples of transformations to which this theorem applies are Bernoulli
shifts, irrationnal rotations on the circle and the m-odometer for any integer m.
One can show that the only ergodic measure-preserving transformations that are
not covered by this theorem are the ones that factor onto the universal odometer,
that is, the transformation ¢ — ¢t 4+ 1 on the profinite completion 7.

Let us point out that the proof of Theorem [[2] uses Theorem [[3] so the two
results are not independent. As we will explain later, Theorem also depends on
the Baire category theorem.

However, Theorem [[.3is somewhat more explicit. The starting point of the proof
is the following simple construction, which was already used in [LMI8, Thm. 4.8].
Let us fix an ergodic transformation 7; with (77)" ergodic. Suppose we have a
periodic transformation P all of whose orbits have cardinality n and are contained
in those of T7. Consider the transformation 75 obtained by composing P with the
transformation induced by 77 on a fundamental domain of P. Then 77 and T5
have the same orbits. However, (7)™ is not ergodic and thus 7; and T, are not
flip-conjugate. The heart of our proof is therefore to construct P so that the orbit
equivalence cocycles between T and T satisfy the required integrability conditions.

For many concrete measure-preserving transformations, explicit examples of such
periodic transformations P with specific integrability conditions can be obtained. We
will give details in the case of the Bernoulli shift, see Example 3.3

Shannon orbit equivalence and dynamical entropy A remarkable conse-
quence of Theorem [[.3] can be stated in the context of Shannon orbit equivalence, as
defined by Kerr and Li [KLL19]. Two measure-preserving transformations are Shan-
non orbit equivalent if there exists an orbit equivalence between them whose orbit
equivalence cocycles ¢; and c¢o have both finite Shannon entropy. After showing
that dynamical entropy is an invariant of Shannon orbit equivalence for measure-
preserving actions of many groups, such as Z" for every n > 2, they implicitly asked
whether dynamical entropy is an invariant of Shannon orbit equivalence for measure-
preserving transformations and wondered whether Shannon orbit equivalence could
actually directly imply flip-conjugacy. We show that it is not the case.



Theorem 1.4 (see Theorem B.I8). Let Th € Aut(X, u) be an ergodic transformation
and assume that (T1)™ is ergodic for some n > 2. Then there exists Ty € Aut(X, )
such that Ty and Ty are Shannon orbit equivalent but not flip-conjugate.

The above theorem is obtained by applying Theorem [[3] with any sublinear
function ¢ such that In(1+%) = O(p(t)). Indeed, for any such function, ¢-integrable
orbit equivalence implies Shannon orbit equivalence, see Theorem

We also observe that Shannon orbit equivalence preserves finiteness of dynamical
entropy, see Proposition B.2Il This is now subsumed by a recent preprint of Kerr
and Li who proved that the dynamical entropy is preserved under Shannon orbit
equivalence [KL22].

Question 1.5. For which unbounded sublinear metric-compatible functions ¢ is it
true that dynamical entropy is an invariant of (-integrable orbit equivalence?

By the above discussion, we already know that this holds for all ¢ such that
In(1+4¢) = O(¢(t)). On the other hand, using Dye’s theorem, it is not hard to
see that any two ergodic measure-preserving transformations are p-integrable orbit
equivalent for some sublinear unbounded function ¢ (cf. the proof of [DKLMT20),
Prop. 4.24]). So not every sublinear unbounded function satisfies the condition of
the question.

p-integrable full groups The proof of both our main results will make crucial
use of the notion of w-integrable full group. Whenever T is an ergodic measure
preserving transformation of the probability space (X, i), Dye defined a Polish group
[T], called the full group of 7. This group is by definition the set of all measure-
preserving transformations U of (X, 1) whose orbits are contained in T-orbits. More
precisely, U € [T] if there is a function ¢y, called the T-cocycle of U, such that
U(x) = Tv@)(z) for all 2 € X. The above stated theorem of Dye, that all ergodic
transformations are obit equivalent, was originally stated in terms of full groups:
whenever T7 and Tb are ergodic transformations, the full groups [T1] and [T3] are
conjugate.

