
HAL Id: inria-00080427
https://ens-lyon.hal.science/inria-00080427v2

Submitted on 10 Nov 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Emulation of a FMA and correctly-rounded sums:
proved algorithms using rounding to odd

Sylvie Boldo, Guillaume Melquiond

To cite this version:
Sylvie Boldo, Guillaume Melquiond. Emulation of a FMA and correctly-rounded sums: proved
algorithms using rounding to odd. IEEE Transactions on Computers, 2008, 57 (4), pp.462-471.
�10.1109/TC.2007.70819�. �inria-00080427v2�

https://ens-lyon.hal.science/inria-00080427v2
https://hal.archives-ouvertes.fr

TRANSACTION ON COMPUTERS, VOL. 0, NO. 0, JANUARY 2099 1

Emulation of FMA and correctly-rounded sums:
proved algorithms using rounding to odd

Sylvie Boldo and Guillaume Melquiond

Abstract— Rounding to odd is a non-standard rounding on
floating-point numbers. By using it for some intermediate values
instead of rounding to nearest, correctly rounded results can be
obtained at the end of computations. We present an algorithm for
emulating the fused multiply-and-add operator. We also present
an iterative algorithm for computing the correctly rounded sum
of a set floating-point numbers under mild assumptions. A
variation on both previous algorithms is the correctly rounded
sum of any three floating-point numbers. This leads to efficient
implementations, even when this rounding is not available. In
order to guarantee the correctness of these properties and algo-
rithms, we formally proved them using the Coq proof checker.

Index Terms— Floating-point, rounding to odd, accurate sum-
mation, FMA, formal proof, Coq.

I. INTRODUCTION

F
LOATING-POINT computations and their roundings are de-
scribed by the IEEE-754 standard [1], [2] followed by every

modern general-purpose processor. This standard was written to
ensure the coherence of the result of a computation whatever the
environment. This is the “correct rounding” principle: the result of
an operation is the same as if it was first computed with an infinite
precision and then rounded to the precision of the destination
format. There may exist higher precision formats though, and it
would not be unreasonable for a processor to store all kinds of
floating-point result in a single kind of register instead of having
as many register sets as it supports floating-point formats. In order
to ensure IEEE-754 conformance, care must then be taken that a
result is not first rounded to the extended precision of the registers
and then rounded to the precision of the destination format.

This “double rounding” phenomenon may happen on proces-
sors built around the Intel x86 instruction set for example. Indeed,
their floating-point units use 80-bit long registers to store the
results of their computations, while the most common format
used to store in memory is only 64-bit long (IEEE double
precision). To prevent double rounding, a control register allows
to set the floating-point precision, so that the results are not
first rounded to the register precision. Unfortunately, setting the
target precision is a costly operation as it requires the processor
pipeline to be flushed. Moreover, thanks to the extended precision,
programs generally seem to produce more accurate results. As
a consequence, compilers usually do not generate the additional
code that would ensure that each computation is correctly rounded
in its own precision.

Double rounding can however lead to unexpected inaccuracy.
As such, it is considered a dangerous feature. So writing robust
floating-point algorithms requires extra care in order to ensure
that this potential double rounding will not produce incorrect

S. Boldo is with the INRIA Futurs.
G. Melquiond is with the École Normale Supérieure de Lyon.

results [3]. Nevertheless, double rounding is not necessarily a
threat. For example, if the extended precision is at least twice
as big, then it can be used to emulate correctly rounded basic
operations for a smaller precision [4]. Double rounding can
also be made innocuous by introducing a new rounding mode
and using it for the first rounding. When a real number is not
representable, it will be rounded to the adjacent floating-point
number with an odd mantissa. In this article, this rounding will
be named rounding to odd.

Von Neumann was considering this rounding when designing
the arithmetic unit of the EDVAC [5]. Goldberg later used
this rounding when converting binary floating-point numbers
to decimal representations [6]. The properties of this rounding
operator are close to the ones needed when implementing rounded
floating-point operators with guards bits [7]. Because of its double
rounding property, it has also been studied in the context of
multistep gradual rounding [8]. Rounding to odd was never more
than an implementation detail though, as two extra bits had to be
stored in the floating-point registers. It was part of some hardware
recipes that were claimed to give a correct result. Our work aims
at giving precise and clear definitions and properties with a strong
guarantee on their correctness. We also show that it is worth
making rounding to odd a rounding mode in its own rights (it
may be computed in hardware or in software). By rounding some
computations to odd in an algorithm, more accurate results can
be produced without extra precision.

Section II will detail a few characteristics of double rounding
and why rounding to nearest is failing us. Section III will
introduce the formal definition of rounding to odd, how it solves
the double rounding issue, and how to implement this rounding.
Its property with respect to double rounding will then be ex-
tended to two applications. Section IV will describe an algorithm
that emulates the floating-point fused-multiply-and-add operator.
Section V will then present algorithms for performing accurate
summation. Formal proofs of the lemmas and theorems have
been written and included in the Pff library1 on floating-point
arithmetic. Whenever relevant, the names of the properties in the
following sections match the ones in the library.

