N

N

Emulation of a FMA and correctly-rounded sums:
proved algorithms using rounding to odd
Sylvie Boldo, Guillaume Melquiond

» To cite this version:

Sylvie Boldo, Guillaume Melquiond. Emulation of a FMA and correctly-rounded sums: proved algo-
rithms using rounding to odd. 2006. inria-00080427v1

HAL Id: inria-00080427
https://ens-lyon.hal.science/inria-00080427v1
Submitted on 16 Jun 2006 (v1), last revised 10 Nov 2010 (v2)

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://ens-lyon.hal.science/inria-00080427v1
https://hal.archives-ouvertes.fr

TRANSACTION ON COMPUTERS, VOL. 0, NO. 0, ANUARY 2099 1

Emulation of a FMA and correctly-rounded

sums. proved algorithms using rounding to odd

Sylvie Boldo and Guillaume Melquiond

June 16, 2006 DRAFT

TRANSACTION ON COMPUTERS, VOL. 0, NO. 0, ANUARY 2099 2

Abstract

Rounding to odd is a non-standard rounding on floating-point numbers. By using it for some
intermediate values instead of rounding to nearest, correctly rounded results can be obtained at the
end of computations. We present an algorithm to emulate the fused multiply-and-add operator. We also
present an iterative algorithm for computing the correctly rounded sum of a set floating-point numbers
under mild assumptions. A variation on both previous algorithms is the correctly rounded sum of any
three floating-point numbers. This leads to efficient implementations, even when this rounding is not
available. In order to guarantee the correctness of these properties and algorithms, we formally proved

them using the Coq proof checker.

Index Terms

Floating-point, rounding to odd, accurate summation, FMA, formal proof, Coqg.

I. INTRODUCTION

Floating-point computations and their roundings are described by the IEEE-754 standard [17]],
[18] followed by every modern general-purpose processors. This standard was written to ensure
the coherence of the result of a computation whatever the environment. This is the *“correct
rounding” principle: the result of an operation is the same as if it was first computed with an
infinite precision and then rounded to the precision of the destination format. There may exist
higher precision formats though, and it would not be unreasonable for a processor to store all
kinds of floating-point result in a single kind of register instead of having as many register sets
as it supports floating-point formats. In order to ensure IEEE-754 conformance, care must then
be taken that a result is not first rounded to the extended precision of the registers and then
rounded to the precision of the destination format.

This “double rounding” phenomenon may happen on processors built around the Intel x86
instruction set for example. Indeed, their floating-point units use 80-bit long registers to store the
results of their computations, while the most common format used to store in memory is only
64-bit long (IEEE double precision). To prevent double rounding, a control register allows to
set the floating-point precision, so that the results are not first rounded to the register precision.
Unfortunately, setting the target precision is a costly operation as it requires the processor pipeline

to be flushed. Moreover, thanks to the extended precision, programs generally seem to produce

June 16, 2006 DRAFT

TRANSACTION ON COMPUTERS, VOL. 0, NO. 0, ANUARY 2099 3

more accurate results. As a consequence, compilers usually do not generate the additional code
that would ensure that each computation is correctly rounded in its own precision.

Double rounding can however lead to unexpected inaccuracy and as such it is considered a
dangerous feature. So writing robust floating-point algorithms requires extra care in order to
ensure that this potential double rounding will not produce incorrect results [15]. Nevertheless,
double rounding is not necessarily a threat. For example, if the extended precision is at least
twice as big, then it can be used to emulate correctly rounded basic operations for a smaller
precision [9]. Double rounding can also be made innocuous by introducing a new rounding mode
and using it for the first rounding. When a real number is not representable, it will be rounded
to the adjacent floating-point number with an odd mantissa. In this article, this rounding will be
named rounding to odd.

Von Neumann was considering this rounding when designing the arithmetic unit of the
EDVAC [19]. Goldberg later used it when converting binary floating-point numbers to decimal
representations [[L0]. The properties of this rounding operator are also close to the ones that
appear when implementing rounded floating-point operators with guard bits [[8]. This rounding
was never more than an implementation detail though. Our work aims at showing that it is worth
making it a rounding mode in its own rights and using it in higher-level algorithms to produce
more accurate results.

Section [will detail a few characteristics of double rounding and why rounding to nearest
is failing us. Section [will introduce the formal definition of rounding to odd, how it solves
the double rounding issue, and how to implement this rounding. Its property with respect to
double rounding will then be extended to two applications. Section [\ will describe an algorithm
that emulates the floating-point fused-multiply-and-add operator. Section M will then present

algorithms for performing accurate summation.

II. DOUBLE ROUNDING
A. Floating-point definitions

Our formal proofs are based on the floating-point formalization [4] of Daumas, Rideau, and
Théry in Coq [1], and on the corresponding library by Théry and one of the authors [2]]. Floating-
point numbers are represented by pairs (n,) that stand for n x 2¢. We use both an integral signed

mantissa n and an integral signed exponent e for sake of simplicity.

June 16, 2006 DRAFT

TRANSACTION ON COMPUTERS, VOL. 0, NO. 0, ANUARY 2099 4

A floating-point format is denoted by B and is a pair composed by the lowest exponent — F
available and the precision p. We do not set an upper bound on the exponent as overflows do not
matter here (see below). We define a representable pair (n,e) such that |n| < 2P and e > —F.
We denote by [the subset of real numbers represented by these pairs for a given format B. Now
only the representable floating-point numbers will be referred to; they will simply be denoted
as floating-point numbers.