In our context, once ¢ is fixed, the reasonable analogue of the full group asso-
ciated to this integrability condition, would be the set of transformations U € [T
such that the cocycle ¢y is ¢-integrable. However, for this set to be a subgroup of
[T], we will have to impose a mild restriction on ¢. We say that ¢ : Ry — R, is a
metric-compatible function if

e (subadditivity) for all s,t € Ry, (s +1t) < ¢(s) + ¢(t).
e (separation) ¢(0) = 0 and ¢(t) > 0 for all ¢ > 0.
e (monotonicity) ¢ is a non-decreasing function.

The name metric-compatible comes from the observation that whenever d is a
metric and ¢ a metric-compatible function, then pod is also a metric. The following
theorem is a combination of Lemma .14l and Theorem HE11

Theorem 1.6. Let ¢ be a metric-compatible function and let T be a measure pre-
serving transformation of the probability space (X, p). Then the set

1), = {U erls [ elleatolhan < +ox

is a group. Moreover the function

dpr (U, V) = /X (v () — ey ())du



is a complete, right-invariant and separable metric on [T'], whose induced topology
is a group-topology. In particular ([T),,d, ) is a Polish group.

It turns out that any sublinear function is dominated by a sublinear metric-
compatible function, see Lemma This will allows us to reduce the proof of
Theorems and [[3] to the case where ¢ is metric-compatible and thereby to
exploit the group structure of [T',.

Genericity of weakly mixing Let us come back to Theorem As the
conclusions of Theorem [[3are stronger, we just need to show Theorem [[.2] whenever
(T1)™ is non-ergodic for all n > 2. Observe that this condition is incompatible with
the notion of weakly mizing, as all the powers of any weakly mixing transformation
are ergodic. Therefore our strategy is to provide for every ergodic transformation
T1 a weakly mixing transformation 75 which has the same orbits as 77 and whose
Ti-cocycle is p-integrable. We do not have any constructive argument for this and
we proceed through the Baire category theorem.

Theorem 1.7 (see Theorem [AI). Let ¢ be a sublinear metric-compatible func-
tion and let T € Aut(X,u) be an aperiodic element. Then the set of all measure-
preserving transformations in [T), which are weakly mizing and have the same orbits
as T is a dense Gy set in the Polish space of aperiodic transformations of [T',.

Besides the Baire category theorem, there are two other main ingredients in the
proof of Theorem [[L71 One is a result of Conze [Con72| which claims that starting
from any ergodic mesure-preserving transformation, the first return map to a generic
measurable subset gives rise to a weakly mixing transformation. The second is a
sublinear ergodic theorem which may be of independent interest.

Theorem 1.8 (see Theorem [LH]). Let ¢ : Ry — Ry be a sublinear non-decreasing
function. Let U € Aut(X, ) and f: X — C measurable such that o(|f|) € LY(X, p).
Then for almost every r € X

) —o

1
1im—<p<
non
>d,u:0.

The convergence also holds in L', that is

lim l(p <

n o Jxn

Outline of the paper In Section 2 after a few preliminaries, we present the
framework and establish basic properties of ¢-integrable full groups. In Section [l
we explain our construction of periodic transformations in p-integrable full groups
and use it to prove Theorem In Section [ we first prove that -integrable
full groups are Polish groups. We then use the Baire category theorem and prove
that weakly mixing elements are generic in the set of aperiodic elements in [T7],.
Combining this with Theorem [[L.2] we finally prove Theorem 3l In the appendix,
we present a proof of Belinskaya’s theorem which is due to Katznelson and is not
publicly available to our knowledge.

n—1

> F(UM)

k=0

n—1
> f(Uk@)
k=0




2 Quantitative orbit equivalence and full groups

2.1 Preliminaries

Throughout the paper, (X,u) will denote a standard probability space without
atoms. Recall that such spaces are measurably isomorphic to the interval [0,1]
equipped with the Lebesgue measure. A bimeasurable bijection T: X — X is a
measure-preserving transformation of (X, u) if for all measurable set A C X,
one has u(T7(A)) = u(A). We denote by Aut(X, ) the group of all measure-
preserving transformations of (X, u), two such transformations being identified if
they coincide on a conull set. The group Aut(X, ) will be equipped with the uni-
form metric d, defined by

du(Tl,TQ) = ,u({x € X: Tl(.%') 7§ TQ(.%')})
This metric is bi-invariant and complete [Hall7, p. 73].