II. DOUBLE ROUNDING

A. Floating-point definitions

Our formal proofs are based on the floating-point formaliza-
tion [9] of Daumas, Rideau, and Théry in Coq [10], and on
the corresponding library by Théry, Rideau, and one of the au-
thors [11]. Floating-point numbers are represented by pairs (n, e)

that stand for n× 2e. We use both an integral signed mantissa n

and an integral signed exponent e for sake of simplicity.
A floating-point format is denoted by B and is a pair composed

by the lowest exponent −E available and the precision p. We do

1See http://lipforge.ens-lyon.fr/www/pff/.

http://lipforge.ens-lyon.fr/www/pff/

TRANSACTION ON COMPUTERS, VOL. 0, NO. 0, JANUARY 2099 2

not set an upper bound on the exponent as overflows do not matter
here (see Section VI). We define a representable pair (n, e) such
that |n| < 2p and e ≥ −E. We denote by F the subset of real
numbers represented by these pairs for a given format B. Now
only the representable floating-point numbers will be referred to;
they will simply be denoted as floating-point numbers.

All the IEEE-754 rounding modes are also defined in the Coq
library, especially the default rounding: rounding to nearest even,
denoted by ◦. We have f = ◦(x) if f is the floating-point number
closest to x; when x is half way between two consecutive floating-
point numbers, the one with an even mantissa is chosen.

A rounding mode is defined in the Coq library as a relation
between a real number and a floating-point number, and not a
function from real values to floats. Indeed, there may be several
floats corresponding to the same real value. For a relation, a
weaker property than being a rounding mode is being a faithful
rounding. A floating-point number f is a faithful rounding of
a real x if it is either the rounded up or rounded down of x,
as shown on Figure 1. When x is a floating-point number, it is
its own and only faithful rounding. Otherwise there always are
two faithful rounded values bracketing the real value when no
overflow occurs.

faithful roudings

correct rounding (closest)

x

Fig. 1

FAITHFUL ROUNDINGS.

B. Double rounding accuracy

As explained before, a floating-point computation may first be
done in an extended precision, and later rounded to the working
precision. The extended precision is denoted by Be = (p+k, Ee)

and the working precision is denoted by Bw = (p, Ew). If the
same rounding mode is used for both computations (usually to
nearest even), it can lead to a less precise result than the result
after a single rounding.

For example, see Figure 2. When the real value x is in the
neighborhood of the midpoint of two consecutive floating-point
numbers g and h, it may first be rounded in one direction toward
this middle t in extended precision, and then rounded in the same
direction toward f in working precision. Although the result f is
close to x, it is not the closest floating-point number to x, as
h is. When both rounding directions are to nearest, we formally
proved that the distance between the given result f and the real
value x may be as much as

|f − x| ≤

„

1

2
+ 2−k−1

«

ulp(f).

When there is only one rounding, the corresponding inequality
is |f − x| ≤ 1

2
ulp(f). This is the expected result for a IEEE-754

compatible implementation.

Be step

Bw step

x
t

first rounding

second rounding
g h

f

Fig. 2

BAD CASE FOR DOUBLE ROUNDING.

Section IV-B.1 will show that, when there is only one single
floating-point format but many computations, trying to get a
correctly rounded result is somehow similar to avoiding incorrect
double rounding.

C. Double rounding and faithfulness

Another interesting property of double rounding as defined
previously is that it is a faithful rounding. We even have a more
generic result.

x

f1 f2

Fig. 3

DOUBLE ROUNDINGS ARE FAITHFUL.

Let us consider that the relations are not required to be rounding
modes but only faithful roundings. We formally certified that the
rounded result f of a double faithful rounding is faithful to the
real initial value x, as shown in Figure 3.

Theorem 1 (DblRndStable): Let Re be a faithful rounding in
extended precision Be = (p + k, Ee) and let Rw be a faithful
rounding in the working precision Bw = (p, Ew). If k ≥ 0 and
k ≤ Ee −Ew, then for all real value x, the floating-point number
Rw(Re(x)) is a faithful rounding of x in the working precision.

This is a deep result as faithfulness is the best result we can
expect as soon as we consider at least two roundings to nearest.
This result can be applied to any two successive IEEE-754
rounding modes (to zero, toward +∞. . .). The requirements are
k ≥ 0 and k ≤ Ee − Ew. The last requirement means that the
minimum exponents emin

e and emin
w — as defined by the IEEE-

754 standard — should satisfy emin
e ≤ emin

w . As a consequence, it
is equivalent to: Any normal floating-point number with respect
to Bw should be normal with respect to Be.

This means that any sequence of successive roundings in
decreasing precisions gives a faithful rounding of the initial value.

III. ROUNDING TO ODD

As seen in the previous section, rounding two times to nearest
may induce a bigger round-off error than one single rounding

TRANSACTION ON COMPUTERS, VOL. 0, NO. 0, JANUARY 2099 3

to nearest and may then lead to unexpected incorrect results. By
rounding to odd first, the second rounding will correctly round to
nearest the initial value.

A. Formal description

Rounding to odd does not belong to the IEEE-754’s or even
754R2’s rounding modes. It should not be mixed up with rounding
to the nearest odd (similar to the default rounding: rounding to
the nearest even).

We denote by △ rounding toward +∞ and by ▽ rounding
toward −∞. Rounding to odd is defined by:

�odd(x) =

8

<

:

x if x ∈ F,
△(x) if its mantissa is odd,
▽(x) otherwise.

Note that the result of x rounded to odd can be even only
when x is a representable floating-point number. Note also that
when x is not representable, �odd(x) is not necessarily the nearest
floating-point number with an odd mantissa. Indeed, this is wrong
when x is close to a power of two. This partly explains why the
formal proofs on algorithms involving rounding to odd will have
to separate the case of powers of two from other floating-point
numbers.

Theorem 2 (To_Odd*): Rounding to odd has the properties of
a rounding mode [9]:

• each real can be rounded to odd;
• rounding to odd is faithful;
• rounding to odd is monotone.