All the IEEE-754 rounding modes are also defined in the Coq library, especially the default
rounding: the rounding to nearest even, denoted by o. We have f = o(x) if f is the floating-point
number closest to x; when x is half way between two consecutive floating-point numbers, the
one with an even mantissa is chosen.

A rounding mode is defined in the Coq library as a relation between a real number and
a floating-point number, and not a function from real values to floats. Indeed, there may be
several floats corresponding to the same real value. For a relation, a weaker property than being
a rounding mode is being a faithful rounding. A floating-point number f is a faithful rounding
of a real z if it is either the rounded up or rounded down of x, as shown on Figure [l When z
is a floating-point number, it is its own and only faithful rounding. Otherwise there always are

two faithful rounded values bracketing the real value when no overflow occurs.
faithful roudings

o
?

correct rounding (closest)

Fig. 1

FAITHFUL ROUNDINGS.

B. Double rounding accuracy

As explained before, a floating-point computation may first be done in an extended precision,

and later rounded to the working precision. The extended precision is denoted by B, = (p+k, E.)

June 16, 2006 DRAFT

TRANSACTION ON COMPUTERS, VOL. 0, NO. 0, ANUARY 2099 5

and the working precision is denoted by B,, = (p, E,,). If the same rounding mode is used for
both computations (usually to nearest even), it can lead to a less precise result than the result
after a single rounding.

For example, see Figure 2l When the real value z is in the neighborhood of the midpoint of
two consecutive floating-point numbers g and £, it may first be rounded in one direction toward
this middle ¢ in extended precision, and then rounded in the same direction toward f in working
precision. Although the result f is close to z, it is not the closest floating-point number to x, as
h is. When both rounding directions are to nearest, we formally proved that the distance between

the given result f and the real value x may be as much as

el < (52) unl)

When there is only one rounding, the corresponding inequality is |f — 2| < 1ulp(f). This is

the expected result for a IEEE-754 compatible implementation.

second rounding

g h
fi rst rounding

B

v

- t

Fig. 2

BAD CASE FOR DOUBLE ROUNDING.

Section IV=CT] will show that, when there is only one single floating-point format but many
computations, trying to get a correctly rounded result is somehow similar to avoiding incorrect

double rounding.

C. Double rounding and faithfulness

Another interesting property of double rounding as defined previously is that it is a faithful

rounding. We even have a more generic result.

June 16, 2006 DRAFT

TRANSACTION ON COMPUTERS, VOL. 0, NO. 0, ANUARY 2099 6

Fig. 3

DOUBLE ROUNDINGS ARE FAITHFUL.

Let us consider that the relations are not required to be rounding modes but only faithful
roundings. We formally certified that the rounded result f of a double faithful rounding is
faithful to the real initial value x, as shown in Figure B The requirements are £ > 0 and

k < E. — FE, (any normal float in the working format is normal in the extended format).

Let R. be a faithful rounding in extended precision B, = (p + k, E.) and let R, be a faithful
rounding in the working precision B, = (p, Ey). If £ > 0 and k¥ < E. — E,, then for all
real value z, the floating-point number R ,,(R.(x)) is a faithful rounding of x in the working

precision.

Theorem 1: DbIRndStable

This is a very powerful result as faithfulness is the best result we can expect as soon as we
at least consider two roundings to nearest. And this result can be applied to any two successive
IEEE-754 rounding modes (to zero, toward +oc...).

This means that any sequence of successive roundings in decreasing precisions gives a faithful

rounding of the initial value.

I11. ROUNDING TO ODD

As seen in the previous section, rounding two times to nearest induces a bigger round-off
error than one single rounding to nearest and may then lead to unexpected incorrect results. By

rounding to odd first, the second rounding will correctly round to nearest the initial value.

June 16, 2006 DRAFT

TRANSACTION ON COMPUTERS, VOL. 0, NO. 0, ANUARY 2099 7

A. Formal description

This rounding does not belong to the IEEE-754’s or even 754RE|’3 rounding modes. It should
not be mixed up with the rounding to the nearest odd (similar to the default rounding: rounding
to the nearest even).

We denote by A the rounding toward +oc and by 57 the rounding toward —oo. The rounding
to odd is defined by:

x if z € F,
Coaa(z) = ¢ A(z) if the mantissa of A(z) is odd,
v (z) otherwise.

Note that the result of = rounded to odd can be even only when x is a representable floating-
point number. Note also that when x is not representable, (J,qq() is not necessarily the nearest
floating-point number with an odd mantissa. Indeed, this is wrong when z is close to a power
of two. This partly explains why the formal proof of Algorithm [0 needs to separate powers of
two from other floating-point numbers.

The first proofs we formally checked were basic properties of this operator.

This operator is a rounding mode as defined in our formalization [4]:
« Each real can be rounded to odd.
« Any odd rounding is a faithful rounding.
« Odd rounding is monotone.
We also certified that:
« Odd rounding is unique (meaning that it can be expressed as a function).

« Odd rounding is symmetric, meaning that if f = Ooqq(), then —f = Oyqa(—1x).

Theorem 2: To_Odd {Total, MinOrMax, Monotone, RoundedModeP, UniqueP, and SymmetricP}

B. Implementing the rounding to odd

Rounding to odd the real result = of a floating-point computation can be done in two steps.

First round it to zero into the floating-point number Z(x) with respect to the IEEE-754 standard.

1See [t t p: /7 Www. val 1 dl ab. com /54K

June 16, 2006 DRAFT

http://www.validlab.com/754R/

TRANSACTION ON COMPUTERS, VOL. 0, NO. 0, ANUARY 2099 8

And then perform a logical or between the inexact flag ¢ (or the sticky bit) of the first step and
the last bit of the mantissa.