Remark 2.1. One can always modify measure-preserving transformations on null-
sets without changing its equivalence class in Aut(X, p). Indeed the saturation of
any null set is still a null set. This will often be used implicitly in the sequel.

The support of a measure-preserving transformation 7' € Aut(X, p) is the mea-
surable set supp(T') .= {x € X: T(x) # x}.

A measure-preserving transformation 7" € Aut(X, ) is periodic if the T-orbit of
almost every x € X is finite. A fundamental domain of a periodic transformation
T € Aut(X, p) is a measurable subset A C X which intersects almost every T-orbit
at exactly one point. Every periodic transformation admits such a fundamental
domain, as can be seen by fixing a Borel linear order < on X and taking for D
the set of <-least points in each orbit of the transformation. A measure-preserving
transformation T € Aut(X, ) is aperiodic if the T-orbit of almost every x € X is
infinite. It is ergodic if every T-invariant measurable set is either null or conull.

The full group of a measure-preserving transformation 7' is the group

[T]:={U € Aut(X,pn): Vx € X, In € Z such that U(z) =T"(z)} .

Remark 2.2. Note that U € [T] if and only if the U-orbit of every point z € X is
contained in the T-orbit of x. By Remark 2], we actually have that U € [T] if and
only if the U-orbit of almost every point z € X is contained in the T-orbit of x.

Two measure-preserving transformations 77,75 € Aut(X,pu) have the same
orbits if for almost every x € X, the Ti-orbit of x coincides with the T5-orbit of
x. By the above remark, this is equivalent to following condition: 77 € [T5] and
T, € [T1]. We say that two measure-preserving transformations 77,75 € Aut(X, u)
are orbit equivalent if there exists S € Aut(X, ) such that ST1S~! and Ty have
the same orbits, that is ST1S™! € [Ty] and T, € [ST1S™1].

Fix an aperiodic transformation 7" € Aut(X,pu). Any U € [T] is completely
determined by its T'-cocycle, defined as the unique function cy: X — Z satisfying
the equation U(z) = T°®) () for all x € X. The T-cocycle satisfies the so-called
cocycle identity: given U,V € [T], we have

cov(z) =cy(V(x)) + cy(x) for all z € X. (2)

Let T' € Aut(X, ) and A C X be a measurable subset. The first return time
of T to A is the map nr 4: A — N* defined by

nr,A(x) = min{n € N*: T"(z) € A}.
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This function is well-defined up to measure zero by Poincaré’s recurrence theorem.
For convenience, we extend nr 4 to all X, setting it to be 0 on X \ A. Kac’s lemma
[Kac47| yields the following inequality

/ nroa(z)dp < 1. (3)
X

The first return map of T with respect to A is the transformation Ty € [T] <
Aut(X, p) defined by
Ta(z) = TrA@) ().

By definition, we have supp(7T4) = A and x,y € A are in the same T-orbit if and
only if they are in the same T4-orbit. Whenever T is aperiodic, the first return time
nrt 4 coincides with the T-cocycle cr, of T4.

Lemma 2.3. Let T' € Aut(X,p), let P € Aut(X,pu) be a periodic transformation
and D a fundamental domain of P. Let U := TpP. Then the following are true.

(1) Up =Tp.
(1t) If x € D and n(z) is the cardinality of the P-orbit of x, then ny p(z) = n(z).
(iii) If P € [T], then T and U have the same orbits.