Moreover,

• rounding to odd can be expressed as a function: a real cannot
be rounded to two different floating-point values;

• rounding to odd is symmetric:
if f = �odd(x), then −f = �odd(−x).

B. Implementing rounding to odd

Rounding to odd the real result x of a floating-point com-
putation can be done in two steps. First round it to zero into
the floating-point number Z(x) with respect to the IEEE-754
standard. And then perform a logical or between the inexact flag ι

(or the sticky bit) of the first step and the last bit of the mantissa.
If the mantissa of Z(x) is already odd, this floating-point

number is also the value of x rounded to odd; the logical or does
not change it. If the floating-point computation is exact, Z(x)

is equal to x and ι is not set; consequently �odd(x) = Z(x) is
correct. Otherwise the computation is inexact and the mantissa
of Z(x) is even, but the final mantissa must be odd, hence the
logical or with ι. In this last case, this odd float is the correct
one, since the first rounding was toward zero.

Computing ι is not a problem per se, since the IEEE-754 stan-
dard requires this flag to be implemented, and hardware already
uses sticky bits for the other rounding modes. Furthermore, the
value of ι can directly be reused to flag the rounded value of
x as exact or inexact. As a consequence, on an already IEEE-
754 compliant architecture, adding this new rounding has no
significant cost.

Another way to round to odd with precision p + k is the
following. We first round x toward zero with p + k − 1 bits.

2See http://www.validlab.com/754R/.

We then concatenate the inexact bit of the previous operation at
the end of the mantissa in order to get a p + k-bit float. The
justification is similar to the previous one.

Both previous methods are aimed at hardware implementation.
They may not be efficient enough to be used in software.
Paragraph V-D will present a third way of rounding to odd, more
adapted to current architectures and actually implemented. It is
portable and available in higher level languages as it does not
require changing the rounding direction and accessing the inexact
flag.

C. Correct double rounding

Let x be a real number. This number is first rounded to odd in
an extended format (precision is p+k bits and 2−Ee is the smallest
positive floating-point number). Let t be this intermediate rounded
result. It is then rounded to nearest even in the working format
(precision is p bits and 2−Ew is the smallest positive floating-point
number). Although we are considering a real value x here, an
implementation does not need to really handle x. The value x can
indeed represent the abstract exact result of an operation between
floating-point numbers. Although this sequence of operations is
a double rounding, we state that the computed final result is
correctly rounded.

Theorem 3 (To_Odd_Even_is_Even): Assuming p ≥ 2, k ≥ 2,
and Ee ≥ 2 + Ew,

∀x ∈ R, ◦p
“

�
p+k
odd

(x)
”

= ◦p(x).

The proof is split in three cases as shown in Figure 4. When x

is exactly equal to the middle of two consecutive floating-point
numbers f1 and f2 (case 1), then t is exactly x and f is the correct
rounding of x. Otherwise, when x is slightly different from this
midpoint (case 2), then t is different from this midpoint: it is the
odd value just greater or just smaller than the midpoint depending
on the value of x. The reason is that, as k ≥ 2, the midpoint is
even in the p + k precision, so t cannot be rounded into it if it is
not exactly equal to it. This obtained t value will then be correctly
rounded to f , which is the closest p-bit float from x. The other
numbers (case 3) are far away from the midpoint and are easy to
handle.

f2

f1

1 23

Fig. 4

DIFFERENT CASES OF ROUNDING TO ODD

Note that the hypothesis Ee ≥ 2 + Ew is a requirement easy
to satisfy. It is weaker than the corresponding one in Theorem 1.
In particular, the following condition is sufficient but no longer
necessary: Any normal floating-point number with respect to Bw

should be normal with respect to Be.
While the pen and paper proof is a bit technical, it does seem

easy. It does not, however, consider the special cases, especially
the ones where ◦p(x) is a power of two, and subsequently where

http://www.validlab.com/754R/

TRANSACTION ON COMPUTERS, VOL. 0, NO. 0, JANUARY 2099 4

◦p(x) is the smallest normal floating-point number. We must
look into all these special cases in order to ensure that the
rounding is always correct, even when underflow occurs. We
have formally proved this result using the Coq proof assistant.
By using a proof checker, we are sure no cases were forgotten
and no mistakes were made in the numerous computations. There
are many splittings into subcases; they make the final proof rather
long: seven theorems and about one thousand lines of Coq, but
we are now sure that every cases (normal/subnormal, power of the
radix or not) are supported. Details on this proof were presented
in a previous work [12].

Theorem 3 is even more general than what is presented here:
it can be applied to any realistic rounding to the closest (meaning
that the result of a computation is uniquely defined by the value
of the infinitely precise result and does not depend on the machine
state). In particular, it handles the new rounding to nearest, ties
away from zero, defined by the revision of the IEEE-754 standard.

IV. EMULATING THE FMA

The fused-multiply-and-add is a recent floating-point operator
that is present on a few modern processors like PowerPC or
Itanium. This operation will hopefully be standardized in the
revision of the IEEE-754 standard. Given three floating-point
numbers a, b, and c, it computes the value z = ◦(a · b + c) with
one single rounding at the end of the computation. There is no
rounding after the product a · b. This operator is very useful as it
may increase performance and accuracy of the dot product and
matrix multiplication. Algorithm 1, page 5, shows how it can be
emulated thanks to rounding to odd. This section will describe its
principles.

