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Introduction

Merci d’avoir entamé la lecture de cette thèse qui contient cinq chapitres indépendants,
néanmoins tous appartenant au domaine des systèmes dynamiques.

Nous allons découvrir le comportement asymptotique de certains systèmes dynamiques
de provenance physique (chapitres 1 et 2), étudier la géométrie du billard elliptique (chapitre
3) ainsi qu’étudier des questions de la théorie ergodique des actions du groupe libre (chapitre
4) et de la théorie des formes normales (chapitre 5).

Malgré la diversité des sujets il y a un esprit commun à tous ces chapitres, notre but
étant de comprendre le comportement asymptotique des systèmes dynamiques. Y a-t-il un
moyen d’exprimer l’évolution d’un système dynamique sur un temps long ? Est-il possible de
quantifier ce comportement asymptotique ?

Dans la première moitié de cette thèse (chapitres 1, 2 et 3) nous nous concentrons sur des
systèmes dynamiques individuels. Nous étudions trois systèmes dynamiques particuliers et
nous considérons les problèmes géométriques liés à leur comportement limite.

1. Dans le premier chapitre nous étudions une famille spéciale de champs de vecteurs sur
le tore bi-dimensionnel que nous appelons l’équation de Josephson. Nous étudions la structure
géométrique d’un ensemble associé à sa dynamique : les langues d’Arnold de l’application de
premier retour sur un méridien fixé.

2. Dans le deuxième chapitre nous nous intéressons à un système de bras articulés intro-
duit par Joseph-Louis Lagrange. C’est un mécanisme qui bouge sur une surface en faisant des
tours autour de son point de départ. Nous nous intéressons au nombre de tours qu’il réalise
en moyenne pendant une longue durée, quand il est sur le plan euclidien, hyperbolique, une
sphère ou n’importe quelle autre surface.

3. Dans le troisième chapitre, nous revenons au billard elliptique. Nous étudions un
problème de géométrie plane : prenons les orbites 3-périodiques de ce billard. Elles sont
représentées par des triangles. Prenons les cercles inscrits dans ces triangles. Ils s’avère que
les centres de ces cerles décrivent une courbe qui est de nouveau une ellipse ! Notre but était
de trouver une preuve plus simple de ce fait, quitte à passer par le monde complexe.

Dans la deuxième moitié de cette thèse (chapitres 4 et 5) nous élaborons des méthodes
générales pour l’étude asymptotique de différentes classes de systèmes dynamiques : des
actions du groupe libre et des produits croisés.

4. Dans le quatrième chapitre, nos objets d’étude sont des actions du groupe libre sur des
espaces probabilisés. Nous prouvons un théorème de convergence des moyennes sphériques
données par une chaîne de Markov sur un graphe dont les sommets sont les générateurs du
groupe. Cela permet d’avoir de nouveaux outils de travail avec des actions de groupes de type
fini comme les groupes de surfaces et, plus généralement, les groupes hyperboliques.

1
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5. Dans le cinquième et dernier chapitre, nous trouvons une forme normale d’un produit
croisé au-dessus d’un difféomorphisme linéaire d’Anosov du tore. Ce travail s’inscrit dans une
longue tradition de compréhension des feuilletages normalement hyperboliques transversal-
lement hölderiens qui forment un ensemble ouvert de l’espace des systèmes dynamiques.

La liste des travaux de l’auteur

Les résultats de cette thèse font l’objet de cinq publications.
1. Yu. Ilyashenko, O. Romaskevich Sternberg linearization theorem for skew products, Journal

of Dynamical and Control systems, article, DOI 10.1007/s10883-016-9319-6 (2016)
2. L. Bowen, A. Bufetov, O. Romaskevich On convergence of spherical averages for Markov

operators, Geometriae Dedicata, 181 :1, pp. 293-306 (2016),article, DOI : 10.1007/s10711-
015-0124-2

3. O. Romaskevich, On the incenters of triangular orbits on elliptic billiards, L’Enseignement
Mathématique 60 :2, pp. 247–255 (2014), article, DOI : 10.4171/LEM/60-3/4-2

4. A. Klimenko, O. Romaskevich Asymptotic properties of Arnold tongues and Josephson effect,
Moscow Mathematical Journal, 14 :2, pp. 367–384 (2014), article

5. V. Kleptsyn, O. Romaskevich, I. Schurov L’effet Josephson et les systèmes lents-rapides,
Nanostructures. Physique mathématique et modèles, 8 :1, pp. 31-46, en russe (2013)

Comment lire cette thèse.

Grâce au fait que les chapitres sont indépendants, la lecture des chapitres peut être effec-
tuée dans n’importe quel ordre. Les références bibliographiques sont regroupées à la fin de
chaque chapitre (et il n’y a donc pas de bibliographie générale en fin de thèse).

La thèse est écrite en anglais. Cette thèse a une sœur russe qui peut être consultée sur ma
page personelle : https://sites.google.com/site/olgaromaskevich/research

Les chapitres 1, 3, 4 et 5 de cette thèse contiennent les versions préliminaires des articles
publiés (tous en anglais) liés au sujet. Pour les versions publiées, consulter les sites des édi-
tions.

Dans l’introduction qui va suivre, nous allons présenter chacun de nos chapitres, l’un après
l’autre, avec ses motivations et ses résultats.

Bonne lecture !
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Chapitre 1. Une équation qui modèlise le contact de Josephson et ses langues d’Arnold.

Ce chapitre s’appuie principalement sur deux résultats. Le premier a été obtenu en colla-
boration avec Alexey Klimenko 1, et le deuxième en collaboration avec Ilya Schurov et Victor
Kleptsyn 2 . Nous étudions une famille de champs de vecteurs sur le tore T2 = R2/ (2pZ)2,
muni des coordonnées (x, t) 2 T2, donnée par un système d’équations différentielles de la
forme

8

>

<

>

:

∂x
∂t

= cos x + a + b cos t,

∂t
∂t

= µ,
(1)

avec trois paramètres réels (a, b, µ) 2 R2 ⇥ R+, µ > 0. Nous appelons cette famille l’équation
de Josephson. Nous considérons l’application Pa,b,µ : S1 ! S1 de premier retour sur la trans-
versale {t = 0} et son nombre de rotation 3

r 2 R/Z, qui est une fonction des paramètres :
r = r(a, b, µ). Nous nous intéressons au changement du nombre de rotation en fonction des
paramètres.

Plus particulièrement, nous nous intéressons au nombre de rotation du flot r̄ = r̄a,b,µ de
l’équation (1), qui est une valeur réelle telle que r̄ = r mod1. Ce nombre peut être défini
comme la limite r̄ := limn!•

x(2pn)
2pn où x(t) est une solution de l’équation (1) 4. Cette valeur

donne plus d’informations sur le flot que le nombre de rotation r de l’application Pa,b,µ :
S1 ! S1 parce qu’elle caractérise le nombre de fois que les orbites du champ de vecteurs (1)
s’enroulent autour du tore et pas seulement l’endroit où elles atterrissent sur la transversale
{t = 0}.

Définition 1. Nous appelons langues d’Arnold de l’équation de Josephson, notées A
a

, les ensembles
de niveau de r̄ d’intérieur non-vide :

A
a

:=
�

(a, b, µ) 2 R2 ⇥ R+ : r̄(a, b, µ) = a

 

, Å
a

6= ∆ (2)

Le but de ce chapitre est de comprendre la structure des langues d’Arnold A
a

définies par
(2) : pour quelles valeurs de a 2 R existent-elles et quelle forme ont-elles ?