Proof. We first prove () and (). Clearly Up(z) = Tp(z) = z for every x ¢ D.
Since D is a fundamental domain for P, for all z € D and i € {1,...,n(x) — 1}, we
have Pi(z) ¢ D. Since Tp(x) = z for all z ¢ D, we deduce by induction that

Ul(x) = Pi(z)¢ Dforallz € D and i € {1,...,n(z) — 1}.

So for all z € D, one has U™ (z) = UU™®)~(z) = TpP"®)(z) = Tp(x). This
shows Item () and ({).

We now prove Item (). Clearly, U € [T]. We need to show that T' € [U].
Observe that for almost every z, the U-orbit of = meets D: indeed, if x € P*(D) for
i€ {l,...,n(x) — 1}, then U~%(x) = P~%(x) € D. Since being in the same orbit is
an equivalence relation, it is enough to show that any two points in D, which belong
to the same T-orbit, are in the same U-orbit. This follows directly from (). O

We will also need the following lemma which can be proven with the same kind
of arguments as above.

Lemma 2.4. Let U € Aut(X,pu) and let A be a measurable subset of X which
intersects every U-orbit. Then (Ua)~ U is periodic and A is a fundamental domain
for it.

Proof. Since A intersects every U-orbit, for almost every x € X \ A there exists a
smallest n > 1 such that U~"(z) € A. Remark that (Ua)"'U)™"(x) = U "(z) € A
and hence A intersects every (Us) 'U-orbit. If x € A, then for every 0 < n <
ny,a(r) we have that

(U2)7I0)" () = U"(x) ¢ A and ((Ua)"tU)wA@) (z) = U UUA@ L (g) = o,

Since A intersects every (Ua)~!U-orbit, we obtain both that every (U4)~!U-orbit
is finite and that A is a fundamental domain for (U4)~1U. O



2.2 -integrable orbit equivalence and full groups
We first define the notion of w-integrable orbit equivalence.

Definition 2.5. Fix ¢: Ry — R,. Two aperiodic transformations 77,75 € Aut(X, u)
are @-integrable orbit equivalent if there exists S € Aut(X, ) such that ST;.S~!
and 75 have the same orbits and their respective cocycles are @-integrable. To be
more precise, we ask that

/ o(lesms-1(2)[)ds < +o0 and / o(lez, (@))d < +o,
X X

where cgp g-1 is the Th-cocycle of STy S~ and cr, is the ST S~ -cocycle of Ty,
defined for all x € X by the equations

STLS @) = T, (2) and Ty(a) = (ST S™)m) (@),

When ¢(t) = tP for some p € (0,+00), we recover the notion of L” orbit equiva-
lence.

Remark 2.6. We warn the reader that even though the term LP orbit equivalence
is often used in the literature, this terminology may sound a bit deceptive. Indeed,
since the integrability condition has no reason to be preserved under composition of
orbit equivalences, we do not expect ¢-integrable (even LP) orbit equivalence to be
an equivalence relation for every concave function ¢, although we don’t have any
counterexample. The fact that it is the case for p = 1 seems to be a rather artificial
consequence of Belinskaya’s theorem.

In our work, the function ¢ is at most linear and for our main theorems the
function is assumed to be sublinear, that is lim; , o p(t)/t = 0. For example
we are interested in the case of LP orbit equivalence for p < 1, or in the case of

o(t) =log(1l +1t).

In the context of ¢-orbit equivalence, it is natural to consider the the set of
measure-preserving transformations U whose cocycle c¢py is @-integrable. In order
for this set to be a group, the following conditions on ¢ are required.

Definition 2.7. A function ¢: Ry — R, is metric-compatible if:
e (subadditivity) for all s,t € Ry, (s +1t) < ¢(s) + ¢(t).
e (separation) ¢(0) = 0 and ¢(t) > 0 for all ¢ > 0.

e (monotonicity) ¢ is a non-decreasing function.

Example 2.8. Any concave function ¢: Ry — R, that satisfies ¢(0) = 0 and
o(t) > 0 for all t > 0 is metric-compatible. In particular for every p < 1, the function
©(t) = tP is metric-compatible. It is moreover sublinear whenever p < 1. Other
examples of sublinear metric-compatible functions are given by ¢(t) = log(1 +t) or

o(t) =t/log(2 + ).