A. The algorithm

Algorithm 1 relies on error-free transformations (ExactAdd and
ExactMult) to perform some of the operations exactly. These
transformations described below return two floating-point values.
The first one is the usual result: the exact sum or product rounded
to nearest. The other one is the error term. For addition and
multiplication, this term happens to be exactly representable by
a floating-point number and computable using only floating-point
operations provided neither underflow (for the multiplication)
nor overflow occurs. As a consequence, in Algorithm 1, these
equalities hold: a · b = uh + ul and c + uh = th + tl. And the
rounded result is stored in the higher word: uh = ◦(a · b) and
th = ◦(c + uh).

A fast operator for computing the error term of the multiplica-
tion is the FMA: ul = ◦(a · b + (−uh)). Unfortunately, our goal
is the emulation of a FMA, so we have to use another method.
In IEEE-754 double precision, Dekker’s algorithm first splits the
53-bit floating-point inputs into 26-bit parts thanks to the sign
bit. These parts can then be multiplied exactly and subtracted in
order to get the error term [13]. For the error term of the addition,
since we do not know the relative order of |c| and |uh|, we use
Knuth’s unconditional version of the algorithm [14]. These two
algorithms have been formally proved in Coq [9], [15].

Our emulated FMA first computes an approximation of the
correct result: th = ◦(◦(a · b) + c). It also computes an auxiliary
term v that is added to th to get the final result. All the
computations are done at the working precision, there is no need
for an extended precision. The number v is computed by adding

the neglected terms ul and tl, and by rounding the result to odd.
The following example will show that the answer would be wrong
if all the roundings were to nearest instead.

Let us consider a = 1 + 2−27 and b = 1 − 2−27. The exact
product is a · b = 1 − 2−54. This real number is exactly the
midpoint between 1 and its representable predecessor in double
precision. If c is small enough (for example, |c| ≤ 2−150), it
means that the value ◦(a · b + c) will purely depend on the sign
of c. If c is negative, it should be 1 − 2−53, otherwise 1. If our
algorithm were to round to nearest instead of rounding to odd,
the final result would always be 1, irrespective of the sign of c.

B. Theorem of correctness

Theorem 4 (FmaEmul): Under the notations of Algorithm 1,
if ul is representable and p ≥ 5, then

z = ◦(a × b + c).

The previous theorem states that the algorithm emulates a FMA
under two hypotheses. First, the value ul has to be the error term
of the multiplication a · b, in order to avoid some degenerate
underflow cases: the error term becomes so small that its exponent
falls outside the admitted range. The second hypothesis requires
the mantissa to have at least 5 bits. This requirement is reasonable
since even the smallest format of the IEEE-754 standard has a
24-bit mantissa.

This theorem has been formally proved with a proof checker.
This is especially important as it is quite generic. In particular,
it does not contain any hypothesis regarding subnormal numbers.
The algorithm will behave correctly even if some computed values
are not normal numbers, as long as ul is representable.

1) Adding a negligible yet odd value: We need an intermediate
lemma for simplicity and reusability, described by Figure 5.

Lemma 1 (AddOddEven): Let µ be the smallest positive
floating-point normal number. Let x be a floating-point number
such that |x| ≥ 5 · µ. Let z be a real number and y = �odd(z).
Assuming 5 · |y| ≤ |x|,

◦(x + y) = ◦(x + z).

z ∈ R y = �odd(z)

◦(x + z) = ◦(x + y)

x + z ∈ R x + y ∈ F + F

x+ x+

Fig. 5

LEMMA ADDODDEVEN.

By uniqueness of the rounded value to nearest even, it is enough
to prove that ◦(x + y) is a correct rounding to nearest of x + z

with tie breaking to even. By applying Theorem 3, we just have
to prove that x+y is equal to �

p+k
odd

(x+z) for a k that we might
choose as we want (as soon as it is greater than 1).

TRANSACTION ON COMPUTERS, VOL. 0, NO. 0, JANUARY 2099 5

Algorithm 1 Emulating the FMA.

(uh, ul) = ExactMult(a, b)

(th, tl) = ExactAdd(c, uh)

v = �odd(tl + ul)

z = ◦(th + v)

Error-free multiplication

uh ul

Error-free addition

tlth

ac b

Rounded addition

z = ◦(th + v)

Odd-rounded addition

v = �odd(tl + ul)

The integer k is chosen so that there exists a floating-point
number f equal to x + y, normal with respect to an extended
format on precision p + k and having the same exponent as y.
For that, we set f = (nx ·2

ex−ey +ny, ey). As |y| ≤ |x|, we know
that ey ≤ ex and this definition has the required exponent. We
then choose k such that 2p+k−1 ≤ |nf | < 2p+k. The property
k ≥ 2 is guaranteed by 5 · |y| ≤ |x|. The underflow threshold for
the extended format is defined as needed thanks to the 5 ·µ ≤ |x|

hypothesis. These ponderous details are handled in the machine-
checked proof.

So we have defined an extended format where x + y is
representable. There is left to prove that x + y = �

p+k
odd

(x + z).
We know that y = �odd(z), thus we have two cases. First, y = z,
so x + y = x + z and the result holds. Second, y is odd and is
a faithful rounding of z. Then we prove (several possible cases
and many computations later), that x + y is odd and is a faithful
rounding of x+ z with respect to the extended format. That ends
the proof.

Several variants of this lemma are used in Section V-A. They
all have been formally proved too. Their proofs have a similar
structure and they will not be detailed here. Please refer to the
Coq formal development for in-depth proofs.

2) Emulating a FMA: First, we can eliminate the case where
v is computed without rounding error. Indeed, it means that z =

◦(th+v) = ◦(th+tl+ul). Since ul = a·b−uh and th+tl = c+uh,
we have z = ◦((c + uh) + (a · b − uh)) = ◦(a · b + c).