L’idée d’étudier le nombre de rotation comme une fonction des paramètres a été formulée

1. Klimenko A., Romaskevich O. Asymptotic properties of Arnold tongues and Josephson effect, Moscow Mathema-
tical Journal, 14 :2, pp. 367–384 (2014)

2. Kleptsyn V. , Romaskevich O., Schurov I. L’effet Josephson et les systèmes lents–rapides, Nanostructures. Phy-
sique mathématique et modèles, 8 :1, pp. 31-46, en russe (2013)

3. Chaque homéomorphisme P : S1 ! S1 du cercle S1 = R/ (2pZ) respectant l’orientation peut être relevé
de la façon unique modulo un entier à une application de la droite P̄ : R ! R. Alors le nombre de rotation
r(P) 2 R/Z de P est défini comme une limite

r(P) := lim
n!•

P̄�n(x)
2pn

pour un point x 2 R. Henri Poincaré a demontré que cette limite existe et est indépendante de x. Cette limite r(P)
caractérise la rotation moyenne effectuée par le homéomorphisme P.

4. Cette définition ne dépend pas de la condition initiale x(0)

3



Introduction

Figure 1 – L’ensemble des langues d’Arnold de la famille (3) pour toutes les valeurs du nombre de
rotation r = p

q avec dénominateur q  5. Chaque langue a une « racine » au point ( p
q , 0) correspondant à

la rotation pure avant de grossir petit à petit avec # qui grandit. Pour cette famille, les langues d’Arnold
existent pour toutes les valeurs rationnelles de r = p

q et leur largeur diminue quand q augmente.

pour la première fois par A. Mayer 5. Plus tard, en 1959, cette idée a été reprise par V. Arnold 6,
qui a considéré une famille fa,# : S1 ! S1 de difféomorphismes du cercle S1 = R/2pZ, plus
précisément, une famille de perturbations des rotations :

x 7! x + 2pa + # sin x, a 2 R, # 2 (0, 1). (3)

Arnold a considéré la fonction r = r(a, #) – le nombre de rotation du difféomorphisme fa,#
et il a démontré que les ensembles A

a

= {(a, #) : r(a, #) = a} de niveau de la fonction r sont
d’intérieur non-vide si et seulement si a 2 Q. Il a appelé ces ensembles A

a

, a 2 Q du plan
des paramètres (a, #) des zones de captation de phase, plus tard baptisés langues d’Arnold,
voir la Fig. 1.

L’existence de langues d’Arnold pour toutes les valeurs rationnelles de r est générique
pour les familles paramétrées de difféomorphismes : en effet, la rationnalité du nombre de
rotation correspond à l’existence d’une orbite périodique. Si cette orbite est hyperbolique
alors elle persiste sous perturbations et le nombre de rotation ne change pas. Alors, pour une
famille au hasard des langues d’Arnold vont apparaître pour toutes les valeurs rationnelles
du nombre de rotation.

La famille des applications de Poincaré Pa,b,µ correspondant à l’équation de Josephson
(1) est exceptionnelle : les langues d’Arnold pour le nombre de rotation r̄(a, b, µ) n’appa-
raissent que pour les valeurs entières de r̄. Ce phénomène s’explique par le fait que l’appli-
cation Pa,b,µ est conjuguée à l’application de Mœbius. Récemment A. Glutsuyk et L. Rybni-
kov 7 ont prouvé que cette famille (et ses analogues) est la seule qui a cette propriété d’ab-
sence de langues. Plus précisément, pour un champ de vecteurs sur le tore T2 de la forme
dx
dt = v(x) + a + b f (t) et pour une fonction v(x) analytique fixée qui n’est pas de la forme
v(x) = a sin(mx) + b cos(mx) + g, avec a, b, g 2 R, m 2 Z, il existe une fonction f analytique

5. A.G. Mayer Rigid transformation of a circle into a circle, Science Notes of GGU 12, pp. 215–229 (1939)
6. V. I. Arnold Geometrical Methods in the Theory of Ordinary Differential Equations, Grundlehren der mathemati-

schen Wissenschaften, 250, p.110, Fig. 80 (1988)
7. A. Glutsyuk, L. Rybnikov On families of differential equations on two-torus with all Arnold tongues Cornell Uni-

versity, 15 (2015)
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Figure 2 – La structure géométrique des langues d’Arnold pour l’équation de Josephson (1) est as-
sez originale par rapport au dessin correspondant à la famille standard d’Arnold, voir Figure 1 : les
frontières des langues s’auto-intersectent en formant des « tresses » . Ici sont dessinées les sections des
langues avec un plan {µ = 1}. L’image représente les sections des langues (sur le plan (a, b) 2 R2) cor-
respondant aux valeurs entières du nombre de rotation : r̄ = 0, 1, 2, 3. Notons que la langue d’Arnold
correspondant à r = 0 contient tout le segment [�1, 1]⇥ 0 (l’équation correspondante a une solution
constante). Les sections des langues correspondant à r̄ = k 2 Z « commencent » aux points

p
1 + k2.

telle que les langues d’Arnold pour l’application de Poincaré correspondante existent pour
toutes les valeurs rationnelles du nombre de rotation.

Chacune des langues d’Arnold pour l’équation de Josephson a deux frontières (deux
courbes analytiques) qui s’intersectent mutuellement en formant des « tresses », voir Figure 2.
Le but de ce chapitre est d’expliquer et de quantifier cette structure géométrique.

Notre motivation principale était la beauté de cette image mathématique. Il faudrait néan-
moins mentionner les motivations physiques qui lient l’équation (1) avec la modélisation de
la dynamique des contacts de Josephson, qui sont des constructions passionnantes provenant
de la théorie de la supraconductivité. Ces contacts sont utiles dans la construction de volt-
mètres extrêmement précis, dans la recherche en géologie, dans la détection de sous-marins
et dans l’étude de l’activité du cerveau humain. Le comportement des contacts de Josephson
est de nature quantique mais peut être mesuré par des fonctions macroscopiques. Les graphes
de ces fonctions sont des escaliers de Cantor. Les marches de ces escaliers sont appelées par
les physiciens marches de Shapiro. Dans les termes du modèle (1) elles correspondent aux
sections des langues d’Arnold par les droites {µ = const, b = const}. L’intérêt principal des
physiciens est de pouvoir localiser le plus précisément possible les trous entre ces marches.
Notons que le cas le plus intéressant pour les physiciens est celui où µ << 1.
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Dans la première partie de ce chapitre nous expliquons le comportement ondulatoire des
frontières des langues. Plus précisément, nous prouvons que quand b ! • les frontières
des sections des langues d’Arnold (par des plans {µ = const}) peuvent être bien approchées
par les fonctions entières de Bessel. Nous prouvons que les frontières de chaque langue (cor-
respondant à un nombre de rotation entier : r̄ = k 2 Z) sont données par les graphes des
fonctions que nous appelons a0,k(b) et a

p,k(b) (pour les raisons de ce choix de noms, nous
vous invitons à lire la partie du chapitre 1 sur les symétries de l’équation) et que ces fonctions
ont le comportement asymptotique suivant : quand b ! •,

a0,k(b) ⇠ kµ + Jk

✓

� b
µ

◆

, (4)

a
p,k(b) ⇠ kµ � Jk

✓

� b
µ

◆

, (5)

où Jk(z) est la k-ième fonction entière de Bessel, Jk(z) = 1
2p

R 2p

0 cos(kt � z sin t)dt. Dans la
première partie de ce chapitre nous donnons des estimations plus précises sur la vitesse de
convergence dans les approximations (4) et nous déterminons la zone dans laquelle ces esti-
mations sont valables, voir la Figure 3. Cette convergence des frontières des langues d’Arnold
vers les fonctions de Bessel a été remarquée empiriquement dans le contexte des contacts de
Josephson par les physiciens S. Holly, A. Janus et S. Shapiro 8. Nous l’avons rigoureusement
prouvé ce fait avec A. Klimenko.