The term “metric-compatible” was coined because of the following property:
whenever d is a metric on a set X, then ¢ od is also a metric on X.

Convention. For all ¢t € R, we use the notation

ltle = (]t])-

The map (s,t) — |s — t|, is a metric on R.

8



Definition 2.9. Let ¢: Ry — R, be a metric-compatible function. The ¢-integrable
full group of an aperiodic transformation 7' € Aut(X, u) is

), = {U €Tl [ Jav(@lpan < +oo}.

where cy: X — Z denotes the T-cocycle of U.

Given a metric-compatible function ¢, the ¢-integrable full group [T, is indeed
a group: given U,V € [T, the cocycle identity implies that

cov-1(z) = co (V@) + ev-1(z) = cv (V7 (@) — ev (VT (@)

We then get that
[ teovrt@lodi < [ Ja v @lodnt [ vV e)ldu
— [Jev@lod+ [ lev@lodn < +x. (4)
X X

Example 2.10. If ¢ is any metric-compatible function which is bounded, then
[T], = [T] and if ¢ is the identity map, then we recover the L! full group [T
defined by the third named author in [LMI8]. Any other such ¢ gives rise to newt!
examples of full groups, such as L full groups [T, for 0 < p < 1 obtained with the
function ¢(t) = tP, or else [T]jos obtained with the function ¢(t) = log(1 +t).

Remark 2.11. Given a metric-compatible function ¢, it is now straightforward to
check that two aperiodic transformations 77, Ty € Aut(X, u) are ¢-integrable orbit
equivalent if and only if there is S € Aut(X,u) such that ST3S™! € [T3], and
T, € [ST1S71],. However, the notion of ¢-orbit equivalence is a priori weaker than
conjugacy of g-integrable full groups. Indeed conjugacy of p-integrable full groups is
an equivalence relation but y-integrable orbit equivalence may not be, see Remark
This is in contrast with the case of classical orbit equivalence, see [Kecl0)
Thm. 4.1].

In our two main results, namely Theorem and [[L3] the sublinear function ¢ is
not assumed to be metric-compatible. The following lemma will allow us to reduce
to the case where ¢ is in addition metric-compatible.

Lemma 2.12. Let p: Ry — Ry be a sublinear function. Then there is a sublinear
metric-compatible function ¥ : Ry — Ry such that p(t) < (t) for allt large enough.

Proof. Set

6: Ry — Ry, 6(t) :=min <1,sup M) ;

s> S
t t
v: Ry = Ry, o(t) = /0 0(s)ds.

Noting that 6 is positive-valued and non-increasing, it is straightforward to check
that 1) is non-decreasing, subadditive and that ¢ (¢) = 0 if and only if ¢ = 0. Moreover

'We can actually characterize when [T], = [T'],, and more generally when [T, < [Ty, see Proposi-
tion



the fact that 6(¢) tends to 0 as ¢ approaches +oo implies that ¢ is sublinear. Now
remark that for every ¢ € RY

o(t) = /0 0(s)ds > /0 0(t)ds = t(t).

1
For t € RY large enough so that sup M < 1 we finally have
s>t S
1 1 t 1
10(t) = tsup P g PO S 0O L s L
s>t s s>t s t
so we are done. O

Remark 2.13. Given a sublinear function ¢, Lemma [2.12] grants us a sublinear
metric-compatible function v such that p(t) < ¥(t) for all ¢ large enough. Therefore,
for any measurable function f: X — Z we have

/ (| f(x)])dp < +oo implies that / (| f(z)))dp < +oo.
X X
In particular, i-integrable orbit equivalence implies p-orbit equivalence and any

element in a ¥-integrable full group will have ¢-integrable cocycle.

We will state most of our results in the comfortable context of (sublinear) metric-
compatible functions. However, many of our statement could be easily generalized
to the general context of sublinear functions through Remark 2131 We will explicitly
do so only in our main theorems, Theorem and [[L3]

2.3 Metric properties of p-integrable full groups

We now introduce and study a natural extended pseudo-metric on full groups from
which ¢-integrable full groups naturally arise.