Now, if v is rounded, it means that v is not a subnormal number.
Indeed, if the result of a floating-point addition is a subnormal
number, then the addition is exact. It also means that neither ul

nor tl are zero. So neither the product a · b nor the sum c + uh

are representable floating-point numbers.
Since c + uh is not representable, the inequality 2 · |th| ≥ |uh|

holds. Moreover, since ul is the error term in uh + ul, we have
|ul| ≤ 2−p · |uh|. Similarly, |tl| ≤ 2−p · |th|. As a consequence,

both |ul| and |tl| are bounded by 21−p · |th|. So their sum |ul +tl|

is bounded by 22−p · |th|. Since v is not a subnormal number,
the inequality still holds when rounding ul + tl to v. So we have
proved that |v| ≤ 22−p · |th| when the computation of v is inexact.

To summarize, either v is equal to tl + ul, or v is negligible
with respect to th. Lemma 1 can then be applied with x = th,
y = v, and z = tl +ul. Indeed x+z = th + tl +ul = a · b+ c. We
have to verify two inequalities in order to apply it though. First,
we must prove 5 · |y| ≤ |x|, meaning that 5 · |v| ≤ |th|. We have
just shown that |v| ≤ 22−p · |th|. As p ≥ 5, this inequality easily
holds.

Second, we must prove 5 · µ ≤ |x|, meaning that 5 · µ ≤ |th|.
We prove it by assuming |th| < 5·µ and reducing it to the absurd.
So tl is subnormal. More, th must be normal: if th is subnormal,
then tl = 0, which is impossible. We then look into ul. If ul is
subnormal, then v = �odd(ul + tl) is computed correctly, which
is impossible. So ul is normal. We then prove that both tl = 0 and
tl 6= 0 hold. First, tl 6= 0 as v 6= ul + tl. Second, we will prove
tl = 0 by proving that the addition c + uh is computed exactly
(as th = ◦(c + uh)). For that, we will prove that eth

< euh − 1

as that implies a cancellation in the computation of c + uh and
therefore the exactness of th. There is then left to prove that
2eth < 2euh

−1. As th is normal, 2eth ≤ |th| · 21−p. As p ≥ 5

and ul is normal, 5 · µ · 21−p ≤ µ ≤ |ul|. Since we have both
|th| < 5 · µ and |ul| ≤ 2euh

−1, we can deduce 2eth < 2euh
−1.

We have a contradiction in all cases, therefore 5 · µ ≤ |th| holds.
So the hypotheses of Lemma 1 are now verified and the proof is
completed.

V. ACCURATE SUMMATION

The last steps of the algorithm for emulating the FMA actually
compute the correctly rounded sum of three floating-point num-
bers at once. Although there is no particular assumption on two of
the numbers (c and uh), there is a strong hypothesis on the third

TRANSACTION ON COMPUTERS, VOL. 0, NO. 0, JANUARY 2099 6

Algorithm 2 Iterated summation

Input: the (fi)1≤i≤n are suitably ordered
and spaced out.

g1 = f1

For i from 2 to n − 1,

gi = �odd(gi−1 + fi)

s = ◦(gn−1 + fn)

Output: s = ◦(
P

fi).

f4

f2

f1 = g1

f3

s

g4

g3

g2

Rounded addition

Odd-rounded additions

f5

one: |ul| ≤ 2−p · |uh|. We will generalize this summation scheme
to an iterated scheme that will compute the correctly rounded sum
of a set of floating-point numbers under some strong assumptions.
We will then describe a generic adder for three floating-point
numbers that rely on rounding to odd to produce the correctly
rounded result.

A. Iterated summation

We consider the problem of adding a sequence of floating-
point numbers (fi)1≤i≤n. Let us pose tj =

P

1≤i≤j fi the exact
partial sums. The objective is to compute the correctly rounded
sum s = ◦(tn). This problem is not new: adding several floating-
point numbers with good accuracy is an important problem of
scientific computing [16]. Demmel and Hida presented a simple
algorithm that yields almost correct summation results [17]. And
recently Oishi, Rump, and Ogita, presented some other algorithms
for accurate summation [18]. Our algorithm requires stronger
assumptions, but it is simple, very fast, and will return the
correctly rounded result thanks to rounding to odd.

Two approaches are possible. The first one was described in a
previous work [12]. The algorithm computes the partial sums in
an extended precision format with rounding to odd. In order to
produce the final result, it relies on this double rounding property:
◦(tn) = ◦(�p+k

odd
(tn)). The correctness of the algorithm depends

on the following property proved by induction on j for j < n:

�
p+k
odd

(tj+1) = �
p+k
odd

“

fj+1 + �
p+k
odd

(tj)
”

.

Once the value �
p+k
odd

(tn) has been computed, it is rounded
to the working precision in order to obtain the correctly rounded
result s thanks to the double rounding property. Unfortunately, this
algorithm requires that an extended precision format is available
in order to compute the intermediate results.

Let us now present a new approach. While similar to the old
one, Algorithm 2 does not need any extended precision to perform
its intermediate computations.

Theorem 5 (Summation): We use the notations of Algorithm 2
and assume a reasonable floating-point format is used. Let µ

be the smallest positive floating-point normal number. If the
following properties hold for any j such that 2 < j < n,

|fj | ≥ 2 · |tj−1| and |fj | ≥ 2 · µ,

and if the most significant term verifies

|fn| ≥ 6 · |tn−1| and |fn| ≥ 5 · µ,

then s = ◦(tn).
The proof of this theorem has two parts. First, we prove

by induction on j that gj = �odd(tj) holds for all j < n.
In particular, we have s = ◦(fn + �odd(tn−1)). Second, we
prove that ◦(fn + �odd(tn−1)) = ◦(fn + tn−1). This equality is
precisely s = ◦(tn). Both parts are proved by applying variants of
Lemma 1. The correctness of the induction is a consequence of
Lemma 2 while the correctness of the final step is a consequence
of Lemma 3.