Notre résultat sur l’approximation des langues d’Arnold par les fonctions de Bessel s’avère
utile parce qu’il donne un corollaire important : les langues ont des points d’intersection
que nous appelons les points d’adjacence. A. Glutsyuk, V. Kleptsyn, D.Filimonov, I Schurov
prouvent 9 grâce à la théorie classique des équations linéaires complexes que ces points d’ad-
jacence se situent sur une même droite verticale : a = r̄µ, où r̄ est la valeur du nombre de
rotation pour la langue en question 10.

Dans la deuxième partie de ce chapitre nous regardons la même équation dans un autre
régime limite, où µ ! 0. Dans ce cas, l’étude de cette équation s’inscrit dans la théorie des
systèmes lents-rapides : la variable t est une variable lente, elle change considérablement
pendant les intervalles de temps très longs (proportionnels à 1

µ

) tandis que x est une variable
rapide. Nous appliquons des résultats classiques de la théorie des systèmes lents-rapides
pour prouver la proximité des langues dans une zone compacte fixée (quitte à diminuer µ) au-
dessus de la droite l2, voir Figure 3. Nous prouvons que la distance entre deux langues voisines
décroît exponentiellement quand µ ! 0. Aussi, dans cette deuxième partie, nous présentons
un algorithme numérique pour la construction des langues d’Arnold de cette équation, pour
les valeurs de µ assez petites (jusqu’à µ = 0.01).

Les résultats de cette deuxième partie font partie de notre travail avec V.Kleptsyn et I.
Schurov. Dans la présente thèse nous avons retravaillé nos preuves et amélioré la présentation.

8. S. Holly, A. Janus, S. Shapiro Effect of Microwaves on Josephson Currents in Superconducting Tunneling, Rev.
Mod. Phys. 36 , pp. 223–225 (1964)

9. A. Glutsyuk, V. Kleptsyn, D. Filimonov, I. Schurov On the adjacency quantization in the equation modelling the
Josephson effect, Functional Analysis and Its Applications 48 :4, pp. 272-285 (2014)

10. Ce résultat est prouvé juste pour les valeurs de µ assez grands, µ > 1 mais il reste une conjecture vraisem-
blable pour les µ 2 (0, 1)
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Figure 3 – L’image représentant les sections des langues d’Arnold de l’équation de Josephson (1) à
µ fixé, µ = 0.4. Les langues representées correspondent aux valeurs entières du nombre de rotation
r̄ = �4, . . . , 4. Dans la première partie du chapitre 1 nous démontrons la proximité des frontières des
langues et des fonctions entières de Bessel quand b ! • : notre preuve fonctionne dans une zone au-
dessus des courbes G1 et G2, définies plus précisement au cours du chapitre 1. Les frontières de cette
zone sont marquées en gras, et les graphes des fonctions de Bessel en pointillés. Dans la deuxième
partie du chapitre 1 nous étudions un autre régime limite : µ ! 0, qui est plus pertinent du point de
vue physique. La zone étudiée dans ce régime est la zone entre deux droites l1 et l2 ainsi que la zone
bornée au-dessus de la droite l1. Nous prouvons la proximité des langues au sein de ces deux zones
quand µ ! 0 ; déjà sur ce dessin nous pouvons voir que les langues sont très proches autour de la
droite l1.
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La famille (1) a déjà été dans d’autres contextes avant le début des études concernants
les langues d’Arnold, en liaison avec la dynamique des contacts de Josephson, initiée par V.
Buchstaber, O. Karpov et S. Tertychnyi en 2006 11. Cette équation apparaît pour la première fois
dans la littérature dans l’article de R. Foote, dans le contexte du planimètre de Prytz 12. Elle
apparaît aussi dans les études des traces de vélo 13. En 2001 Yu. Ilyashenko et J. Guckenheimer
ont commencé l’étude de cette équation dans le contexte des systèmes lents-rapides (ce qui a
inspiré la partie 2 de ce chapitre) sans connaître les connexions avec les contacts de Josephson.
Ils étaient intéressés par la recherche de solutions spéciales de cette équation (solutions du
type « canard » qui restent pendant les intervales de temps assez longs près de la courbe
lente, même dans la zone d’instabilité de cette courbe).

Cette thèse s’inscrit dans un cycle des travaux sur la famille (1) qui a été commencé par V.
Buchstaber, O. Karpov et S. Tertycniy. Parallèlement à Yu. Ilyashenko 14, ils ont redécouvert les
propriétés de base de l’application de premier retour Pa,b,µ (comme la propriété de Mœbius,
découverte initialement par R. Foote) et ont donné les premières descriptions empiriques des
langues d’Arnold pour l’équation (1). L’étude de l’équation de Josephson continue jusqu’à ce
jour avec des travaux de V. Buchstaber, A.Glutsuyk, Yu. Ilyashenko, V. Kleptsyn, A. Klimenko,
I. Schurov, D. Filimonov. D.Ryzhov et d’autres. La plupart de ces travaux ont pour but de
comprendre la Figure 3.

Chapitre 2. Le problème de Lagrange : le calcul de la vitesse angulaire asymptotique du
point extremal d’un bras articulé.

Dans le deuxième chapitre de cette thèse, nous nous inspirons du problème classique qui
a été formulé par J.-L. Lagrange 15 dans le cadre d’une étude du mouvement des planètes.
Lagrange a étudié le mouvement du système formé de N segments attachés en une chaîne
que J.-C. Hausmann appelle dans ses articles 16 un bras articulé (voir la Figure 4).

En supposant que chacun des segments tourne autour de l’extremité du segment pré-
cédent avec une vitesse angulaire constante wj, Lagrange s’intéressait à la vitesse angulaire
asymptotique de l’extrémité du système. Autrement dit, Lagrange étudiait le comportement
de la fonction complexe z(t) : R ! C suivante :

z(t) =
N

Â
j=1

lj exp(iwjt + ib0
j ), (6)

où l1, . . . , lN 2 R+ correspondent aux longueurs des intervalles, wj 2 R aux vitesses asympto-
tiques locales de chacun des intervalles, et b

0
j 2 [0, 2p) aux conditions initiales de la position

11. V. M. Buchstaber, O. V. Karpov, S. I. Tertychnyi Features of the dynamics of a Josephson junction biased by a
sinusoidal microwave current, Journal of Communications Technology and Electronics, 51 :6, pp. 713–718 (2006)

12. R.L. Foote Geometry of the Prytz planimeter, Reports on mathematical physics,42, pp. 249–271 (1998)
13. M.Levi, S.Tabachnikov On bicycle tire tracks geometry, hatchet planimeter, Menzin’s conjecture and oscillation of

unicycle tracks, Experimental Mathematics 18 :2 ,pp. 173–186 (2009) ; D.Finn Can a bicycle create a unicycle track ?,
The Mathematical Association of America, pp. 283–292 (2002)

14. Yu. Ilyashenko Lectures on dynamical systems, Summer School. manuscript (2009)
15. J. L. Lagrange Théorie des variations séqulaires des éléments des planètes, I, II, Nouveaux Mémoires de l’Académie

de Berlin (1781, 1782), Oeuvres de Lagrange, 5, Gauthier-Villars, Paris, pp. 123-344 (1870)
16. J.-C. Hausmann Sur la topologie des bras articulés, Algebraic Topology Poznań, Lecture Notes in Mathematics,

pp. 146–159 ; J.-C. Hausmann Contrôle des bras articulés et transformations de Möbius, L’Enseignement Mathématique
51, pp.87–115 (2005)
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du bras articulé. Il s’intéressait à la limite

lim
t!•

arg z(t)
t

, (7)

que nous allons appeler la vitesse angulaire asymptotique du bras articulé et noter w .