Lemma 2.14. Let ¢: Ry — Ry be a metric-compatible function and let T €
Aut(X,p) be an aperiodic transformation. Let dyr: [T] x [T] — Ry U {+00} be
the function defined by

da(U.V) = [ Jev(a) = ov(a)lodn

Then the following are true.

(i) The group [T, is determined by d, r:
[T, ={U € [T]: d,r(U,id) < +o0}.

(ii) The restriction of dyr to [T, x [T, is a metric on [T|, which is right-
invariant, that is, for all U,V,W € [T,

dor(UW, VW) =d,r(UV).
Proof. Item ({) is an immediate consequence of the definition of [T7],.

Let us now prove Item (). The fact that dy 7 is a metric is a straightforward
consequence of the fact that (s,t) — |s — ¢t » is a metric on R. The right-invariance
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follows from the cocycle identity (2) and the fact that the transformation W is
measure-preserving:

dor@W.VW) = [ Jeow(@) - cvwl)l, du
- /X e (W (@) — ev (W (@), di

:/X|CU(x)—cv(x)|d,u
:d%T(U,V). |

Example 2.15. Consider the metric-compatible function ¢ := min(idg,,1). Then
it is straightforward to check that d, 7 = d, is the uniform metric on [T'] = [T,.

Another example is obtained by taking ¢ = idg, ; we then recover the L' metric
on the L! full group [Ty = [T],.

In order to compare p-integrable full groups, we are led to compare asymptot-
ically metric-compatible functions. We will use the following standard notation:
given two real-valued functions f and g, we write f(t) = O(g(t)) as t — +oc if there
exist g > 0 and C > 0 such for all t > ¢y, we have |f(t)] < C|g(t)]. Since the
functions we consider are subadditive, it is enough to compare them on the integers.

Lemma 2.16. Let ¢, 1 be two metric compatible function. Then the following are
equivalent.

(i) o(t) = O(t)) as t — +o0.
(ii) There exists C > 0 such that ¢(t)
(i1i) There exists C > 0 such that (k)

C(t) for allt > 1.
Cy(k) for all integer k € N.

NN

Proof. We first prove that (i) implies (). Let to > 1 and D > 0 such that for all
t > tg, we have p(t) < Dy(t). Set C' = max(D,¢(tg)/1(1)) and observe that since
¢ and 1) are non-decreasing, ¢(t) < Cy(t) for all t > 1.

The implication () = () is straightforward, so we are left with proving
() = @). Let C > 0 such that ¢(k) < Cy(k) for all integer k¥ € N. Fix a real
number ¢t > 2 and let n € N* such that n <¢ < n + 1. Then we have

(1) < pn+1) < Cb(n +1) < C(H) + (1)) < C (1 ; %)) (),

and since ¥ (t) = (1) for every ¢t > 1, the proof is complete. O

We now compare @p-integrable full groups for different metric-compatible func-
tions.

Lemma 2.17. Let ¢ and v be two metric-compatible functions and fix an aperiod
transformation T € Aut(X,n). If o(t) = O(W(t)) as t — 400, then [Ty, < [T],.
Moreover, the inclusion map is Lipschitz.

Proof. By Lemma [2.T6], there is C' > 0 such that ¢(k) < C(k) for all integer k € N.
Let U,V € [T]. Then for almost every = € X,

lcv (@) — ev(z)|p < Clev(z) — v ()]

Integrating over X, we get that d, (U, V) < Cdy, 7 (U, V). The lemma now follows
immediatly. O
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Corollary 2.18. Whenever T is an aperiodic measure-preserving transformation,
we have

and the inclusion maps are Lipschitz,

Proof. Since ¢ is subadditive, we have ¢(t) = O(t) as t — +o00. Moreover min(1,t) =
O(¢(t)) as t = +o0. The conclusion now follows from Lemma 217 O

We will show in Proposition 22 that Lemma [2.17]is an equivalence. For this, we
will make a crucial use of the fact that the topologies induced by these metrics are
Polish group topologies, see Theorem FT1

Remark 2.19. Let dr: X x X — Ry U{+00} be the extended metric on X defined
by
dr(z,y) =inf{n e N: T"(z) =y or T"(y) = z}.