If the mantissa of Z(x) is already odd, this floating-point number is the rounding to odd of x
too; the logical or does not change it. If the floating-point computation is exact, Z(z) is equal
to = and ¢ is not set; consequently [Cloqq(z) = Z(x) is correct. Otherwise the computation is
inexact and the mantissa of Z(z) is even, but the final mantissa must be odd, hence the logical
or with «. In this last case, this odd float is the correct one, since the first rounding was toward
zero.

Computing ¢ is not a problem per se, since the IEEE-754 standard requires this flag to be
implemented, and hardware already uses sticky bits for the other rounding modes. Furthermore,
the value of « can directly be reused to flag the odd rounding of = as exact or inexact. As a
consequence, on an already IEEE-754 compliant architecture, adding this new rounding has no
significant cost.

Another way to round to odd with precision p + & is the following. We first round = toward
zero with p + k£ — 1 bits. We then concatenate the inexact bit of the previous operation at the
end of the mantissa in order to get a p + k-bit float. The justification is similar to the previous
one.

Both previous methods are aimed at hardware implementation. They may not be efficient
enough to be used in software. Paragraph [=B] will present a third way of rounding to odd, more
adapted to current architectures and actually implemented. It is portable and available in higher
level languages as it does not require changing the rounding direction and accessing the inexact

flag.

C. Correct double rounding

Algorithm [0 first computes the rounding to odd of the real value = in the extended format
(with p + £ bits). It then computes the rounding to the nearest even of the previous value in
the working format (with p bits). We here consider a real value x but an implementation does
not need to really handle z: it can represent the abstract exact result of an operation between
floating-point numbers.

Although there is a double rounding, we here guarantee that the computed final result is

correct. The explanation is in Figure H and is as follow.

June 16, 2006 DRAFT

TRANSACTION ON COMPUTERS, VOL. 0, NO. 0, ANUARY 2099 9

Algorithm 1 Correct double rounding algorithm.

t = i)

;o= o)

Assuming p > 2, k > 2, and E. > 2+ E,, Algorithm [has the following property:

f=0o"(x).

Theorem 3: To_Odd_Even_is Even

When z is exactly equal to the middle of two consecutive floating-point numbers f; and f,
(case 1), then ¢ is exactly = and f is the correct rounding of x. Otherwise, when z is slightly
different from this midpoint (case 2), then ¢ is different from this midpoint: it is the odd value
just greater or just smaller than the midpoint depending on the value of x. The reason is that,
as k > 2, the midpoint is even in the p + k precision, so ¢ cannot be rounded into it if it is
not exactly equal to it. This obtained ¢ value will then be correctly rounded to f, which is the
closest p-bit float from x. The other cases (case 3) are far away from the midpoint and are easy

to handle.

Fig. 4

DIFFERENT CASES OF ALGORITHM[I

Note that the hypothesis £, > 2 + E,, is not a requirement hard to satisfy. Indeed it does

not mean that the exponent range (as defined in the IEEE-754 standard) of the extended format

June 16, 2006 DRAFT

TRANSACTION ON COMPUTERS, VOL. 0, NO. 0, ANUARY 2099 10

must be greater by 2. Due to our definition of £, a sufficient condition is simply: Any normal
floating-point numbers with respect to B ., should be normal with respect to B..

The pen and paper proof is a bit technical but does seem easy (see Figure H). But it does not
consider the special cases: especially the ones where o?(x) is a power of two, and subsequently
where o?(x) is the smallest normal float. And we must look into all these special cases in order
to be sure that the algorithm can always be applied, even when underflow occurs. We formally
proved this result using the Coq proof assistant in order to be sure not to forget any case or
hypothesis and not to make mistakes in the numerous computations. There are many splittings
into subcases that made the final proof rather long: 7 theorems and about one thousand lines of
Coq, but we are now sure that every cases (normal/subnormal, power of the radix or not) are

supported. Details on this proof were presented in a previous work [3].

IV. EMULATING THE FMA

The fused-multiply-and-add is a recent floating-point operator that is already present on modern
processors like PowerPC or Itanium. This operation will be standardized thanks to the revision
of the IEEE-754 standard. Given three floating-point numbers a, b, and ¢, it computes the value
z = o(a - b+ ¢) with one single rounding at the end of the computation. There is no rounding
after the product « - b. This operator is very useful as it increases the accuracy of the dot product
and matrix multiplication, but it is available on few processors.

This section will show how an FMA can be emulated thanks to rounding to odd.

A. The algorithm

Algorithm [2 relies on error-free transformations (ExactAdd and ExactMult) to perform some
of the operations exactly. These transformations described below return two floating-point values.
One is the usual result: the exact sum or product rounded to nearest. The other is the error term.
For addition and multiplication, this term happens to be exactly representable by a floating-point
number and computable using only floating-point operations provided neither underflow (for the
multiplication) nor overflow occurs. As a consequence, these equalities hold: a - b = u , +
and ¢ + u, = t, + t;. And the rounded result is stored in the higher word: u;, = o(a - b) and

th = O(C + uh).