Lagrange a résolu ce problème dans le cas le plus simple où la longueur lj de l’un des
segments est plus grande que la somme des longueurs des autres : dans ce cas la limite
(7) existe et est égale à la vitesse angulaire de ce segment, w = wj. Dans le cas général, ce
problème a été résolu beaucoup plus tard, dans les travaux de P. Hartman, E. van Kampen, A.
Wintner, H. Weyl, B. Jessen et H. Tornehave 17.

Pour N = 3 le cas le plus intéressant est celui où les vitesses w1, w2, w3 sont irrationel-
lement indépendantes : le mouvement du bras articulé n’est pas périodique. En dehors du
cas de Lagrange (quand une des longueurs est plus longue que la somme des deux autres),
ce problème a été résolu par P. Hartman, E. van Kampen et A. Wintner qui ont demontré,
en utilisant le théorème ergodique, que dans ce cas la vitesse asymptotique existe et s’écrit
comme une somme convexe

w =
a1

p

w1 +
a2

p

w2 +
a3

p

w3 (8)

où aj sont les angles positifs du triangle de côtés l1, l2 et l3. La preuve de ce résultat se présente
sous forme d’un calcul direct (qui est applicable pour tout N).

Dans ce chapitre nous proposons un nouveau regard géométrique sur la formule (8) qui
permet d’obtenir le résultat analogue dans le cas d’une surface générale et, entre autres, de
donner la réponse au problème de Lagrange sur la sphère et sur le plan hyperbolique.

Il est important de noter que le problème de Lagrange peut être étudié sous beaucoup
d’angles différents : premièrement, il s’inscrit dans l’étude beaucoup plus générale des fonc-
tions presque périodiques (voir le survol de B. Jessen sur la question 18). Deuxièmement, il
est intéressant de regarder les ensembles de niveau de z�1(w) pour chaque valeur complexe
w 2 C de l’extrémité d’un bras articulé qui est vue comme une fonction sur le tore Tn muni
des coordonées (q1, . . . , qN) :

z(q1, . . . , qN) =
N

Â
j=1

lj exp(iqj).

Cette question a été étudiée, entre autres, par J.-C. Hausmann.

17. Pour le cas de trois intervalles, N = 3 : P. Bohl Über ein in der Theorie der säkularen Störungen vorkommendes
Problem, J. reine angew. Math. 135, pp. 189–283 (1909) ; pour le cas général avec la supposition que les vitesses
angulaires wj sont rationellement indépendantes voir P. Hartman, E. R. Van Kampen, A. Wintner Mean Motions and
Distribution Functions, Amer. J. Math. 59 :2, pp.261–269 (1937) ; pour les remarques sur l’application du théorème
ergodique H. Weyl Mean Motion, Amer. J. Math. 60, pp. 889-896 (1938) ; pour le cas général de N arbitraire voir
le survol B. Jessen and H. Tornehave, Mean motions and zeros of almost periodic functions, Acta Math. 77, pp.
137–279 (1945)

18. B.Jessen Some Aspects of the theory of almost periodic functions, ICM (1954)
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Figure 4 – Le problème de Lagrange consiste à étudier le mouvement du bras articulé. Ce bras consiste
en N segments de longueurs l1, . . . , lN 2 R+, attachés en une chaîne. Chacun des segments tourne avec
une vitesse angulaire constante wj, j = 1, . . . , N autour de l’extrémité du segment précédent. L’intérêt
de Lagrange se portait sur la vitesse angulaire asymptotique w de l’extrémité de ce système, définie
comme la limite N(T)

T où N(T) est le nombre de tours effectués en temps T. Lagrange voulait prouver
l’existence de cette limite et trouver son expression en terme des longueurs lj et des vitesses angulaires
wj.

Chapitre 3. Le problème des centres des orbites triangulaires du billard elliptique.

Ce chapitre est inspiré par une remarque de D. Reznik, ingénieur à UC-Berkeley, qui
s’intéresse à la géométrie plane et a remarqué empiriquement le fait suivant :

Dans le billard elliptique les centres des cercles inscrits dans les triangles correspondant aux orbites
3-périodiques décrivent une courbe qui est une ellipse.

Notre défi était initialement de trouver une preuve simple de ce résultat en utilisant des
méthodes de géométrie plane. N’ayant pas réussi, nous avons elaboré des méthodes de géo-
métrie algébrique complexe qui nous ont permis de prouver ce résultat. Après coup, la preuve
géométrique « réelle » a, elle aussi, été trouvée (toujours assez élaborée, elle utilise des notions
de conjugaison isogonale et de point de Gergonne – nous incitons le lecteur à trouver une
preuve plus simple). Pendant l’été 2016 une autre preuve « réelle » est apparue dans un article
de R. Garcia 19, dans lequel l’auteur calcule explicitement l’équation de l’ellipse en question.

Le cœur de ce chapitre est le résultat de notre article paru dans l’Enseignement Mathéma-
tique 20 qui se concentre sur la preuve complexe du résultat empirique de D. Reznik.

L’idée de notre preuve complexe est classique 21 : complexifier et projectiviser le problème,
c’est-à-dire passer de la géométrie de R2 à la géométrie de CP2, regarder les complexifications
de l’ellipse initiale, et définir la loi de réflexion complexe. L’argument géométrique est très
simple une fois le bon cadre établi.

La complexification de la loi de réflexion dans le billard est assez subtile en raison de
l’apparition de directions isotropes, c’est-à-dire de vecteurs de longueur nulle dans la nouvelle
métrique ds2 = dz2 + dw2 sur CP2. La réflexion par rapport aux tangentes isotropes à l’ellipse
peut quand même être définie pour la trajectoire de billard. Pour ce faire nous avons suivi les

19. R.A. Garcia, Centers of inscribed circles in triangular orbits of an elliptic billiard (2016)
20. Romaskevich O., On the incenters of triangular orbits on elliptic billiards, L’Enseignement Mathématique 60 :2,

pp. 247–255 (2014)
21. voir par exemple, Ph. Griffiths and J. Harris, Cayley’s explicit solution to Poncelet’s porism. L’Enseign. Math.,

pp. 31–40. 24 (1978)
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idées des travaux d’A. Glutsyuk et Yu. Kudryashov 22 dans le cadre de l’étude de la conjecture
d’Ivrii sur la mesure de l’ensemble des orbites périodiques dans un billard.

Chapitre 4. Les moyennes sphériques markoviennes pour les actions du groupe libre.

Ce chapitre reproduit notre travail avec Alexander Bufetov et Lewis Bowen 23 et s’inscrit
dans le domaine de la théorie ergodique des actions du groupe libre par les applications qui
préservent la mesure d’un espace mesuré (X, µ). Le mot ergodique se traduit littéralement
du grec comme le travail sur un chemin : en effet, la théorie ergodique étudie les actions des
groupes sur l’espace en mesurant les valeurs moyennes des fonctions sur les chemins que
parcourent les points de l’espace sous ces actions.

Nous continuons dans la voie commencée par J. von Neumann et G. Birkhoff 24, qui ont
étudié les moyennes temporaires des fonctions sur X le long des orbites des transformations
de X. Le théorème ergodique classique affirme que pour l’application inversible T : X ! X
préservant la mesure µ sur X, µ(X) < • et pour la fonction integrable j 2 L1(X, µ) et pour
µ- presque tout x 2 X la limite des moyennes temporaires

lim
n!•

1
2n + 1

n

Â
k=�n

j(Tkx)

existe. Dans le cadre de l’étude des actions de groupes, ce théorème peut être vu comme un
théorème de convergence des moyennes sur les boules pour l’action du groupe abélien Z

(dont le générateur est la transformation T).

Dans ce chapitre nous prouvons le théorème analogue pour les actions du groupe libre Fr à
r générateurs dans l’espace (X, µ) muni de la mesure finie µ(X) < •.

