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Abstract. We introduce SQISignHD, a new post-quantum digital sig-
nature scheme inspired by SQISign. SQISignHD exploits the recent al-
gorithmic breakthrough underlying the attack on SIDH, which allows
to efficiently represent isogenies of arbitrary degrees as components of a
higher dimensional isogeny. SQISignHD overcomes the main drawbacks
of SQISign. First, it scales well to high security levels, since the pub-
lic parameters for SQISignHD are easy to generate: the characteristic of
the underlying field needs only be of the form 2f3f

′
− 1. Second, the

signing procedure is simpler and more efficient. Third, the scheme is eas-
ier to analyse, allowing for a much more compelling security reduction.
Finally, the signature sizes are even more compact than (the already
record-breaking) SQISign, with compressed signatures as small as 105
bytes for the post-quantum NIST-1 level of security. These advantages
may come at the expense of the verification, which now requires the com-
putation of an isogeny in dimension 4, a task whose optimised cost is still
uncertain, as it has been the focus of very little attention.
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grant CIAO (ANR-19-CE48-0008) and PEPR PQ-TLS (the France 2030 pro-
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1 Introduction

Isogeny-based cryptography has been a promising area of research in post-
quantum cryptography since Couveignes, Rostovtsev and Stolbunov introduced
the first key exchange using ordinary isogenies [Cou06; RS06]. Schemes from
this family often distinguish themselves by their compactness, in particular
with respect to key sizes. It is notably the case of the digital signature scheme
SQISign [DKLPW20; DLW22], the most compact post-quantum signature scheme
by a decent margin. However, efficiency has been a recurring challenge for
isogeny-based schemes, and indeed, SQISign is much slower than other post-
quantum signatures.

In this paper, we introduce SQISignHD, a new digital signature scheme de-
rived from SQISign. As in [GPS16], SQISign uses the Deuring correspondence
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between supersingular elliptic curves and quaternion orders. This Deuring cor-
respondence is a powerful tool to construct cryptosystems because it is one way:
it is easy to turn an order into the corresponding elliptic curve, but the con-
verse direction is the presumably hard supersingular endomorphism ring prob-
lem [EHLMP18; Wes22]. In SQISign, the signer’s public key is a supersingu-
lar elliptic curve, and a signature effectively proves that the signer knows the
associated quaternion order. This requires algorithms to translate between or-
ders (and ideals in these orders) and elliptic curves (and isogenies from these
curves). This translation is costly, and crucially requires the ideals (or isogenies)
to have smooth norms (or degrees). The original methods have been improved
upon [DLW22], but that remains the bottleneck of SQISign. Another issue with
SQISign is its scalability to higher security levels. Indeed, to set public parame-
ters, one needs to find a prime p such that p2−1 has a very large smooth factor.
Searching for such primes p becomes harder as the security level grows, and is
still an active area of research [CMN21; BSC+22; Ahr23]. Besides, the security
of SQISign relies on the fact that signatures are computationally indistinguish-
able from random isogenies of fixed powersmooth degrees. There is no known
formal proof of this ad hoc heuristic assumption.

The new scheme SQISignHD follows a similar outline as SQISign, but re-
solves its main drawbacks by fundamentally reforging the computational ap-
proach. The main ingredient is the ground-breaking technique that has recently
led to the downfall of SIDH [CD22; MMPPW23; Rob22a]. Namely, these attacks
use a lemma due to Kani [Kan97] combined with Zahrin’s trick, which allows
one to “embed” any isogeny into an isogeny of higher dimension. As remarked
in [Rob22b], this technique allows one to describe an isogeny by listing only
the image of a few well-chosen points; from this description, one can efficiently
evaluate the isogeny on any other point, regardless of the factorisation pattern
of the underlying isogeny. This newly gained freedom on usable isogenies allows
SQISignHD to overcome the main drawbacks of SQISign.

Our contribution. We introduce the digital signature scheme SQISignHD.
It leverages recent algorithmic breakthroughs [CD22; MMPPW23; Rob22a] to
overcome the main drawbacks of SQISign. It has the following advantages:

– SQISignHD scales well to high security levels. Indeed, while SQISign requires
a search for primes p with strong constraints, the primes used in SQISignHD
may be of the form c2f3f

′ − 1, where c is some (preferably small) cofactor.
Such primes, already used in SIDH [JD11], are easy to find, and allow for
efficient field arithmetic.

– The signing procedure of SQISignHD is simpler and more efficient than
SQISign. Let us stress that no high dimensional isogeny needs to be com-
puted when signing. Preliminary implementation results show that key gen-
eration and signature times are both significantly better than SQISign. The
implementation, and a precise performance analysis, will soon be made avail-
able.
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– SQISignHD is easier to analyse, allowing for a much more compelling security
reduction to the supersingular endomorphism problem. Unlike in SQISign,
our proof of the zero-knowledge property in SQISignHD relies on simple and
plausible heuristic assumptions. In fact, we propose two variants of SQISign,
one of which is less efficient but benefits from a heuristic-free analysis. In
both cases, the zero-knowledge property is based on a simulator which is
given access to a non-standard oracle. We carefully discuss the impact of
this oracle on the supersingular endomorphism problem.

– SQISignHD signatures are even more compact than SQISign, as they are
only 6.5λ bits long, for λ bits of security. In particular, they are as small
as 105 bytes for the NIST-1 security level. SQISign already had the most
compact signature and public keys combined of all post-quantum signature
schemes, and SQISignHD breaks this record.

These advantages may come at the expense of the verification, which now re-
quires the computation of a chain of 2-isogenies in dimension 4 (or 8 in the
less efficient variant). We provide an algorithm for the verification, and an es-
timate of its complexity. Its implementation is left for future work, hence the
cost of verification is still uncertain. The verification in SQISign also requires
the computation of a (longer!) chain of 2-isogenies, but only in dimension 1.

1.1 A modular overview of SQISignHD

We will present two versions of SQISignHD, optimised in different directions.
FastSQISignHD is optimised for speed, while RigorousSQISignHD is optimised
for the security proof. Note that the security proof applies to both: the difference
lies in the proof being unconditional for RigorousSQISignHD when given access
to an oracle, but requiring additional heuristics for FastSQISignHD (see Sec-
tion 6.2 and Section 6.3). Under the hood, FastSQISignHD relies on isogenies
of dimension 4, while RigorousSQISignHD relies on isogenies of dimension 8.
The reader may sense the parallel with the heuristic (dimension 4) and rigorous
(dimension 8) variants of the algorithms of [Rob22a].

We present here the main algorithmic building blocks of SQISignHD to give
a modular overview of the protocol. Those algorithms will be presented in detail
in the course of the paper for the fast and rigorous version of SQISignHD.

Public set-up. We choose a prime p and a supersingular elliptic curve E0/Fp2
of known endomorphism ring O0

∼= End(E0) such that E0 has smooth torsion
defined over a small extension of Fp2 (of degree 1 or 2). In practice, one may use
the curve E0 : y2 = x3 + x (and p ≡ 3 mod 4).

Key generation. The prover generates a random secret isogeny τ : E0 −→ EA
of fixed smooth degree Dτ . Then, the prover publishes EA. Knowing τ , only
the prover can compute the endomorphism ring End(EA). In the fast method
FastKeyGen, the isogeny τ has degree Dτ = Θ(p), which is heuristically sufficient
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to ensure that the distribution of EA is computationally indistinguishable from
uniform. In the alternate method RigorousKeyGen, the degree is chosen a bit
larger to make the distribution of EA statistically close to uniform.

Commitment. The prover generates a random isogeny ψ : E0 −→ E1 of
smooth degree Dψ coprime to Dτ , and returns E1 to the verifier (ψ being secret).
The resulting distribution for E1 is as close as possible to the uniform distribu-
tion in the supersingular isogeny graph. As in the key generation, we propose a
fast procedure FastCommit(E0) in Section 4.3 resulting in a distribution heuris-
tically indistinguishable from uniform, and a slower variant RigorousCommit(E0)
in Section 4.4 which guarantees statistical closeness to uniform.

Challenge. The verifier generates a random isogeny φ : E1 −→ E2 of smooth
degree Dφ sufficiently large for φ to have high entropy. Then, φ is sent to the
prover. The Challenge procedure is described in Section 4.2.

Response. The prover generates an efficient representation of an isogeny σ :
EA −→ E2 of small degree q ≃ √p in the sense of the following definition and
returns it to the verifier.

Definition 1.1.1. An efficient representation of an isogeny φ : E −→ E′ defined
over a finite field Fq is given by a couple (D,A ) where:

(i) D is some data of size polynomial in log(deg(φ)) and log(q) determining the
isogeny φ in a unique way.

(ii) A is a universal algorithm independent of φ returning φ(P ) as input D and
P ∈ E(Fqk) in polynomial time in k log(q) and log(deg(φ)).

There always exists an efficient representation of a smooth degree isogeny.
For instance, it can be written as a chain of small degree isogenies. Until the
recent attacks on SIDH [CD22; MMPPW23; Rob22a], we did not know how to
efficiently represent isogenies with non-smooth degrees without revealing the en-
domorphism ring of the domain. For that reason, the original version of SQISign
uses smooth degree isogenies for the signature. These smooth degree isogenies
are found with a variant of the KLPT algorithm [KLPT14] and have very big de-
gree ≃ p15/4. This not only hurts efficiency, but also security: the isogeny σ is so
carefully crafted that it is hard to simulate, and as a result, the zero-knowledge
property of SQISign is very ad hoc.

Now, the methods from [CD22; MMPPW23; Rob22a] give much more free-
dom on the isogenies that can be efficiently represented. This allows SQISignHD
to improve both efficiency (using isogenies σ of degree as low as ≃ √p), and
security (the isogenies σ are now nicely distributed, hence simulatable).

The idea is to “embed” σ into an isogeny of higher dimension — and that only
requires knowing the image of a few points through σ. As in the attacks against
SIDH, such an isogeny can have dimension 2, 4 or 8. We shall see that dimension
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2 has little interest compared to the original SQISign protocol from an efficiency
and security point of view. In SQISignHD, we propose a response procedure Fast-
Respond to represent σ in dimension 4, and an alternative procedure Rigorous-
Respond based on an isogeny computation in dimension 8. The procedure Fast-
Respond is fast, and its security analysis relies on reasonable heuristics. On the
other hand, RigorousRespond is much slower (though still polynomial time), but
allows for a rigorous analysis.

In either case, for efficiency reasons, the prover does not actually compute
higher dimensional isogenies but only images of some points through σ (we
explain how these points are evaluated in the course of the paper). Those points
provide an efficient representation of σ (along with deg(σ)) and this data is sent
to the prover who can then compute higher dimensional isogenies representing σ.

Verification. The verifier checks that the response returned by the prover
(points of E2) correctly represents an isogeny σ : EA −→ E2. We propose two
procedures FastVerify and RigorousVerify computing isogenies embedding σ in
dimension 4 or 8. The efficiency of that task remains to be determined: isogeny
computations in dimension 4 has been the subject of very little literature, and no
implementation suited to the requirements of SQISignHD is presently available.
We refer to Appendix C for an estimate of the number of operations required for
the verification. We expect an optimized implementation to compare favourably
to the original SQISign procedure.

E0

τ
EA

ψ

E1

φ
E2

σ

Public

Prover’s secret

Fig. 1. General principle of the SQISign/SQISignHD identification protocol.

1.2 Constructing a signature with the Fiat-Shamir transform

We transform our identification protocol into a signature scheme using the Fiat-
Shamir transform [FS87] as in the original SQISign protocol.

Decomposing the degree of the challenge into primes Dφ :=
∏r
i=1 ℓ

ei
i and

setting µ(Dφ) :=
∏r
i=1 ℓ

ei−1
i (ℓi + 1), we define a secure hash function in the

supersingular {ℓ1, · · · , ℓr}-isogeny graph mapping a supersingular elliptic curve
E and an integer s ∈ J1 ; µ(Dφ)K to a cyclic Dφ-isogeny Φ(E, s). Such a hash
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function has been constructed in [DDF+21, § 3.1], which is a generalization of
[CLG09]. We also use another secure hash function H : {0, 1}∗ −→ J1 ; µ(Dφ)K.

Signature. To sign a message m with a secret key τ : E0 −→ EA, generate
a random commitment ψ : E0 −→ E1, let s := H(j(E1),m) and φ := Φ(E1, s) :
E1 −→ E2. From the knowledge of τ , φ and ψ, construct an efficient represen-
tation R = (σ(P1), σ(P2), q) given by the image of torsion points by a response
isogeny σ : EA −→ E2 and return (E1, R) as a signature.

Verification. A verifier receiving a signature (E1, R) associated to the mes-
sage m and public key EA computes s = H(j(E1),m) and then φ = Φ(E1, s) :
E1 −→ E2. The verifier finally checks that R represents correctly an isogeny
σ : EA −→ E2 by computing a higher dimensional isogeny, as explained previ-
ously.

Once it is established that the SQISignHD identification protocol is com-
plete, sound, and honest verifier zero-knowledge, and assuming the hardness of
the endomorphism ring problem, we obtain a universal unforgeable signature
against chosen message attacks in the random oracle model [VV15, Theorem
7]. Completeness will be clear by construction: a honest verifier always accepts
a honest execution of the protocol. Other security assumptions (especially the
zero-knowledge property which is the less trivial) will be justified in Section 6
for both FastSQISignHD and RigorousSQISignHD.

1.3 Contents

The rest of this paper is organized as follows. In Section 2, we give mathematical
background and recall some algorithms for the effective Deuring correspondence
already introduced in previous versions of SQISign [DKLPW20; DLW22]. In Sec-
tion 3, we present the core idea of our paper: how to embed signature/response
isogenies in higher dimension with Kani’s lemma. Section 4 introduces algorithms
for key generation, commitment and challenge whereas Section 5 presents the re-
sponse and verification phase for both FastSQISignHD and RigorousSQISignHD.
A security analysis of both versions of the SQISignHD identification protocol is
conducted in Section 6. Finally, we discuss the expected performance of the
digital signature scheme derived from FastSQISignHD in Section 7.

Some proofs of our results are deferred to Appendix A. A slight difficulty in
the dimension 8 case is that for the security proof some coprimality conditions
may not be assumed, the response and verification to handle this case are treated
in Appendix B. Finally Appendix C details the verification algorithm when using
the theta model to compute isogenies in dimension 4 and 8, and in particular
gives an algorithm to compute a 2e-isogeny and the corresponding number of
arithmetic operations.

2 Preliminaries

2.1 Abelian varieties and their isogenies

An abelian variety A over a field k is a connected projective k-variety with an
algebraic group law (which is then automatically abelian by rigidity). Abelian
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varieties are generalizations of elliptic curves in any dimension. In particular,
elliptic curves are abelian varieties of dimension 1 and products of elliptic curves
are abelian varieties.

A morphism of abelian varieties is an algebraic map φ : A → B which is a
group homomorphism; by rigidity it suffices to check that φ(0A) = 0B . It is an
isogeny if it is surjective and has finite kernel. The degree of an isogeny is its
degree as a rational map. If φ is a separable isogeny, then deg(φ) = #ker(φ).
If deg(φ) is coprime with the characteristic p of the base field k, then φ is
automatically separable. As in elliptic curves, the multiplication by n map in an
abelian variety [n]A : A −→ A is an isogeny of degree n2g with g := dim(A) and
its kernel A[n] is isomorphic to (Z/nZ)2g when n is coprime with p.

To any abelian variety A, we associate its dual abelian variety Â, which
has the same dimension. The dual defines a contravariant functor: any isogeny
φ : A −→ B induces a dual isogeny φ̂ : B̂ −→ Â which has the same degree.
A polarization is an isogeny λ : A −→ Â induced by an ample line bundle. A
polarized abelian variety (A, λ) is principally polarized if λ is an isomorphism.

If n ∈ N∗ is coprime with p, then we have a non-degenerate pairing en : A[n]×
Â[n] −→ k

∗
called the Weil pairing. Given a polarization λ : A −→ Â, the Weil

pairing yields a non-degenerate antisymmetric pairing eλn : A[n]×A[n] −→ k
∗
.

Morally, a polarization can be seen as ”a way to represent an abelian variety”.
Indeed, in plain generality, we do not have nice analogues for the Weierstrass
model for elliptic curves, but every abelian variety can be described by a theta
model [Mum66b; Mum67a; Mum67b]. We refer to the notes of Milne [Mil86] or
the book of Mumford [Mum74] for a complete introduction to abelian varieties.

2.2 The Deuring correspondence

Quaternions, orders and ideals. Let Bp,∞ be the quaternion algebra over
Q ramifying at p and ∞. By [Piz80, Proposition 5.1], there exists a Q-basis
(1, i, j, k) of Bp,∞ with j2 = −p, k = ij = −ji and i2 = −1,−2,−q, when p ≡ 3
mod 4, p ≡ 5 mod 8 and p ≡ 1 mod 8 respectively, q being a prime such that
(−p/q) = 1. Bp,∞ has a conjugation α := x+iy+jz+kt 7−→ α := x−iy−jz−kt.
For all α ∈ Bp,∞, we define the reduced norm nrd(α) := αα and trace Tr(α) :=
α+ α.

A fractional ideal I ⊂ Bp,∞ is a Z-lattice of rank 4. We also define the
reduced norm of I as nrd(I) := gcd{nrd(α) | α ∈ I} and the conjugation I :=
{α | α ∈ I}. If I ⊂ J are two fractional ideals, then [J : I] = nrd(I)2/ nrd(J)2. If
(α1, · · · , α4) is a basis of I, then |det(Tr(αiαj))1≤i,j≤4|1/2 does not depend on
the basis. This invariant is called the the reduced discriminant of I and denoted
by discrd(I).

An order of O ⊂ Bp,∞ is a fractional ideal which is stable by multiplication
and contains 1. We say it is maximal if it is maximal for the inclusion. If I
is a fractional ideal, we define its left order OL(I) := {α ∈ Bp,∞ | αI ⊆ I}
and its right order OR(I) := {α ∈ Bp,∞ | Iα ⊆ I}. We say that I is a left
(respectively right) O-ideal when O ⊆ OL(I) (respectively O ⊆ OR(I)). We
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also say that I connects O and O′ when O = OL(I) and O′ = OR(I). I is
integral if I ⊂ OL(I). In this case, I ⊂ OR(I) and both OL(I) and OR(I) are
maximal. In the following, we shall only consider integral ideals and
simply refer to them as ideals. Two fractional ideals I ∼ J are equivalent
if there exists β ∈ B∗

p,∞ such that J = Iβ. In that case, OL(I) = OL(J) and
OR(I) = βOR(J)β

−1.

The Deuring correspondence. The Deuring correspondence due to Max
Deuring [Deu41] draws a parallel between the world of quaternions and the
world of supersingular elliptic curves. Indeed, if E/Fp2 is a supersingular elliptic
curve, then its endomorphism ring End(E) is isomorphic to a maximal order
O ⊂ Bp,∞.

Example 2.2.1. If p ≡ 3 mod 4, the elliptic curve E0 : y2 = x3 + x defined
over Fp is supersingular and has a very explicit endomorphism ring End(E0)
isomorphic to O0 := ⟨1, i, (i+j)/2, (1+k)/2⟩, where j corresponds to the Frobe-
nius endomorphism (x, y) ∈ E0 7−→ (xp, yp) ∈ E0 and i corresponds to the
automorphism (x, y) ∈ E0 7−→ (−x, ζy) ∈ E0 (with ζ ∈ Fp2 such that ζ2 = −1).

This is one of the very few examples where End(E0) can be easily and ex-
plicitly computed. Computing End(E) is difficult in general.

Let E be a supersingular elliptic curve and O := End(E). An isogeny ϕ :
E −→ E′ has a kernel ideal Iϕ := {α ∈ O | ∀P ∈ ker(ϕ), α(P ) = 0}, which is
a left O-ideal of norm nrd(Iϕ) = deg(ϕ). Conversely, any left O-ideal I defines
an isogeny ϕI : E −→ EI of kernel E[I] := {P ∈ E | ∀α ∈ I, α(P ) = 0} and
degree deg(ϕI) = nrd(I). We have IϕI

= I and ϕIϕ = ϕ so this correspondence
is one to one.

The Deuring correspondence between ideals and isogenies satisfies the follow-
ing properties: two equivalent ideals I ∼ J have isomorphic codomains EI ≃ EJ ,
the endomorphism ring of the codomain EI is End(EI) ∼= OR(I), the conjugate

I corresponds to the dual isogeny ϕ̂I , the kernel ideal of the composite ϕ ◦ ψ
isogeny is Iϕ◦ψ = Iψ · Iϕ, a principal ideal corresponds to an endomorphism.
For a thorough presentation of quaternions and the Deuring correspondence, we
recommend the book of Voight [Voi20].

Accessible torsion to make the Deuring correspondence effective. Mak-
ing the Deuring correspondence effective means computing the isogeny ϕI :
E −→ EI associated to an ideal I and conversely, computing the kernel ideal
Iϕ of a known isogeny ϕ : E −→ E′ when End(E) is known. Until recently, this
could be done in polynomial time only when the ideal norm/the degree is smooth
and the necessary nrd(I)-torsion to do these computations is ”accessible” in the
following sense.

Definition 2.2.2. Let E/Fp2 be a supersingular elliptic curve and T :=
∏r
i=1 ℓ

ei
i

be an integer, where the ℓi are distinct primes. We say that E has accessible T -
torsion if E[ℓeii ] is defined over an extension of Fp of degree polynomial in log(p)
for all i ∈ J1 ; rK.
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Usually, in cryptographic protocols we choose p to ensure the T -torsion is
defined over Fp2 or Fp4 to optimize T -isogeny computations when T is smooth.
In general, if T is B-powersmooth with B polynomial in log(p), the T -torsion is
always accessible and we can compute T -isogenies in polynomial time as a prod-
uct of low degree isogenies as in [EHLMP18, Proposition 4]. Until recently, those
were the only way to compute isogenies and make the Deuring correspondence
effective. In this work, we propose a method to compute isogenies of non-smooth
degree (see Section 3). We specialize it for SQISignHD but this could be easily
generalized.

2.3 Algorithms for effective Deuring correspondence

In this section, we recall already known polynomial time algorithms making
the Deuring correspondence effective. Those algorithms are used as ingredients
of SQISignHD. They were mainly introduced for previous versions of SQISign
[DKLPW20; DLW22].

Pushing the endomorphism ring through an isogeny. In this paragraph,
we introduce an algorithm to compute a basis of End(E) that we can easily
evaluate when we know an isogeny E0 −→ E and a basis of End(E0) (in practice,
E0 is the elliptic curve of Example 2.2.1).

Definition 2.3.1. Let E/Fp2 be a supersingular elliptic curve and O be a max-
imal quaternion order in Bp,∞ isomorphic to End(E). An eval-basis of End(E)

is the data of a basis (α1, · · · , α4) of O and an isomorphism ε : O ∼−→ End(E)
such that the ε(αi) can be evaluated at any point of E in polynomial time in
log(p). We say it is an N -eval-basis if we can only evaluate the ε(αi) on points
of order coprime with N .

For any left-ideal I ⊆ O, we define an (N -)eval-basis of I in a similar way.
Such a basis can be obtained from an (N -)eval-basis of End(E).

Assume that we know an eval-basis ((α1, · · · , α4), ε) of End(E0). Let ψ :
E0 −→ E1 be an isogeny of degree N with an efficient representation. Here, we
explain how to use ψ to compute an N -eval-basis of End(E1).