June 16, 2006 DRAFT

TRANSACTION ON COMPUTERS, VOL. 0, NO. 0, ANUARY 2099 11

Algorithm 2 Emulating the FMA.

c a b

T

Error-free multiplication

Up, up

(up,u;) = ExactMult(a,b) J /

Error-free addition

(th,tl) = ExaCtAdd(C, Uh) th

1
Vo= Dodd(tl—i—ul) \

Odd-rounded addition
z = oty +v)

v = Ooaa(t; + w)

/

Rounded addition

z=o(tp +v)

A fast method for computing the error term of the multiplication is the use of the FMA:
u; = o(a - b+ (—uyp)). Unfortunately, we are trying to emulate a FMA here, so we will have
to use another method. In IEEE-754 double precision, Dekker’s algorithm first splits the 53-bit
floating-point inputs into 26-bit parts thanks to the sign bit. These parts can then be multiplied
exactly and subtracted in order to get the error term [[6]. For the error term of the addition, since
we do not know the relative order of |c| and |u,|, we use Knuth’s unconditional version of the
algorithm [12].

Our emulated FMA first computes an approximation of the correct result: ¢, = o(o(a-b) +c¢).
It also computes an auxiliary term v that will be added to ¢, to get the final result. All the
computations are done at the working precision, there is no need for an extended precision. v
is computed by adding the neglected terms w; and ¢;, and by rounding the result to odd. If the
value was rounded to nearest instead, it could lead to a wrong answer.

As an example, let us consider a = 1+ 2727 and b = 1 — 2727, The exact product is a - b =
1 — 2754, This real number is exactly the midpoint between 1 and its representable predecessor

in double precision. If ¢ is small enough, it means that the value o(a - b+ ¢) will purely depend

June 16, 2006 DRAFT

TRANSACTION ON COMPUTERS, VOL. 0, NO. 0, ANUARY 2099 12

on the sign of c. For example, |c| < 271%0 is small enough. If ¢ is negative, then the result of
the FMA operation will be 1 — 2753, Otherwise it will be 1.

Let us get back to our algorithm: the results of the error-free multiplication are u, = 1 and
w; = —27%%, Since c is negligible with respect to u;,, we have t, = u, = 1 and t; = c. So the
final result is o(1+t¢). If ¢ was rounded to nearest, then ¢ would be equal to u; = —27%4, since ¢
is also negligible with respect to u;. As a consequence, the final result would be 1, irrespective
of the sign of c. In particular it would be wrong when ¢ is negative. By rounding v to odd, we
get v = —2754(14-2752) instead, when c is negative. This is enough to get the correctly rounded

result;: z =1 — 2793,

B. Theorem of correctness

Under the notations of Algorithm B if p > 5 and v, is representable, then

z=o(axb+c).

Theorem 4: FmaEmul

We have formally proved in Coq that the previous algorithm will indeed emulate a FMA. Two
hypotheses were necessary. First, the value w; has to indeed be the error term of the multiplication
a - b. This hypothesis is just here to avoid some degenerate underflow cases where the error term
is so small that its exponent falls outside the admitted range. The second hypothesis is p > 5.
The mantissa must contain at least 5 bits. This requirement is reasonable since even the smallest
format of the IEEE-754 standard has a 24-bit mantissa (23 explicit bits and the most significant
bit is implicit).

Listing [shows the theorem as it was proved in Cog. First it assumes that the precision is
p > 5. Then it states that a, b, ¢, and wu; are representable floating-point numbers in the format
bo thanks to the predicate Fbounded.

Next comes the description of the algorithm. «,, and ¢, are the nearest (Cl osest) floating-
point numbers in format bo to the potentially non-representable real numbers a - b and ¢ + wuy,.

Note that the r adi x is 2; we are dealing with binary floating-point numbers.

June 16, 2006 DRAFT

TRANSACTION ON COMPUTERS, VOL. 0, NO. 0, ANUARY 2099 13

Listing 1 Coq theorem certifying the correctness of Algorithm

Hypot heses pGe: (5 <= p).

Hypot hesis Fa : Fbounded bo a

Hypot hesis Fb : Fbounded bo b.

Hypot hesis Fc : Fbounded bo c.

Hypot hesi s Ful: Fbounded bo ul.

Hypot hesi s uhDef: C osest bo radi x (a*b) %R uh.

Hypot hesi s ul Def: (FtoRradi x ul = a*b-uh) %R

Hypot hesi s thDef: C osest bo radi x (c+uh) %R th.
Hypot hesis tlDef: (FtoRradix tl = c+uh-th) %R

Hypot hesis vDef : To_Odd bo radix p (tl+ul)%R v.
Hypot hesi s zDef : Evend osest bo radix p (th+v)WR z.

Theor em FnmaEmul : Evend osest bo radi x p (a*b+c) %R z.

The floating-point numbers « ; and ¢; are defined as the error terms. The algorithms that are
used to compute them do not matter. We just have to assume that u; = a-b—uy, and t; = c+uy,—t,.
Then there are the definitions of v = Oyqq(t; +u;) and z = o(t, +v). While the precise rounding
mode used to compute w; and ¢, does not matter, the last operation of the algorithm has to be
described with more details: when ¢, + v is the midpoint between two consecutive floating-point
numbers, it is rounded to the one floating-point number with an even mantissa.

All these hypotheses define the algorithm. The last line of the script can now state our theorem:

z is indeed o(a - b+ ¢).

C. Proof

This theorem was once again formally proved with a proof checker. It was especially important
since the theorem is quite generic. In particular, it does not contain any hypothesis regarding
subnormal numbers. The algorithm is still correct even if some computed values are not normal
numbers.

1) Adding a negligible yet odd value: We need an intermediate lemma for simplicity and
reusability. Let p be the smallest positive normal number.