Then by definition of the T-cocycle of any U € [T], we have that for all x € X
dr(U(z),z) = |cy(x)|. For all U,V € [T],, the cocycle identity implies that
cyy-1(z) = cy (V1)) — ey (V~1(x)). Since V preserves the measure, we obtain

dor(U,V) = [ |eu(V7H(z)) = ev(V7H(2))ly

We won’t use this formula thereafter. However, this point of view allows one to
define @-integrable full groups of non-necessarily free actions of finitely generated
groups. Some of the arguments given in this paper work in this wider context; this
will be examined in an upcoming work.

3 Flexibility of p-integrable orbit equivalence

3.1 Construction of cycles in ¢-integrable full groups

An n-cycle, n > 2, is a periodic transformation P € Aut(X, u) whose orbits have
cardinality either 1 or n. The aim of this section is to prove the following result.

Theorem 3.1. Let p: Ry — Ry be a sublinear metric-compatible function. Let
T € Aut(X, ) be aperiodic. Then for all measurable A C X and all integer n > 2,
there exists an n-cycle P € [T], whose support is equal to A.

Remark 3.2. The hypothesis that ¢ is sublinear is necessary, as the result is false
for L! full groups of certain aperiodic transformations. Indeed if T € Aut(X, u) is
ergodic, then there exists an n-cycle in [T]; whose support is A C X if and only
if exp(2im/n) is in the spectrum of the restriction of T4 to A [LMI8, Thm. 4.8|.
In particular the L! full group of the Bernoulli shift contains no n-cycle with full
support for any n > 2. By contrast, Theorem B.1] says that as soon as p < 1, its LP
full group contains an n-cycle of full support for every n > 2.
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Example 3.3. In certain concrete situations, we can exhibit explicit involutions.
Let T be the Bernoulli shift on ({0,1}, x)®%, where & is the uniform measure on
{0,1}. Then for every 0 < p < 1/2, there exists an involution in [T], with full
support and fundamental domain Xg := {(2,)nez € {0,1}%: 29 = 0}.

Indeed, for all © € Xy, let N(x) be the infimum of n > 1 such that 1 appears
strictly more often than 0 in {z1,...,2,}. Then the map 7: z € Xy — TN@(2) €
{0,1}%\ Xy is almost everywhere well-defined and injective. Thus it can be extended
to an involution P € [T] with full support and fundamental domain Xj. Standard
estimates on the simple random walk on Z imply that P belongs to [T, for all
0<p<1/2

Remark 3.4. Theorem B.] tells us that any measurable subset A C X is the sup-
port of an involution. The situation is less flexible regarding fundamental domains.
For example, the subset X introduced in the previous example cannot be the fun-
damental domain of any involution in the LP full group of the Bernoulli shift for
1/2 < p < 1, as a consequence of a result of Liggett [Lig02]. Note that his result is
more general and stated in probabilistic terms; the connection to our context and a
purely ergodic-theoretic version of his proof will be presented in the second named
author’s PhD thesis.

A partial measure-preserving transformation of (X, u) is a bimeasurable
measure-preserving bijection 7 between two measurable subsets dom(w) and rng()
of X, called respectively the domain and the range of m. The support of «w is the
set

supp(m) == {z € dom(n): 7(z) # x} U {z € rg(r): 7 }(x) # z}.

A pre-cycle of length n > 2 is a partial measure-preserving transformation 7 : dom(mr) —
rng(m) of (X, u) such that if we set B := dom(7) \ rng(7), then

o {7%(B),..., 7" 2(B)} is a partition of dom(r),
o {7!(B),..., 7" 1(B)} is a partition of rng(r).

The set B = dom() \ rng(m) is called the basis of the pre-cycle 7.
A pre-cycle 7 of length n can be e