By [Voi20, Lemma 42.2.9], the map

ι : End(E1) −→ Bp,∞

ϕ 7−→
1

N
ε−1(ψ̂ ◦ ϕ ◦ ψ)

induces an isomorphism End(E1)
∼−→ O1 := OR(Iψ). Assuming that we know

Iψ, we can obtain a Z-basis (β1, · · · , β4) of O1 via the formula O1 = 1/NIψIψ
[Voi20, Proposition 16.6.15]. Then, ι−1 induces an isomorphismO1

∼−→ End(E1).
We now explain how to use ι−1 to evaluate the βi. Since NO1 = IψIψ ⊆ O0,

we can write

βi :=
1

N

∑
j=1

ci,jαj ,
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Algorithm 1: PushEndRing [EHLMP18, Algorithm 4]

Data: An eval-basis ((α1, · · · , α4), ε) of End(E0) and an isogeny ψ : E0 −→ E1

of degree N with known kernel ideal Iψ.
Result: An N -eval-basis (β1, · · · , β4) of End(E1).
1 Compute a Z-basis (β1, · · · , β4) of O1 := 1/NIψIψ;
2 Write βi := 1/N

∑
j=1 ci,jαj , with ci,j ∈ Z, for all i = 1, · · · , 4;

3 Let ε′ : O1
∼−→ End(E1), βi 7−→ 1/N

∑4
j=1 ci,jψ ◦ ε(αj) ◦ ψ̂;

4 Return (β1, · · · , β4) and ε′;

Algorithm 2: KernelToIdealD
Data: A point P ∈ E1 of smooth order D and an eval-basis ((β1, · · · , β4), ε′)

of End(E1) ∼= O1 that can be evaluated on E1[D].
Result: The ideal I(⟨P ⟩) ⊆ O1 associated to ⟨P ⟩.
1 Compute Qi := ε′(βi)(P ) for i = 1, · · · , 4;
2 Find i, j such that (Qi, Qj) is a basis of E1[D];
3 For k ̸= i, j, find a, b ∈ Z/DZ such that Qk = aQi+ bQj (discrete logarithm
problem);
4 Let γ := βk − aβi − bβj ;
5 Return O1γ +O1D;

with ci,j ∈ Z, for all i ∈ J1 ; 4K. We then have:

ι−1(βi) =
1

N2

4∑
j=1

ci,jψ ◦ ε(αj) ◦ ψ̂,

so we can indeed easily evaluate the βi on any point of E1 of order coprime
with N .

From isogenies to ideals. Let φ : E1 −→ E2 be a cyclic D-isogeny (with
D smooth) represented by a generator of its kernel P . We give an algorithm
KernelToIdealD (Algorithm 2) due to Leroux [Ler22, Algorithm 20] to compute
the ideal associated to a cyclic group ⟨P ⟩ of a supersingular elliptic curve E1

when we know an eval-basis of End(E1) that can be evaluated on E1[D]. This
algorithm is a variant of the algorithm introduced by Galbraith, Petit and Silva
[GPS16, Algorithm 2] with the same purpose.

Remark 2.3.2. Since D is smooth, the discrete logarithm problem in line 3 of
Algorithm 2 is easy to solve with Pohlig-Hellman methods generalized by Teske
to multiple discrete logarithms [PH78; Tes99].

Lemma 2.3.3. [Ler22, Lemma 4.22] Algorithm 2 terminates and is correct.

Kernel ideal computation. The two preceding algorithms immediately yield
an algorithm IsogenyToIdeal computing the kernel ideal of φ : E1 −→ E2 when
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Algorithm 3: IsogenyToIdeal

Data: An isogeny φ : E1 −→ E2 of degreeDφ, another isogeny ψ : E0 −→ E1 of
degree Dψ along with its kernel ideal Iψ and an eval-basis B0 of End(E0).

Result: The kernel ideal Iφ associated to φ.
1 Compute a Dψ-eval-basis B1 := PushEndRing(B0, ψ, Iψ) of End(E1);
2 Let P be a generator of ker(φ);
3 Iφ ←− KernelToIdealDφ(P,B1);
4 Return Iφ;

given an isogeny ψ : E0 −→ E1 of known kernel ideal Iψ and an eval-basis of
End(E0).

The KLPT algorithm. The KLPT algorithm was first introduced in [KLPT14]
for extremal orders (such as O0) and then generalized to other orders and im-
proved in [DKLPW20], [DLW22] and [Ler22]. In the following, we refer to the
version of KLPT introduced in [Ler22, Algorithm 7]. Given a left O0-ideal I and
a (smooth) integer N = Ω(p3), KLPTN (I) returns an equivalent ideal J ∼ I of
norm dividing N .

This algorithm is generally used when we want to compute an isogeny path
E0 −→ E. Given an ideal I connecting O0

∼= End(E0) to O ∼= End(E), which
may not have smooth norm, we find J ∼ I with KLPT of smooth norm N , so
that the isogeny associated to J , ϕJ : E0 −→ E can be computed.

From ideal to isogenies. Given a maximal order O and a left O-ideal J , we
have a straightforward way to compute the associated isogeny ϕJ : E −→ E′. We
evaluate a basis of J on E[nrd(J)] to compute E[J ] = ker(ϕJ) and then compute
ϕJ as a chain of small degree isogenies (assuming nrd(J) is smooth) using Vélu’s
formulas [Vél71]. Unfortunately, we might not have accessible nrd(J)-torsion,
especially if J is obtained from KLPT (nrd(J) = Θ(p3) when O = O0 and even
bigger otherwise).

In [DKLPW20, Algorithm 7], the authors introduced the SpecialIdealToIsogeny
algorithm to perform this computation with half of the torsion when O = O0

and when we know an alternate isogeny path. Assume we have accessible T -
torsion with T = Ω(p3/2). SpecialIdealToIsogeny takes as input two left-ideals
J, I ⊆ O0 of coprime norm such that I ∼ J and nrd(J)|T 2 along with the
isogeny ϕI : E0 −→ E associated to I. It returns the isogeny ϕJ : E0 −→ E
associated to J .

3 Representing the response isogeny efficiently in higher
dimension

In this section, we explore our main idea to improve SQISign by embedding the
signature isogeny inside an isogeny in higher dimension. We start by recalling



12 Pierrick Dartois, Antonin Leroux, Damien Robert and Benjamin Wesolowski

how the signature is represented in the original SQISign protocol in Section 3.1
and why this representation is slow to compute. Then, we introduce Kani’s
lemma and explain how to embed isogenies in higher dimension in Section 3.2.
Finally, we apply this idea to provide another representation of the signature
isogeny in SQISign in Section 3.3.

3.1 Representing isogenies in dimension 1: a slow signature process

In dimension 1, we can only efficiently represent isogenies of smooth degrees.
That is why in the original versions of SQISign [DKLPW20; DLW22], the sig-
nature isogeny σ has degree a prime power ℓe and is represented as a chain of
ℓ-isogenies.

To compute such a signature σ, the prover computes the ideal J associated
to τ̂ ◦ψ ◦φ and then applies a SigningKLPT algorithm to J , to return a random
equivalent ideal I ∼ J of norm ℓe. Then, the prover converts I into an isogeny.
This last computation is very costly because nrd(I) = ℓe is close to p15/4, while
the accessible torsion points have much smaller order. The method introduced
in [DKLPW20] (and later improved in [DLW22]) requires to cut J into several
pieces in order to compute σ as a chain of isogenies. This complicated mechanism
is by far the bottleneck in the signing algorithm.

In order to avoid this costly ideal to isogeny translation in SQISignHD, we
shall no longer require σ to have smooth degree and embed it in an isogeny of
dimension 4 or 8. This embedding will provide an efficient representation. We
expect such a representation in dimension 4 to be faster to compute than the
current one in the original SQISign (nonetheless, an implementation would be
needed to confirm it). We shall also explain why this improves security in section
Section 6.

3.2 Embedding isogenies in higher dimension with Kani’s lemma

In this section, we explain in more details this idea of embedding isogenies in
higher dimension. For that, we need a few definitions first.

Definition 3.2.1 (d-isogeny). Let α : (A, λA) −→ (B, λB) be an isogeny be-
tween principally polarized abelian varieties. We say that α is a d-isogeny if
α̂ ◦ λB ◦ α = [d]λA, where α̂ : B̂ −→ Â is the dual isogeny of α.

Equivalently, α is a d-isogeny if α̃ ◦ α = [d]A, where α̃ := λ−1
A ◦ α̂ ◦ λB is the

dual isogeny of α with respect to the principal polarisations λA and λB .

Definition 3.2.2 (Isogeny diamond). Let a, b ∈ N∗. An (a, b)-isogeny diamond
is a commutative diagram of isogenies between principally polarized abelian
varieties

A′ φ′
// B′

A

ψ

OO

φ // B

ψ′

OO
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where φ and φ′ are a-isogenies and ψ and ψ′ are b-isogenies.

Lemma 3.2.3 (Kani). We consider an (a, b)-isogeny diamond as above, with
d := a+ b prime to the characteristic of the base field of abelian varieties. Then,
the isogeny F : A×B′ −→ B ×A′ given in matrix notation by

F :=

(
φ ψ̃′

−ψ φ̃′

)

is a d-isogeny with d = a+ b, for the product polarisations.
If a and b are coprime, the kernel of F is

ker(F ) = {(φ̃(x), ψ′(x)) | x ∈ B[d]}.

This lemma has first been proved in [Kan97, Theorem 2.3]. We also give a
proof in Appendix A.1.

Remark 3.1. The existence of F : A × B′ → B × A′, implies the existence of
φ : A → B. We can recover φ as π ◦ F ◦ ι where ι is any embedding morphism
from A to A × B′ and π is the projection from B × A′ to B. Hence, F is an
efficient representation of φ.

3.3 Application of Kani’s lemma to SQISign

Let us now see how we propose to sign with Kani’s Lemma (Lemma 3.2.3) in
SQISignHD.

Signing in dimension 4. The idea is to embed the signature σ : EA −→ E2

in an isogeny of dimension 4. We consider the 2-dimensional q-isogeny Σ :=
Diag(σ, σ) : E2

A −→ E2
2 , the (a21 + a22)-isogeny

α :=

(
a1 a2
−a2 a1

)
∈ End(E2

A)

with a1, a2 ∈ Z, and α′, the analogue of α in End(E2
2). Then, we have an isogeny

diamond

E2
2

α′
// E2

2

E2
A

Σ

OO

α // E2
A

Σ

OO

yielding an N -isogeny (with N := q + a21 + a22):

F :=

(
α Σ̃

−Σ α̃′

)
∈ End(E2

A × E2
2).
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Notation 3.3.1. We shall denote F (σ, a1, a2) when we want to specify the
dependence of F on σ, a1, a2.

We choose the parameters q, a1, a2, so that N = ℓe, with ℓ a small prime and
e ∈ N∗ big enough but as small as possible. Provided that q and ℓ are coprime,
we know that

ker(F ) = {(α̃(P ), Σ(P )) | P ∈ E2
A[ℓ

e]},

by Lemma 3.2.3. Then, knowing ker(F ) we can compute F as an ℓ-isogeny chain
(see Section 5.5) and obtain an efficient representation of σ, as explained in
Remark 3.1.

It follows that our idea requires to compute ker(F ), which becomes easy once
we know how to evaluate σ on EA[ℓ

e], by the formula for ker(F ) given above. The
idea is to use the alternate isogeny path φ◦ψ ◦ τ̂ : EA → E2. Since the signature
requires to compute the three isogenies φ,ψ, τ , it will not cost too much to use
them in order to evaluate σ. There are several technicalities to make it work in
practice (such as to making sure that this alternate path has degree prime to ℓ)
but it is manageable (see Section 5.3).

Computing such a representation for the signature is simpler than in the orig-
inal SQISign protocol. This shifts the main computation effort to the verification,
where the actual isogeny in dimension 4 must be computed.

Nonetheless, even though we no longer impose q = deg(σ) to be smooth,
we still impose conditions on q to make it work. In practice, ℓe will be fixed by
the accessible torsion of elliptic curves and we shall need ℓe − q to be a prime
congruent to 1 modulo 4 in order to decompose it easily as a sum of two squares
ℓe− q = a21 + a22 by Cornacchia’s algorithm [Cor08]. In particular, q will need to
be relatively small (q ≃ ℓe ≃ √p). This choice of q ensures its coprimality with
ℓ, as required to compute ker(F ).

Definition 3.3.2. We say that an integer q is ℓe-good when ℓe − q is a prime
number congruent to 1 modulo 4.5

The issue of the signature distribution. Those restrictions on the degree q im-
pacts the distribution of signatures. For that reason, we need some plausible
heuristic assumptions to prove the zero-knowledge property of our scheme. This
can be fixed by going to the dimension 8 as long as q < ℓe ≃ √p as we shall
see in the next paragraph. This way, we shall obtain a uniform distribution of
signatures and a provably zero-knowledge scheme which is the purpose of our
scheme in dimension 8 that we present below.

5 We could define ℓe-good integers as integers q such that ℓe − q = sq′, with s a
smooth integer whose prime factors are all congruent to 1 modulo 4 and q′ is a
prime congruent to 1 modulo 4. This way, ℓe − q is easy to factor and we can still
apply Cornacchia’s algorithm. Such integers are easier to find but we provided the
simplest definition.
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Signing in dimension 8. By Lagrange’s four square theorem [Lag70], if q < ℓe,
there always exists a1, · · · , a4 ∈ Z such that q + a21 + · · · + a24 = ℓe. We can
find such a decomposition in polynomial time in e with Rabin and Shallit’s
algorithm [Rab86] improved by Pollack and Treviño [PT18]. We then consider
the endomorphism

α :=


a1 −a2 −a3 −a4
a2 a1 a4 −a3
a3 −a4 a1 a2
a4 a3 −a2 a1

 ∈ End(E4
A),

which is an (a21 + · · ·+ a24)-isogeny, its analogue α
′ ∈ End(E4

2) and the q-isogeny
Σ := Diag(σ, · · · , σ) : E4

A −→ E4
2 . As previously, by Kani’s lemma, we have an

isogeny diamond

E4
2

α′
// E4

2

E4
A

Σ

OO

α // E4
A

Σ

OO

yielding an ℓe-isogeny

F :=

(
α Σ̃

−Σ α̃′

)
∈ End(E4

A × E4
2).

Notation 3.3.3. We shall denote F (σ, a1, · · · , a4) when we want to specify the
dependence of F on σ, a1, · · · , a4.

To ensure the uniformity of the response, in dimension 8 we no longer restrict
to the case q coprime with ℓ. We treat this general case in Appendix B. For
simplicity, in the main exposition of the protocol we will still assume that q is
prime to ℓ. Then, we have

ker(F ) = {(α̃(P ), Σ(P )) | P ∈ E4
A[ℓ

e]}.

F provides an efficient representation of σ and is computable in polynomial time
once we know ker(F ), i.e. when we know how to evaluate σ on EA[ℓ

e]. This way,
we can represent any signature isogeny σ of degree q < ℓe, with the implications
on the security proof that we mentioned before. However, computing isogenies in
dimension 8 is much more costly than in dimension 4 (though, still polynomial),
so we do not recommend to use this representation and only propose it in the
alternate provably secure version RigorousSQISignHD.

Why not signing in dimension 2? The cost of computing an isogeny grows
exponentially with the dimension [LR12; LR15; LR23]. For that reason, find-
ing an efficient representation in dimension 2 could be fruitful for SQISignHD.
On the other hand, the higher the dimension, the lesser the constraints on the
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isogeny σ. We have already seen that going from dimension 4 to 8 relaxes the
constraints on q = deg(σ). Unsurprisingly, the constraints on σ are tighter in
dimension 2.

In order to embed σ in an isogeny between abelian varieties in dimension 2,
we want to apply Kani’s lemma to the following isogeny diamond:

E′
2

σ̂′ // E′
A

E2

β′

OO

σ̂ // EA

β

OO

where β is an isogeny of degree b such that q+ b = ℓe. This diamond induces an
ℓe-isogeny F : E2 × E′

A −→ EA × E′
2, given by

F :=

(
σ̂ β̂
−β′ σ′

)
,

with kernel:
ker(F ) = {(σ(P ), β(P )) | P ∈ EA[ℓe]}.

Unlike previously, to compute ker(F ), we not only need to evaluate σ on
the ℓe-torsion, but also the auxiliary isogeny β : EA −→ E′

A. In particular, the
problems comes from the degree b of β. The value of b is defined by the equality
b+ q = ℓe. Ideally, we would like to have a smooth b so we can compute β with
the Vélu formulas. However, since the value of ℓe is fixed, it is clear that choosing
a smooth b is not easier than choosing q to be smooth. Of course, this can be
done with the SigningKLPT algorithm introduced in [DKLPW20], but at the
cost of increasing a lot the size of q. Since we must have ℓe > q, this approach
will not be faster than the original SQISign idea.

The other possibility is to accept that b cannot be smooth, so we can choose
q as small as possible. In that case, we will have ℓe of reasonable size but we will
not be able to compute β from the Vélu’s formulas directly as its degree might
contain a big prime factor. This problem can be solved by computing an alternate
path of smooth degree between EA and E′

A with the KLPT algorithm. However,
we fall back to a situation where we will need a costly ideal-to-isogeny translation
via the Deuring correspondence [DLW22, Algorithm 5], which imposes to use at
least as much accessible torsion than in current version of SQISign.

Given what we explain, it is unclear if we can apply our idea in dimension 2
without doing something that will be essentially equivalent to what is done in
the original SQISign scheme from an efficiency and security point of view.

4 Key generation, commitment and challenge

In order to be able to evaluate σ on the ℓe-torsion, as required for the response
computation, the secret key, challenge isogeny and commitment need to satisfy
several constraints. Actually we evaluate σ using the alternate isogeny path
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φ ◦ ψ ◦ τ̂ : EA −→ E2. As a consequence, the degrees Dφ, Dψ and Dτ of the
challenge, commitment isogeny and secret key respectively need to be coprime
with ℓ and we also need to know their respective kernel ideals Iφ, Iψ and Iτ (as
will be explained in Section 5.3).

To compute Iφ (unknown to the prover a priori) using IsogenyToIdeal (Al-
gorithm 3), we also need an alternate path to the commitment ψ′ : E0 −→ E1

of degree Dψ′ coprime with Dφ. Due to constraints on the available torsion, Dφ

and Dψ will not be coprime so we cannot have ψ′ = ψ. The easiest is to require
Dψ′ to be a power of ℓ. The prover will compute both ψ and ψ′ at the same time
during the commitment phase.

4.1 Accessible torsion and choice of the prime p

In FastSQISignHD, p is comparable to SIDH. The choice of p is usually
made to provide enough accessible torsion for our isogeny computations. In Fast-
SQISignHD, we can choose p = cℓf ℓ′f

′ − 1 with ℓ ̸= ℓ′ two primes, c ∈ N∗ small
and ℓf ≃ ℓ′f ′ ≃ √p, as in SIDH [JD11]. In practice, ℓ = 2 and ℓ′ = 3.

We then require Dτ = Dψ = ℓ′2f
′
, Dφ = ℓ′f

′
and Dψ′ = ℓ2f 6. This choice

ensures that Dτ , Dψ and Dφ are coprime with ℓ and that Dψ′ is coprime with
Dψ, as needed. We also have Dτ , Dψ, Dψ′ = Θ(p), which guarantees (at least
heuristically) that the public key EA and the commitment E1 are computation-
ally indistinguishable from a uniformly random supersingular elliptic curve –
which is essential to the security of FastSQISignHD.

Do we have enough accessible torsion to compute the ℓe-isogeny F represent-
ing the response σ in dimension 4? Actually, we do not need f ≥ e. As will be
explained in Sections 5.4 and 5.6 and Remark 5.3, we only need 2f ≥ e+ 6 (so
ℓf = Ω(p1/4)). This freedom is welcome because ℓe will be slightly bigger than√
p to make sure we can find an ideal I of ℓe-good norm q < ℓe (see Section 5.2).
We finally discuss the size of p. The best known classical key recovery attacks

are the meet-in-the-middle algorithm in the isogeny graph or the general Delfs
and Galbraith attack [DG16] in the supersingular isogeny graph which both have
a complexity in Õ(

√
p). Using Grover’s algorithm [Gro96], we reach a quantum

complexity of Õ(p1/4). Hence, to ensure a classical security level of λ bits and a
quantum security level of λ/2 bits, we need to take p = Θ(22λ), as in the original
version of SQISign [DKLPW20].

We give below some concrete values of primes for NIST levels 1, 3 and 5.
NIST security level Security parameter λ (bits) Prime p

NIST-I 128 2128 · 381 − 1
NIST-III 192 5 · 2193 · 3122 − 1
NIST-V 256 11 · 2257 · 3163 − 1

In RigorousSQISignHD, more torsion is needed. In RigorousSQISignHD
we have similar constraints on the size of p (p = Θ(22λ)) and the degrees

6 Actually, we will not have exactly Dτ = Dψ = ℓ′2f
′
but Dτ and Dψ will be divisors

of ℓ′2f
′
close to ℓ′2f

′
. It will be the same for Dψ′ (see Algorithm 4.3.3).
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Dτ , Dψ, Dψ′ and Dφ, except that we need E1 and EA to be rigorously com-
putationally indistinguishable from a uniformly random supersingular elliptic
curve. For that reason, we shall have Dτ , Dψ = Θ(p3) and Dψ′ = ℓh ≫ p (as
will be explained in Section 4.4).

For the computation of the secret key τ , commitment isogeny ψ and challenge
φ, we need accessible T -torsion with T coprime with ℓ and T ≃ p3/2, as in the
original SQISign protocol [DKLPW20]. We shall then require Dτ , Dψ|T 2 and
Dφ|T .

As previously, we can compute the ℓe-isogeny F representing the response σ
in dimension 8 as long as we have accessible ℓf -torsion with 2f ≥ e + 6, so we
can have ℓf = Θ(p1/4).

For a concrete choice of prime, we can proceed as in SQISign [DKLPW20;
DLW22] and impose ℓf |p−1 and T |p2−1, so that the whole T -torsion is defined
over Fp4 (and x-coordinates are defined over Fp2). Finding such primes has been
an open research question since the introduction of SQISign [CMN21; BSC+22;
Ahr23].

In particular, it is still unclear if we can still find T sufficiently smooth as the
security level λ and p = Θ(22λ) grow. Since computing a prime degree isogeny
is exponential in the degree, the SQISign protocol might not be polynomial in
log(p). Alternatively, in RigorousSQISignHD, we propose to choose any T ≃ p3/2
B-powersmooth with B polynomial in log(p) and to work over extensions of Fp2
of polynomial degree in log(p). This way, we ensure that RigorousSQISignHD is
polynomial in log(p). This is probably not optimal for practical implementations
but it has some theoretical interest, given that RigorousSQISignHD is not meant
to be implemented.

4.2 Challenge generation

To ensure a soundness security level of λ bits, the challenge space needs to have
size at least 2λ ≃ √p. We also need the challenge degree Dφ to be coprime
with ℓ to execute EvalTorsionℓf during the signing procedure. The challenge
generation procedure ChallengeDφ

is the same in the fast and provably secure
challenge generation procedure. It simply generates a random element P ∈ E1 of
order Dφ and computes φ of kernel ⟨P ⟩. Only Dφ changes. In FastSQISignHD,

Dφ = ℓ′f
′
and in RigorousSQISignHD, Dφ will be a divisor of T of size Dφ ≃ p.

More details on the choice of Dφ in RigorousSQISignHD will be given in the
security analysis (see Section 6.1).

4.3 Fast key generation and commitment

We present an algorithm generating two isogeny paths ϕ, ϕ′ : E0 −→ E of degree
dividing ℓ2f ≃ p and ℓ′2f

′ ≃ p respectively, computing the kernel ideals Iϕ and
Iϕ′ . This algorithm is directly applicable to the commitment procedure Fast-
Commit where we need to generate a double path to be able to compute the
challenge kernel ideal Iφ (with the ℓ-isogeny path of degree coprime with ℓ′) and
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to apply the EvalTorsionℓf procedure (with the ℓ′-isogeny path of degree coprime
with ℓ).

For the key generation FastKeyGen, we only need the ℓ′-isogeny path τ = ϕ′

but the algorithm is essentially the same except that we do not compute the ϕ
and Iϕ completely.

Note that generating isogenies of degree ≃ p is essential for security reasons,
in order to ensure that the codomain E is heuristically close to a random elliptic
curve in the supersingular isogeny graph. To compute such long isogeny paths,
however, we are limited by the accessible torsion in E0 (we can access to the
ℓf ℓ′f

′
-torsion only). To circumvent this difficulty, we need to use pushforward

isogenies.

Preliminary: pushing forward isogenies. We recall the notion of pushfor-
ward isogeny and pushforward ideal introduced in [DKLPW20].

Definition 4.3.1. We consider an isogeny diamond, as follows:

E

ρ

��

θ // F1

ρ′

��
F2

θ′ // F3

with deg(ρ) coprime with deg(θ). We call ρ′ the pushforward of ρ via θ, also
denoted by ρ′ = [θ]∗ρ. The isogeny ρ

′ satisfies ker(ρ′) = θ(ker(ρ)). Similarly, θ′ is
the pushforward of θ via ρ, denoted by θ′ = [ρ]∗θ and satisfies ker(θ′) = ρ(ker(θ)).

If I and J are the ideals associated to ρ and θ respectively via the Deuring
correspondence, we denote by [J ]∗I and [I]∗J the pushforward ideals associated
to [θ]∗ρ and [ρ]∗θ respectively.