By uniqueness of the rounding to nearest even, it is enough to prove that o(x +y) is a correct

rounding to nearest of =+ z with tie breaking to even. This will be proved using the correctness

June 16, 2006 DRAFT

TRANSACTION ON COMPUTERS, VOL. 0, NO. 0, ANUARY 2099 14

Let x and y be floating-point numbers such that 5|y| < |z| and 5 < |z|.
Assume there is a real value z such that y = Oyqq(2).
Then o(z + y) = o(z + 2).

Theorem 5: AddOddEven

of Algorithm [It is now enough to prove that = + y is equal to ijjf(:): + z) for a k that we
might choose as we want (as soon as it is greater than 1).

The choice of k is done such that there exists a float f equal to = + y, normal with respect to
an extended format on precision p+ & and having for exponent the exponent of y. For that, we set
f = (ng2"% +ny,e,). As |y| < |z|, we know that e, < e, and this definition is indeed a float
with the wanted exponent. We then choose % to be the integer such that 27F=1 < |n;| < 27Tk,
The fact that &£ > 2 is guaranteed as 5|y| < |z|. The underflow threshold for the extended format
is defined as needed and this works fine thanks to the 5u < |z| hypothesis. These ponderous
details are handled in the machine-checked proof.

We have defined an extended format where x + y is representable. There is left to prove that
x+y = O0F(x + 2). We know that y = Toqq(2), thus we have 2 cases. First, y = z, then
x +y = x+ z and the result holds. Second, y is odd and is a faithful rounding of . Then we
prove (several possible cases and many computations later), that x + v is odd and is a faithful
rounding of = + z with respect to the extended format. That ends the proof.

2) Emulate a FMA: First, we can eliminate the case where v was computed without rounding
error. Indeed, it means that z = o(t,+v) = o(t,+t,+w;). Since u; = a-b—uy, and t,+t;, = c+up,
we have z =o((c+up) + (a-b—up)) =o(a-b+c).

Now, if v is rounded, it means that v is not a subnormal number. Indeed, if the result of
a floating-point addition is a subnormal number, then the addition is exact. It also means that
neither w; nor ¢; are zero: neither the product « - b nor the sum ¢+ w;, are representable floating-
point numbers.

Since ¢+ wy, is not representable, the inequality 2 |t,| > |uy| holds. Moreover, since v, is the
error term in wy, + wy, |u| < 27P - |uy| holds. Similarly, |t;| < 277 |t,]. As a consequence, both
lu;| and |¢;| are bounded by 2'7 - |¢,,|. So their sum |u; + ;| is bounded by 2277 - |¢,|. Since v

is not a subnormal number, the inequality still holds when rounding u; + ¢; to v. So we have

June 16, 2006 DRAFT

TRANSACTION ON COMPUTERS, VOL. 0, NO. 0, ANUARY 2099 15

proved that |v| < 2277 - |t;,| when the computation of v is inexact.

To summarize, either v is equal to ¢, 4+ w,, either v is negligible with respect to ¢,, meaning
that [v| < 2277 . |t,|. Theorem B can then be applied with = ¢, y = v and z = #; + w,.
Indeed x + z =t, + t; + u; = a- b+ c. We have to verify two inequalities in order to apply it
though. First, we must prove that 5|y| < |z|, meaning that 5|v| < |¢;|. We have just shown that
lv] < 2277 . |t4]. As p > 5, this inequality easily holds.

Second, we must prove that 5, < |z|, meaning that 5. < |¢,|. We prove it by reducing it
to the absurd. We assume that |¢,| < 5u. So ¢, is subnormal. More, ¢, must be normal: if ¢,
is subnormal, then ¢, = 0, which is impossible. We then look into u;. If u; is subnormal, then
v = Ooaa(w; + t;) is computed correctly, which is impossible. So «; is normal. We then prove
that both ¢, = 0 and ¢, # 0. First, t; # 0 as v # u; + t;. Second, we will prove that ¢, = 0 by
proving that the addition ¢+ u,, is computed exactly (as ¢;, = o(c+ uy)). For that, we will prove
that e,, <e,, — 1 as that implies a cancellation in the computation of ¢ + u;, and therefore the
exactness of ¢;,. There is then left to prove that 2¢» < 2°u.=1. As t;, is normal, 2¢ < |¢,,|217P
and then, as p > 5 and v, is normal: 26t < [£,]217P < 5u2t7P < p < || < 2°= 1. We have
a contradiction in all cases, therefore 5, < |t;| and Theorem Bl can be applied and the result
holds.

V. ACCURATE SUMMATION

The last steps of the algorithm for emulating the FMA actually computes the correctly rounded
sum of three floating-point numbers at once. Although there is no particular assumption on two
of the numbers (c and uy,), there is a strong hypothesis on the third one: |u;| < 277 |u,|. We will
generalize this summation scheme to an iterated scheme that will compute the correctly rounded
sum of a set of floating-point numbers under some mild assumptions. We will then describe an
adder for three floating-point numbers that rely on the rounding to odd to produce the correctly

rounded result.

A. lterated summation

We will consider the problem of adding a sequence of floating-point numbers (f;)i<i<, in

order to get the correctly rounded sum s = o (3,_,, fi). This problem is not new: adding

June 16, 2006 DRAFT

TRANSACTION ON COMPUTERS, VOL. 0, NO. 0, ANUARY 2099 16

several floating-point numbers with good accuracy is an important problem of scientific comput-
ing [11]. Demmel and Hida presented a simple algorithm that yields almost correct summation
results [[7]. And recently Oishi, Rump, and Ogita, presented some other algorithms for accurate
summation [16]. Our algorithm requires stronger assumptions, but it is simple, very fast, and
will return the correctly rounded result thanks to the rounding to odd.