Lemma 2 (AddOddOdd2): Let x be a floating-point number
such that |x| ≥ 2 · µ. Let z be a real number. Assuming 1

2
is

a normal floating-point and 2 · |z| ≤ |x|,

�odd(x + �odd(z)) = �odd(x + z).

Lemma 3 (AddOddEven2): Let x be a floating-point number
such that |x| ≥ 5 · µ. Let z be a real number. Assuming p > 3

and 6 · |z| ≤ |x|,

◦(x + �odd(z)) = ◦(x + z).

It may generally be a bit difficult to verify that the hypotheses
of the summation theorem hold at execution time. So it is
interesting to have a sufficient criteria that can be checked with
floating-point numbers only:

|f2| ≥ 2 · µ and |fn| ≥ 9 · |fn−1|,

for 1 ≤ i ≤ n − 2, |fi+1| ≥ 3 · |fi|.

TRANSACTION ON COMPUTERS, VOL. 0, NO. 0, JANUARY 2099 7

Algorithm 3 Adding three numbers

(uh, ul) = ExactAdd(b, c)

(th, tl) = ExactAdd(a, uh)

v = �odd(tl + ul)

z = ◦(th + v)

Error-free addition

uh ul

Error-free addition

tlth

b c

Rounded addition

z = ◦(th + v)

Odd-rounded addition

v = �odd(tl + ul)

a

B. Reducing expansions

A floating-point expansion is a list of sorted floating-point
numbers, its value being the exact sum of its components [19].
Computations on these multi-precision values are done using only
existing hardware and are therefore very fast.

If the expansion is non-overlapping, looking at the three most
significant terms is sufficient to get the correct approximated value
of the expansion. This can be achieved by computing the sum of
these three terms with Algorithm 2. The algorithm requirements
on ordering and spacing are easily met by expansions.

Known fast algorithms for basic operations on expansions
(addition, multiplication, etc) take as inputs and outputs pseudo-
expansions, i.e. expansions with a slight overlap (typically a few
bits) [19], [20]. Then, looking at three terms only is no longer
enough. All the terms up to the least significant one may have
an influence on the correctly rounded sum. This problem can be
solved by normalizing the pseudo-expansions in order to remove
overlapping terms. This process is, however, extremely costly: if
the expansion has n terms, Priest’s algorithm requires about 6 ·n

floating-point additions in the best case (9·n in the worst case). In
a simpler normalization algorithm with weaker hypotheses [20],
the length of the dependency path to get the three most significant
terms is 7 · n additions.

A more efficient solution is provided by Algorithm 2, as it
can directly compute the correctly rounded result with n floating-
point additions only. Indeed, the criteria at the end of Section V-A
is verified by expansions which overlap by at most p − 5 bits,
therefore also by pseudo-expansions.

C. Adding three numbers

Let us now consider a simpler situation. We still want to com-
pute a correctly-rounded sum, but there are only three numbers
left. In return, we will remove all the requirements on the relative

ordering of the inputs. Algorithm 3 shows how to compute this
correctly-rounded sum of three numbers.

Its graph looks similar to the graph of Algorithm 1 for
emulating the FMA. The only difference lies in its first error-
free transformation. Instead of computing the exact product of
two of its inputs, this algorithm computes their exact sum. As
a consequence, its proof of correctness can directly be derived
from the one for the FMA emulation. Indeed, the correctness
of the emulation does not depend on the properties of an exact
product. The only property that matters is: uh+ul is a normalized
representation of a number u. As a consequence, both Algorithm 1
and Algorithm 3 are special cases of a more general algorithm
that would compute the correctly rounded sum of a floating-point
number with a real number exactly represented by the sum of two
floating-point numbers.

Note that the three inputs of the adder do not play a symmetric
role. This property will be used in the following section to
optimize some parts of the adder.

D. A practical use case

CRlibm3 is an efficient library for computing correctly rounded
results of elementary functions in IEEE-754 double precision. Let
us consider the logarithm function [21]. In order to be efficient,
the library first executes a fast algorithm. This usually gives the
correctly rounded result, but in some situations it may be off
by one unit in the last place. When the library detects such a
situation, it starts again with a slower yet accurate algorithm in
order to get the correct final result.

When computing the logarithm ◦(log f), the slow algorithm
will use triple-double arithmetic [22] to first compute an ap-
proximation of log f stored on three double precision numbers
xh + xm + xl. Thanks to results provided by the table-maker

3See http://lipforge.ens-lyon.fr/www/crlibm/.

http://lipforge.ens-lyon.fr/www/crlibm/

TRANSACTION ON COMPUTERS, VOL. 0, NO. 0, JANUARY 2099 8

Listing 1 Correctly rounded sum of three ordered values

double CorrectRoundedSum3(double xh, double xm, double xl) {

double th, tl;

db_number thdb; // thdb.l is the binary representation of th

// Dekker’s error-free adder of two ordered numbers

Add12(th, tl, xm, xl);

// round to odd th if tl is not zero

if (tl != 0.0) {

thdb.d = th;

// if the mantissa of th is odd, there is nothing to do

if (!(thdb.l & 1)) {

// choose the rounding direction

// depending on the signs of th and tl

if ((tl > 0.0) ^ (th < 0.0))

thdb.l++;

else

thdb.l--;

th = thdb.d;

}

}

// final addition rounded to nearest

return xh + th;

}

dilemma [23], this approximation is known to be sufficiently
accurate for the equality ◦(log f) = ◦(xh + xm + xl) to hold.
This means the library just has to compute the correctly rounded
sum of the three floating-point numbers xh, xm, and xl.