The pushforward ideals can be computed explicitly with linear algebra.

Lemma 4.3.2. [DKLPW20, Lemma 3] Let O ⊂ Bp,∞ be a maximal order and
I, J be two left O-ideals of coprime norms. Then, [J ]∗I = J−1 · (I ∩ J) and
[I]∗J = I−1 · (I ∩ J).

The algorithm. The idea is to construct the isogenies ϕ and ϕ′ (of degree
ℓ2f and ℓ′2f

′
respectively) by finding an endomorphism γ of degree ℓ2f ℓ′2f

′
, and

factoring it as γ = ϕ̂′ ◦ ϕ. Since ℓ2f ℓ′2f ′
= Θ(p2) = ω(p), we can easily find

γ ∈ O0 non divisible by ℓ or ℓ′, of norm nrd(γ) = ℓ2gℓ′2g
′
with g ≤ f close to f

and g′ ≤ f ′ close to f ′, using [Ler22, Algorithm 4].
Since ℓ2f (and ℓ′2f

′
) exceeds the available torsion, some “pushforward gym-

nastics” is required to compute the factorisation. We thus decompose ε(γ) =
ρ̂2 ◦ ρ1 where ρ1 and ρ2 are isogenies E0 −→ E′ of degree ℓgℓ′g

′
and ε is an

isomorphism O0
∼−→ End(E0). According to the following lemma, ρ1, ρ2 and

their associated ideals K1 and K2 respectively are given as follows:

ker(ρ1) = ker(ε(γ)) ∩ E0[ℓ
gℓ′g

′
], ker(ρ2) = ker(ε̂(γ)) ∩ E0[ℓ

gℓ′g
′
],
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K1 = O0γ +O0ℓ
gℓ′g

′
and K2 = O0γ +O0ℓ

gℓ′g
′
,

since ε(γ) is cyclic (γ being non-divisible by ℓ or ℓ′).

Lemma 4.3.3. Let ρ : E −→ E′ be a cyclic isogeny decomposed into ρ = θ ◦ ρ1.
Then we have:

(i) ker(ρ1) = ker(ρ) ∩ E[d1] with d1 := deg(ρ1).
(ii) If ρ is a cyclic endomorphism (E = E′), then the kernel ideal of ρ1 is

K1 = Oρ+Od1, where O := End(E).

Proof. Since ρ = θ◦ρ1 and deg(ρ1) = d1, we clearly have ker(ρ1) ⊆ ker(ρ)∩E[d1].
Since ρ is cyclic, there exists a generator P ∈ E of ker(ρ) of order d := deg(ρ)
and we have

ker(ρ) ∩ E[d1] = ⟨[d/d1]P ⟩,
where [d/d1]P has order d1, so we conclude that the inclusion is an equality by
cardinality, since ρ1 is separable. (i) follows.

To prove (ii), we remark that

E[Oρ+Od1] = E[ρ] ∩ E[d1] = ker(ρ1),

where the last equality was proved in (i). Then, we conclude that K1 = Oρ+Od1
by injectivity of the Deuring correspondence between left O-ideals and isogenies
of domain E [Voi20, Proposition 42.2.16]. This completes the proof.

Then, we can decompose ρ1 and ρ2 into ρ1 = θ̂′1◦θ1 and ρ2 = θ̂2◦θ′2 where the
θi are isogenies of degree ℓg and the θ′i are isogenies of degree ℓ′g

′
for i ∈ {1, 2},

as in the following diagram:

F2

[θ2]∗θ
′
1

��
E0

θ′2

>>

θ1   

E E′

θ2

``

θ′1~~
F1

[θ′1]∗θ2

OO

The pushforward isogenies [θ′1]∗θ2 and [θ2]∗θ
′
1 have the same codomain E and

degree ℓg and ℓ′g
′
respectively. Hence, ϕ := [θ′1]∗θ2 ◦ θ1 and ϕ′ := [θ2]∗θ

′
1 ◦ θ′2 are

isogenies E −→ E0 of desired degrees ℓ2g and ℓ2g
′
respectively. By Lemma 4.3.3,

we can compute ker(θ1) = ker(ε(γ)) ∩ E0[ℓ
g], ker(θ′2) = ker(ε̂(γ)) ∩ E0[ℓ

′g′ ],
ker(θ′1) = ker(ρ̂1) ∩ E′[ℓ′g

′
] and ker(θ2) = ker(ρ̂2) ∩ E′[ℓg], and obtain the θi

and θ′i with Vélu’s formulas. We then compute ker([θ′1]∗θ2) = θ′1(ker(θ2)) and
ker([θ2]∗θ

′
1) = θ2(ker(θ

′
1)) and use Vélus formulas. We then easily get ϕ and ϕ′.

Since γ = ϕ̂′ ◦ ϕ, Lemma 4.3.3 implies that the ideals J := O0γ +O0ℓ
2g and

J ′ := O0γ +O0ℓ
′2g′ . The algorithm is summarised in Algorithm 4.

Remark 4.1. For FastKeyGen only ϕ′ and J ′ are necessary, so we use a slightly
modified version of Algorithm 4 where H1 (line 4), θ1 (line 5), ϕ (line 7), and J
(line 8) are not computed.
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Algorithm 4: Double path to an elliptic curve

Data: A basis of O0 and an isomorphism ε : O0
∼−→ End(E0).

Result: Two cyclic isogenies ϕ : E0 −→ E of degree dividing ℓ2f and ϕ′ :
E0 −→ E of degree dividing ℓ′2f

′
and their respective kernel ideals J

and J ′.
1 Use [Ler22, Algorithm 4] to find γ ∈ O0 non divisible by ℓ and ℓ′ of norm

nrd(γ) = ℓ2gℓ′2g
′
with g ≤ f close to f and g′ ≤ f ′ close to f ′;

2 Evaluate ε(γ) and ε(γ) on a basis of E0[ℓ
gℓ′g

′
] and solve discrete loga-

rithm problems to compute G1 := ker(ε(γ)) ∩ E0[ℓ
gℓ′g

′
] and G2 := ker(ε̂(γ)) ∩

E0[ℓ
gℓ′g

′
];

3 Compute ρi : E0 −→ E′ of kernel Gi for i = 1, 2;

4 ComputeH1 := ker(ε(γ))∩E0[ℓ
g],H′

2 := ker(ε̂(γ))∩E0[ℓ
′g′ ],H′

1 := ker(ρ̂1)∩
E′[ℓ′g

′
] and H2 := ker(ρ̂2) ∩ E′[ℓg];

5 Compute θi of kernel Hi and θ′i of kernel H′
i for i = 1, 2;

6 Compute [θ′1]∗θ2 and [θ2]∗θ
′
1 of kernels θ′1(ker(θ2)) and θ2(ker(θ

′
1)) respec-

tively;
7 Let ϕ := [θ′1]∗θ2 ◦ θ1 and ϕ′ := [θ2]∗θ

′
1 ◦ θ′2;

8 Let J := O0γ +O0ℓ
2g and J ′ := O0γ +O0ℓ

′2g′ ;
9 Return ϕ, ϕ′, J, J ′;

4.4 Provably secure key generation and commitment

To prove security, the distribution of the public key EA and the commitment E1

need to be close to the uniform distribution in the supersingular isogeny graph.
We propose an algorithm for both key generation and commitment ensuring sta-
tistical closeness to uniform. Starting from E0, we generate a random ℓ-isogeny
walk ϕ : E0 −→ E long enough to make E uniformly random and compute its
kernel ideal Iϕ as well as an alternate path ϕ′ : E0 −→ E of degree dividing T 2.
This algorithm is very similar to what is done in the first version of SQISign sign-
ing algorithm [DKLPW20]. The procedure we shall describe is costly (though
polynomial) and this is one of the reasons why we do not expect the efficiency
of RigorousSQISignHD to compare favourably to the original SQISign protocol.

A long enough supersingular ℓ-isogeny walk.

Proposition 4.4.1. Let ϕ : E0 −→ E be an ℓh-isogeny obtained from a non-
backtracking random ℓ-isogeny walk. Then, for all ε ∈]0, 1[, the distribution of E
has statistical distance Õ(p−ε) to the uniform distribution in the supersingular
isogeny graph, provided that h ≥ (1 + ε) logℓ(p).

Proof. Let SS(p) be the set of supersingular elliptic curves over Fp2 (up to iso-
morphism) and S be the probability distribution on SS(p) given by S(E) :=
K−1/#Aut(E) for all E ∈ SS(p), with K :=

∑
E∈SS(p) 1/#Aut(E). Let δ0 be

the Dirac distribution on E0 and δ
(h)
0 the distribution obtained from δ0 after
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a non-backtracking ℓ-isogeny walk of length h. By [BCC+22, Theorem 11], the

statistical distance between S and δ
(h)
0 satisfies

dTV

(
S, δ

(h)
0

)
:=

∑
E∈SS(p)

∣∣∣S(E)− δ(h)0 (E)
∣∣∣ ≤ √6K

2

(ℓ+ 1)(h+ 1)− 2

(ℓ+ 1)
√
ℓh

.

By Eichler’s formula [Voi20, p. 42.3.8], we know that K = (p − 1)/24. Then,

when h ≥ (1 + ε) logℓ(p), we get that dTV (S, δ
(h)
0 ) = O(log(p)p−ε) = Õ(p−ε).

By [Sil09][Theorem III.10.1], we have #Aut(E) = 2 for all E ∈ SS(p) such
that j(E) ̸= 0, 1728, and #Aut(E) ∈ {4, 6} otherwise and by [Sil09][Theorem
V.4.1], there exists Cp ∈ Z small such that #SS(p) = 2K + Cp. Hence, if U is
the uniform distribution, then we have

dTV (U, S) =
∑

E∈SS(p)

∣∣∣∣∣ 1

#SS(p)
−

K−1

#Aut(E)

∣∣∣∣∣ = ∑
E∈SS(p)

j(E)̸=0,1728

∣∣∣∣∣ 1

2K + Cp
−

1

2K

∣∣∣∣∣+O(1)

=
Cp

2K(2K + Cp)
(#SS(p) +O(1)) +O(1) =

Cp

2K
+O(1) = O(p−1).

Finally by triangular inequality, dTV (U, δ
(h)
0 ) = Õ(p−ε).

With this proposition, we expect to get an elliptic curve with a distribution
somewhat close to uniform after a random isogeny walk of length Θ(p). This
supports the heuristics underlying FastCommit and FastKeyGen. However, the
fact that we compute two paths simultaneously in FastCommit and FastKeyGen
might alter the distribution of the resulting elliptic curve. While we do not expect
the induced bias to be computationally relevant, it prevents a rigorous analysis.
This is the reason why we now propose a different procedure for RigorousKeyGen
and RigorousCommit.

Computing the kernel ideal and an alternate path. Assume that we
have generated a random ℓ-isogeny walk ϕ : E0 −→ E of degree ℓh satisfying
the bound of Proposition 4.4.1. To compute the kernel ideal Iϕ, we cannot use
KernelToIdealℓh (Algorithm 2) because we would need accessible ℓh-torsion, which
is impossible since ℓh ≫ √p.

Instead, as in [DKLPW20], we divide ϕ into a sequence of isogenies ϕi :
Ei −→ Ei+1 (1 ≤ i ≤ r) of degree dividing ℓf and compute their associated
kernel ideals Ii successively. For the computation of Ii, we need to compute an
alternate isogeny ϕ′i : E0 −→ Ei of degree dividing T 2 obtained at step i − 1.
Hence, the alternate path ϕ′ := ϕr : E0 −→ Er = E will be a convenient by-
product of our ideal computation. The algorithm we propose (see Algorithm 5)
uses the sub-algorithms KLPTT 2 and SpecialIdealToIsogeny as black boxes (see
Section 2.3).
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Algorithm 5: RigorousDoublePathℓf ,T

Data: A supersingular elliptic curve E0 with accessible T -torsion and ℓf -
torsion, an eval-basis B0 of End(E0) in the sense of Definition 2.3.1 and
an error parameter ε > 0.

Result: A random ℓ-isogeny walk ϕ : E0 −→ E such that the distribution of E
has statistical distance Õ(p−ε) to the uniform, an isogeny ϕ′ : E0 −→ E
of degree dividing T 2 and their respective kernel ideals Iϕ and Iϕ′ .

1 h←− ⌈(1 + ε) logℓ(p)⌉;
2 Perform a random ℓ-isogeny walk ϕ : E0 −→ E of degree ℓh;
3 Factor ϕ by a power of [ℓ] if necessary to make it cyclic;
4 Decompose ϕ in a sequence of isogenies ϕi : Ei −→ Ei+1 (1 ≤ i ≤ r) of degree

dividing ℓf ;
5 Let Pi be a generator of ker(ϕi) for all i ∈ J1 ; rK;
6 J0 ←− O0;
7 for i := 0 to r − 1 do
8 Ii ←− KernelToIdealℓf (Bi, Pi);
9 Ji+1 ←− KLPTT2(Ji · Ii);

10 ϕ′
i+1 ←− SpecialIdealToIsogeny(Ji+1, I0 · · · Ii, ϕi ◦ · · · ◦ ϕ0);

11 Compute Bi+1 := PushEndRing(B0, ϕ
′
i+1, Ji+1), a T -eval-basis of

End(Ei+1);

12 end
13 ϕ′ ←− ϕr, Iϕ ←− I0 · · · Ir−1, Iϕ′ ←− Jr;
14 Return ϕ, ϕ′, Iϕ, Iϕ′ ;

Application to key generation and commitment. For the commitment
phase RigorousCommit, we simply call RigorousDoublePathℓf ,T to output two
isogenies ψ′, ψ : E0 −→ E1 with codomain E1 statistically close to uniform and
respective degrees ℓh and dividing T 2, along with their kernel ideals Iψ and Iψ′ .

For key generation RigorousKeyGen, we only need an isogeny τ : E0 −→ EA
of degree T 2 (coprime with ℓ) with codomain EA statistically close to uniform.
RigorousDoublePathℓf ,T will output ϕ, τ : E0 −→ E1 of respective degrees ℓh and
Dτ |T 2, along with Iϕ, Iτ . The data (ϕ, Iϕ) will not be used so we only compute ϕ
to ensure the randomness of EA and Iϕ as an intermediary tool to obtain (τ, Iτ ).

5 Response and verification

The goal of this section is to present a precise description of the algorithmic
building blocks required by our new signature scheme. As explained above, we
present in fact two versions of our new scheme: one in dimension 8 tailored
for a rigorous security analysis, and a faster variant in dimension 4 relying on
heuristics.

Throughout this section, we assume that the prover has generated a secret
key τ : E0 −→ EA of degreeDτ coprime with ℓ and two paths to the commitment
ψ,ψ′ : E0 −→ E1 of respective degrees Dψ coprime with ℓ and Dψ′ a power of
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ℓ. We also assume that the prover has access to the challenge φ : E1 −→ E2 of
degree Dφ coprime with ℓ.

5.1 Overview of the response computation

In this section, we present the algorithm FastRespond used to compute the
response in the FastSQISignHD identification protocol (in dimension 4) and
its alternate provably secure version RigorousRespond (in dimension 8) used in
RigorousSQISignHD. We also provide their verification counterparts FastVerify
and RigorousVerify.

Those algorithms use the following sub-algorithms that will be introduced in
this section (if not already):

– IsogenyToIdeal(φ,ψ, Iψ) (presented in Section 2.3) takes as input an isogeny
φ : E1 −→ E2 of degree Dφ, an isogeny ψ : E0 −→ E1 of degree coprime
with Dφ, its ideal Iψ ⊂ O0 and returns the kernel ideal Iφ of φ.

– RandomEquivalentIdealℓe takes as input an O0-left ideal J and returns an
equivalent ideal I that is uniformly random among ideals of norm ≤ ℓe.

– EvalTorsionℓf evaluates a non-smooth degree isogeny on ℓf -torsion points
knowing its kernel ideal and an alternate smooth degree path. Namely, it
takes as input an ideal I connecting O ∼= End(E) and O′ ∼= End(E′), a
basis (P1, P2) of E[ℓf ] two isogenies ρ1 : E0 −→ E and ρ2 : E0 −→ E′ of
smooth degree coprime with ℓ, with their respective kernel ideals I1 and I2
and returns (ϕI(P1), ϕI(P2)), where ϕI : E −→ E′ is the isogeny associated
to I.

– RepresentIsogeny4,ℓe,ℓf takes as input an ℓe-good integer q, integers a1, a2
such that a21 + a22 + q = ℓe, a basis (P1, P2) of EA[ℓ

f ], (σ(P1), σ(P2)), where
σ : EA −→ E2 is a q-isogeny, and returns a chain of 4-dimensional ℓ-isogenies
whose composition is F (σ, a1, a2) as in Notation 3.3.1.

– RepresentIsogeny8,ℓe,ℓf takes as input an integer q < ℓe coprime with ℓ, inte-

gers a1, · · · , a4 such that a21 + · · · + a24 + q = ℓe, a basis (P1, P2) of EA[ℓ
f ],

(σ(P1), σ(P2)), where σ : EA −→ E2 is a q-isogeny, and returns a chain of
8-dimensional ℓ-isogenies whose composition is F (σ, a1, · · · , a4) as in Nota-
tion 3.3.3.

– For g ∈ {4, 8}, IsValidg, with input F,EA, E2, ℓ
e, ℓf , checks if F is a valid

output of RepresentIsogenyg,ℓe,ℓf representing an isogeny σ : EA −→ E2 in
dimension g.

In both versions of SQISignHD, the prover sends the image of two points
P1, P2 forming a basis of EA[ℓ

f ] by σ and its degree q. In dimension 4 (respec-
tively dimension 8), the prover can then use q to compute a1, a2 (resp. a1, · · · , a4)
and compute F (σ, a1, a2) (resp. F (σ, a1, · · · , a4)) with the RepresentIsogenyg,ℓe,ℓf
procedure. If the computation succeeds and is validated by the IsValidg proce-
dure, then the verification is complete. Algorithms 8 and 9 follow.

Remark 5.1 (On the ℓf -torsion basis). Only the data (σ(P1), σ(P1), q) is neces-
sary. The basis (P1, P2) can be computed canonically knowing EA by classical
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compression techniques developed for SIDH [AJKKL16; ZSPDB18]. This mini-
mizes the communications size.

Note that we use a basis of the ℓf -torsion with 2f ≥ e + 6 here because we
might not have ℓe-torsion accessible. We can still compute F with this partial
information as explained in Section 5.4.

To sign in dimension 4, the prover starts by computing an ideal I ∼ Iτ ·Iψ ·Iφ
connecting OA ∼= End(EA) to O2

∼= End(E2) of norm ℓe-good norm q and
coprime with ℓ′ with uniform distribution using RandomEquivalentIdealℓe . The
coprimality with ℓ′ is justified by security reasons (see Section 6.1). Then, the
prover generates the basis (P1, P2) of EA[ℓ

f ] canonically and evaluates σ on it
with EvalTorsionℓf using I (kernel ideal of σ) and the paths τ : E0 −→ EA
and φ ◦ ψ : E0 −→ E2 of degree coprime with ℓ. The procedure is the same in
dimension 8, except that we only require q < ℓe instead of ℓe-good and coprime
with ℓ′. Algorithms 6 and 7 follow.

Remark 5.2 (On the case of dimension 8). Since we can no longer guarantee
that q is coprime with ℓ in dimension 8, the prover might need to factor σ
by ℓ-isogenies before computing σ(P1) and σ(P1). Details may be found in Ap-
pendix B. In this section, we assume that q is coprime with ℓ even in dimension 8.

As input of Algorithms 6, 7, 8 and 9, we denote by:

– FastSetup, the public parameters of FastSQISignHD, p = cℓf ℓ′f
′ − 1, ℓ, ℓ′,

f , f ′, the exponent e and the elliptic curve E0/Fp;
– RigorousSetup, the public parameters of RigorousSQISignHD, p, ℓ and f such

that ℓf |p− 1, e, T powersmooth (accessible torsion) and E0;
– SecretKey, the isogeny τ : E0 −→ EA of degree Dτ and its kernel ideal Iτ ;
– CommitData, the two isogenies ψ,ψ′ : E0 −→ E1 of degrees Dψ and Dψ′ and

their respective kernel ideals Iψ and Iψ′ ;
– ChallData, the isogeny φ : E1 −→ E2 of degree Dφ.

where Dτ , Dψ and Dφ are powers of ℓ and Dψ′ is a power of ℓ′ or a divisor of
T 2 depending on the version of SQISignHD (see Section 4.1).

5.2 Finding a uniformly random tight response ideal

In this section, we present the algorithm RandomEquivalentIdealℓe taking a left
O0-ideal J as input and returning an ideal I which is uniformly random among
the ideals I ∼ J of norm q < ℓe. By [DKLPW20, Lemma 1], all the equivalent
ideals I ∼ J are of the form χJ(α) := Jα/nrd(J) for some α ∈ I and α
determines I up to multiplication by an element of O×

0 . Besides, the norm of
I = χJ(α) is qJ(α) := nrd(α)/ nrd(J), so we need qJ(α) ≤ ℓe.

Hence, to sample an ideal I ∼ J such that nrd(I) ≤ ℓe with uniform distri-
bution is equivalent to sample α ∈ J \ {0} such that qJ(α) ≤ ℓe with uniform
distribution. If we fix a basis of J , we can see qJ as a primitive positive definite
integral quadratic form with four variables. By the following lemma, which is a
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Algorithm 6: FastRespond

Data: FastSetup, SecretKey, CommitData and ChallData.
Result: (σ(P1), σ(P2), q), where (P1, P2) is a canonically determined basis of

EA[ℓ
f ] and σ : EA −→ E2 is an isogeny of ℓe-good degree q coprime

with ℓ′.
1 Iφ ←− IsogenyToIdeal(φ,ψ′, Iψ′);

2 J ←− Iτ · Iψ · Iφ;
3 I ←− RandomEquivalentIdealℓe(J) and q ←− nrd(I);
4 If q is not ℓe-good or q ∧ ℓ′ ̸= 1, go back to line 3;

5 Compute the canonical basis (P1, P2) of EA[ℓ
f ];

6 (σ(P1), σ(P2))←− EvalTorsionℓf (I, P1, P2, τ, φ ◦ ψ, Iτ , Iψ · Iφ);
7 Return (σ(P1), σ(P2), q);

Algorithm 7: RigorousRespond

Data: RigorousSetup, SecretKey, CommitData and ChallData.
Result: (σ(P1), σ(P2), q), where (P1, P2) is a canonically determined basis of

EA[ℓ
f ] and σ : EA −→ E2 is a q-isogeny with q < ℓe.

1 Iφ ←− IsogenyToIdeal(φ,ψ′, Iψ′);

2 J ←− Iτ · Iψ · Iφ;
3 I ←− RandomEquivalentIdealℓe(J) and q ←− nrd(I);

4 Compute the canonical basis (P1, P2) of EA[ℓ
f ];

5 (σ(P1), σ(P2))←− EvalTorsionℓf (I, P1, P2, τ, φ ◦ ψ, Iτ , Iψ · Iφ);
6 Return (σ(P1), σ(P2), q);

Algorithm 8: FastVerify

Data: FastSetup, the public ker EA and an output R from FastRespond.
Result: 1 if R is a valid response and 0 otherwise.

1 Try to parse R := (R1, R2, q), where R1, R2 ∈ E2[ℓ
f ] and q < ℓe and return 0

if it fails;
2 If q is not ℓe-good or q ∧ ℓ′ ̸= 1, return 0;

3 Compute the canonical basis (P1, P2) of EA[ℓ
f ];

4 Find a1, a2 ∈ Z such that a21 + a22 = ℓe − q using Cornacchia’s algorithm
[Cor08];

5 F ←− RepresentIsogeny4,ℓf (q, a1, a2, P1, P2, R1, R2);

6 Return IsValid4(F,EA, E2, ℓ
e, ℓf );
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Algorithm 9: RigorousVerify

Data: RigorousSetup, the public ker EA and an output R from RigorousRespond.
Result: 1 if R is a valid response and 0 otherwise.