Once again we will rely on the double rounding property: s = o3 fi) = o(CFIF (S).
Two approaches are possible. The first one was described in a previous work [3]. Its algorithm
computes the partial sums in an extended precision format with rounding to odd. The correctness

of the algorithm relies on the following property:

- .
Vi <n, 0% (JZ fz') =Py <fj+1 +Ogy (i ﬁ))
i=1 i=1

While this property holds, it is easy to iteratively compute Df)’jf(z fi). Then this number
just has to be rounded to the working precision in order to obtain the correctly rounded result
s thanks to the double rounding property.

Let us now present a different approach. We will rely on the property described in Sec-
tion V=CT] in order to compute a correctly rounded value. Algorithm B is close to the one
obtained with the first approach, but it does not need the intermediate values to be computed
with an extended precision.

For the algorithm to return the correct value, we want to compute g,,_1 = Hoqal Z fi)-
1<i<n—1
Listing 2 shows the Coq theorem that is used to prove that the following equality stands at each

iteration

J Jj+1
Vi<n—1, gj+1="0oaa (fj+1 + Uoda (Z fi)) = Uoaa (Z fi)
i=1 =1

This theorem states that (.qq(z+vy) = Ooaa(z+ 2) with z a floating-point number, = a dyadic
real number, and y = Oyqq(z). The first line is an hypothesis on the floating-point format, but
it is true for any common format: the number % must be a normal number. There are also two
hypotheses on |z|. First |x| > 2 - |z|. And second it should be bigger than twice the smallest
positive normal floating-point number p. As a consequence, in order to apply this theorem at
each iteration, we just need the following hypothesis:

> i

1=1

for2<j<n-2, \fjs1] > 2- and |[fj] >2-p.

June 16, 2006 DRAFT

TRANSACTION ON COMPUTERS, VOL. 0, NO. 0, ANUARY 2099

17

Algorithm 3 Iterated summation

Input: the (f;)1<i<, are suitably ordered and
spaced out.

g1 =h

For i from 2 to n — 1,
9i = Uoaa(gi-1 + fi)

s = 0(gn-1+ fn)

Output: s =o(>_ fi).

Is

fa

Odd-rounded additions

s Rounded addition

Now for the final rounding, we apply a slightly modified version of the result of Section IV-C.11

Listing B shows its formal specification. In order to apply this theorem on the last operation of

Algorithm 3] we need the following hypothesis, just for the biggest value f,,:

n—1
>
=1

Listing 2 Coq theorem showing how addition preserves rounding to odd

Hypot hesi s dExpBi g: p <= dExp bo.

Theor em AddOddCdd2:
forall (x y f1 f2:
Fbounded bo x ->
(2*(Rabs z) <= Rabs X)W ->

float) (z: R),

(2*(firstNormal Pos radi x bo p) <= Rabs x) %R ->

To_Odd boradix pzy ->
To_Odd bo radix p (x+y) %R f1 ->
To_Odd bo radix p (x+z) %R f2 ->
(FtoRradix f1 = f2)"WR

It may generally be a bit difficult to verify that the previous hypotheses hold. So it is interesting

June 16, 2006

DRAFT

TRANSACTION ON COMPUTERS, VOL. 0, NO. 0, ANUARY 2099

18

Listing 3 Coq theorem showing how rounding to odd helps computing nearest sum

Theor em AddCddEven2:
forall (x y f1 f2: float) (z: R,
(3<p ->
(6*(Rabs z) <= Rabs X)W ->
(5*(firstNormal Pos radi x bo p) <= Rabs x) %R ->
Fcanonic radix bo y -> Fcanonic radix bo x ->
To_Odd boradix pzy ->
EvenC osest bo radix p (x+y) R f1 ->
EvenC osest bo radix p (x+z) R f2 ->
(FtoRradix f1 = f2)"WR

to have a criteria that can be checked with floating-point numbers only:

2 .
\f1|2§'ﬂ and [f.|>9-|foa] and for 1 <i<n—2, [fig| >3-|fi

B. Adding three numbers

Algorithm 4 Adding three numbers.

a b c

T

Error-free addition

Up, uy

(up, ;) = ExactAdd(b, c) J /

Error-free addition

(th,tl) = ExaCtAdd(CL, Uh) th

t
v = Dodd(tl—i—ul) \

Odd-rounded addition
z = o(tp+v)

v = Dodd(tl + UZ)

/

Rounded addition

Let us now consider a simpler situation. We still want to compute a correctly-rounded sum,

but there are only three numbers left. In return, we will remove all the requirements on the

June 16, 2006

DRAFT

TRANSACTION ON COMPUTERS, VOL. 0, NO. 0, ANUARY 2099 19

relative ordering of the inputs. Algorithm @ shows how to compute this correctly-rounded sum
of three numbers.

Its graph looks similar to the graph of Algorithm 2 for emulating the FMA. The only difference
lies in its first error-free transformation. Instead of computing the exact product of two of its
inputs, this algorithm computes their exact sum. As a consequence, its proof of correctness can
directly be derived from the one for the FMA emulation. Indeed, the correctness of the emulation
is not relying on the properties of an exact product. The only property that matters is: u;, +w; is a
normalized representation of a number «. As a consequence, both Algorithm [2 and Algorithm (]
are special cases of a more general algorithm that would compute the correctly rounded sum of
a floating-point number with a real number exactly represented by the sum of two floating-point

numbers.