Définition 2. Nous définissons la norme || · || sur le groupe Fr =< a1, . . . , ar > de façon standard :
la norme ||g||, g 2 Fr est égale à la longueur minimale du mot répresentant l’élément g dans l’alphabet
n

a1, . . . , ar, a�1
1 , . . . a�1

r

o

.

Alors, la sphère S(n) dans le groupe libre se définit comme l’ensemble des éléments de
même norme : S(n) := {g 2 Fr : ||g|| = n}. Notons que le nombre d’éléments de la sphère
dans le groupe libre Fr grandit exponentiellement avec son rayon : |S(n)| = (2r)(2r � 1)n�1.

Une action du groupe Fr sur l’espace X est donnée par un homomorphisme

T : Fr ! Aut(X, µ). (9)

Nous définissons l’opérateur Sn des moyennes sphériques :

22. A. Glutsyuk On quadrilateral orbits in complex algebraic planar billiards, Mosc. Math. J. 14 , pp.239–289 (2014) ;
A. Glutsyuk, Yu. Kudryashov No planar billiard possesses an open set of quadrilateral trajectories, J. Mod. Dyn. 6, pp.
287–326 (2012)

23. Bowen L., Bufetov A., Romaskevich O. On convergence of spherical averages for Markov operators, Geometriae
Dedicata, 181 :1, pp. 293-306 (2016)

24. J. von NeumannPhysical Applications of the Ergodic Hypothesis, Proc. Natl. Acad. Sci. USA, 18 :3, pp. 263–266
(1932) ; J. von Neumann Proof of the Quasi-ergodic Hypothesis, Proc. Natl. Acad. Sci. USA, 18 :1), pp. 70–82 (1932) ; G.
D. Birkhoff Proof of the ergodic theorem, Proc. Natl. Acad. Sci. USA, 17 :12, pp. 656–660 (1931) ; G.D. Birkhoff What
is the ergodic theorem ?, Amer. Math. Monthly, 49 :4, pp. 222–226 (1942) ; voir aussiI.P. Kornfeld, G. Sinai Ya, S.V.
Fomin Ergodic Theory, Springer (1982)
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Définition 3. Soit j 2 L1(X, µ) une fonction, ses moyennes sphériques par rapport à l’action T du
groupe Fr sur X se définissent comme

Sn j :=
1

|S(n)| Â
g2Fr :||g||=n

j � T(g), n = 1, 2, 3, . . . (10)

Dans la théorie ergodique des actions du groupe libre, la convergence des moyennes sphé-
rique se présente comme une question naturelle : la frontière S(n) de la boule B(n) dans un
groupe Fr présente le poids principal des éléments dans ce groupe non moyennable.

L’étude des moyennes sphériques pour le groupe libre a été débutée par V. Arnold et A.
Krylov 25 : ils ont prouvé l’analogue du théorème de H. Weyl 26 au sujet de l’équidistribution
des orbites d’une rotation irrationelle sur le cercle. Plus exactement, ils ont demontré, que pour
une action du groupe libre F2 =< a, b > par les rotations T(a), T(b) 2 SO(3) de la sphère
S2, si l’orbite F2x d’un point x 2 S2 sur la sphère est dense, alors elle est équidistribuée. Cela
signifie que pour chaque sous-ensemble P ⇢ S2 borné par une courbe lisse par parties, la
partie des éléments de la sphère S(n) ⇢ Fr dans le groupe qui envoient x dans l’ensemble P
est asymptotiquement proportionnelle à l’aire de P lorsque n ! • :

lim
n!•

|S(n)x \ P|
|S(n)| =

mes P
mes S2 .

En généralisant le résultat de V. Arnold et A. Krylov sur l’action générale du groupe F2, Y.
Guivarc’h à demontré 27 un théorème de convergence des moyennes sphériques (10) en norme
L2 : pour chaque fonction j 2 L2(X, µ), les moyennes sphériques S2n j convergent dans L2.
Notons qu’il n’y a pas de raison de s’attendre à la convergence des moyennes sphériques Sn j,
parce que j peut être une fonction propre des opérateurs T(a), T(b) de valeur propre �1. A.
Nevo et E. Stein ont par la suite généralisé 28 le résultat de Guivarc’h sur la convergence dans
Lp pour les fonctions j 2 Lp, p 2 (1, •) en utilisant des méthodes spectrales. Récemment,
T. Tao a demontré 29 l’impossibilité de prouver l’analogue du théorème de Guivarc’h pour la
convergence presque partout : il a donné l’exemple d’une action de F2 y (X, µ) et d’une
fonction j 2 L1(X, µ) telle que supx2X |Sn j(x)| = •, n ! •.

Dans ce chapitre, nous considérons la généralisation de la définition (10) : les moyennes
sphériques markoviennes pour lesquelles les différents éléments de la sphère S(n) sont pris
avec des poids différents.

Ces poids vont être donnés par une chaîne de Markov avec un nombre d’états fini qui
correspondra à l’ensemble des éléments du groupe Fr. En se promenant sur cette chaîne, le
processus probabiliste va créer des mots de longueur n, et la moyenne de la fonction j sur

25. V.I. Arnold, A. L. Krylov Equidistribution of points on a sphère and ergodic properties of solutions of ordinary
differential equations in a complex domain, Dokl. Akad. Nauk SSSR 148, pp. 9–12 (1963)

26. H. Weyl Über die Gibbs’sche Erscheinung und verwandte Konvergenzphänomene, Rendiconti del Circolo Matema-
tico di Palermo, 330, pp. 377–407 (1910) ; H. Weyl Ueber die Gleichverteilung von Zahlen mod. Eins, Math. Ann. 77 :3,
pp. 313–352 (1916)

27. Y. Guivarc’h Généralisation d’un théorème de von Neumann, C. R. Acad. Sci. Paris Sér. A-B 268,pp.1020–1023
(1969)

28. A. Nevo, E. Stein A generalization of Birkhoff’s pointwise ergodic theorem, ActaMath. 173, pp.135–154 (1994)
29. T. Tao Failure of the L1 pointwise and maximal ergodic theorems for the free group, Forum of Mathematics, Sigma,

3 (2015)
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l’orbite du groupe calculée avec les poids correspondants à ce processus va donner la nouvelle
définition de la moyenne sphérique.

Cette chaîne est donnée par un graphe fini orienté G = (V, E) où V est un ensemble des
sommets, et L - l’ensemble des arêtes. Les sommets sont representés par les éléments du
groupe grâce à l’application injective L : V ! Fr.

L’espace des états de la chaîne de Markov coïncide avec les sommets V de G. Les pro-
babilités des sauts sont définies par une matrice stochastique (Pv,w) dont les lignes et les
colonnes sont numérotées par les éléments de V. Nous supposons aussi que cette matrice a
une distribution stationnaire (nv)v2V : PT

n = n. L’ensemble E des arêtes du graphe G est
défini comme

E := {(w, v)|Pv,w > 0} .

À chaque chemin orienté s = (s1, . . . , sn) 2 Vn, (sj, sj+1) 2 E dans le graphe G correspond
un automorphisme de X :

Ts := T(L(s1)) � . . . � T(L(sn)),

et la probabilité de ce chemin dans le graphe : Ps := Psnsn�1 . . . Ps2s1 .