1 Try to parse R := (R1, R2, q), where R1, R2 ∈ E2[ℓ
f ] and q < ℓe and return 0

if it fails;

2 Compute the canonical basis (P1, P2) of EA[ℓ
f ];

3 Find a1, · · · , a4 ∈ Z such that a21 + · · ·+ a24 + q = ℓe using Pollack and
Treviño’s algorithm [PT18];

4 F ←− RepresentIsogeny8,ℓe(q, a1, · · · , a4, P1, P2, R1, R2);

5 Return IsValid8(F,EA, E2, ℓ
e, ℓf );

simple generalization of [Wes22, Lemma 3.3], we can sample uniformly α ∈ J
such that qJ(α) ≤ ℓe. RandomEquivalentIdealℓe calls this procedure to get α ∈ J
uniform and rejects the result if α = 0. Then the distribution of α is still uniform
but in J \ {0}.

Lemma 5.2.1. Let f be a primitive positive definite integral quadratic form in
k variables and let ρ > 0. Then there exists an algorithm that samples uniformly
random elements from the set

{x ∈ Zk | f(x) ≤ ρ}

in polynomial time in log(ρ) and the length of f (namely, the maximal number
of bits of the coefficients of f). This algorithm runs in exponential time in k.

Proof. See Appendix A.2.

For RandomEquivalentIdealℓe(J) to terminate, we need to find α ∈ J \ {0}
such that qJ(α) ≤ ℓe. For such an α to exist, we need ℓe = Ω(

√
p) according to

the following lemma (Lemma 5.2.2). Namely, ℓe should be bigger than
√
p by 2

bits, and even more if we need some margin to find ℓe-good values of qJ(α). For
that reason, in our choice of parameters, we only have accessible ℓf -torsion with
ℓf < ℓe (see Section 4.1).

Lemma 5.2.2. Let O be a maximal order and J be a left O-ideal. Then there
exists α ∈ J such that qJ(α) ≤ 8

√
2p/π.

Proof. See Appendix A.2.

5.3 The isogeny torsion evaluation algorithm

We present EvalTorsionℓf that evaluates a non-smooth degree isogeny on ℓf -
torsion points knowing its kernel ideal and an alternate smooth degree path.
Let I be an ideal connecting O ∼= End(E) and O′ ∼= End(E′) of non-smooth
norm q, (P1, P2) be a basis of E[ℓf ], ρ1 : E0 −→ E and ρ2 : E0 −→ E′, be two
isogenies of respective degrees d1, d2 coprime with ℓ, and respective kernel ideals
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Algorithm 10: EvalTorsionℓf

Data: A basis (P1, P2) of E[ℓf ], an ideal I connecting O ∼= End(E) and O′ :=
End(E′), two isogenies ρ1 : E0 −→ E and ρ2 : E0 −→ E′ of respective
degrees d1 and d2 coprime with ℓ and their respective kernel ideals I1
and I2.

Result: (ϕI(P1), ϕI(P2)), where ϕI : E −→ E′ is the isogeny associated to I.
1 Find γ ∈ O0 such that O0γ = I1 · I · I2;
2 Ri ← ρ2 ◦ γ ◦ ρ̂1(Pi) for i ∈ {1, 2};
3 Compute λ, an inverse of d1d2 modulo ℓf ;
4 Return ([λ]R1, [λ]R2);

I1 and I2. We want to compute (ϕI(P1), ϕI(P2)), where ϕI : E −→ E′ is the
isogeny associated to I.

Let us consider the endomorphism γ := ρ̂2◦ϕI ◦ρ1 of E0. From that definition
of γ comes the equality

[d1d2]ϕI = ρ2 ◦ γ ◦ ρ̂1
Since ℓ is coprime to d1 and d2, the scalar d1d2 can be inverted modulo ℓf and
we see that it suffices to evaluate γ, ρ̂1, ρ2 on the ℓe-torsion of their respective
domains.

The curve E0 is chosen to have a known endomorphism ring so we can easily
evaluate γ at any point from a basis of endomorphisms if we know the principal
ideal O0γ. This ideal can be computed from the ideals I1, I2 ⊂ O0 and I ⊂ O
associated to ρ1, ρ2 and ϕI respectively, with the formula I1 · I · I2 = O0γ. The
EvalTorsionℓf algorithm summarizes the procedure described above.

5.4 Dividing the higher dimensional isogeny computation in two

As explained in Section 5.2, we do not necessarily have enough accessible torsion
to compute the whole kernel of the signature higher dimensional representation of
the response F . In this section, we explain in plain generality how to circumvent
this difficulty. Let us keep the notations of Section 3.2. Recall that we have the
following isogeny diamond

A′ φ′
// B′

A

ψ

OO

φ // B

ψ′

OO

and that

F :=

(
φ ψ̃′

−ψ φ̃′

)
, with ker(F ) = {(φ̃(x), ψ′(x)) | x ∈ B[d]}.

To compute F , we need to evaluate φ̃ and ψ′ on B[d], so we need to have
accessible d-torsion. However, we assume that we only have d′-accessible torsion
with d′|d.
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The idea is to decompose F = F2 ◦ F1 where F1 : A := A × B′ −→ C and
F2 : C −→ B := B × A′ are respectively d1 and d2-isogenies such that d1, d2|d′

and to use the following proposition to compute F1, and then F̃2 to infer F .

Proposition 5.4.1. Suppose d coprime with p so that F is separable. Then:

(i) We can always decompose F = F2 ◦ F1, as above.
(ii) ker(F1) ⊆ ker(F ) ∩ A[d1].
(iii) ker(F̃2) ⊆ F (A[d]) ∩ B[d2].
(iv) When ker(F ) has rank g := dim(A), those inclusions are equalities and we

also have ker(F̃2) = F (A[d2]).

Assume that we know how to evaluate φ,φ′, ψ, ψ′ on the d1-torsion. Then, we
know how to evaluate F on A[d1]. Assuming ker(F ) has rank g (which will be the
case in the SQISignHD protocol), we can then compute ker(F1) = ker(F )∩A[d1]
and ker(F̃2) = F (A[d2]) ⊆ F (A[d′]) by point (iv) of the above proposition, so
we can compute F . This proposition is proved in A.3.

5.5 Strategies for higher dimensional isogeny computation

In this paragraph, we give an overview of the higher dimensional isogeny com-
putation procedures RepresentIsogeny4,ℓe,ℓf and RepresentIsogeny8,ℓe,ℓf used in
SQISignHD. First, we explain how to compute an ℓe-isogeny between abelian
varieties in plain generality and then apply it to our specific problem.

Computing an ℓ-isogeny chain. Let F : (A, λA) −→ (B, λB) be an ℓe-isogeny
between principally polarized abelian varieties and let K be its kernel. Assume
that K has rank g. Then, we can decompose F as an ℓ-isogeny chain as in
dimension 1.

Lemma 5.5.1. We can write F as a product of ℓ-isogenies F = Fe ◦ · · · ◦ F1

between principally polarized abelian varieties Fi : Ai−1 −→ Ai (for i ∈ J1 ; eK,
with A0 := A and Ae := B).

Let K0 := K = ker(F ) and Ki := Fi(Ki−1) for all i ∈ J1 ; eK. Then, we
have ker(Fi) = [ℓe−i]Ki−1 for all i ∈ J1 ; eK.

Proof. We prove by induction on i ∈ J0 ; eK that we can write F = Gi◦Fi◦· · ·◦F1

where the Fj : Aj−1 −→ Aj for j ∈ J1 ; iK are ℓ-isogenies between principally
polarized abelian varieties (PPAV) of kernel ker(Fj) = [ℓe−j ]Kj−1 and Gi is an
ℓe−i-isogeny between PPAV of kernel ker(Gi) = Ki. For i = 0, the result is
trivial. Let us assume the result at rank i ∈ J0 ; e− 1K. Then we simply apply
point (i) of Proposition 5.4.1 to Gi to write Gi := Gi+1 ◦ Fi+1, where Fi+1 and
Gi+1 are respectively ℓ and ℓe−(i+1)-isogenies between PPAV. By point (iv) of
Proposition 5.4.1, we also have ker(Fi+1) = Ki ∩ Ai[ℓ] since Ki has rank g (K
also having rank g). Since Ki ⊂ Ai[ℓe−i] is maximal isotropic of rank g, we may
write Ki = ⟨x1, · · · , xg⟩ where all the xi ∈ Ai[ℓe−i] have order ℓe−i, so that

ker(Fi+1) = Ki ∩ Ai[ℓ] = ⟨[ℓe−(i+1)]x1, · · · , [ℓe−(i+1)]xg⟩ = [ℓe−(i+1)]Ki.
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We also have ker(Gi+1) = Fi+1(ker(Gi)) = Ki+1. This completes the proof.

The above lemma leads to similar isogeny computation algorithms to the
dimension 1 case. Assume that we know a basis B0 of K = ker(F ) and let
Bi := Fi(Bi−1), which is a basis of Ki for all i ∈ J1 ; eK. Consider the graph
whose vertices are the [ℓj ]Bi for 0 ≤ i ≤ e− 1, 0 ≤ j ≤ e− 1− i and edges are
of two kind:

– multiplication by ℓ [ℓj ]Bi −→ [ℓj+1]Bi (left edges);
– ℓ-isogeny computation [ℓj ]Bi −→ [ℓj ]Bi+1 (right edges).

B0

[ℓ]B0

[ℓ2]B0

[ℓ3]B0

[ℓ4]B0

F1

B1

[ℓ]B1

[ℓ2]B1

[ℓ3]B1

F2

B2

[ℓ]B2

[ℓ2]B2

F3

B3

[ℓ]B3

F4

B4

Fig. 2. Computational structure of the ℓe isogeny F with e = 5.

This graph represents the computational structure of F . To compute F ,
we need to compute the kernel basis [ℓe−1]B0, [ℓ

e−2]B1 · · · ,Be−1 representing
the ℓ-isogenies in the chain, i.e. the bottom line in Figure 2. This graph is
computed as follows: to go down right [ℓj ]Bi −→ [ℓj ]Bi+1, we need to have
reached the bottom vertex [ℓe−1−i]Bi beforehand. Of course there are naive
algorithms where we compute every point of the graph but they are quadratic
in e and far from optimal. There also exist divide and conquer strategies that
require onlyO(e log(e)) multiplications by ℓ and ℓ-isogeny evaluations (see [JD11,
§ 4.2.2] for details). We can even optimize such a strategy to minimize the global
cost depending on the relative cost of scalar multiplications by ℓ and ℓ-isogeny
evaluations. We refer to KernelToIsogenyg,ℓe(B0) as the algorithm computing an
ℓ-isogeny chain of kernel ⟨B0⟩ with such an optimal strategy.

Computing ℓ-isogenies with the theta model. Unlike in dimension 2 or
3, we cannot use Jacobians to compute isogenies in dimension 4 or 8. However,
there already exist algorithms to compute ℓ-isogenies in any dimension g with
the Θ-model [LR12; LR15; LR23] in time O(ℓg). To minimize the complexity,
the best strategy would be to take ℓ = 2 and to use Θ-coordinates of level n = 2.
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However, existing algorithms only work when ℓ and n are coprime. We propose
an algorithm to compute 2-isogenies in level n = 2 in Appendix C.3 and how we
can use it in our specific problem (computing two 2-isogeny chains F1 and F̃2

with the same codomain). Optimizing and implementing this algorithm is left
for future work.

5.6 Computing the response isogeny representation with
RepresentIsogenyg,ℓe,ℓf .

We finally give algorithms to compute the signature representation in dimension
4 and 8 using all the ideas presented in Sections 5.4 and 5.5 (splitting the com-
putation in two and computing ℓ-isogeny chains with an optimal strategy and
the theta model).

In dimension 4, the algorithm for RepresentIsogeny4,ℓe,ℓf (Algorithm 11) is
a straightforward application of these ideas. We compute basis of ker(F1) and

ker(F̃2) with F := F2 ◦ F1, as in Section 5.4. Then, we call KernelToIsogeny4 to

obtain F1 and F̃2 as isogeny chains.

Algorithm 11: RepresentIsogeny4,ℓe,ℓf

Data: a1, a2 ∈ Z, a basis (P1, P2) of EA[ℓ
f ] and (σ(P1), σ(P2)), where σ :

EA −→ E2 is a q-isogeny with a21 + a22 + q = ℓe.
Result: An ℓe1 -isogeny F1 : E2

A×E2
2 −→ C and a ℓe2 -isogeny F̃2 : E2

A×E2
2 −→ C

such that F (σ, a1, a2) = F2 ◦ F1, with e1, e2 ≤ f and e1 + e2 = e.
1 e2 ←− ⌈e/2⌉+ 1, e1 ←− e− e2;
2 B0 ←− ([a1]Pi − [a2]Pj , [a2]Pi + [a1]Pj , σ(Pi), σ(Pj))i,j∈{1,2};
3 S0 ←− {([a1]Pi+[a2]Pj+[q]Pk,−[a2]Pi+[a1]Pj+[q]Pl,−σ(Pi)+[a1]σ(Pk)−
[a2]σ(Pl),−σ(Pj) + [a2]σ(Pk) + [a1]σ(Pl)) | i, j, k, l ∈ {1, 2}};
4 Find C0, a basis of ⟨[ℓf−e2 ]S0⟩ = F ((E2

A × E2
2)[ℓ

e2 ]);
5 F1 ←− KernelToIsogeny4,ℓe1 (B0);

6 F̃2 ←− KernelToIsogeny4,ℓe2 (C0);

7 Return F1 and F̃2;

In dimension 8, the algorithm RepresentIsogeny8,ℓe,ℓf (Algorithm 12) only
works when q and ℓ are coprime. We explain in Appendix B how to treat the
general case.

Remark 5.3. We chose e2 ≥ e/2 + 1 in Algorithms 11 and 12. This is crucial
to the verification (see Lemma 5.7.1). To make sure we have enough accessible
torsion, we need f ≥ e2, so that 2f ≥ e + 2 and not 2f ≥ e. Actually, for
KernelToIsogenyg,ℓe2 to work when ℓ = 2, the image of the ℓf -torsion by F̃2

needs to generate the ℓ2-torsion (see Appendix C.2). Then, we have f ≥ e2 + 2,
so 2f ≥ e+ 6.
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Algorithm 12: RepresentIsogeny8,ℓe,ℓf

Data: a1, a2, a3, a4 ∈ Z, a basis (P1, P2) of EA[ℓ
f ], (σ(P1), σ(P2)) where σ :

EA −→ E2 is a q-isogeny with a21 + a22 + a23 + a24 + q = ℓe.
Result: An ℓe1 -isogeny F1 : E4

A×E4
2 −→ C and a ℓe2 -isogeny F̃2 : E4

A×E4
2 −→ C

such that F (σ, a1, a2, a3, a4) = F2 ◦F1, with e1, e2 ≤ f and e1+e2 = e.
1 e2 ←− ⌈e/2⌉+ 1, e1 ←− e− e2;

2 Let α :=


a1 −a2 −a3 −a4
a2 a1 a4 −a3
a3 −a4 a1 a2
a4 a3 −a2 a1

 ∈ End(E2
A);

3 Let Pk := (Pk1 , · · · , Pk4) and Σ(Pk) := (σ(Pk1), · · · , σ(Pk4)) for all k :=
(k1, · · · , k4) ∈ {1, 2}4;
4 B0 ←− (α̃(Pk), Σ(Pk))k∈{1,2}4 ;

5 Compute αi · Pk :=
∑4
j=1[αi,j ]Pkj and α̃′

i ·Σ(Pk) :=
∑4
j=1[αj,i]σ(Pkj ) for

all i ∈ {1, · · · , 4} and k ∈ {1, 2}4;
6 S0 ←− {((αi ·Pk+[q]Pli))1≤i≤4, (α̃′

i ·Σ(Pk)−σ(Pki))1≤i≤4) | k, l ∈ {1, 2}4};
7 Find C0, a basis of ⟨[ℓf−e2 ]S0⟩ = F ((E4

A × E4
2)[ℓ

e2 ]);
8 F1 ←− KernelToIsogeny8,ℓe1 (B0);

9 F̃2 ←− KernelToIsogeny8,ℓe2 (C0);

10 Return F1 and F̃2;

5.7 Verification

We describe the verification procedure IsValidg for g ∈ {4, 8} taking as input the

isogenies F1 and F̃2 outputted by RepresentIsogenyg,ℓe,ℓf and determining if they
represent an isogeny σ : EA −→ E2.

Note that RepresentIsogeny4,ℓe,ℓf does not verify if the input (R1, R2) =
(σ(P1), σ(P2)) is indeed the image of the canonical basis (P1, P2) by an isogeny σ.
Even when it is not the case, the computation of F1 : E2

A × E2
2 −→ C1 and

F̃2 : E2
A × E2

2 −→ C2 succeeds but C1 ̸∼= C2. Indeed, by construction, if C1 ∼= C2
then we identify C1 and C2, so that F = F2 ◦ F1 defines an endomorphism on
E2
A×E2

2 . By the following lemma, this is sufficient to ensure that F represents an
isogeny σ : EA −→ E2 of degree q mapping (P1, P2) to (R1, R2). Hence, IsValidg
only has to check if C1 ∼= C2. This can be done by computation of the theta null
points.

Lemma 5.7.1. If the images of F1 and F̃2 outputted by Algorithm 11 coincide,
then F = F2 ◦ F1 is of the form F = F (σ, a1, a2) where σ : EA −→ E2 is a
q-isogeny, the integers a1, a2, q are given as input of this algorithm along with
(σ(P1), σ(P2)) and satisfy a21 + a22 + q = ℓe. This result generalizes to Algo-
rithm 12.

A proof of this lemma is provided in Appendix A.4.
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6 Security analysis

In this section, we prove that the SQISignHD identification protocol is secure,
namely that it is complete, knowledge sound and honest-verifier zero knowledge.
Recall that by [VV15, Theorem 7], it is sufficient to ensure that our signature
scheme obtained by Fiat-Shamir transform is universally unforgeable under cho-
sen message attacks in the random oracle model.

Completeness means that a honest execution of the protocol is always ac-
cepted by the verifier. This is true by our previous algorithmic constructions.
Knowledge soundness means that an attacker can only ”guess” a response with
very low probability. It is proven under the assumption that computing an endo-
morphism in a supersingular elliptic curve is hard, a well known difficult problem
in isogeny based cryptography.

The honest-verifier zero-knowledge property implies that the response does
not leak any information on the secret key τ . More precisely, we can simu-
late transcripts of the identification protocol without using to the secret key
with the same distribution as real transcripts. To construct such a simulator
of SQISignHD, we need access to an oracle evaluating isogenies of non-smooth
degrees. In RigorousSQISignHD, this oracle is very generic and we do not need
any additional hypothesis to prove the zero-knowledge property (hence the name
of this version). On the contrary, in FastSQISignHD, the oracle definition is ad
hoc and we need an additional heuristic assumption to prove the zero-knowledge
property. However, it is very unlikely to build an attack on this assumption and
both oracles do not undermine the knowledge soundess.

6.1 Knowledge soundness

The proof that FastSQISignHD is knowledge sound is a straightforward spe-
cial soundess argument identical to the original version of SQISign [DKLPW20,
Theorem 1]. Namely, we prove that given two transcripts with the same com-
mitment but disctinct challenges, we can find an endomorphism in EA. This
property called special soundness is sufficient to prove that SQISignHD satisfies
knowledge soundness [HL10, Theorem 6.3.2]. However, note that we have to re-
quire the prime ideal norm q to be not only ℓe-good but also coprime with ℓ′ in
order to complete the proof.

Proposition 6.1.1. Under the assumption that q = deg(σ) is always coprime
with ℓ′, the FastSQISignHD identification protocol satisfies special soundness.
Namely, given two transcripts (E1, φ,R) and (E1, φ

′, R′) with the same commit-
ment E1 but different challenges φ ̸= φ′, we can extract an efficient representa-
tion of a non-scalar endomorphism α ∈ End(EA).

Proof. Let (E1, φ,R) and (E1, φ
′, R′) be two FastSQISignHD transcripts with

the same commitment E1 but different challenges φ ̸= φ′. Let σ and σ′ be
respectively the isogenies defined on EA represented by R and R′. σ and σ′

can be extracted from R and R′ which are efficient representations of σ and σ′

respectively.
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Let α := σ̂′ ◦ φ′ ◦ φ̂ ◦ σ ∈ End(EA). Then, α is not scalar. Indeed, if it was,
we would have α = [λ] for some λ ∈ Z and qq′ℓ′2f

′
= λ2 where q := deg(σ)

and q′ := deg(σ′) are coprime with ℓ′. Hence, λ = ℓ′e
′
λ′ with λ′ ∈ Z prime

to ℓ′ (λ′2 = qq′). It follows that [q]σ̂′ ◦ φ′ = [λ′]σ̂ ◦ φ. Since q, q′ and λ′ are
coprime with ℓ′, we get that ker(φ) = ker(φ′) i.e. φ = φ′ up to an isomorphism.
Contradiction.

Hence α ∈ End(EA) is not a scalar so it is a witness for EA in R. This
completes the proof.

For RigorousSQISignHD, our knowledge soundness argument does not apply
because we have no guarantee on q in general. For that reason, we need to come
back to the formal definition of knowledge soundess given in [HL10, Definition
6.3.1]. This analysis is conducted in Appendix A.5.

The previous proof of knowledge would be trivial if it was easy to find an
endomorphism. Fortunately, this is a well-known hard problem in isogeny-based
cryptography.

Problem 6.1.2 (Supersingular Endomorphism Problem). Given a supersingu-
lar elliptic curve E/Fp2 , find an efficient representation of a non-scalar endomor-
phism α ∈ End(E).

This problem is very similar to [DKLPW20, Problem 1], except that we do
not require the endomorphism to have smooth degree. This does not seems to
make the problem easier since the endomorphisms solution to this can be evalu-
ated (which was the reason why smoothness was imposed in the first place). The
supersingular endomorphism ring problem (Problem 6.1.3) reduces to Problem
6.1.2. Problem 6.1.3 is notoriously hard and it has been proven it is equivalent to
path finding in the supersingular ℓ-isogeny graph [Wes22]. The heuristic reduc-
tion from Problem 6.1.3 to 6.1.2 is given by [EHLMP18, Algorithm 8]. Basically,
if we have an oracle finding endomorphisms of E, we call this oracle until we
have found enough endomorphisms to generate End(E).

Problem 6.1.3 (Supersingular Endomorphism Ring Problem). Given a super-
singular elliptic curve E/Fp2 , find four endomorphisms of E (that we can eval-
uate) forming a Z-basis of End(E).

6.2 Rigorous zero-knowledge property

The proof of the zero-knowledge property of RigorousSQISignHD uses an oracle
generating isogenies of non-smooth degree. To our knowledge, there is no efficient
algorithm implementing such an oracle. Nonetheless, it is believed that access
to such an oracle does not affect the hardness of the underlying problem (the
endomorphism ring problem, see Section 6.4).

Definition 6.2.1. A random any degree isogeny oracle (RADIO) is an oracle
taking as input a supersingular elliptic curve E defined over Fp2 and returning
an efficient representation of an isogeny σ : E −→ E′, which is uniformly random
among the isogenies of degree q < ℓe with domain E.
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Theorem 6.2.2. The RigorousSQISignHD protocol is statistically honest-verifier
zero knowledge in the RADIO model. In other words, there exists a random
polynomial time simulator S with black-box access to a RADIO that simulates
transcripts (E1, φ,R) with a statistically indistinguishable distribution from the
transcripts of the RigorousSQISignHD identification protocol.

Proof. First, we explain how to construct the simulator S. It begins by using
the RADIO on entry EA to get an efficient representation of a signature isogeny
σ′ : EA −→ E′

2 which is uniformly random among the isogenies of degree q < ℓe

with domain EA. Then we generate a canonical basis (P1, P2) of EA[ℓ
f ] and

compute its image by σ′ in polynomial time. Then, S generates a uniformly
random cyclic φ̂′ : E′

2 −→ E′
1 of degree Dφ exactly as in Section 4.2 and returns

(E′
1, φ

′, R′) with R′ := (σ′(P1), σ
′(P2), q).

We now prove that the transcripts (E′
1, φ

′, R′) of S are statistically indistin-
guishable from the transcripts (E1, φ,R) of the RigorousSQISignHD identifica-
tion protocol. We first notice that the codomain E′

2 of σ′ is uniformly random in
the supersingular isogeny graph by definition of the RADIO. As a consequence,
E′

1 is uniformly random as well, the distribution of φ̂′ being uniformly random
as well among isogenies of degree Dφ. But E1 is uniformly random in the super-
singular isogeny graph by Proposition 4.4.1. φ′ also has the same distribution as
φ by construction. Hence, the commitment and challenge (E′

1, φ
′) and (E1, φ)

are statistically undistinguishable.
Finally, the isogeny σ′ represented by R′ is uniformly random among the

isogenies EA −→ E′
2 of degree q < ℓe by definition of the RADIO, and so is the

isogeny σ represented by R by construction (see Section 5.2). This completes the
proof.