Computing this sum is exactly the point of Algorithm 3.
Unfortunately, rounding to odd is not available on any architecture
targeted by CRlibm, so it will have to be emulated. Although such
an emulation is costly in software, rounding to odd still allows for
a speed-up here. Indeed xh + xm + xl is the result of a sequence
of triple-double floating-point operations, so this is precisely the
case described in Section V-B. As a consequence, the operands
are ordered in such a way that some parts of Algorithm 3 are not
necessary. In fact, Lemma 3 implies the following equality:

◦(xh + xm + xl) = ◦(xh + �odd(xm + xl)).

This means that, at the end of the logarithm function, we just
have to compute the rounded-to-odd sum of xm and xl, and then
do a standard floating-point addition with xh. Now, all that is left
is the computation of �odd(xm + xl). This is achieved by first
computing th = ◦(xm + xl) and tl = xm + xl − th thanks to an
error-free adder. If tl is zero or if the mantissa of th is odd, then
th is already equal to �odd(xm +xl). Otherwise th is off by one
unit in the last place. We replace it either by its successor or by
its predecessor depending on the signs of tl and th.

Listing 1 shows a cleaned version of a macro used by CRlibm:
ReturnRoundToNearest3Other. The macro Add12 is an
implementation of Dekker’s error-free adder. It is only 3-addition
long, and it is correct since the inequality |xm| ≥ |xl| holds.
The successor or the predecessor of th is directly computed by
incrementing or decrementing the integer thdb.l that holds its
binary representation. Working on the integer representation is

correct, since th cannot be zero when tl is not zero.
CRlibm already contained some code at the end of the loga-

rithm function in order to compute the correctly rounded sum of
three floating-point numbers. When the code of Listing 1 is used
instead, the slow step of this elementary function gets 25 cycles
faster on an AMD Opteron processor. While we only looked at
the very last operation of the logarithm, it still amounts to a 2%

speed-up on the whole function.
The performance increase would obviously be even greater if

we had not to emulate a rounded-to-odd addition. Moreover, this
speed-up is not restricted to logarithm: it is available for every
other rounded elementary functions, since they all rely on triple-
double arithmetic at the end of their slow step.

VI. CONCLUSION

We first considered rounding to odd as a way of performing
intermediate computations in an extended precision and yet still
obtaining correctly rounded results at the end of the computations.
This is expressed by Theorem 3. Rounding to odd then led us to
consider algorithms that could benefit from its robustness. We
first considered an iterated summation algorithm that was using
extended precision and rounding to odd in order to perform the
intermediate additions. The FMA emulation however showed that
the extended precision only has to be virtual. As long as we prove
that the computations are done as if an extended precision is
used, the working precision can be used. This is especially useful
when we already compute with the highest available precision.
The constraints on the inputs of Algorithm 2 are compatible
with floating-point expansions: the correctly rounded sum of an
overlapping expansion can easily be computed.

TRANSACTION ON COMPUTERS, VOL. 0, NO. 0, JANUARY 2099 9

Algorithm 1 for emulating the FMA and Algorithm 3 for adding
numbers are similar. They both allow to compute ◦(a ⋄ b + c)

with a, b, and c three floating-point numbers, as long as a ⋄ b is
exactly representable as the sum of two floating-point numbers.
These algorithms rely on rounding to odd to ensure that the
result is correctly rounded. Although this rounding is not available
in current hardware, our changes to CRlibm have shown that
reasoning on it opens the way to some efficient new algorithms
for computing correctly rounded results.

In this paper, we did not tackle at all the problem of overflowing
operations. The reason is that overflow does not matter here: on
all the algorithms presented, overflow can be detected afterward.
Indeed, any of these algorithms will produce an infinity or a NaN
as a result in case of overflow. The only remaining problem is that
they may create an infinity or a NaN although the result could be
represented. For example, let M be the biggest positive floating-
point number, and let a = −M and b = c = M in Algorithm 3.
Then uh = th = +∞ and ul = tl = v = −∞ and z = NaN

whereas the correct result is M . This can be misleading, but this
is not a real problem when adding three numbers. Indeed, the
crucial point is that we cannot create inexact finite results: when
the result is finite, it is correct. When emulating the FMA, the
error-term of the product is required to be correctly computed.
This property can be checked by verifying that the magnitude of
the product is big enough.

While the algorithms presented here look short and simple,
their correctness is far from trivial. When rounding to odd is
replaced by a standard rounding to nearest, there exist inputs
such that the final results are no longer correctly rounded. It
may be difficult to believe that simply changing one intermediate
rounding is enough to fix some algorithms. So we have written
formal proofs of their correctness and used the Coq proof-checker
to guarantee their validity. This approach is essential to ensure that
the algorithms are correct, even in the unusual cases.

REFERENCES

[1] D. Stevenson et al., “A proposed standard for binary floating point
arithmetic,” IEEE Computer, vol. 14, no. 3, pp. 51–62, 1981.

[2] ——, “An American national standard: IEEE standard for binary floating
point arithmetic,” ACM SIGPLAN Notices, vol. 22, no. 2, pp. 9–25, 1987.