Définition 4. Les moyennes sphériques markoviennes pour l’action T donnée par (9) du groupe
libre Fr correspondant à la matrice stochastique P sont les opérateurs Sn : L1(X, µ) ! L1(X, µ), qui
sont définis comme les moyennes de la fonction j � T sur tous les chemins s = (s1, . . . , sn) dans le
graphe G = (V, E) (correspondant à la matrice P comme décrit dessus) de longueur n :

Sn j(x) := Â
s=(s1,...,sn)

nsn P
s

j (T
s

x) . (11)

Remarquons tout d’abord qu’en choisissant comme sommets du graphe les générateurs et
leurs inverses V = {a1, . . . , ar, a�1

1 , . . . , a�1
r } ainsi que les coefficients de la matrice P comme

Pv,w = 1
2r�1 si v 6= w�1 et Pv,w = 0 sinon, nous retrouvons la définition classique des

moyennes sphériques. Si nous changeons la matrice P pour qu’elle ait des coefficients dif-
férents du cas classique, nous obtenons de nouvelles moyennes sphériques. L’idée générale
de cette approche est que les moyennes sphériques markoviennes pour une matrice P bien
choisie puissent correspondre aux moyennes sphériques uniformes d’autres groupes de type
fini différents du groupe libre. Bien sûr, cette approche se limite au cas des groupes qui pos-
sédent un codage markovien. Cependant, cette classe est très large et contient les groupes des
surfaces et même, plus généralement, tous les groupes hyperboliques de M. Gromov.

Une question très intéressante (et toujours ouverte) est celle de la convergence des moyennes
sphériques pour les groupes hyperboliques de Gromov. Cette convergence a été prouvée par
K. Fujivara et A. Nevo 30 sous l’hypothèse que l’action soit fortement mélangeante.

Même si la convergence des moyennes sphériques pour les groupes hyperboliques (sans
aucune hypothèse sur l’action) n’est pas encore établie, la convergence de Cesàro des moyennes
sphériques a été prouvée par A. Bufetov, A. Klimenko et M. Khristoforov 31 pour toutes les
actions des semi-groupes markoviens. Dans le cas particulier des groupes hyperboliques, il

30. K. Fujiwara, A. Nevo Maximal and pointwise ergodic theorems for word-hyperbolic groups,Ergod. Theory Dyn.
Syst. 18, pp. 843–858 (1998)

31. A. Bufetov, M. Khristoforov, A. Klimenko Cesàro convergence of spherical averages for measure- preserving actions
of Markov semigroups and groups, Int. Math. Res. Not. IMRN 21 , pp. 4797–4829 (2012)

13



Introduction

existe une preuve courte et élégante 32 par M. Pollicott et R. Sharp qui utilise des méthodes de
D. Calegari et K. Fujiwara 33.

La théorie ergodique des actions de groupes non-commutatifs étant un sujet très vaste,
nous renverrons le lecteur (et la lectrice !) motivé(e !) à un survol de A. Nevo 34 ainsi qu’aux
références dans le corps du chapitre 5.

Dans ce chapitre nous nous sommes intéressés à la preuve de la convergence dans L1

des moyennes sphériques markoviennes (11) sans aucune condition sur l’action du groupe,
quitte à restreindre la classe des matrices P étudiées. Notre résultat généralise celui de A.
Bufetov 35, qui a prouvé la convergence des moyennes sphériques pour les chaînes de Markov
symétriques, c’est-à-dire en imposant des conditions de type « égalité » sur les coefficients
de la matrice P. Nous allons présenter un théorème qui permet de prouver l’analogue du
théorème de Bufetov pour l’ensemble ouvert des matrices stochastiques P.

Notre approche est nouvelle mais elle se base sur des méthodes d’opérateurs de Markov
élaborées par R. Grigorchuk 36 et J.-P. Thouvenot et utilisées par A. Bufetov dans la démons-
tration de son théorème de convergence. Le point clé dans la preuve de Bufetov est la trivialité
de la tribu correspondant au comportement limite de l’opérateur de Markov lié au processus
probabiliste défini plus haut. Cette trivialité est prouvée grâce au théorème de G.-C. Rota 37

concernant les opérateurs de Markov et se fonde sur la réversibilité de la chaîne de Mar-
kov. Nous trouvons un moyen de contourner la condition de réversibilité pour prouver un
théorème plus général.

Chapitre 5. Le théorème de linéarisation des produits croisés à la Sternberg.

Ce dernier chapitre reproduit notre article publié avec Yulij Ilyashenko dans Journal of
Dynamical and Control Systems 38. Ce travail s’inscrit dans le domaine de la dynamique partiel-
lement hyperbolique et dans l’étude des phénomènes génériques, c’est-à-dire les phénomènes
qui ont lieu pour des sous-ensembles ouverts dans l’espace des systèmes dynamiques.

Ce chapitre est consacré plus particulièrement à un théorème de normalisation pour les
produits croisés Hölder. Nous allons d’abord expliciter la motivation de l’étude de cette classe
de systèmes dynamiques.

Les produits croisés sont des applications de l’espace-produit M = B ⇥ I de la base B et
de la fibre I de la forme suivante :

F : M ! M, F : (b, x) 7! (a(b), fb(x)), b 2 B, x 2 I.

32. M. Pollicott, R. Sharp Ergodic theorems for actions of hyperbolic groups, Proc.Am.Math.Soc.141, pp. 1749–1757
(2013)

33. D. Calegari, K. Fujiwara Combable functions, quasimorphisms, and the central limit theorem, Ergod. Theory Dyn.
Syst. 30 :5, pp. 1343–1369 (2010)

34. A. Nevo Harmonic analysis and pointwise ergodic theorems for noncommuting transformations, J.Am. Math. Soc.
7 :4, pp. 875–902 (1994)

35. A. Bufetov Convergence of spherical averages for actions of free groups, Ann. Math. 155, pp. 929–944 (2002)
36. R. I. Grigorchuk Ergodic theorems for actions of free semigroups and groups, Math.Notes 65, pp. 654–657 (1999)
37. G.-C. Rota An “Alternierende Verfahren” for general positive operators, Bull.Am.Math.Soc. 68, pp. 95–102 (1962)
38. Ilyashenko Yu., Romaskevich O. Sternberg linearization theorem for skew products, Journal of Dynamical and

Control systems, 22 :3, pp. 595–614 (2016)
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Ici a(b) est une transformation de la base B 39 et fb(x) une application sur les fibres qui est a
priori différente sur chaque fibre. Donc les produits croisés donnent une famille d’applications
possédant un feuilletage invariant (le feuilletage vertical {b = const}). La compréhension de
la dynamique des produits croisés est le premier pas vers la compréhension de la dynamique
des applications possédant un feuilletage invariant, et la littérature sur ce sujet est vaste.

Les produits croisés ayant la propriété de dominated splitting condition (DSC) sont les
systèmes partiellement hyperboliques pour lesquels la dynamique dans la fibre est moins forte
que la dynamique dans la base 40. Un premier exemple d’un tel système est le produit d’un
difféomorphisme linéaire d’Anosov dans la base et de l’identité dans la fibre. Un tel produit
croisé a une propriété remarquable de stabilité : leurs perturbations de classe C1 vont toujours
avoir un feuilletage invariant lisse le long des fibres.

Les produits croisés DSC sont un cas spécial de systèmes normalement hyperboliques, c’est-
à-dire de systèmes avec un feuilletage invariant le long duquel la dynamique est moins forte
que la dynamique dans la direction transversale.

Définition 5. 41 Le feuilletage F de la variété compacte M, invariant par le difféomorphisme f , est
appelé normalement hyperbolique si le fibré tangent de M peut être representé comme une somme
directe de sous-fibrés invariants par d f :

TM = Eu � Ec � Es

tels que pour une certaine metrique sur M : d f |Es
< 1 < d f |Eu et d f |Es

< d f |Ec
< d f |Eu en

chaque point de la variété M.