6.3 Heuristic zero-knowledge property

As for RigorousSQISignHD, the proof of the zero-knowledge property of Fast-
SQISignHD uses an auxiliary oracle. While the RADIO definition was very nat-
ural, the definition of this new oracle seems more ad hoc: we add (mild) condi-
tions on the degree to account for the computational constraints imposed by the
method in dimension 4. These degree constraints are the main reason why the
signatures are represented in dimension 8 instead of 4 in RigorousSQISignHD. As
previously, accessing this new oracle does not hamper other security properties
of the protocol (see 6.4).

Definition 6.3.1. A random uniform good degree isogeny oracle (RUGDIO) is
an oracle taking as input a supersingular elliptic curve E defined over Fp2 and
returning an efficient representation of a random isogeny σ : E −→ E′ of ℓe-good
degree coprime with ℓ′, such that:

(i) The distribution of E′ is uniform in the supersingular isogeny graph.
(ii) The conditional distribution of σ given E′ is uniform among isogenies E −→

E′ of ℓe-good degree coprime with ℓ′.
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Theorem 6.3.2. Assume that the commitment E1 is computationally indistin-
guishable from an elliptic curve chosen uniformly at random in the supersingular
isogeny graph. Then, the FastSQISignHD identification protocol is computation-
ally honest-verifier zero knowledge in the RUGDIO model.

In other words, under this assumption, there exists a random polynomial
time simulator S with access to a RUGDIO that simulates transcripts (E1, φ,R)
with a computationally indistinguishable distribution from the transcripts of the
FastSQISignHD identification protocol.

Proof. We construct the simulator S as in Theorem 6.2.2 except that we use a
RUGDIO instead of a RADIO. As previously, let us call (E1, φ,R) and (E′

1, φ
′, R′)

the transcripts generated by the real FastSQISignHD identification protocol and
S respectively.

We now prove that (E1, φ,R) and (E′
1, φ

′, R′) are computationally indistin-
guishable. We first notice that the codomain E′

2 of σ′ is uniformly random in the
supersingular isogeny graph by definition of the RUGDIO. As a consequence,
E′

1 is uniformly random as well, the distribution of φ̂′ being uniformly random
among the cyclic isogenies of degree Dφ. Hence, by heuristic assumption, E′

1 is
computationally indistinguishable from E1 and φ′ is computationally indistin-
guishable from φ as well since both isogenies are generated in the same way.

Let σ and σ′ be the isogenies represented by R and R′ respectively. By
construction, conditionally to E2, σ : EA −→ E2 is uniform among all the
isogenies of ℓe-good degree coprime with ℓ′ with codomain E2. Conditionally to
E′

2, σ
′ : EA −→ E′

2 has the same distribution by construction of the RUGDIO
so σ and σ′ are statistically indistinguishable and R and R′ as well. The result
follows.

It remains to justify that the commitment E1 is computationally indistin-
guishable from an elliptic curve chosen uniformly at random in the supersingular
isogeny graph. While RigorousCommit satisfies statistical indistinguishability, the
variant FastCommit relies on heuristics. Consider the distributions on E1 induced
by the following procedures

1. Return the output E1 of FastCommit.

2. Generate a uniformly random cyclic endomorphism γ of E0 of degree ℓ
2f ℓ′

2f ′
.

Factor it as γ = ϕ̂′ ◦ ϕ with deg(ϕ) = ℓ2f . Return the codomain E1 of ϕ.
3. Generate a uniformly random cyclic isogeny ϕ from E0 of degree ℓ2f . Let
E1 be its codomain; let m be the number of cyclic isogenies ϕ′ : E0 → E1 of

degree ℓ′
2f ′

. Return E1 with probability m/M (for some fixed upper bound

M on m, for instance M = (ℓ′ + 1)ℓ′
2f ′−1

), otherwise resample.
4. Generate a uniformly random cyclic isogeny ϕ from E0 of degree ℓ2f ; return

its codomain E1.
5. Return a uniformly random elliptic curve E1.

We argue that each distribution from the list is somewhat close to the next.
The difference between 1 and 2 is that in FastCommit, the endomorphism γ
is not truly uniform: they follow a distribution biased by the fact that some
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intermediate result should be easy to factor. The distributions 2 and 3 are ac-
tually identical: distribution 3 simulated distribution 2 by rejection sampling.
The difference between 3 and 4 is that m is not necessarily a (positive) con-
stant; it is however heuristically expected to be almost a constant: there are

about (ℓ′−1)ℓ′
2f ′−1

possible paths, and about p/12 vertices, so we expect about

m ≈ 12(ℓ′−1)ℓ′2f
′−1

/p distinct paths to any fixed vertex. The difference between
4 and 5 is similar, but reasoning about ℓ-paths instead of ℓ′-paths.

Note that the differences at some of these steps are statistically significant.
We only argue that they are not computational detectable, at least when the
endomorphism rings are not known.

6.4 On hardness of the supersingular endomorphism problem with
access to an auxiliary oracle

The identification protocol is sound assuming the hardness of the supersingular
endomorphism problem 6.1.2, and zero-knowledge with respect to a simulator
that has access to a RADIO (or a RUGDIO). For the resulting signature scheme
to be secure, one therefore needs to assume that the supersingular endomorphism
problem remains hard even when given access to a RADIO.

While it currently seems out of reach to prove that the supersingular endo-
morphism problem is equivalent to the variant with RADIO access, let us argue
that the RADIO indeed does not help. We focus the following discussion on the
RADIO, but the same arguments apply to the RUGDIO despite the slightly
biased distribution.

The RADIO allows to generate random isogenies with a chosen domain E.
Note that this task is already known to be easy, with isogenies of smooth degree.
The RADIO only lifts this smoothness restriction: it allows to generate random
isogenies whose degrees have large prime factors. It does not allow to reach
more target curves, nor does it give more control on which specific target to hit:
the target curve is uniformly distributed in the supersingular graph, which was
already possible with smooth isogenies.

Smoothness of random isogenies has never been an inconvenience in finding
endomorphisms. In fact, the best current fastest algorithms for this problem only
require very smooth degree isogenies, typically a power of 2. The reason is the
following: the purpose of constructing a random isogeny from a fixed source is to
reach a random target. As very smooth isogenies (even 2-smooth) are sufficient
for optimal randomisation, there is no incentive to involve much larger prime
factors. More specifically, the best known strategies to solve the supersingular
endomorphism problem [DG16] have classical time complexity Õ(

√
p) (and quan-

tum time complexity Õ(p1/4) with a Grover argument [Gro96]) and essentially
perform a meet-in-the-middle search in the supersingular isogeny graph. Access
to a RADIO would allow to use isogenies of a different shape in the search,
but would not speed it up, as the probability to find isogenies with match-
ing codomains stays the same. Another illustration that having access to non-
smooth degree isogenies does not help is the fact that the discovery of the

√
élu
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algorithm [BDLS20] (which dramatically improved the complexity of computing
prime degree isogenies) did not affect the state-of-the-art of the supersingular
endomorphism problem.

The above arguments support that random isogenies of non-smooth degrees
are not more helpful than random isogenies of smooth degrees. Now, one may
be concerned that the encoding of the output of the RADIO may leak more
information than it should. Non-smooth degree isogenies are represented as a
component of a higher dimensional isogeny (Section 3.2). This representation
is universal, in the sense that any efficient representation of an isogeny can be
efficiently rewritten in this form. In particular, this encoding contains no more
information than any other efficient representation of the same isogeny.

7 The SQISignHD digital signature scheme

The SQISignHD identification protocol that we presented yields a digital sig-
nature scheme via the Fiat-Shamir transform (see Section 1.2). The security
of the transform of both versions FastSQISignHD and RigorousSQISignHD fol-
lows from the analysis conducted in Section 6, so the digital signature is also
secure under the same computational assumptions. Namely, we have seen it is
universally unforgeable under chosen message attacks in the random oracle and
RADIO or RUGDIO model, assuming the hardness of the endomorphism ring
problem. In this section, we present the performance of the signature scheme
obtained from FastSQISignHD.

7.1 Compactness

As explained before, the signature is made of the data (E1, q, σ(P1), σ(P2)), with
q < ℓe, σ : EA −→ E2 a q-isogeny and (P1, P2) a basis of EA[ℓ

f ] determined
canonically.

E1 can be entirely determined by its j-invariant j(E1) ∈ Fp2 . Since any
element of Fp2 can be represented by 2 integers in J0 ; p− 1K, storing j(E1)
takes approximately 2 log2(p) ≃ 4λ bits, given that p = Θ(p2λ) (where λ is the
security level). Similarly, q < ℓe ≃ √p, so q is an integer of 1/2 log2(p) ≃ λ bits.

The points σ(P1) and σ(P2) need not be represented explicitely with co-
ordinates in Fp2 . They can be compressed. Indeed, if we generate a canini-
cal basis (Q1, Q2) of E2[ℓ

f ], then we may write σ(P1) = a1Q1 + b1Q2 and
σ(P2) = a2Q1+ b2Q2 with a1, b1, a2, b2 ∈ Z/ℓfZ. Storing the scalars a1, b1, a2, b2
requires 4f bits (assuming ℓ = 2, which will be the case in practice).

Actually, we can gain f bits by ommitting one of the scalars a1, b1, a2, b2 if
we use the Weil pairing. Indeed, we have on the one hand

eℓf (σ(P1), σ(P2)) = eℓf (P1, P2)
q.

And on the other hand

eℓf (σ(P1), σ(P2)) = eℓf (a1Q1 + b1Q2, a2Q1 + b2Q2) = eℓf (Q1, Q2)
a1b2−b1a2 .
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Since (P1, P2) and (Q1, Q2) are basis of EA[ℓ
f ] and E2[ℓ

f ] respectively, eℓf (P1, P2)
and eℓf (Q1, Q2) are both primitive ℓf -th root of unity. Hence, we may find
k ∈ (Z/ℓfZ)× such that eℓf (P1, P2) = eℓf (Q1, Q2)

k, and we must have

a1b2 − b1a2 ≡ kq mod ℓf (1)

Remark 7.1. Since ℓf |p− 1, the ℓf -th Weil pairing takes values in F∗
p, so we find

k easily by solving a discrete logarithm problem in F∗
p by Pohlig-Hellman [PH78]

techniques (which apply since p− 1 is smooth).

Since q is coprime with ℓ, σ(P1) have order ℓf so either a1 or b1 is invert-
ible modulo ℓf . If a1 is invertible, we can recover b2 from the other scalars
using equation 1 and we can recover a2 otherwise. Hence we only need 3 scalars
among 4.

We can make the representation of σ(P1) and σ(P2) even more compact.
Indeed, by Remark 5.3 the ℓe-isogeny F representing σ can be computed as long
as 2f ≥ e + 6. But in FastSQISignHD, f ≃ e ≃ λ so we may use points of
ℓf1-torsion with f1 := ⌈e/2⌉+3 instead of points of ℓf -torsion. This reduces the
storage cost of σ(P1) and σ(P2) from 3f ≃ 3λ to 3f1 ≃ 3/2λ.

On the whole, we can represent the signatures with s = 13/2λ + O(log(λ))
bits if we use the compression and decompression algorithms given by Algorithms
13 and 14, breaking the previous record of SQISign. Indeed, in SQISign, only the
kernels of the signature isogeny chain σ of degree p15/4 need to be transmitted
so we get a signature of size s = 15/2λ+O(log(λ)) at least. For NIST-I security
level (λ = 128 bits), SQISignHD signatures are as small as 105 bytes while
SQISign signatures take at least 132 bytes.

Remark 7.1.1. We still output signatures of size s = 13/2λ+O(log(λ)) bits in
dimension 8. Details may be found in Appendix B.3.

7.2 Time efficiency

Low signing time. In FastSQISignHD, the signature mainly requires:

– The computation of one ℓ2f -isogeny and one ℓ′2f
′
-isogeny along with their

kernel ideals (commitment phase).
– The computation of one ℓ′f

′
-isogeny (challenge phase).

– The computation of one kernel ideal, consisting mainly in 4 point evalua-
tions and 2 multiple discrete logarithm problems in a group of exponent ℓ′f

′

(response phase).
– Two point evaluations (in EvalTorsion).
– Elementary quaternion arithmetic operations.

Since ℓf ≃ ℓ′f ′ ≃ √p and ℓ and ℓ′ are small (in practice ℓ = 2 and ℓ′ = 3), the
isogeny computations are expected to be almost as fast as in SIDH. Other op-
erations (point evaluations, kernel ideal computations, quaternion arithmetics)
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Algorithm 13: Compression

Data: (E1, q, σ(P1), σ(P2)), where q < ℓe, σ : EA −→ E2 a q-isogeny and
(P1, P2) a basis of EA[ℓ

f1 ] determined canonically (with f1 := ⌈e/2⌉+1).
Result: A word of length 2⌈log2(p)⌉+ e+ 3f1 bits (assuming ℓ = 2).

1 Compute j(E1) ∈ Fp2 ;
2 Let ζ be a canonical generator of Fp2 . Write ζ := n1 + n2ζ where n1, n2 ∈ Fp

are represented by integers in J0 ; p− 1K of length ⌈log2(p)⌉ bits each;
3 Compute the canonical basis (P1, P2) of EA[ℓ

f1 ] and the canonical basis

(Q1, Q2) of E2[ℓ
f1 ];

4 Find k ∈ (Z/ℓf1Z)× such that eℓf1 (P1, P2) = eℓf1 (Q1, Q2)
k;

5 Find a1, b1, a2, b2 ∈ Z/ℓf1Z such that σ(P1) = a1Q1 + b1Q2 and
σ(P2) = a2Q1 + b2Q2;

6 if ℓ ̸ |a1 then
7 Return ∥n1∥n2∥q∥a1∥b1∥b2∥;
8 end
9 else

10 Return ∥n1∥n2∥q∥a1∥b1∥a2∥;
11 end

Algorithm 14: Decompression

Data: A word w of length 2⌈log2(p)⌉+ e+ 3f1 bits (ℓ := 2, f1 := ⌈e/2⌉+ 1).
Result: (E1, q, σ(P1), σ(P2)), where q < ℓe, σ : EA −→ E2 a q-isogeny and

(P1, P2) a basis of EA[ℓ
f1 ] determined canonically.

1 Parse ∥n1∥n2∥q∥a1∥b1∥c2∥ ←− w;
2 Set j ←− n1 + n2ζ, where ζ is the canonical generator of Fp2 ;
3 Compute E1 of j-invariant j(E1) = j;

4 Compute the canonical basis (P1, P2) of EA[ℓ
f1 ] and the canonical basis

(Q1, Q2) of E2[ℓ
f1 ];

5 Find k ∈ (Z/ℓf1Z)× such that eℓf1 (P1, P2) = eℓf1 (Q1, Q2)
k;

6 if ℓ ̸ |a1 then
7 a2 ←− c2;
8 Find b2 ∈ Z/ℓf1Z such that a1b2 − b1a2 ≡ kq mod ℓf1 ;

9 end
10 else
11 b2 ←− c2;
12 Find a2 ∈ Z/ℓf1Z such that a1b2 − b1a2 ≡ kq mod ℓf1 ;

13 end
14 Return (E1, q, a1Q1 + b1Q2, a2Q1 + b2Q2);



SQISignHD: New Dimensions in Cryptography 41

should also be very fast. These operations were already implemented in SQISign,
whose complexity was largely dominated by isogeny computations.

In the last version of SQISign [DLW22], the signature required the compu-
tation of 30 T -isogenies with T ≃ p5/4. The complexity was dominated by these
computations because T was not as smooth as power of ℓ. Even if further im-
provements were made on this scheme, we expect FastSQISignHD to be way
faster. Our preliminary implementation results indicate that FastSQISignHD
signing and key generation time are significantly lower than in SQISign. Provid-
ing a completely optimized implementation is left for future works.

Impact on the verification time. However, this efficiency gain in the sig-
nature is made at the expense of the verification time where a 4-dimensional
ℓe-isogeny has to be computed. Of course ℓ-isogenies in dimension 4 are ex-
pected to be slower to compute than in dimension 1. Nonetheless, we only have
to compute a chain of ℓ-isogenies of length e ≃ 1/2 logℓ(p), whereas the veri-
fier had to compute an ℓ-isogeny chain of size 15/4 logℓ(p) in the last version of
SQISign [DLW22]. An implementation would be needed to correctly assess the
verification time of FastSQISignHD. This is left for future works.

A verification time vs compactness trade-off. To speed up the verification
time, the signer (or any verifier) can expand the compact signature by outputting
all e intermediates theta constants computed in the chain of ℓ-isogenies computed
during the verification. In dimension g, a theta constant over Fp2 takes 2g log(p2)
bits. The chain can be verified using Corollary C.3.2.

When g = 4, λ = 128, ℓ = 2, e = 128 and p has 256 bits, storing each 128
theta constants then takes 128 ·24 ·512 bits, that is 131kB. This is a much larger
output than the 832 bits of the compressed signature, but by Corollary C.3.2
the verification then takes only e · 2g+1 = 4096 squares over Fp2 and 2e = 256
Hadamard transforms (and a final linear change of variable to glue the theta
structures at the end), so will be much faster than via the compact signature
(compare with Proposition C.3.5 and Example C.3.6).

This allows for a verification time vs compactness trade-off. We remark that
expanding the compact isogeny to allow for fast verification time can be done
by anyone.
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A Omitted proofs

A.1 Kani’s lemma (Lemma 3.2.3)

Lemma 3.2.3 (Kani). Consider the following (a, b)-isogeny diamond

A′ φ′
// B′

A

ψ

OO

φ // B

ψ′

OO

with d := a+ b prime to the characteristic of the base field of abelian varieties.
Then, the isogeny F : A×B′ −→ B ×A′ given in matrix notation by

F :=

(
φ ψ̃′

−ψ φ̃′

)

is a d-isogeny with d = a+ b.
If a and b are coprime, the kernel of F is

ker(F ) = {(φ̃(x), ψ′(x)) | x ∈ B[d]}.

Proof. Here we use, without proof, the main properties of the dual abelian vari-
ety with respect to polarisations (see for instance [Kan14, § 11]). It is a classical
result that the dual of a matrix for the product polarisations is the transpose
of the matrix obtained after dualizing the coefficients and that dualization is an
involutive operation, so that

F̃ =

(
φ̃ −ψ̃
ψ′ φ′

)
.

Hence

F̃F =

(
φ̃φ+ ψ̃ψ φ̃ψ̃′ − ψ̃φ̃′

ψ′φ− φ′ψ ψ′ψ̃′ + φ′φ̃′

)

with φ̃φ+ ψ̃ψ = [a]A + [b]A = [d]A since φ is an a-isogeny and ψ is a b-isogeny.

Similarly, we get ψ̃′ψ′ + φ̃′φ′ = [d]A′ , so that ψ′ψ̃′ +φ′φ̃′ = [d]B′ after dualizing
(the dual being anti-commutative and the dual of an integer being an integer).

Clearly, ψ′φ− φ′ψ = 0 since we have an isogeny diamond and we obtain φ̃ψ̃′ −
ψ̃φ̃′ = 0 by dualizing the preceding equality. Hence, F̃F = [d]A×B′ so F is a
d-isogeny.

If x ∈ B[d], we have

F (φ̃(x), ψ′(x)) = (φ ◦ φ̃(x) + ψ̃′ ◦ ψ′(x),−ψ ◦ φ̃(x) + φ̃′ ◦ ψ′(x))

= ([a]x+ [b]x, 0) = ([d]x, 0) = (0, 0)
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where we used the fact that ψ ◦ φ̃ = φ̃′ ◦ ψ′. Indeed, ψ′φ = φ′ψ, which implies
that [a]ψ ◦ φ̃ = [a]φ̃′ ◦ ψ′ after multiplying on the right by φ̃ and on the left by

φ̃′, so that ψ ◦ φ̃ = φ̃′ ◦ ψ′ since [a]A′ is an isogeny (it has finite kernel).
It follows that ker(F ) contains the set:

S := {(φ̃(x), ψ′(x)) | x ∈ B[d]}.

Since φ̃ and ψ′ are a and b-isogenies respectively, we have ker(φ̃) ⊆ B[a] and
ker(ψ′) ⊆ B[b]. It follows that ker(φ̃)∩ker(ψ′) = {0}, when a and b are coprime,
so that x ∈ B 7−→ (φ̃(x), ψ′(x)) is injective and #S = #B[d]. Since d is coprime
to the characteristic of the field, we have #B[d] = d2g with g := dim(B). A
being isogenous to B and B′, we also have g = dim(A) = dim(B′) and dim(F ) =
ddim(A×B′) = d2g. Hence, ker(F ) = S when a and b are coprime and the proof
is complete.

A.2 Finding a uniformly random tight response ideal (Lemmas
5.2.1 and 5.2.2)

Lemma 5.2.1. Let f be a primitive positive definite integral quadratic form in
k variables and let ρ > 0. Then there exists an algorithm that samples uniformly
random elements from the set

{x ∈ Zk | f(x) ≤ ρ}

in polynomial time in log(ρ) and the length of f (namely, the maximal number
of bits of the coefficients of f). This algorithm runs in exponential time in k.

Proof. By Cholesky decomposition theorem, there exists a matrix B ∈ GLk(R)
such that f(x) = ∥Bx∥2 for all x ∈ Rk, ∥.∥ being the Euclidean norm. Let
Λ := Λ(B) be the lattice generated by the columns of B. We want to sample
in B(0,

√
ρ) ∩ Λ with uniform distribution. Let (b1, · · · , bk) be an LLL-reduced

basis of Λ. Let ν :=
√
k∥bk∥/2 and consider the following sampling algorithm:

1. Sample v ∈ B(0,
√
ρ+ ν) uniformly at random.

2. Find a solution λ(v) ∈ Λ to the closest vector problem for v.
3. If λ(v) ∈ B(0,

√
ρ), return λ(v); else restart.

We prove that the output λ(v) has uniform distribution in B(0,
√
ρ)∩Λ. Let

V := {v ∈ Rk | ∥v∥ = minλ∈Λ ∥v + λ∥} be the Voronoi cell at the origin. Then,
the closest vector λ(v) satisfies v ∈ V + λ(v) and λ(v) is unique when v is not
at the border of a Voronoi cell, so it is unique with probability 1. Hence, for all
u ∈ B(0,

√
ρ) ∩ Λ,

P(λ(v) = u) =
Vol((V + u) ∩B(0,

√
ρ+ ν))

Vol(B(0,
√
ρ+ ν))

.

Let µ := inf{r > 0 | ∀v ∈ Rk, ∃λ ∈ Λ, ∥x− λ∥ ≤ r} be the covering radius of Λ.
Then V ⊆ B(0, µ) and µ ≤

√
kλk/2 where λk is the last minimum of Λ (this is
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a classical result, see for instance [Mic16, Exercise 11]), so that µ ≤ ν. It follows
that V + u ⊆ B(0,

√
ρ+ ν) for all u ∈ B(0,

√
ρ) ∩ Λ. Hence

P(λ(v) = u) =
Vol(V + u)

Vol(B(0,
√
ρ+ ν))

=
Vol(V)

Vol(B(0,
√
ρ+ ν))

.

This quantity does not depend on u so λ(v) has uniform distribution.
We finally check that the algorithm terminates after an expected polynomial

number of steps in log(ρ) and the length of f . Indeed, when v is uniform in
B(0,

√
ρ+ ν), we have

P(∥λ(v)∥ ≤ √ρ) ≥ P(λ(v) = 0) =
Vol(B(0, λ1/2))

Vol(B(0,
√
ρ+ ν))

=

(
λ1

2
√
ρ+
√
k∥bk∥

)k
,

where λ1 is the first minimum of Λ. Since f is integral, we have ∥bk∥ ≥ · · · ≥
∥b1∥ ≥ λ1 ≥ 1 and since (b1, · · · , bk) is LLL-reduced, we have:

∥b1∥ · · · ∥bk∥ ≤ 2k(k−1)/4 Covol(Λ) = 2k(k−1)/4 disc(f),

so ∥bk∥ ≤ 2k(k−1)/4 disc(f). Hence, the algorithm terminates after an expected
number of steps O(1/ logP(∥λ(v)∥ ≤ √ρ)), a quantity that is polynomial in
log(ρ), log(disc(f)) (itself polynomial in the length of f) and k. We conclude
that the algorithm has the desired complexity, since the LLL algorithm has
polynomial time complexity and the closest vector problem (used in step 2 of
the algorithm) can be solved in the desired time complexity.