[3] G. Melquiond and S. Pion, “Formally certified floating-point filters
for homogeneous geometric predicates,” Theoretical Informatics and

Applications, vol. 41, no. 1, pp. 57–70, 2007.
[4] S. A. Figueroa, “When is double rounding innocuous?” SIGNUM

Newsletter, vol. 30, no. 3, pp. 21–26, 1995.
[5] J. von Neumann, “First draft of a report on the EDVAC,” IEEE Annals

of the History of Computing, vol. 15, no. 4, pp. 27–75, 1993.
[6] D. Goldberg, “What every computer scientist should know about floating

point arithmetic,” ACM Computing Surveys, vol. 23, no. 1, pp. 5–47,
1991.

[7] M. D. Ercegovac and T. Lang, Digital Arithmetic. Morgan Kaufmann
Publishers, 2004.

[8] C. Lee, “Multistep gradual rounding,” IEEE Transactions on Computers,
vol. 38, no. 4, pp. 595–600, 1989.

[9] M. Daumas, L. Rideau, and L. Théry, “A generic library of floating-point
numbers and its application to exact computing,” in 14th International

Conference on Theorem Proving in Higher Order Logics, Edinburgh,
Scotland, 2001, pp. 169–184.

[10] Y. Bertot and P. Casteran, Interactive Theorem Proving and Program

Development. Coq’Art : the Calculus of Inductive Constructions, ser.
Texts in Theoretical Computer Science. Springer Verlag, 2004.

[11] S. Boldo, “Preuves formelles en arithmétiques à virgule flottante,” Ph.D.
dissertation, École Normale Supérieure de Lyon, Nov. 2004.

[12] S. Boldo and G. Melquiond, “When double rounding is odd,” in
Proceedings of the 17th IMACS World Congress on Computational and

Applied Mathematics, Paris, France, 2005.

[13] T. J. Dekker, “A floating point technique for extending the available
precision,” Numerische Mathematik, vol. 18, no. 3, pp. 224–242, 1971.

[14] D. E. Knuth, The Art of Computer Programming: Seminumerical Algo-

rithms. Addison Wesley, 1969, vol. 2.
[15] S. Boldo, “Pitfalls of a full floating-point proof: example on the formal

proof of the Veltkamp/Dekker algorithms,” in Third International Joint

Conference on Automated Reasoning, ser. Lecture Notes in Artificial
Intelligence, U. Furbach and N. Shankar, Eds., vol. 4130. Seattle,
USA: Springer-Verlag, 2006.

[16] N. J. Higham, Accuracy and stability of numerical algorithms. SIAM,
1996.

[17] J. W. Demmel and Y. Hida, “Fast and accurate floating point summation
with applications to computational geometry,” in Proceedings of the

10th GAMM-IMACS International Symposium on Scientific Computing,

Computer Arithmetic, and Validated Numerics (SCAN 2002), January
2003.

[18] T. Ogita, S. M. Rump, and S. Oishi, “Accurate sum and dot product,”
SIAM Journal on Scientific Computing, vol. 26, no. 6, pp. 1955–1988,
2005.

[19] D. M. Priest, “Algorithms for arbitrary precision floating point arith-
metic,” in Proceedings of the 10th IEEE Symposium on Computer

Arithmetic, P. Kornerup and D. W. Matula, Eds. Grenoble, France:
IEEE Computer Society, 1991, pp. 132–144.

[20] M. Daumas, “Multiplications of floating point expansions,” in Proceed-

ings of the 14th IEEE Symposium on Computer Arithmetic, I. Koren and
P. Kornerup, Eds., Adelaide, Australia, 1999, pp. 250–257.

[21] F. de Dinechin, C. Q. Lauter, and J.-M. Muller, “Fast and correctly
rounded logarithms in double-precision,” Theoretical Informatics and

Applications, vol. 41, no. 1, pp. 85–102, 2007.
[22] C. Q. Lauter, “Basic building blocks for a triple-double intermediate

format,” LIP, Tech. Rep. RR2005-38, Sep. 2005.
[23] V. Lefèvre and J.-M. Muller, “Worst cases for correct rounding of the

elementary functions in double precision,” in Proceedings of the 15th

IEEE Symposium on Computer Arithmetic, N. Burgess and L. Ciminiera,
Eds., Vail, Colorado, 2001, pp. 111–118.

Sylvie Boldo received the MSC and PhD de-
grees in computer science from the École Normale
Supérieure de Lyon, France, in 2001 and 2005.
She is now researcher for the INRIA Futurs in the
ProVal team (Orsay, France), whose research fo-
cuses on formal certification of programs. Her main
research interests include floating-point arithmetic,
formal methods and formal verification of numerical
programs.

Guillaume Melquiond received the MSC and PhD
degrees in computer science from the École Normale
Supérieure de Lyon, France, in 2003 and 2007.
He is now a postdoctoral fellow at the INRIA–
Microsoft Research joint laboratory (Orsay, France)
in the Mathematical Components team, whose re-
search focuses on developing tools for formally
proving mathematical theorems. His interests in-
clude floating-point arithmetic, formal methods for
certifying numerical software, interval arithmetic,
and C++ software engineering.

	Introduction
	Double rounding
	Floating-point definitions
	Double rounding accuracy
	Double rounding and faithfulness

	Rounding to odd
	Formal description
	Implementing rounding to odd
	Correct double rounding

	Emulating the FMA
	The algorithm
	Theorem of correctness
	Adding a negligible yet odd value
	Emulating a FMA

	Accurate summation
	Iterated summation
	Reducing expansions
	Adding three numbers
	A practical use case

	Conclusion
	References
	Biographies
	Sylvie Boldo
	Guillaume Melquiond