D’après les résultats classiques de M. Hirsch, C. Pugh et M. Shub 42, les feuilletages nor-
malement hyperboliques persistent sous des perturbations C1. Une application g : M ! M
qui est C1-proche d’une application f normalement hyperbolique (ayant un feuilletage inva-
riant F ), va elle aussi avoir un feuilletage invariant G, proche de F , et va être normalement
hyperbolique par rapport à ce feuilletage. De plus, f et g vont être conjuguées le long des
feuilles de F et G. Par contre, même si le feuilletage F est lisse, le feuilletage G préserve la
régularité dans la direction des feuilles mais pourra ne pas être différentiable dans la direc-
tion transversale. En 2012, C. Pugh, M. Shub et A. Wilkinson ont prouvé que ce feuilletage
est hölderien dans la direction transversale 43. Leur théorème s’accorde bien avec le principe
heuristique énoncé par J. Moser :

La régularité des objets qui apparaissent naturellement dans la dynamique lisse est la régularité
Hölder.

Un autre exemple de cette dépendance hölderienne est la dépendance des variétés (lisses
en direction des feuilles) stable et instable W s(m),Wu(m) du difféomorphisme hyperbolique
F : M ! M par rapport au point de base m 2 M.

39. Dans toutes nos considerations a(b) sera un difféomorphisme d’Anosov.
40. Pour une définition précise voir, par exemple, Yu. Ilyashenko, A. Negut Hölder properties of perturbed skew

products and Fubini regained, Nonlinearity, 25, pp. 2377–2399
41. Pour la définition plus précise (comparaisons de deux operateurs en termes de leurs normes) et le survol,

voir par exemple, C. Pugh, M. Shub, A. Wilkinson Hölder foliations, revisited, J. Modern Dyn. 6, pp. 835–908 (2012)
42. M. Hirsch, C. Pugh, M. Shub Invariant manifolds, Lecture Notes in Mathematics, 583 (1977)
43. Voir A. Gorodetskii Regularity of central leaves of partially hyperbolic sets and applications (en russe), Izv. Ross.

Akad. Nauk Ser. Mat. 70 :6, pp. 19–44 (2006) ; traduction Izv. Math. 70 :6 (2006), pp. 1093–1116 ; et Yu. Ilyashenko,
A. Negut Hölder properties of perturbed skew products and Fubini regained, Nonlinearity, 25, pp. 2377–2399 pour le
cas des produits croisés avec la condition de DSC et C. Pugh, M. Shub, A. Wilkinson Hölder foliations, revisited, J.
Modern Dyn. 6, pp. 835–908 (2012) pour le cas général des systèmes dynamiques normalement hyperboliques
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La compréhension de la régularité des perturbations des produits croisés permet de construire
des exemples de sous-ensembles ouverts dans l’espace des difféomorphismes qui possèdent
des attracteurs étranges 44. Le processus de construction suit souvent le même schéma : l’at-
tracteur étrange se construit d’abord dans l’espace des produits croisés 45 et elle est répandue
(par perturbation) sur les systèmes dynamiques normalement hyperboliques, hölderiens en
direction transversale. Ceci prouve la généricité de l’effet trouvé.

Ce programme se retrouve suivi dans bon nombre de travaux qui ont pour but de construire
des applications avec des exposants de Lyapounov non-nuls 46, des feuilletages pathologiques 47,
des applications des variétés à bord avec un attracteur de Milnor de mesure positive 48 ou avec
des bassins qui s’intersectent 49, et pour la construction des attracteurs osseux 50. Dans cette
thèse, dans le cadre de ce programme, nous établissons une forme normale locale pour les
produits croisés hölderiens afin de pouvoir travailler avec ces produits dans les voisinages de
leurs points fixes. La motivation initiale de cette recherche était le souhait de donner des outils
pour simplifier le travail de 2011 de Yu. Ilyashenko lié à la construction des gros attracteurs
sur des variétés à bord 51.

Nous considérons ici un produit croisé hyperbolique F : M ! M au-dessus d’un difféo-
morphisme linéaire d’Anosov A : B ! B du tore B = Td dans la base et avec une feuille
unidimensionelle. Notre forme normale est linéaire F0 : (b, x) 7! (Ab, l(b)x) et la conjugaison
entre le difféomorphisme initial et cette forme normale 52 H : M ! M ne transforme pas la
base : H(b, x) = (b, hb(x)). Cette conjugaison sur les feuilles permet de garder la structure
de produit croisé lors des transformations. Nous prouvons que cette conjugaison est hölde-
rienne par rapport au point de base et nous calculons explicitement son exposant de Hölder,
qui s’avère être lié au rapport de la dynamique dans la base et dans la fibre de l’application
initiale F.

44. Le mot étrange n’est pas strictement défini et change d’un article à l’autre. L’idée est de construire un en-
semble ouvert dans l’espace des difféomorphismes qui possède une propriété inattendue dont on penserait qu’elle
va disparaîre sous perturbation.

45. Il y a souvent un pas qui précède la construction dans l’espace des produits croisés avec la base - variété,
c’est le pas des produits croisés avec la base qui est l’espace des suites. Ces produits croisés sont souvent appelés
dans la littérature les systèmes des fonctions itérées (iterrated functions systems).

46. A. Gorodetski, Yu. Ilyashenko, V. Kleptsyn, M. Nalski Non-removable zero Lyapunov exponents, Funct. Anal.
Appl. 39 :1, pp. 27–38 (2005)

47. Feuilletages dont l’holonomie n’est pas absolument continue : M. Shub, A. Wilkinson Pathological foliations
and removable zero exponents (1999)

48. Yu. Ilyashenko Thick attractors of step skew products, Regular Chaotic Dyn., 15, pp. 328– 334 (2015) pour le
cas de la base S2 = {0, 1}N et Yu. Ilyashenko Thick attractors of boundary preserving diffeomorphisms, Indagationes
Mathematicae, 22 :(3-4), pp. 257–314 (2011) pour le cas de la base T2

49. Yu. Ilyashenko Diffeomorphisms with intermingled attracting basins, Funkts. Anal. Prilozh, 42 :4, pp. 60–71 (2008)
50. Yu. Kudryashov Bony attractors, Funkts. Anal. Prilozh, 44 :3, pp. 73–76 (2010)
51. Yu. Ilyashenko Thick attractors of boundary preserving diffeomorphisms, Indagationes Mathematicae, 22 :(3-4),

pp. 257–314 (2011)
52. La conjugaison H : M ! M est un homéomorphisme tel que F � H = H � F0

16



Première partie

Dynamics and ergodic averages of
physical systems

17





1

Dynamics of the equation modeling a
Josephson junction

This chapter is devoted to the study of a so-called Josephson equation, the three-
parametric family of ODEs on a torus. This family arises from a special model of
Josephson effect in the physics of superconductivity. We are interested in the structure
of Arnold tongues for this equation since first, their sections correspond to the domains
of the phase-lock, relevant for physical experiments and second, because they have a
beautiful mathematical structure.
We study these Arnold tongues in two critical regimes : in the first of them, we prove
that on the parametric plane (one of the three parameters is fixed) the boundaries of the
tongues are asymptotically close to Bessel functions. This is a joint work wih Alexey
Klimenko. In the second regime, the system has one slow and one fast variable, and
the techniques elaborated in the slow-fast systems theory help us to give a qualitative
description of the tongues. This is a joint work with Ilya Schurov and Victor Kleptsyn.
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Chapitre 1. Dynamics of the equation modeling a Josephson junction
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This Chapter is organized as follows : first, we give an introduction to the theory of the
three-parametric vector field modeling the Josephson contact (that we will call from now on
the Josephson equation) and we give all the basic definitions. Then, we describe two different
limit regimes that will be of interest to us in the following and treat them one by one. In both
of these regimes we will be studying Arnold tongues corresponding to the rotation number
of the flow defined by the considered vector field and some fixed transverse section.