Lemma 5.2.2. Let O be a maximal order and J be a left O-ideal. Then there
exists α ∈ J such that qJ(α) ≤ 8

√
2p/π.

Proof. Consider the canonical embedding ι : Bp,∞ ↪−→ R4:

1 7−→ (1, 0, 0, 0), i 7−→ (0,
√
q0, 0, 0), j 7−→ (0, 0,

√
p, 0), k 7−→ (0, 0, 0,

√
q0p),

where q0 := nrd(i). ι is an isometry in the following sense ∥ι(α)∥2 = nrd(α) for
all α ∈ Bp,∞, where ∥.∥ is the Euclidean norm of R4. By Minkowski’s second
theorem, the successive minima of the lattice ι(J) satisfy

λ1 · · ·λ4 ≤ 24
Covol(ι(J))

Vol(B(0, 1))
=

32

π2
Covol(ι(J)).

By [Voi20, Exercise 17.7], we know that Covol(ι(O)) = 4 discrd(O) and by
[Voi20, Theorem 15.5.5], discrd(O) = disc(Bp,∞) = p since O is a maximal
order. We then have

Covol(ι(J)) = [O : I] Covol(ι(O)) = 4[O : I] discrd(O) = 4 nrd(J)2p

It follows that the minimal value of qJ is

qJ(α) = λ21/ nrd(J) ≤
8
√
2p

π
.
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A.3 Dividing the higher dimensional isogeny in two
(Proposition 5.4.1)

Proposition 5.4.1. Let d := d1d2 coprime with p and F : A −→ B be a
d-isogeny between abelian varieties defined over Fp. Then:

(i) We can always decompose F = F2 ◦ F1, where F1 is a d1-isogeny and F2 is
a d2-isogeny.

(ii) ker(F1) ⊆ ker(F ) ∩ A[d1].
(iii) ker(F̃2) ⊆ F (A[d]) ∩ B[d2].
(iv) When ker(F ) has rank g := dim(A), those inclusions are equalities and we

also have ker(F̃2) = F (A[d2]).

In order to prove the proposition, we need two intermediary results.

Lemma A.3.1. If F : (A, λA) −→ (B, λB) is a d-isogeny between principally
polarized abelian varieties, then ker(F ) is a maximal isotropic subgroup of A[d]
(for the d-th Weil pairing).

Proof. The inclusion ker(F ) ⊆ A[d] immediately follows from F̃ ◦ F = [d]. Now

we prove that ker(F ) is isotropic. Let x, y ∈ ker(F ). Since F̃ is surjective, there

exists y′ ∈ B such that y = F̃ (y′). Let λA and λB be the principal polarisations
on A and B respectively, eλA

d and eλB
d the associated Weil pairings. Then

eλA
d (x, y) = ed(x, λA ◦ F̃ (y′)) = ed(x, F̂ ◦ λB(y)) = ed(F (x), λB(y)) = 1.

Then ker(F ) is isotropic. Since F is a d-isogeny, it has degree dg with g :=
dim(A), and #ker(F ) = dg since F is separable. So ker(F ) is maximal isotropic.

Lemma A.3.2. let (A, λ) be a principally polarized abelian variety. If K ⊂ A[d]
is isotropic, then the polarization [d]λL on A descends to a principal polarization
on B := A/K. More precisely, there exists a principal polarization λ′ on B such
that [d]λ = π̂ ◦ λ′ ◦ π, where π : A −→ B = A/K is the canonical projection.

Proof. We have ker([d]λ) = [d]−1(ker(λ)) = A[d] since deg(λ) = 1. Since K ⊂
A[d] is isotropic, the result follows from [Mil86, Proposition 6.8].

Proof. (of Proposition 5.4.1) (i) We prove that we have a decomposition of
F : A −→ B of the form

(A, λA)
F1−→ (C, λC)

F2−→ (B, λB),

where the intermediary abelian variety C is principally polarized and F1 and F2

are respectively d1 and d2-isogenies, with d = d1d2. By induction, it suffices to
prove this result when d1 = ℓ is a prime.
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Since #ker(F ) = dg, the ℓ-Sylow subgroup of ker(F ) has cardinality ℓgvℓ ,
where vℓ is the ℓ-adic valuation of d. We may also write the ℓ-Sylow subgroup
as follows:

Gℓ ∼=
r∏
i=1

(Z/ℓαiZ),

where the αi are positive integers. Since Gℓ ⊆ ker(F ) ⊆ A[d], the αi must all be
≤ vℓ. It follows that

gvℓ = logℓ#Gℓ =

r∑
i=1

αi ≤ rvℓ,

so that r ≥ g and ker(F )[ℓ] = Gℓ[ℓ] ∼= (Z/ℓZ)r, which implies that ker(F )[ℓ] has
rank ≥ g. Hence, it contains a subgroup K ⊂ A[ℓ] of rank g, which is isotropic
in A[ℓ] since ker(F ) ⊃ K is isotropic in A[d] by Lemma A.3.1.

By [Mum74, Theorem 4, p. 73], F factors through an isogeny F1 of kernel K
so we can indeed write F = F2 ◦ F1. Since K is isotropic, by Lemma A.3.2, the
codomain C of F1 admits a principal polarization λC such that F̂1◦λC◦F1 = [ℓ]λA
i.e. F̃1 ◦ F1 = [ℓ]. So F1 is an ℓ-isogeny.

We also have

[d]B = F ◦ F̃ = F2 ◦ F1 ◦ F̃1 ◦ F̃2 = F2 ◦ [ℓ]C ◦ F̃2 = F2 ◦ F̃2 ◦ [ℓ]B,

so F2 ◦ F̃2 = [d/ℓ]B since [ℓ]B is surjective and F2 is a d2 = d/ℓ-isogeny. To prove
the result in the general case, we can proceed by induction on the degree d (and
factor F2).

(ii) We always have ker(F1) ⊆ ker(F ) ∩ A[d1] since F = F2 ◦ F1 and F1 is a
d1-isogeny.

(iii) Similarly, we get that ker(F̃2) ⊆ ker(F̃ ) ∩ B[d2]. But F̃ ◦ F = [d]A so

F (B[d]) ⊆ ker(F̃ ). Since ker(F ) ⊆ A[d], we have an isomorphism F (A[d]) ∼=
A[d]/ ker(F ). Furthermore, d being coprime to p, #A[d] = d2g and #ker(F̃ ) =

#ker(F ) = dg. Hence, #F (B[d]) = dg = #ker(F̃ ) and ker(F̃ ) = F (A[d]). Point
(iii) follows.

(iv) Suppose ker(F ) has rank g. Let (x1, · · · , xg) be a basis of generators of
ker(F ). Then, the xi all have order d and are linearly independent over Z/dZ.
Then, ker(F ) ∩A[d1] = ([d2]x1, · · · , [d2]xg) and the [d2]xi all have order d1 and
are linearly independent over Z/d1Z, so that #ker(F )∩A[d1] = dg1 = #ker(F1).
The equality ker(F1) = ker(F ) ∩ A[d1] follows by (ii).

To prove that ker(F̃2) = F (A[d]) ∩ B[d2], it suffices to prove that F (A[d]) =
ker(F̃ ) has rank g and the preceding reasoning will apply. We have F (A[d]) ∼=
A[d]/ ker(F ), so it suffices to prove that there is a subgroup G ⊂ A[d] of rang g
such that ker(F ) ⊕ G = A[d], because, we will have F (A[d]) ∼= G. We consider
the d-th Weil pairing eλA

d : A[d]2 −→ µd(Fp), where µd(Fp) is the group of d-th
roots of unity in Fp, and the group homomorphism

Φ : A[d] −→ µd(Fp)g
y 7−→ (eλA

d (xi, y))1≤i≤g.



52 Pierrick Dartois, Antonin Leroux, Damien Robert and Benjamin Wesolowski

Since ker(F ) is maximal isotropic, we have ker(Φ) = ker(F ). It follows that
# im(Φ) = #A[d]/#ker(Φ) = d2g/dg = dg, so that im(Φ) = µd(Fp)g i.e. Φ
is surjective. Let ζ ∈ µd(Fp) be a primitive d-th root of unity. Then, for all

j ∈ J1 ; gK there exists yj ∈ A[d] such that eλA
d (xi, yj) = ζδi,j for all i ∈ J1 ; gK.

It follows that the yi all have order d (since eλA
d (xi, yi) = ζ has order d), are

linearly independent over Z/dZ and linearly independent of the xi. We can then

take G := ⟨y1, · · · , yg⟩. This completes the proof of ker(F̃2) = F (A[d]) ∩ B[d2].
To conclude, we remark that F (A[d2]) ⊆ F (A[d]) ∩ B[d2]. Since, F (A[d2]) ∼=

A[d2]/ ker(F )∩A[d2] with ker(F )∩A[d2] = ⟨[d1]x1, · · · , [d1]xg⟩, we have #ker(F )∩
A[d2] = dg2 and #F (A[d2]) = dg2 = #ker(F̃2). We finally conclude that ker(F̃2) =
F (A[d]) ∩ B[d2] = F (A[d2]).

A.4 Verification (Lemma 5.7.1)

Lemma 5.7.1. If the images of F1 and F̃2 outputted by Algorithm 11 coincide,
then F = F2 ◦ F1 is of the form F = F (σ, a1, a2) where σ : EA −→ E2 is a
q-isogeny, the integers a1, a2, q are given as input of this algorithm along with
(σ(P1), σ(P2)) and satisfy a21 + a22 + q = ℓe. This result generalizes to Algo-
rithm 12.

Proof. We may write F := (fi,j)1≤i,j≤4 in matricial form, where the fi,j are
endomorphisms of EA or E2 or homomorphisms between EA and E2. We already
know that F is an ℓe-isogeny since it has been computed as a chain of ℓ-isogenies
of length e1 + e2 = e. It follows that F̃ ◦ F = [ℓe], so that

∀i ∈ J1 ; 4K ,
4∑
j=1

f̂i,j ◦ fi,j = [ℓe].

It follows that
∑4
j=1 deg(fi,j) = ℓe for all i ∈ J1 ; 4K, so that deg(fi,j) ≤ ℓe for

all i, j ∈ J1 ; 4K.
By construction (see lines 3, 4 and 6 of Algorithm 11), we know that f1,1 =

f2,2 = [a1]EA
, f1,2 = −f2,1 = [a2]EA

, f3,1 = f4,2 and f3,2 = f4,1 = 0 on EA[ℓ
e2 ].

We also know that f3,3 = f4,4 = [a1]E2 , f4,3 = −f3,4 = [a2]E2 , f1,3 = f2,4 and
f1,4 = f2,3 = 0 on E2[ℓ

e2 ].
If ϕi,j is an isogeny of degree < ℓe with the same domain and codomain as

fi,j , then we have by Cauchy Schwarz inequality

deg(fi,j − ϕi,j) ≤
(√

deg(fi,j) +
√
deg(ϕi,j)

)2

< (2ℓe/2)2 = 4ℓe ≤ ℓ2e2 ,

since 2e2 ≥ e + 2. So if fi,j and ϕi,j coincide on the ℓe2 -torsion, they must be
equal. Since q + a21 + a22 = ℓe, and q ̸= 0, we have q, a21, a

2
2 < ℓe. Hence, the

equalities obtained above on EA[ℓ
e2 ] and E2[ℓ

e2 ] are satisfied everywhere, and
we have

F =

(
α Γ ′

−Γ α̃′

)
, with α :=

(
a1 a2
−a2 a1

)
∈ End(E2

A),
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α′ the analogue of α in End(E2
2), Γ := Diag(γ, γ) : E2

A −→ E2
2 and Γ ′ :=

Diag(γ′, γ′) : E2
2 −→ E2

A. Since F is an ℓe-isogenies, γ and γ′ must have degree
ℓe − a21 − a22 = q. Besides, if we denote by (R1, R2) the entry (σ(P1), σ(P2))
(not knowing if σ does exist a priori), we get (again by construction) that
γ([ℓf−e2 ]Pi) = [ℓf−e2 ]Ri and γ′([ℓf−e2 ]Ri) = [qℓf−e2 ]Pi = γ̂([ℓf−e2 ]Ri) for i ∈
{1, 2}. Hence, γ′ and γ̂ coincide on the whole of E2[ℓ

e2 ], so they coincide on
the whole of E2 since q < ℓe. Now, if σ exists, then it also coincides with γ on
EA[ℓ

e2 ] so γ = σ. The arguments being the same in dimension 8, this completes
the proof.

A.5 Knowledge soundness of RigorousSQISignHD

We recall the formal definition of knowledge soundness given in [HL10, Definition
6.3.1].

Definition A.5.1. A protocol (P, V ) between a prover and a verifier is a proof
of knowledge for a relation R ⊂ X ×W with knowledge error κ if it satisfies the
following properties:

Completeness: If P interacts with V as input x ∈ X and private input w ∈W
with (x,w) ∈ R, then V always accepts.

Knowledge soundness: There exists a knowledge extractor K such that for
every interactive prover P ∗ and every x ∈ X, K satisfies the following con-
dition. Let ε(x) be the success probability of P ∗ on input x (the probability
that V accepts on input x). If ε(x) > κ(x), then upon input x and oracle
access to P ∗, K outputs a witness w ∈ W such that (x,w) ∈ R within an
expected number of steps O(1/(ε(x)− κ(x))).

Definition A.5.2. A 3-round protocol (commitment, challenge, response) (P, V )
satisfies special soundness for a relation R ⊂ X ×W if given x ∈ X and two
accepting transcripts (a, c, r), (a, c′, r′) for x ∈ X with the same commitment
a and distinct challenges c ̸= c′, one can extract a witness w ∈ W such that
(x,w) ∈ R in polynomial time.

Theorem A.5.3. [HL10, Theorem 6.3.2] A complete 3-round protocol satisfying
special soundness for a relation R with challenge space C is a proof of knowledge
with knowledge error 1/#C.

In Proposition 6.1.1, we proved that FastSQISignHD satisfies special sound-
ness for the relation:

R := {(EA, α) | α ∈ End(EA) non-scalar}.

Since the challenge space has size µ(ℓ′f
′
) = ℓ′f

′−1(ℓ′ + 1) = Ω(p1/2), we get
by Theorem A.5.3 that FastSQISignHD is a proof of knowledge for R with
knowledge soundness O(p−1/2).

Unfortunately, the special soundness argument no longer holds in Rigorous-
SQISignHD because we can no longer impose conditions on q (except q < ℓe),
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and especially we cannot impose q to be coprime with Dφ. However, choosing Dφ

big enough will ensure that the endomorphism α is non-scalar with overwhelming
probability, since φ′ ◦ φ̂ has a big cyclic factor with overwhelming probability.
We first introduce a useful lemma to prove this result.

Lemma A.5.4. Let ϕ : E1 −→ E2 and ϕ′ : E1 −→ E′
2 be two cyclic isogenies.

Then, there exists three cyclic isogenies ϕ0 : E1 −→ E3, ϕ1 : E3 −→ E2 and

ϕ′1 : E3 −→ E′
2 such that ϕ = ϕ1 ◦ ϕ0, ϕ′ = ϕ′1 ◦ ϕ0 and ϕ′1 ◦ ϕ̂1 is cyclic. ϕ0 will

be called the greatest common factor of ϕ and ϕ′.

Proof. Since the product of cyclic isogenies of coprime degrees is cyclic, we may
assume that deg(ϕ) and deg(ϕ′) are powers of the same prime ℓ. Let ϕ0 be
the biggest common factor of ϕ and ϕ′ (possibly trivial). Then we may write
ϕ := ϕ1 ◦ ϕ0 and ϕ′ := ϕ′1 ◦ ϕ0 where ϕ′1 and ϕ1 have no common factor. We

prove that ϕ′1 ◦ ϕ̂1 is cyclic by induction on the degree of ϕ′1.
When deg(ϕ′1) = 1 it follows from the fact that the dual of a cyclic isogeny is

cyclic. Now, we assume the result holds when deg(ϕ′1) = ℓn with n ∈ N and prove
it holds when deg(ϕ′1) = ℓn+1. We may factor ϕ′1 := ϕ2 ◦ ϕ′2 with deg(ϕ2) = ℓ

and deg(ϕ′2) = ℓn. By assumption, ϕ3 := ϕ′2 ◦ ϕ̂1 is cyclic so we only have to
prove that ϕ2 ◦ ϕ3 is cyclic, i.e. that ker(ϕ2 ◦ ϕ3) = ϕ−1

3 (ker(ϕ2)) is cyclic.
Let Q be a generator of ker(ϕ2), P be a generator of ker(ϕ3) and P ′ ∈ E2

such that Q = ϕ3(P
′). Then

ker(ϕ2 ◦ ϕ3) = ϕ−1
3 (ker(ϕ2)) = ⟨P, P ′⟩.

To conclude, it suffices to prove that P ∈ ⟨P ′⟩. We have P ′ ∈ ker(ϕ2 ◦ ϕ3) ⊂
E2[ℓ

m+1], with deg(ϕ3) := ℓm and [ℓm]P ′ = ϕ̂3 ◦ ϕ3(P ′) = ϕ̂3(Q) ̸= 0 since ϕ̂3
does not factor through ϕ2 (since does ϕ1 does not either). Hence, P ′ has order
ℓm+1. Let R ∈ E2[ℓ

m] such that ([ℓ]P ′, R) is a basis of E2[ℓ
m]. Then, we may

write P := [aℓ]P ′ + [b]R for some a, b ∈ Z since P ∈ ker(ϕ3) ⊂ E2[ℓ
m]. Since

Q ∈ ker(ϕ2) has order ℓ, we get that

0 = ϕ3(P ) = [aℓ]Q+ [b]ϕ3(R) = [b]ϕ3(R),

and ϕ3(R) generates ϕ3(E2[ℓ
m]) = ker(ϕ̂3) which is cyclic so it has order ℓm.

It follows that b ≡ 0 mod ℓm, so that P = [aℓ]P ′ ∈ ⟨P ′⟩. This completes the
proof.

Lemma A.5.5. Let (E1, φ,R) and (E1, φ
′, R′) be two RigorousSQISignHD tran-

scripts with the same commitment E1. If the greatest common factor of φ and φ′

has degree < Dφ/ℓ
e, then we can infer an efficient representation of a non-scalar

endomorphism α ∈ End(EA) from these transcripts. In this case we say that φ
and φ′ are relatively good and relatively bad if this is not satisfied.

Proof. As previously, let σ and σ′ be respectively the isogenies defined on EA
represented by R and R′ and α := σ̂′ ◦ φ′ ◦ φ̂ ◦ σ ∈ End(EA). Assume that α is

a scalar endomorphism: α = [λ]EA
for some λ ∈ Z. Then [λ]E′

2
= φ′ ◦ φ̂ ◦ σ ◦ σ̂′.
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Let us write φ := φ1 ◦ φ0 and φ := φ′
1 ◦ φ0, where φ0 is the greatest common

factor of φ and φ′. Then ϕ := φ′
1 ◦ φ̂1 is cyclic by Lemma A.5.4 and we have

φ′ ◦ φ̂ := [D]ϕ with D := deg(φ0). We can also write σ′ ◦ σ̂ = [D′]ϕ′ where ϕ′

is a cyclic isogeny E2 −→ E′
2. It follows that [λ/DD′]E′

2
= ϕ ◦ ϕ̂′. Hence, by

Lemma A.5.4, the greatest cyclic factor of ϕ and ϕ′ must be equal to both ϕ and
ϕ′ so ϕ = ϕ′. Hence, σ′ ◦ σ̂ factors through ϕ. But deg(σ′ ◦ σ̂) = qq′ ≤ ℓ2e and
deg(ϕ) = D2

φ/D
2 with D < Dφ/ℓ

e so deg(ϕ) > ℓ2e. Contradiction.

Now, we prove that the probability to generate relatively good challenges
is overwhelming. This will be the last essential ingredient to our knowledge
soundness proof.

Lemma A.5.6. Fix a challenge φ : E1 −→ E2 and let us write Dφ :=
∏r
i=1 ℓ

ei
i ,

where ℓ1 ≤ · · · ≤ ℓr are distinct ordered primes and e1, · · · , er ∈ N∗. Then, the
number of challenges φ′ : E1 −→ E′

2 relatively bad to φ is

O

( √
pµ(Dφ)

D
1−log(2)/ log log(Dφ)
φ

)
,

with µ(Dφ) :=
∏r
i=1 ℓ

ei−1
i (ℓi + 1).

Proof. φ and φ′ relatively bad if their greatest common factor has degree D ≥
Dφ/ℓ

e. If we fix such a D|Dφ, then choosing φ′ is choosing a cyclic isogeny of
degree Dφ/D so there are µ(Dφ/D) possibilities. It follows that the number of
challenges φ′ relatively bad to φ is

N ≤
∑
D|Dφ

D>Dφ/ℓ
e

µ

(
Dφ

D

)
= µ(Dφ)

∑
D|Dφ

D>Dφ/ℓ
e

1

µ(D)
≤ µ(Dφ)

∑
D|Dφ

D>Dφ/ℓ
e

1

D

≤ ℓeµ(Dφ)

Dφ
#{D ∈ N∗ | D|Dφ and D > Dφ/ℓ

e}

≤ ℓeµ(Dφ)

Dφ
#{D ∈ N∗ | D|Dφ} =

ℓeµ(Dφ)d(Dφ)

Dφ
,

where d(Dφ) is the number of divisors of d(Dφ). By [HW08, § 18.1, Theorem

317], we know that d(Dφ) = O
(
D

log(2)/ log log(Dφ)
φ

)
and we also have ℓe = O(

√
p)

by assumption. The result follows.

We chooseDφ|T such thatDφ ≃ p1/(1−log(2)/ log log(p)), so that the proportion
of challenges relatively bad to a given challenge is O(p−1/2). This is possible in
practice since T ≃ p3/2 and Dφ ≃ p1.15 when p has size 256 bits (to achieve
λ = 128 bits of classical security). Then, under this condition, we can adapt
the proof of [HL10, Theorem 6.3.2] to prove knowledge soundness of Rigorous-
SQISignHD.

Proposition A.5.7. Assume that Dφ > p1/(1−log(2)/ log log(p)). Then the Rigorous-
SQISignHD identification protocol is a proof of knowledge for the relation R of
Proposition 6.1.1 with knowledge error O(p−1/2).
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Proof. As required by Definition A.5.1, we construct a knowledge extractor K.
Let P ∗ be a prover with success probability ε. Then K is constructed as follows
(as in [HL10, Theorem 6.3.2]). Fix EA a supersingular elliptic curve (as public
key). Then K executes the following algorithm:

1. Sample a seed s
$←− {0, 1}∗ fixing the randomness of P ∗, sample a challenge

φ and run P ∗(EA, s, φ) repeatedly until the transcript (E1, φ,R) outputted
by P ∗ is accepted by the verifier and save s.

2. Sample another challenge φ′ and run P ∗(EA, s, φ
′) with the same seed s

as in step 1 (fixing the commitment value E1) to obtain a new transcript
(E1, φ

′, R′) and repeat until we can extract a witness α ∈ End(EA) non-
scalar from (E1, φ,R) and (E1, φ

′, R′).
3. Break step 2 after k iterations (to be determined) or return α.

This algorithm may fail so K may execute this algorithm multiple times. We
determine k to optimize the running time and the probability of failure of this
algorithm. To do this, we specify how we can extract a witness in step 2. As
in the previous knowledge soundness proof, we extract the signature isogenies σ
and σ′ from R and R′ respectively and compute α := σ̂′ ◦φ′ ◦ φ̂ ◦ σ ∈ End(EA).
If φ and φ′ are relatively good, then α is non-scalar by Lemma A.5.5 and we
have won.