C. A practical use case

CRIibrTH is an efficient library for computing correctly rounded results of elementary functions
in IEEE-754 double precision. Let us consider the logarithm function [5]. In order to be efficient,
the library will first try a fast algorithm. This will usually give the correctly rounded result, but
in some situations it may be off by one unit in the last place. When the library detects such
a situation, it starts again with a slower yet accurate algorithm in order to get the correct final
result.

When computing the logarithm o(log f), the slow algorithm will use triple-double arith-
metic [L13] in order to first compute an approximation of log f stored on three double precision
numbers x; + x,, + x;. Thanks to results provided by the table-maker dilemma [14], this
approximation is known to be sufficiently accurate for the equality o(log f) = o(zy, + = + ;)
to hold. This means the library just has to compute the correctly rounded sum of the three
floating-point numbers x ,,, x,,, and ;.

Computing this sum is exactly the point of Algorithm @ Unfortunately, rounding to odd is
not available on any architecture targeted by CRIlibm, so it will have to be emulated. Although
such an emulation is costly in software, rounding to odd will still allow for a speed up here.

Indeed z;, + z,,, + x; is the result of a sequence of triple-double floating-point operations. As a
2Seelhttp: / /11 pforge. ens- [yon. fr/ Wi criibnil

June 16, 2006 DRAFT

http://lipforge.ens-lyon.fr/www/crlibm/

TRANSACTION ON COMPUTERS, VOL. 0, NO. 0, ANUARY 2099 20

Listing 4 Correctly rounded sum of three ordered values

doubl e Correct RoundedSunB8(doubl e xh, double xm double xI) {
double th, tl;
db_nunber thdb; // thdb.l is the binary representation of th

/! Dekker’'s error-free adder of two ordered nunmbers
Add12(th, tl, xm xl);

/1l round to odd th if tl is not zero
if (tl 1=0.0) {
thdb.d = th;
/1 if the mantissa of th is odd, there is nothing to do
if (!(thdb.l & 1)) {
/'l choose the rounding direction
/'l depending on the signs of th and tl
if ((tl >0.0) ~ (th <0.0))

t hdb. | ++;
el se

thdb.I--;
th = thdb.d;

/] final addition rounded to nearest

return xh + th;

June 16, 2006 DRAFT

TRANSACTION ON COMPUTERS, VOL. 0, NO. 0, ANUARY 2099 21

consequence, the operands are ordered in such a way that some parts of Algorithm H are not

necessary. In fact, theorem AddOddEven2 presented in Listing B implies the following equality:
o(xp + T + 1) = oy, + Do (T + x1)).

This means that, at the end of the logarithm function, we just have to compute the rounded-
to-odd sum of x,, and z;, and then do a standard floating-point addition with x ;. Now, all that
is left is computing Ooqq(x,, + ;). This will be done by first computing ¢, = o(z,, + x;) and
ti = x,, +x; — t, thanks to an error-free adder. If ¢; is zero or if the mantissa of ¢; is odd,
then ¢,, is already equal to [yqq (., + 2;). Otherwise ¢, is off by one unit in the last place. We
replace it either by its successor or by its predecessor depending on the signs of ¢; and ¢,.

Listing E shows a cleaned version of the implementation of a macro that is internally used
by CRIlibm: Ret ur nRoundToNear est 3Qt her. The macro Add12 is an implementation
of Dekker’s error-free adder. It is only 3 addition long, and is correct since the inequality
|xm| > || holds. The successor or the predecessor of ¢, is directly computed by incrementing
or decrementing the integer t hdb. | that holds its binary representation. Working on the integer
is correct, since ¢; cannot be zero when ¢; is not zero.

CRIibm already contained some code at the end of the logarithm function in order to compute
the correctly rounded sum of three floating-point numbers. When the code of Listing H is used
instead, the slow step of this elementary function gets 25 cycles faster on an AMD Opteron
processor. While we only looked at the very last operation of the logarithm, it still amounts to
a 2% speed-up on the whole function.

The performance increase would obviously be even greater if we had not to emulate a rounded-
to-odd addition. Moreover, this speed-up is not restricted to logarithm: it is available for every
other rounded elementary functions, since they all rely on triple-double arithmetic at the end of

their slow step.

VI. CONCLUSION

We first considered rounding to odd as a way of performing intermediate computations in an
extended precision and yet still obtaining correctly rounded results at the end of the computations.
This is expressed by the properties of Algorithm [l This algorithm is even more general than

what is presented here. It can also be applied to any realistic rounding to the closest (meaning

June 16, 2006 DRAFT

TRANSACTION ON COMPUTERS, VOL. 0, NO. 0, ANUARY 2099 22

that the result of a computation is uniquely defined by the value of the infinitely precise result
and does not depend on the machine state). In particular, it handles the new rounding to nearest,
ties away from zero, defined by the revision of the IEEE-754 standard.

Rounding to odd then leads us to consider algorithms that could benefit from its robustness. We
first considered an iterated summation algorithm that was using extended precision and rounding
to odd in order to perform the intermediate additions. The FMA emulation however showed that
the extended precision only has to be virtual. As long as we prove that the computations are
done as if an extended precision was used, the working precision can be used. This is especially
useful when we already compute with the highest available precision. This gives constraints on
the inputs such that Algorithm 8 computes the correctly rounded sum of a set of floating-point
numbers.

Algorithm 2 for emulating the FMA and Algorithm E for adding numbers are similar. They
both allow to compute o(a ¢ b+ ¢) with a, b, and ¢ three floating-point numbers, as long as a < b
is exactly representable as the sum of two floating-point numbers that can be computed. These
algorithms rely on rounding to odd to ensure that the result is correctly rounded. Although this
rounding is not available in current hardware, our changes to CRlibm have shown that reasoning
on it opens the way to some efficient new algorithms for computing correctly rounded results.