By Lemma A.5.6, since Dφ > p1/(1−log(2)/ log log(p)) by assumption, the num-
ber of challenges φ′ relatively bad to φ is bounded by Cµ(Dφ)/

√
p for some

constant C > 0.
Now consider the matrix H whose rows are indexed by seeds s for P ∗, whose

columns are indexed by challenges φ and such that H(s, φ) is the the result 0 or
1 returned by the verifier when P ∗ is run with EA, s and φ. By assumption, the
proportion of 1 in H is ε. A row with a proportion of 1 bigger than ε/2 is called
a heavy row. Let R be the number of rows in H (i.e. the number of possible
seeds for P ∗). Let R′ be the number of non-heavy rows. Then, the number of 1
located in a heavy rows is:

Rεµ(Dφ)−R′ ε

2
µ(Dφ) ≥ Rεµ(Dφ)−R

ε

2
µ(Dφ) = R

ε

2
µ(Dφ)

so at least half of the 1 are in heavy rows and the probability to fall in a heavy
row at step 1 of the algorithm is ≥ 1/2. Let φ be the challenge found at step 1.
Now, at step 2, we are in the same row as in step 1 (since we fixed s). Assuming
we are in a heavy row, the probability to find φ′ that is not bad in relation to φ
and such that H(s, φ′) = 1 is

P ≥
ε/2µ(Dφ)− µ(Dφ)C/

√
p

µ(Dφ)
=
ε

2
− C
√
p
.

In the following, we assume that ε > 2C/
√
p, so that P > 0. Then, the expected

number of tries t to succeed in step 2 is:

E(t) =
1

P
≤ 2

ε− 2C/
√
p
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Now we choose the time limit k accordingly. By Markov’s inequality, the prob-
ability that step 2 terminates within k tries is

P(t < k) = 1− P(t ≥ k) ≥ 1− E(t)
k
≥ 1− 2

k(ε− 2C/
√
p)

We choose k := 4/(ε − 2C/
√
p), so that P(t < k) ≥ 1/2. This probability is

conditional to the fact that we fall into a heavy row, which has probability ≥ 1/2
as we saw. Hence, the probability that the algorithm succeeds is ≥ 1/2× 1/2 =
1/4 so K expects to repeat it 4 times to find a witness.

Now we estimate the running time of the algorithm. Step 1 is expected to
terminate after 1/ε iterations and step 2 after k = 4/(ε− 2C/

√
p) iterations, so

the total time complexity is

1

ε
+

4

ε− 2C/
√
p
≤ 5

ε− 2C/
√
p

RigorousSQISignHD being complete, we conclude that it is a proof of knowledge
for R with knowledge error κ := 2C/

√
p = O(p−1/2).

B Response and verification in dimension 8 when q is
not coprime with ℓ

As explained in Section 3.3, we have no guarantee that q is coprime with ℓ in
dimension 8, and in that case we can no longer use the simple formula for ker(F )
and the optimisations of Section 5.4 to compute the 8-dimensional isogeny F
embedding the response σ. To be able to use the techniques we developed, we
factor σ into σ := σ̂2 ◦ σ′ ◦ σA, where σA and σ2 both have degree dividing ℓf

and σ′ has degree coprime with ℓ. We then represent σ′ with the techniques we
presented earlier.

B.1 Finding the ℓ-isogeny factors in the response

In this section, we explain how to factor σ : EA −→ E2 by ℓ-isogenies, when the
only thing we know is its kernel ideal I. We not only need to find the factors
σA : EA −→ E′

A and σ2 : E2 −→ E′
2 but also alternate paths θA : E0 −→ E′

A

and θ2 : E0 −→ E′
2 of norm coprime with ℓ to be able to evaluate σ′ : E′

A −→ E′
2

with EvalTorsionℓf .

EA
σA // E′

A
σ′

// E′
2 E2

σ2oo

E0

τ

KK

τ ′

SS

θA

EE

θ2

99

ρ′2

66

ψ // E1

φ

OO
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We start by factoring I to find the kernel ideals JA and J2 of σA and σ2 of
norm at most ℓf . Let us write I := ℓam·J where m is coprime with ℓ and J a left
OA-ideal without integer factor. Let us write nrd(J) := ℓbm′, where m′ coprime
with ℓ. Then nrd(I) = ℓ2a+bm2m′ < ℓe so 2a+ b ≤ e ≤ 2f . We may write a :=
a1+a2 and b := b1+b2 with 2a1+b1, 2a2+b2 ≤ f . Then JA := (mJ+OAℓb1)ℓa1
and J2 := (mJ +O2ℓ

b2)ℓa2 have norms ℓ2a1+b1 |ℓf and ℓ2a2+b2 |ℓf respectively by
the following lemma. Furthermore, we have I := JAI

′J2, where I
′ is a quaternion

ideal of norm coprime with ℓ by construction.

Lemma B.1.1. Let I be a left ideal of a maximal order O ⊂ Bp,∞ of norm
coprime with p. Let us write I := m · J with m ∈ N∗ and I ′ a left O-ideal such
that J ̸⊂ nO for all n ∈ Z. Let d ∈ N∗ coprime with m and K := I + dO. Then
nrd(K) = d ∧ nrd(J).

Proof. Let E/Fp2 be a supersingular elliptic curve of endomorphism ring iso-
morphic to O. Then:

E[K] = E[mJ + dO] = E[mJ ] ∩ E[d] = {P ∈ E | ∀α ∈ J, [m]α(P ) = 0} ∩ E[d]

= {P ∈ E | [m]P ∈ E[J ]} ∩ E[d] = [m]−1(E[J ]) ∩ E[d]

Since J is not divisible by any integer, E[J ] is cyclic so we may consider a
generator P ∈ E of E[J ]. Let N ′ := nrd(J) and d′ := d ∧ nrd(J). Let Q0 :=
[N ′/d′]P . Then, [d]Q0 = [d/d′][N ′]P = 0 and [m]Q0 ∈ ⟨P ⟩ by construction,
so that Q0 ∈ E[K]. Conversely, let Q ∈ E[K]. Then [m]Q = [k]P for some
k ∈ Z and [d]Q = 0. In particular [kd]P = [md]Q = 0. Then, N ′|kd since P has
order N ′, so that N ′/d′|k, so we may write k = k′N ′/d′ with k′ ∈ Z, so that
[m]Q = [k′N/d′]P = [k′]Q0. Since m and d are coprime, there exists u, v ∈ Z
such that mu+ dv = 1 and we then have Q = [mu+ dv]Q = [um]Q = [uk′]Q0.
Hence, E[K] = ⟨Q0⟩ and finally

nrd(K) = #E[K] = #⟨Q0⟩ = #⟨[N ′/d′]P ⟩ = d′ = d ∧ nrd(J).

Knowing JA and J2, we can then compute their associated isogenies σA
and σ2. Since JA and J2 have norm dividing ℓf , EA[JA] and E2[J2] are contained
in the accessible ℓf -torsion. So we only have to evaluate a basis of JA and J2 on
the ℓf -torsion and solve discrete logarithms in groups of exponent ℓf to compute
EA[JA] and E2[J2]. We can then apply Vélu’s formulas [Vél71] to compute σA
and σ2. To obtain basis of JA that we can evaluate on the ℓf -torsion, we compute
a T -eval-basis of JA in the sense of Definition 2.3.1 by expressing the basis
of JA that we already know as integer linear combinations of a T -eval-basis
BA := PushEndRing(τ, Iτ ) of End(EA) obtained via Algorithm 1. The same
principle applies to J2. Let ρ2 := φ ◦ ψ and I2 := Iψ · Iφ its kernel ideal. Then,
we can obtain a T -eval-basis B2 := PushEndRing(ρ2, I2) yielding a T -eval-basis
of J2.

Now we explain how to find alternate paths θA : E0 −→ E′
A and θ2 : E0 −→

E′
A of degree coprime with ℓ. Fist, we find left O0-ideals KA ∼ Iτ · JA and
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K2 ∼ I2 · J2 of powersmooth norm coprime with ℓ using the KLPT algorithm
[KLPT14]. To translate KA and K2 into isogenies θA and θ2, we could use the
paths σA ◦ τ and σ2 ◦ ρ2 (where ρ2 = φ ◦ ψ) and apply SpecialIdealToIsogeny
(presented in Section 2.3) but nrd(KA) and nrd(K2) would need to be coprime
with T . We could use powersmooth torsion coprime to T and ℓ and still compute
θA and θ2 in polynomial time but this would not be optimal. Instead, we propose
to seek KA and K2 of norm dividing T 2 ≃ p3 and to use paths σA ◦τ ′ and σ2 ◦ρ′2
in SpecialIdealToIsogeny, where τ ′ : E0 −→ EA and ρ′2 : E0 −→ E2 are isogenies
of degree a power of ℓ.

The input τ ′ is a by-product of the key generation, which is similar to the
commitment procedure when two isogeny paths of coprime degree are computed.
We can simply run Algorithm 5 completely to obtain τ, τ ′ : E0 −→ EA at the
same time.

To find ρ′2, we apply KLPT to the kernel ideal I2 := Iψ · Iφ of ρ2 := φ ◦ψ, to
find I ′2 ∼ I2 of norm ℓh ≃ p3. We can then translate the ideal I ′2 into its associated
isogeny ρ′2 via the effective Deuring correspondence algorithm introduced in
the original SQISign paper [DKLPW20, Algorithm 9]. We summarize all the
computations to factor σ in the FactorIsogenyℓf ,T algorithm (Algorithm 15).

B.2 Adaptations of the response and verification when q is not
coprime with ℓ

Keeping the notations of the previous section, assume we have factored σ :=
σ̂2 ◦ σ′ ◦ σA. Then, we can embed σ′ in an isogeny F of dimension 8 using the
same techniques presented earlier since q′ := deg(σ′) has degree coprime with ℓ.
To proceed, we evaluate σ′ on a canonically generated basis (P ′

1, P
′
2) of E′

A[ℓ
f ]

using the isogeny paths θA : E0 −→ E′
A and θ2 : E0 −→ E′

2 of degree dividing
T 2 to apply EvalTorsionℓf (Algorithm 10). Once all these computations are done,
the prover simply sends (σA, σ2, σ

′(P ′
1), σ

′(P ′
2), q

′) to the verifier. The complete
RigorousRespond procedure follows (Algorithm 16).

The complete verification procedure RigorousVerify (Algorithm 17) is very
similar to the original one. Indeed, using representing σ′ and representing σ =
σ̂2 ◦ σ′ ◦ σA is equivalent when σA and σ2 are known.

B.3 Impact on compactness in dimension 8

When q is not coprime with ℓ, the factors σA et σ2 are transmitted in the sig-
nature in addition to the data (E1, σ

′(P ′
1), σ

′(P ′
2), q

′). This is apparently more
information than in the case q ∧ ℓ = 1. However, we can optimize the communi-
cations to avoid almost any compactness loss.

We may write deg(σA) := ℓf1 and deg(σ2) := ℓf2 , with f1, f2 ≤ f , so that
q = q/ℓf1+f2 < ℓe

′
, where e′ := e − f1 − f2. Hence, we can represent σ′ by

an ℓe
′
-isogeny F ′ in dimension 8. By Remark 5.3, we only need to evaluate the

ℓf3-torsion by σ′, where 2f3 ≥ e′ + 6. Hence the points P ′
1 and P ′

2 may form a
basis of E′

A[ℓ
f3 ] instead of E′

A[ℓ
f ] and we can represent σ′(P ′

1) and σ
′(P ′

1) with
3f3 bits by the techniques of Section 7.1 (assuming ℓ = 2).
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Algorithm 15: FactorIsogenyℓf ,T

Data: A quaternion ideal I of norm < ℓe connecting OA ∼= End(EA) and
O2
∼= End(E2), two isogenies τ, τ ′ : E0 −→ EA of degrees dividing T 2

and a power of ℓ respectively, ρ2 : E0 −→ E2 of degree dividing a power
of T and Iτ , I

′
τ , I2 their respective kernel ideals.

Result: Two left-ideals JA ⊆ OA and J2 ⊆ O2 whose of norms divide ℓf

such that I := JAI
′J2, with I ′ of norm coprime with ℓ, two ideals

KA ∼ Iτ ·JA and K2 ∼ I2 ·J2 of norms dividing T 2 along with isogenies
σA : EA −→ E′

A, σ2 : E2 −→ E′
2, θA : E0 −→ E′

A and θ2 : E0 −→ E′
2

respectively associated to JA, J2,KA and K2.
1 Factor I := ℓamJ with ℓ ∧m = 1 and I ′ without integer factors and factor

nrd(J) := ℓbm′ with ℓ ∧m′ = 1;
2 Let a := a1 + a2 and b := b1 + b2 with 2ai + bi ≤ f for i ∈ {1, 2};
3 JA ←− (mJ +OAℓb1)ℓa1 , J2 ←− (mJ +O2ℓ

b2)ℓa2 ;

4 I ′ ←− J−1
A IJ2

−1
;

5 Compute two T -eval-basis BA := PushEndRing(τ, Iτ ) and B2 :=
PushEndRing(ρ2, I2);
6 Infer T -eval-basis CA of JA and C2 of J2 from BA and B2;

7 Evaluate CA on a basis of EA[ℓ
f ] and C2 on a basis of EA[ℓ

f ] to compute
GA := EA[JA] and G2 := E2[J2];
8 Compute σA : EA −→ E′

A and σ2 : E2 −→ E′
2 of kernel GA and G2

respectively;
9 KA ←− KLPTT2(Iτ · JA),K2 ←− KLPTT2(I2 · J2);

10 θA ←− SpecialIdealToIsogeny(KA, Iτ ′ · JA, σA ◦ τ ′);
11 I ′2 ←− KLPTℓh(I2);
12 Compute ρ′2 of kernel ideal I ′2 using [DKLPW20, Algorithm 9];
13 θ2 ←− SpecialIdealToIsogeny(K2, I

′
2 · J2, σ2 ◦ ρ′2);

14 Return JA, J2, I
′,KA,K2, σA, σ2, θA, θ2;

To represent σA, we may factor σA := [ℓa1 ] ◦ σ′
A, where 2a1 ≤ f1 and σ′

A :

EA −→ E′
A a cyclic ℓf

′
1-isogeny with f ′1 := f1 − 2a1. So we may represent σA

by the integer a1 and ker(σ′
A) ⊂ EA[ℓ

f ′
1 ]. Let (Q1, Q2) be a canonical basis of

EA[ℓ
f ′
1 ]. Then, ker(σ′

A) is generated either one of the points Q1 + kQ2 with

0 ≤ k ≤ ℓf
′
1 − 1 or one of the points ℓk′Q1 + Q2 with 0 ≤ k′ ≤ ℓf

′
1−1 − 1.

Hence, ker(σ′
A) can be represented by f ′1 + 1 bits (one bit to tell which form

takes ker(σ′
A) and f

′
1 bits for k or k′). Since the number of bits to represent a1

is very small (O(log(a1))), we may represent σA by at most f1 + 1 bits, and
similarly, we may represent σ2 by at most f2 + 1 bits.

As in Section 7.1, we represent q′ < ℓe
′
with e′ bits and E1 with 4λ bits

(where λ is the security level, satisfying p ≃ 2λ). Hence, the total signature size
is

3f3 + f1 + f2 + 2 + 4λ+ e′ ≃ 5

2
(e− f1 − f2) + f1 + f2 + 4λ <

5

2
e+ 4λ ≃ 13

2
λ.

So we do not lose any compactness compared to the case q ∧ ℓ = 1.
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Algorithm 16: RigorousRespond

Data: Two isogenies to the commitment ψ,ψ′ : E0 −→ E1 and two isogenies to
the public key τ, τ ′ : E0 −→ EA of respective degrees Dψ, Dψ′ , Dτ , Dτ ′

such that Dψ, Dτ |T 2 and Dψ′ and Dτ ′ are powers of ℓ, the challenge
isogeny φ : E1 −→ E2 of degree Dφ|T as well as their respective kernel
ideals Iτ , Iτ ′ , Iψ, Iψ′ , Iφ.

Result: (σA, σ2, σ
′(P ′

1), σ
′(P ′

2), q
′), where σA : EA −→ E′

A and σ2 : E2 −→ E′
2

are isogenies of degree dividing ℓf , σ′ : E′
A −→ E′

2 is an isogeny of
degree q′ < ℓe coprime with ℓ and (P ′

1, P
′
2) is a canonically determined

basis of E′
A[ℓ

f ].
1 Iφ ←− IsogenyToIdeal(φ,ψ′, Iψ′);

2 J ←− Iτ · Iψ · Iφ;
3 I ←− RandomEquivalentIdealℓe(J) and q ←− nrd(I);
4 JA, I

′, J2,KA,K2, σA, σ2, θA, θ2 ←−
FactorIsogenyℓf ,T (I, τ, τ

′, φ ◦ ψ, Iτ , Iτ ′ , Iψ · Iφ);
5 q′ ←− q/nrd(JA) nrd(J2);
6 Compute the canonical basis (P ′

1, P
′
2) of E

′
A[ℓ

f ];
7 (σ′(P ′

1), σ
′(P ′

2))←− EvalTorsionℓf (I
′, P ′

1, P
′
2, θA, θ2,KA,K2);

8 Return (σA, σ2, σ
′(P ′

1), σ
′(P ′

2), q
′);

Algorithm 17: RigorousVerify

Data: (σA, σ2, R
′
1, R

′
2, q

′), where σA : EA −→ E′
A and σ2 : E2 −→ E′

2 are
isogenies of degree dividing ℓf , R′

1, R
′
2 ∈ E′

2[ℓ
f ] and q′ ∈ N∗.

Result: 1 if (σA, σ2, R
′
1, R

′
2, q

′) is a valid response and 0 otherwise.
1 if q′ > ℓe then
2 Return 0;
3 end

4 Compute the canonical basis (P ′
1, P

′
2) of E

′
A[ℓ

f ];
5 Find a1, · · · , a4 ∈ Z such that a21 + · · ·+ a24 + q = ℓe using Pollack and

Treviño’s algorithm [PT18];
6 F ′ ←− RepresentIsogeny8,ℓe(q

′, a1, · · · , a4, P ′
1, P

′
2, R

′
1, R

′
2);

7 Return IsValid8(F
′);
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C Isogenies in the theta model

In this section we give various practical details on how to perform the required
isogenies computations in dimension 4 and 8 using the theta model.

C.1 Theta coordinates

For simplicity, even through we work over a finite field, we will describe our algo-
rithm using analytic theta functions. The algebraic theory of Mumford [Mum66b]
can be used to show that our algorithms are still valid over an arbitrary field of
odd characteristic.

Let A = Cg/(Zg + ΩAZg) be an abelian variety with Ω = ΩA in the Siegel
space corresponding to a principal polarisation L = LA on A. Let πA : Cg → A
be the projection.

Recall that the analytic theta functions with characteristic a, b ∈ Qg are
given by

θ [ ab ] (z,Ω) =
∑
n∈Zg

eπi
t(n+a)Ω(n+a)+2πi t(n+a)(z+b).

A basis of level 2 theta functions is given by θAi (P ) = θ
[

0
i/2

]
(zP , Ω/2), i ∈

(Z/2Z)g where zP ∈ Cg represents P ∈ A: P = πA(zP ). Here we use the
following abuse of notations: if i ∈ (Z/2Z)g, we denote by i any lift to Zg.
Reciprocally if i ∈ Zg, we also denote by i its reduction to (Z/2Z)g.

The analytic theta functions depend on the period matrix ΩA. Algebraically
they are defined by a symmetric theta structure ΘA of level 2. We will denote
our theta functions by θΘA

i when we want to make this dependence explicit.

We will also make use of the “dual” basis θ′Aχ (P ) = θ
[
χ/2
0

]
(2zP , 2Ω), χ ∈

(Ẑ/2Ẑ)g, where we identify (Ẑ/2Ẑ)g with (Z/2Z)g via the inner product. Going
to the dual level 2 coordinates corresponds analytically to the action of the
symplectic matrix S =

(
0 1
−1 0

)
on the period matrix ΩA. Explicitly on theta

coordinates the modular transform is given via the Hadamard transformation
θ′χ =

∑
i χ(i)θi, and reciprocally 2gθi =

∑
χ χ(i)θ

′
χ. We let H be the Hadamard

matrix in dimension 2g, by the formula above it allows to pass back and forth
between the theta coordinates of level 2 and their duals.

C.2 Gluing theta structures

Let us recapitulate the isogeny we need to compute in the verification step of
SQISignHD: we have a d-isogeny F : A → B where (A,L) and (B,M) are
given by products of elliptic curves with their product polarisations. We split
the isogeny in two as in Section 5.4: F = F2 ◦ F1 with F1 : A→ C a d1-isogeny
and F2 : C → B an d2-isogeny, and we assume that we are given the kernel of
F1 in A[d1] and F̃2 in B[d2].

The theta isogeny algorithm to compute F1 requires (if d1 is odd):
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– A symmetric level 2 theta structure ΘA on (A,L). This level structure de-
termines a symplectic basis of A[2] and is in turn determined by a symplec-
tic basis of A[4]. This symmetric level structure will be represented (up to
twists) by the theta constant (θΘA

i (0))i∈(Z/2Z)g and gives a basis of sections

(θΘA
i )i∈(Z/2Z)g of L2. In particular if the 4-torsion is rational, the level 2 theta

model will be rational (this is a sufficient but not necessary condition).
– Generators P1, . . . , Pg of the kernelK = KerF1 in theta coordinates θΘA

i (Pj),
with the basis of theta coordinates induced by the symmetric theta structure
fixed above.

In SQISignHD, A will be equal to a product of g elliptic curves A = E1 ×
· · · ×Eg and the points of the kernel K is described in terms of tuples of Weier-
strass coordinates. We first need to explain how to convert these points to theta
coordinates. We fix a symplectic basis (ei, fi) on each Ei[4], this induces a prod-
uct symplectic basis on A[4], hence a product theta structure. There are well
known formula to convert from Weierstrass coordinates on Ei to theta coordi-
nates [Mum84]. We can then compute the theta coordinates on A as follow:

Lemma C.2.1. Let L = L1 ⋆L2 · · · ⋆Lg be a product polarisation on A = E1 ×
· × Eg. Endow (A,L) with a product theta structure ΘA of each theta structure
ΘEi

on Ei. If P = (P1, . . . , Pg) ∈ A, then for i = (i1, . . . , ig) ∈ (Z/2Z)g,
θΘA
i (P ) =

∏g
j=1 θ

ΘEj

ij
(Pj).

Proof. This follows from

θ
[ a1,a2
b1,b2

]
((z1, z2),

(
Ω1 0
0 Ω2

)
) = θ

[ a1
b1

]
(z1, Ω1)θ

[ a2
b2

]
(z2, Ω2).

Hence if we have a point R ∈ A given in product Weierstrass coordinates
R = (Rj) = ((xj , yj)), we can convert each Ri from Weierstrass coordinates to

level 2 theta coordinates θ
ΘEj

i (Rj) then apply Lemma C.2.1 to get the theta
coordinates of R with respect to the product theta structure.

We can now apply the isogeny theorem from [CR15; LR23] with N = d1, d2:

Theorem C.2.2. Let (A,L) be a principally polarised abelian variety with a
symmetric theta structure ΘA of level 2, induced by a symplectic basis BA =
(x1, . . . , xg, y1, . . . , yg) of A[4] with respect to ζ, a primitive fourth root of unity.

Let (P1, . . . , Pg) be a basis of the kernel of a maximal isotropic subgroup of
A[N ] of rank g, given in theta coordinates, where N is an odd integer.

Let P be a point of A given in theta coordinates. Let F : A→ B = A/K the
induced isogeny. Then there is a unique descent of LN to a polarisation M on
B, and a symmetric theta structure ΘB on M induced by the symplectic basis
F (BA) = ( 1

N F (x1), . . . ,
1
N F (xg), F (y1), . . . , F (yg)) with respect to ζ of B[4].

Furthermore, the theta null point of B and the theta coordinates of F (P ) can
be computed in O(Ng) arithmetic operations over the base field.
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Proof. This is a special case of Theorem C.2.5 proved below.

We can use Theorem C.2.2 to compute an ℓe-isogeny by splitting it into a
product of ℓ-isogenies. In SQISignHD we specifically want to handle the case
ℓ = 2. We will give an algorithm in Appendix C.3.

We have another difficulty to solve first. In SQISignHD we glue two isogenies
together F1 : A → C and F̃2 : B → C. These isogenies are compatible with the
product polarisation on A and B, so the codomain C is endowed with the same
polarisation in both cases. However, when using Theorem C.2.2 to compute C
and its polarisation, it needs not be endowed with the same level 2 symmetric
theta structure ΘC for the two isogenies.

Let B1 be a symplectic basis of C[4] giving the symmetric theta structure on
C induced by F1, and B2 be the one induced by F̃2. Then there is a symplectic
matrix M ∈ Sp2g(Z/4Z) such that MB1 = B2. We can use the theta transfor-
mation formula [BL04, $8.6] for M to convert the theta null point expressed in
terms of B1 to the one expressed in terms of B2: θB2

i (0) = θMB1
i (0). Once we

have endowed C with the same theta structures, checking that they are indeed
the same simply amount to testing for equality of the theta null points seen as
projective coordinates.

So one way to test that F1 and F̃2 indeed have the same polarised codomain
C is to apply Theorem C.2.2 twice and then to act by all matrices in M ∈
Sp2g(Z/4Z) on the theta null point induced by F1 until we find an equality of

projective theta null points with the theta null point induced by F̃2. This costs
O(1) but in practice is too expensive. We will instead explain how to compute
the correct correcting matrix M directly.

Remark C.2.3. Many symplectic basis BC of C[4] will give the same sym-
metric theta structure ΘC of level 2 on C (hence the same theta null point),
indeed the theta null point only determines a symplectic basis of C[2]. Rather
than working with the 4-torsion we could work only with the 2-torsion and take
M ∈ Sp2g(Z/2Z); this does not completely determines all the symmetric theta
structures of level 2 but it is easy to test all 22g possibilities.

Proposition C.2.4. Let F1 : A → C be a d1-isogeny, F̃2 : B → C be a d2-
isogeny, F = F2 ◦ F1 : A → B, with d1 and d2 prime to 2. Let BA a symplectic
basis of A[4], BB a symplectic basis of B[4]. Let B′B be the symplectic basis on B

induced by F . LetM ′ =

(
α′ β′

γ′ δ′

)
be the symplectic matrix such thatM ′B′B = BB.

Let B1 be the symplectic basis of C[4] induced by F1 and B2 be the symplectic

basis of C[4] induced by F̃2. Then B2 =MB1, with M =

(
α′/d2 β′

γ′ d2γ
′

)
.

Proof. Define γx =

(
x 0
0 1

)
. By Theorem C.2.2, we have B1 = γ1/d1 ·F1BA, B2 =

γ1/d2 ·F̃2BB , B′B = γ1/d·FBA. IfMB1 = B2, we get thatM = d2γ1/d2M
′γ1/dγ

−1
1/d1

.
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So if we compute the image of F on A[4], we can recover the correct matrixM .
In SQISignHD, F is built from σ : EA → E2 and scalars, so for the verification
it suffices to give the action of σ on the 4-torsion. If it is not provided, we can
just guess it and try the corresponding symplectic matrix, this greatly reduces
the number of symplectic matrices to try to only a few choices.

We now explain how to handle the case of a d-isogeny F where d is not prime
to 2. A difficulty is that if we only start with a symplectic basis BA of A[4], then
since the kernel of F1 may contain points of 4-torsion, F1 does not induces a
canonical symplectic basis of C[4] anymore. So the algorithm needs to start with
more data.

Theorem C.2.5. Let (A,L) be a principally polarised abelian variety, with L a
symmetric ample line bundle. Let N be an integer, B′A = (x′1, . . . , x

′
g, y

′
1, . . . , y

′
g)

be a symplectic basis of A[4N ] with respect to a primitive 4N -root of unity ζ, and
BA = NB′A the induced symplectic basis of A[4]. It induces a symmetric level 2
theta structure ΘA on A.

Let K be the maximal isotropic kernel generated by the points Pj = 4x′j.
Assume that we are given the theta coordinates of level 2 of the x′j, and the theta
coordinates of a point P in A.

Let F : A → B = A/K the induced isogeny. Then there is a unique descent
of LN to a symmetric line bundleM on B, and a symmetric theta structure on
M induced by the symplectic basis

(F (x′1), . . . , F (x
′
g), NF (y

′
1), . . . , NF (y

′
g))

with respect to ζN of B[4].
Furthermore, the theta null points of B and the theta coordinates of F (P )

can be computed in O(Ng) arithmetic operations over the base field.

Proof. Since we are given the points (x′i, y
′
i) in level 2 theta coordinates, we

can use the algorithms of [LR12; CR15; LR23] to construct a symmetric theta
structure of level 2N on the theta group G(L2N ). However, the references above
assume for simplicity that the degree of the isogenies is prime to the level m
of the symmetric theta structure we start with. Here m = 2 and N is no
longer assumed to be odd. So we need the general case, which is described in
[Rob10, Chapters 6 and 7], [Rob21, § 2.10, Remarks 2.10.3 and 2.10.7]. Once
we are in level 2N , we can apply Mumford’s isogeny theorem [Mum66a, Theo-
rem 4 p.302–303] to obtain a symmetric theta structure ΘB of level 2 on B and
the equations of the isogeny. The algorithm takes time O(Ng). It remains to
show that the theta structure we obtain on B is the one induced by the points
(F (x′1), . . . , F (x

′
g), NF (y

′
1), . . . , NF (y

′
g)).

Let Z(K) be the centralizer of K in the theta group G(L2N ). The theta
structure ΘB is induced by the canonical map αf : Z(K)/K̃ → G(M2) from

[Mum66a, Equation (2) p.302], where K̃ is the canonical lift of K into the theta
group G(L2N ) induced by our theta structure of level 2N . The points

(2F (x′1), . . . , 2F (x
′
g), 2NF (y

′
1), . . . , 2NF (y

′
g))
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form a symplectic basis of B[2]. The theta structure ΘB on G(M2) is deter-
mined by the symmetric lifts of this basis into G(M2). By definition of the
induced theta structure, if T is in this basis, the symmetric lift gT ∈ G(M2)
above T induced by ΘB is given by the image by αf of the symmetric lift
gT ′ ∈ G(L2N ) induced by the theta structure of level 2N on A for any point T ′

such that F (T ′) = T . For T = 2F (x′j), we can take T ′ = 2x′j . Since the theta

structure on G(L2N ) is determined by the basis (x′j , y
′
j), the lift gT ′ is deter-

mined as follow: let gx′
j
∈ G(L4N ) be any of the two symmetric lift of x′j , and

define gT ′ = η2(gx′
j
) where η2 is defined in [Mum66a, § 2, p.310]; this does not

depends on the choice of gx′
j
. Since αf sends symmetric elements into symmet-

ric elements and commutes with η2, we get that gT = η2(gF (x′
j)
) where gF (x′

j)

is any of the two symmetric element above F (x′j) in G(M4). Likewise, when

T = 2NF (y′j), we check that gT = η2(gNF (y′j)
), for gNF (y′j)

∈ G(M4) one of the

two symmetric elements aboveNF (y′j). Hence the descent of the symmetric theta

structure of level 2N on G(L2N ) induced by the basis (x′1, . . . , x
′
g, y

′
1, . . . , y

′
g) to

a symmetric theta structure of level 2 on G(M2) is indeed the one induced by
(F (x′1), . . . , F (x

′
g), NF (y

′
1), . . . , NF (y

′
g)).

Notice that NF (y′j) = F (yj), so Theorem C.2.5 only needs the points (x′j , yj)
as input. If N is odd, Theorem C.2.2 is a special case of Theorem C.2.5: by the
CRT, from a symplectic basis (xj , yj) of A[4] and a basis Pj of K, there is a
unique x′j ∈ A[4N ] which induces both xj and Pj : xj = Nx′j , Pj = 4x′j .

However when N is not prime to 2, we cannot start with any symplectic
basis (xj , yj) of A[4], it has to be compatible with our kernel K, in the sense
that there should exists x′j a basis of a maximal isotropic subgroup of A[4N ]
which induces both xj and Pj . In the situation of SQISignHD, where we convert
our points given by tuple of Weierstrass coordinates into theta coordinates given
by a product theta structure, the resulting product symplectic basis of A[4] will
not be compatible with our kernels in general. So to get an input suitable for
Theorem C.2.5, we first start with the basis (Pj) of K (in tuple of Weierstrass
coordinates), fix points x′j above each Pj such that Pj = 4x′j and the x′j generate
an isotropic subgroup of A[4N ]. Then we let xj = Nx′j , and fix a symplectic
complement yj of the xj . We compute the symplectic matrix M that changes
the product symplectic basis into the (xj , yj) and act by this matrix to get the
theta coordinates in terms of our new basis (xj , yj).

We can adapt Proposition C.2.4 to the general case:

Proposition C.2.6. Let F1 : A → C be an d1-isogeny, F̃2 : B → C and d2-
isogeny and F = F2 ◦ F1 an d-isogeny, where d = d1d2. Let d

′ be a common
multiple of d1 and d2, and write d′ = c1d1 = c2d2.

Let (P1, . . . , Pg) be a basis of the kernel of F1, and (x′1, . . . , x
′
g, y

′
1, . . . , y

′
g) a

symplectic basis of A[4d′] with respect to ζ, a primitive 4d′-root of unity, and
such that Pi = 4c1x

′
i.

Let (Q1, . . . , Qg) be a basis of the kernel of F̃2, and (u′1, . . . , u
′
g, v

′
1, . . . , v

′
g) a

symplectic basis of B[4d′] with respect to ζ, such that Qi = 4c2v
′
i.
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Then the induced theta structure on C induced by F1 and F̃2 via Theo-
rem C.2.5 is the same if

F̃2(c2v
′
i) = F1(d

′y′i) and F1(c1x
′
i) = F̃2(d

′u′i) (2)

Proof. The symplectic theta structure on C induced by F1 is given by (F1(c1x
′
i), F1(d

′y′i)),
and the one induced by F̃2 is given by (F̃2(d

′u′i), F̃2(c2v
′
i)).

We note that in the isogeny algorithm for F1 we only need the points c1x
′
i, d

′y′i
and for F̃2 we only need the points d′u′i, c2v

′
i.

Corollary C.2.7. Let F = F2 ◦ F1. To get the same theta structure on C, it
suffices to choose x′i, y

′
i, u

′
i, v

′
i such that F (c2y

′
i) = c2v

′
i and F̃ (c1u

′
i) = c1x

′
i.

An algorithm to construct suitable x′i, y
′
i, u

′
i, v

′
i is as follow. Take y′′i a basis

of a symplectic complement of KerF1 in A[d1], y
′
i ∈ A[d′] isotropic such that

4c1y
′
i = y′′i , and let v′i = F (y′i). Then Qi = 4c2v

′
i is a basis of Ker F̃2. We

let u′i be a symplectic complement of v′i in B[d′], and we let x′i = F̃2(u
′
i). Let

Pi = 4c1x
′
i, they form a basis of KerF1.

Corollary C.2.7 explain why we need f ≥ e2 + 2 in Remark 5.3 when ℓ = 2
(an alternative if we are only given the action of σ on EA[ℓ

e2 ] would be to just
guess it on EA[ℓ

e2+2]).

C.3 Computing 2e-isogenies

We need to compute an N -isogeny, with N = d1 or N = d2 with the notations
from Appendix C.2. The isogeny algorithms described in [CR15; LR23] assume
that the degree is prime to 2 for simplicity. For SQISignHD, we want to take
ℓ = 2 (so that N = 2e) for efficiency. The general case of N even is described
in [Rob10; Rob21]. In this section we focus on the case N = 2e and detail how
the general algorithm can be used to compute 2-isogenies. Handling 2-isogenies
is actually easier because we can use the duplication formulae directly.

With the notations of Theorem C.2.5, we assume that we are given the 4N -
torsion points (x′1, . . . , x

′
g) given in theta coordinates by the symmetric theta

structure of level 2 induced by a symplectic basis (x1, . . . , xg, y1 . . . , yg) of A[4]
with xj = Nx′j . Let Pj = 4x′j , K the subgroup generated by the Pj , F : A →
B = A/K the corresponding isogeny.

We then write N = 2N ′, and let Tj = N ′Pj , the kernel of a 2-isogeny f
through which F factorizes. We remark also that T ′′

j = N ′x′j is a point of 8-
torsion such that xj = 2T ′′

j . We will explain how to compute the isogenous theta
null point of the codomain of f , and how to push points through f . The points
f(x′j) will then be points of 4N ′ torsion, and we iterate.

So from now on we let f be a 2-isogeny A→ B,K = ⟨T1, . . . , Tg⟩ be the kernel
of f , (T ′′

1 , . . . , T
′′
g ) be points in A[8] such that Tj = 4T ′′

j , j = 1, . . . , g. We assume
that the symmetric theta structure ΘA on A is induced by a symplectic basis
(T ′

1, . . . , T
′
g, U

′
1, . . . U

′
g) where T

′
j = 2T ′′

j and that we are given the coordinates of

the T ′′
j , j ∈ {1, . . . , g}. If i ∈ (Z/2Z)g, we let T ′′

i =
∑g
j=1 ijT

′′
j . For simplicity, we
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will even assume that we are given the theta coordinates of all T ′′
i , i ∈ (Z/2Z)g,

in particular the points Ti, i ∈ (Z/2Z)g span the full kernel K.
The 2-isogeny formula will be derived from the duplication formula [Igu72,

Theorem 2 p. 139, p. 141]:

θ
[ a1
b1

]
(z1, Ω)θ

[ a2
b2

]
(z2, Ω) =

∑
t∈ 1

2Zg/Zg

θ
[

a1+a2
2 +t

b1+b2

]
(z1 + z2, 2Ω)θ

[
a1−a2

2 +t

b1−b2

]
(z1 − z2, 2Ω)

(3)

2gθ
[ a1
b1

]
(z1, Ω)θ

[ a2
b2

]
(z2, Ω) =

∑
t∈ 1

2Zg/Zg

e−2πi(a1|2t)θ
[
a1+a2

b1+b2
2 +t

]
(
z1 + z2

2
,
Ω

2
)θ
[

a1−a2
b1−b2

2 +t

]
(
z1 − z2

2
,
Ω

2
).

(4)

We will derive algebraic formula for the analytic isogeny ϕ : A = Cg/(ΩAZg+
Zg) → B = Cg/(ΩBZg + Zg), z 7→ 2z where ΩB = 2ΩA. We will then explain
how to use these formula to compute our algebraic isogeny f .

Recall from Appendix C.1 that the Hadamard matrix H allows to convert
from the theta coordinates θAi to the dual theta coordinates θ′

A
χ . Given two

points P1, P2 given by theta coordinates θi(Pj), we also let (θi(P1)) ⋆ (θi(P2)) =
(θi(P1) · θi(P2))i∈(Z/2Z)g .

Proposition C.3.1. Let P be a point on A. Then the theta coordinates of the
points ϕ(P ) ∈ B, where ϕ : A→ B is the isogeny defined above, are given by:

(θBi (ϕ(P ))) ⋆ (θ
B
i (0))i∈(Z/2Z)g = H ·

(
(θ′

A
χ (P ))χ∈(Ẑ/2Ẑ)g ⋆ (θ

′A
χ (P ))χ∈(Ẑ/2Ẑ)g

)
.

Proof. Using the duplication formula, we obtain (with Ω = ΩA):

θ [ 0i ] (2z,Ω)θ [ 0i ] (0, Ω) =
∑

t∈ 1
2Zg/Zg

θ [ t2i ] (2z, 2Ω)θ [ t0 ] (2z, 2Ω)

This means that (θBi (ϕ(P ))θ
B
i (0))i∈(Z/2Z)g = H ·

(
θ′
A
χ (P )

2
)
χ∈(Ẑ/2Ẑ)g

.

So the image of a point P by a 2-isogeny ϕ is simple to compute, provided we
know the theta null point θBi (0) = θ

[
0
i/2

]
(0, 2Ω) of B: start with the theta coor-

dinates θAi (P ) of P , apply the Hadamard transform to get the dual coordinates

θ′
A
χ (P ), square these coordinates, and apply the Hadamard transform again to

obtain θBi (ϕ(P ))θ
B
i (0). It now only remains to divide by the coordinates θBi (0)

given by the theta null point of B.

Corollary C.3.2. Assume that we are given the theta coordinates θAi (P ) of P ∈
A and of the theta null point θBi (0) of B. After a precomputation of 2g inversions
to invert the coordinates of the theta null point of B, the theta coordinates of ϕ(P )
can be computed in 2 Hadamard transforms, 2g squares and 2g multiplications.

Furthermore, given the theta null points of A and B one can check (up to
signs) that A and B are indeed 2-isogenous (with compatible theta structure)
using 2g+1 squares and 2 Hadamard transforms.
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Proof. The first statement follows from the Proposition. For the second state-
ment, if A and B are 2-isogenous, then θBi (0)

2 = H · θ′Aχ (0)2, which determines

the θBi (0) up to a sign.

In particular the proof of Corollary C.3.2 shows that we can easily compute
the square of the coordinates of the theta null point of B. In practice in our
complexity estimates, we will often neglect the Hadamard transforms since they
just amount to some additions and subtractions. It remains to compute the
correct square roots.

Proposition C.3.3. Let i ∈ Zg and z′i ∈ Cg be the analytic theta point given
by the affine coordinates θAt (z

′
i) = θ

[
0

i/4+t/2

]
(0, ΩA/2). Then T ′

i = πA(z
′
i) is

a point in A[4]. The points Ti = 2T ′
i generate the kernel corresponding to the

kernel 1
2Z

g/Zg of the isogeny ϕ.
We have up to a constant (not depending on i):

θBi (0) =
∑
t

θAt (z
′
i)

2. (5)

Proof. Using the duplication formula again, we obtain for i ∈ Zg:

2gθ
[

0
i/2

]
(0, Ω)θ [ 00 ] (0, Ω) =

∑
t

θ
[

0
i/4+t/2

]
(0, Ω/2)2.

Up to the projective factor 2gθ [ 00 ] (0, Ω), we recover Eq. (5). We also check
that although z′i depends on the choice of i ∈ Zg, the term on the left only
depends on the reduction of i in (Z/2Z)g.

In the analytic setting, when representing the points z′i and T ′
i by theta

coordinates, they actually are represented by the same coordinates, but z′i is
represented by affine coordinates while T ′

i is represented by projective coordi-
nates. So the projection πA amount to sending the affine point (θi(z

′
i)) ∈ A2g to

the projective point in P2g−1.
We go back to the algebraic setting: we let f : A → B be a 2-isogeny with

kernel generated by the points (Tj), j = 1, . . . , g and we assume that we are
given isotropic points T ′′

j such that Tj = 4T ′′
j , and the T ′′

j are expressed as theta
coordinates with respect to the theta structure induced by a symplectic basis
(T ′

1, . . . , T
′
g, U

′
1, . . . U

′
g) where T

′
j = 2T ′′

j . We need to compute the theta null point
on B for our algebraic isogeny f like we did for our analytic isogeny ϕ above in
Proposition C.3.3. Then we can apply Proposition C.3.1 to compute the image
by f of any point P .

Notice that Eq. (5), because of the sum, only make sense for points in affine
coordinates. So we cannot apply it directly in an algebraic algorithm, because
we only have the 4-torsion points T ′

i , i ∈ (Z/2Z)g in projective coordinates. We

need to lift the projective points T ′
i into an affine point T̃ ′

i such that Eq. (5)
make sense. We follow the terminology of [LR12, § 3] and speak about affine
lifts. Riemann relations give a well defined doubling and differential addition
law on affine lifts, hence a scalar multiplication.
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Since we have the theta null point of level 2 on A, induced by the symplectic
basis (T ′

1, . . . , T
′
g, U

′
1, . . . U

′
g) of A[4], the induced theta structure gives a canonical

affine lift lift T̃i of the Ti, for all i ∈ (Z/2Z)g, and a canonical affine translation
P̃ 7→ P̃ + T̃i for all affine lifts P̃ of a point P ∈ A.

We take an arbitrary affine lift T̃ ′′
i of T ′′

i , which we then normalize via the
equation

−3T̃ ′′
i = T̃ ′′

i + T̃i, (6)

where the translation on the right is the canonical one induced by the theta
structure. This rigidifies our choice of affine lift up to a root of unity µ of order
32− 12 = 8. Then 2T̃ ′′

i is rigidified up to the action of µ22 = ±1, and so if we let

T̃ ′
i = 2T̃ ′′

i , its coordinates are fully determined up to a sign. We can now apply

Eq. (5), with z′i = T̃ ′
i :

θBi (0) =
∑

t∈(Z/2Z)g
θAt (T̃

′
i )

2 =
∑

t∈(Z/2Z)g
θAt (2T̃

′′
i )

2. (7)

Because this equation only involves the squares of the coordinates of T̃ ′
i , our

remaining sign ambiguity does not matter.

Remark C.3.4. If we only had the points T ′
i but not the T

′′
i , we could rigidify

the choice of T̃ ′
i via the equation 2T̃ ′

i = T̃i. This equation rigidifies the lift up to a
root of unity µ of order 22 = 4, so it remains a sign ambiguity in Eq. (7). However
it is enough to do this rigidification for i going through e1, . . . , eg, e1+e2, . . . , ej+

ek, . . . , eg−1 + eg where ej is a a basis of (Z/2Z)g. The remaining choices of T̃ ′
i

are then fully determined from the Riemann relations, in particular from three
way additions and differential additions. Thus we only have g(g + 1)/2 signs
ambiguity rather than 2g, and one can prove that all signs are actually valid
[Rob10, Proposition 6.3.5]: they each correspond from a different choice of a
4-symplectic basis above our fixed 2-symplectic basis (f(T ′

j), f(Uj)).
Nevertheless, when computing an 2e-isogeny, we need to be careful that this

choice of 4-symplectic basis is compatible with our next kernel. Also in the end
for the equality testing of Appendix C.2, we need to be sure to have chosen the
correct theta structure. That’s why we have to assume that we are given the T ′′

i ,
not only the T ′

i , this allows us to fully rigidify the theta structure on B.

Proposition C.3.5. Let T ′′
j , j = 1, . . . , g be points of 8-torsion on A which

generates an isotropic subgroup. Let K be the kernel generate by the 4T ′′
j . Assume

that we are given the theta coordinates of the T ′′
j via the theta structure induced

by a symplectic basis (2T ′
j , U

′
j). Let (θ

B
i (0))i∈(Z/2Z)g be the projective theta null

point of B = A/K given by Theorem C.2.5.
Then if i ∈ (Z/2Z)g, the value θBi (0) (up to a constant which does not depends

on i) can be computed using Eq. (7) where T̃ ′′
i is an affine lift of Ti normalised

using Eq. (6). This requires tripling an affine lift of T ′′
i =

∑g
j=1 ijT

′′
j , a division

and multiplication, and 2g squares. If the tripling is computed via a doubling
followed by a differential addition, it can be done in 2g+2 multiplications, 2g+1

doubling, and 2g divisions.
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The total cost to compute the theta null point of B is then (2g − 1)(2g+2 +
1) multiplications, 2g(2g+1 − 1) squares, (2g − 1)(2g + 1) divisions, and 2g+1

inversions, that is 2g(7 · 2g − 2)− 2 arithmetic operations.

Proof. We use Eq. (7) to compute θBi (0). We take an arbitrary lift T̃ ′′
i and

compute 3T̃ ′′
i . We use Eq. (6) to compute the correct normalisation, this costs one

division. We then plug in Eq. (7), this costs 2g squares, and one multiplication
by our normalisation factor.

But we remark that if 3T̃ ′′
i is computed through a doubling 2T̃ ′′

i followed by

a differential addition 2T̃ ′′
i + T̃ ′′

i , then the squares of the theta coordinates of

2T̃ ′′
i are already computed.
The cost of the doubling and differential addition is described in [Rob10,

Table 4.1]. The computation of θBi (0) for i ̸= 0 then costs 4·2g+1 multiplications,
2 · 2g squares and 2g + 1 divisions.

This costs assume the precomputation of some constants depending only on
A (more precisely its theta null point), which takes 2g squares and 2g+1 inverses
to compute once and for all. Taking this precomputation into account we get
our final complexity.

For computing 2e-isogenies decomposed as e 2-isogenies, we start with g
points of 2e+2 torsions x′j , and even with the 2g points x′i for i ∈ (Z/2Z)g. We
compute the 2g points of each kernel using Fig. 2. For this for each 2-isogeny we
need to apply Proposition C.3.5 to compute the isogenous theta null point, and
also apply Proposition C.3.1 2g times to push the points through each isogeny,
each image costing 2g+1 arithmetic operations by Corollary C.3.2.

Example C.3.6. In dimension g = 4, by Corollary C.3.2 computing the squares
of the 2-isogeneous theta null point cost 2g = 16 squares over the base field. To
get the correct 2g square roots, by Proposition C.3.5, it costs a staggering 1758
arithmetic operations over the base field for just one theta null point.

An estimation to compute a 2e-isogeny with e = 128 in dimension 4, taking
into account the computation of the e theta null points, doublings and pushing
all torsion points through the isogenies amounts to roughly 1 million arithmetic
operations over Fp2 (more precisely: 856224 operations).

We leave optimisations of this algorithm tailored for SQISignHD for future
work.
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