In this paper, we did not tackle at all the problem of overflowing operations. The reason is
that overflow does not matter here: on all the algorithms presented, overflow can be detected
afterward. Indeed, any of these algorithms will produce an infinity or a NaN as a result in case of
overflow. The only remaining problem is that they may create an infinity or a NaN although the
result could be represented. For example, let M be the biggest positive floating-point number,
and let a = —M, b = ¢ = M in Algorithm @ Then w;, = t;, = +o00, 4y = t; = v = —
and z = NaN whereas the correct result is M. This can be misleading, but this is not a real
problem when adding three numbers. Indeed, the crucial point is that we cannot create inexact
finite results: when the result is finite, it is correct. When emulating the FMA, it also requires the
error-term of the product to be correctly computed. This property can be checked by verifying
that the magnitude of the product is big enough.

All the algorithms presented here look short and simple, but their correctness is far from
trivial. When rounding to odd is replaced by a standard rounding to nearest in them, there exist

inputs such that the final results are no longer correctly rounded. So great care has to be taken

June 16, 2006 DRAFT

TRANSACTION ON COMPUTERS, VOL. 0, NO. 0, ANUARY 2099 23

when asserting that simply changing one intermediate rounding is enough to fix an algorithm. So

we have written formal proofs of their correctness and used the Coq proof-checker to guarantee

their validity. This approach is essential to ensure that the algorithms are correct, even in the

unusual cases.

[1]

(2]

(3]

[4]

5]

(6]

[7]

(8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

REFERENCES

Yves Bertot and Pierre Casteran. Interactive Theorem Proving and Program Development. Coq’Art : the Calculus of
Inductive Constructions. Texts in Theoretical Computer Science. Springer Verlag, 2004.

Sylvie Boldo. Preuves formelles en arithmétiques a virgule flottante. PhD thesis, Ecole Normale Supérieure de Lyon,
November 2004.

Sylvie Boldo and Guillaume Melquiond. When double rounding is odd. In Proceedings of the 17th IMACS World Congress
on Computational and Applied Mathematics, Paris, France, 2005.

Marc Daumas, Laurence Rideau, and Laurent Théry. A generic library of floating-point numbers and its application to exact
computing. In 14th International Conference on Theorem Proving in Higher Order Logics, pages 169-184, Edinburgh,
Scotland, 2001.

Florent de Dinechin, Christoph Q. Lauter, and Jean-Michel Muller. Fast and correctly rounded logarithms in double-
precision. Theoretical Informatics and Applications, 2006. To appear.

Theodorus J. Dekker. A floating point technique for extending the available precision. Numerische Mathematik, 18(3):224—
242, 1971.

James W. Demmel and Yozo Hida. Fast and accurate floating point summation with applications to computational geometry.
In Proceedings of the 10th GAMM-IMACS International Symposium on Scientific Computing, Computer Arithmetic, and
Validated Numerics (SCAN 2002), January 2003.

Milo$ D. Ercegovac and Tomas Lang. Digital Arithmetic. Morgan Kaufmann Publishers, 2004.

Samuel A. Figueroa. When is double rounding innocuous? SIGNUM Newsletter, 30(3):21-26, 1995.

David Goldberg. What every computer scientist should know about floating point arithmetic. ACM Computing Surveys,
23(1):5-47, 1991.

Nicholas J. Higham. Accuracy and stability of numerical algorithms. SIAM, 1996.

Donald E. Knuth. The art of computer programming: Seminumerical Algorithms, volume 2. Addison Wesley, 1969.
Christoph Q. Lauter. Basic building blocks for a triple-double intermediate format. Technical Report RR2005-38, LIP,
September 2005.

Vincent Lefévre and Jean-Michel Muller. Worst cases for correct rounding of the elementary functions in double precision.
In Neil Burgess and Luigi Ciminiera, editors, Proceedings of the 15th Symposium on Computer Arithmetic, pages 111-118,
Vail, Colorado, 2001.

Guillaume Melquiond and Sylvain Pion. Formally certified floating-point filters for homogeneous geometric predicates.
Theoretical Informatics and Applications, 2006. To appear.

Takeshi Ogita, Siegfried M. Rump, and Shin’ich Qishi. Accurate sum and dot product. SIAM Journal on Scientific
Computing, 26(6):1955-1988, 2005.

David Stevenson et al. A proposed standard for binary floating point arithmetic. IEEE Computer, 14(3):51-62, 1981.

June 16, 2006 DRAFT

TRANSACTION ON COMPUTERS, VOL. 0, NO. 0, ANUARY 2099 24

[18] David Stevenson et al. An American national standard: IEEE standard for binary floating point arithmetic. ACM SIGPLAN
Notices, 22(2):9-25, 1987.
[19] John von Neumann. First draft of a report on the EDVAC. IEEE Annals of the History of Computing, 15(4):27-75, 1993.

June 16, 2006 DRAFT

	Introduction
	Double rounding
	Floating-point definitions
	Double rounding accuracy
	Double rounding and faithfulness

	Rounding to odd
	Formal description
	Implementing the rounding to odd
	Correct double rounding

	Emulating the FMA
	The algorithm
	Theorem of correctness
	Proof
	Adding a negligible yet odd value
	Emulate a FMA

	Accurate summation
	Iterated summation
	Adding three numbers
	A practical use case

	Conclusion
	References