The first regime is studied in our article with Alexey Klimenko published in Moscow Ma-
thematical Journal (that we join untouched). For this regime we have established a theorem
about the limiting behavior of the tongues in terms of integer Bessel functions. The second
regime is much more difficult to understand and there are still lots of open questions : we des-
cribe a qualitative behavior of the tongues in this regime in our article (in Russian) with Ilya
Schurov and Victor Kleptsyn [21] and we introduce some ideas on how computer simulations
of the Arnold tongues could be done. Here we will present the ideas and theorems from our
joint article, with some improved presentation.

1.1 Introduction

1.1.1 Set-up and definitions

Let us first explain what kind of dynamics we will be studying and formulate precisely
the questions that will be of interest. We will give some physical as well as mathematical
motivations in the following Subsection 1.1.2. We will be studying the following differential
equation :

dx
dt

=
cos x + a + b cos t

µ

, (1.1)
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1.1. Introduction

where a, b, µ 2 R are real parameters, µ > 0. Since the right-hand side is a 2p-periodic
function in t and x, this equation has a quotient which is a system of equations on the two-
dimensional torus R2/2pZ2 with coordinates x and t :

8

>

<

>

:

∂x
∂t

= cos x + a + b cos t,

∂t
∂t

= µ.
(1.2)

Note that the vector field corresponding to the equation (1.2) can also be considered as a
vector field on a cylinder R2/((x, t) ⇠ (x, t + 2p)). In both cases the Poincaré map from the
transversal line {t = 0 mod 2p} to itself can be defined, we denote it as Pa,b,µ : S1 ! S1 for
the torus, and ePa,b,µ : R ! R for the cylinder. So Pa,b,µ is a homeomorphism of the circle while
ePa,b,µ is its lift on the line R.

Let us remind the reader that for any circle homeomorphism P its rotation number can be
defined as following :

Definition 1.1. Let the rotation number r of the map P : S1 ! S1 be the limit

r := lim
n!•

eP�n(x)� x
2pn

.

where eP : R ! R is a lift of P on the universal cover.

The rotation number r(P) shows how the points on the circle rotate on average under the
homeomorphism P. It is well known that for any homeomorphism of a circle such a limit
exists and does not depend on the point x 2 R (see, for example, [19]). The value of the
rotation number is an important characteristic of a map : for instance, it is invariant under
conjugation by homeomorphisms.

In our particular case, the rotation number r is a function of three real parameters a, b, µ :
we will denote it ra,b,µ correspondingly.

We will be interested in the question how the rotation number of the homeomorphism
changes while the parameters change in the three-dimensional parameter space.

Definition 1.2. We say that the phase lock occurs for the value k 2 R of rotation number if the level
set

Ek :=
�

(a, b, µ)|ra,b,µ = k
 

(1.3)

in the space of parameters R2 ⇥ R+ has nonempty interior. In this case the level set Ek is called an
Arnold tongue.

From now on, all along this Chapter, the main question for us is for what values of r do
these Arnold tongues occur, and, more specifically, how do they look like ?

1.1.2 Physical motivations

The equation (1.1) comes from the physics of superconductivity and can be found in phy-
sical works [24, 27, 18] as a model for the dynamics of Josephson junction in its sine-form
which is

dx
dt

=
sin x + a + b sin t

µ

. (1.4)
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Chapitre 1. Dynamics of the equation modeling a Josephson junction

Substitutions x ! x ± p/2, t ! t ± p/2 transform one variant (1.1) to another (1.4) and
none of our results is affected by such a change. We prefer to work with the form (1.1).

The properties of this equation (1.4) were studied in the context of Josephson junction
modelling [3, 4, 5, 6, 7, 12, 17, 20, 30] as well as in some different contexts as the geometry of
Prytz planimeter [11] and the study of bicycle tracks [10, 22].

Let us give a physical interpretation [24, 25, 27] of the equation (1.4). This equation gives a
dynamical model of a so-called Josephson junction, a small device named after Brian Joseph-
son who theoretically predicted the existence of super-current component in a current going
through a weak electrical contact between two superconducting electrodes in 1962. Josephson
received a Nobel Prize in Physics ten years after because of the experimental approval of his
conjecture.

Now Josephson junctions are widely used in technology to built electronic circuits. There
is a significant research on ultrafast computers using Josephson logic. Maybe even more im-
portantly, Josephson junctions can be used to build circuits called SQUIDs (superconducting
quantum interference devices). These devices serve to construct extremely sensitive magneto-
meters and voltmeters (one thousand times better than any other available voltmeters). Since
SQUID’s feel even small changes in a magnetic field, they are even used in the sensing of these
fields created by neurological currents and serve to the monitoring the activity of the brain (or
the heart). Other applications of SQUIDs are geological research and submarine detection .

The Josephson junction is made up by putting a very thin barrier of a non-superconducting
material (a weak link) between two layers of superconducting material. This barrier can be
made of different materials, for example it can be an insulator or another non-superconducting
metal. The size of the barrier is several microns. Josephson predicted that in this tiny system
the tunneling effect is possible : the pairs of superconducting electrons could go right through
the barrier from one superconductor to another.

We know that for many metals the extreme cooling draws them to a completely different
state : there exists a critical temperature (which depends on a metal but is in general very
low, around minus 250 Celsius) at which metal goes from the electrical resistance state to the
superconducting state, in which it gives essentially no resistance to the flow of the electrical
current 53.

The explanation for this sort of behavior is that at some point because of the interaction
of the electrons with the ionic lattice of the metal, two electrons start to slightly attract, al-
though above the critical temperature the interaction between those electrons was repulsive.
This attraction allows the electrons to drop into a lower energy state and though there is a
possibility for the electrons to move through the ionic lattice, and hence, the current can flow.
Hence in this state the material gives no electrical resistance and, at the same time, there is a
super-current that can flow and which is called the critical current.

In the junction, until a critical current is reached, electron pairs can tunnel across a non-
superconducting barrier without any resistance but once this critical current is exceeded, the
voltage develops across the junction. This voltage depends on time and on the current, and
as long as the current through the junction is less than the critical current, the voltage is zero.

53. Let us remark, that recently the existence of high-temparature supeconductivity was established, for example
for some ceramic materials that exhibit the same behavior at warmer temperatures. The record of the highest
temperature at which superconductive state can occur is now at -70 Celsius [8].
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As soon as the current exceeds the critical current, the voltage will oscillate in time. This is
exactly the changes in voltage that are interesting for physicists.

Let us suppose that the current that goes through the junction has a form I(t) = Ī(t)+ Ĩ(t),
i.e. it is a sum of a constant term Ī and a periodic term Ĩ with a zero mean (we can suppose
that it is generated by an external electromagnetic signal). The voltage on the electrodes of
Josephson junction is given as a derivative with respect to time of the function x which has a
quantum nature. The function x is a difference of phases of wave functions that describe the
properties of the "liquid mass" of couples of electrons in superconductive materials. So, al-
though the function is quantum, it’s derivative is a macro-physical characteristic – the voltage
between the superconductive plates.

For Josephson junction description the so-called resistive and capacitively shunted model
is used and it is given by the equation [24, 27]

ẋ + F(x) = I(t) (1.5)

where F is an odd 2p-periodic function which represents the relation between the current
and the phase. For the most of mathematical models it can be represented as a sum F(x) =
sin x + H(x) where H is either zero or small. What is important is that such a model coincides
well with the results of the experiments [18].

Let us remark that strictly speaking, all the fuctions and variables here are dimensionless
quantities corresponding to their physical analogues. For more precise explanation of the
equation (1.5), see the books of K. Likharev, B. Ulrich and M. Tinkham [23, 24, 31].

As said before, the important function for us is a volt-ampere (V-I) characteristics of a
junction showing the dependance of the voltage across the junction on the external current.
In terms of the equation (1.5) this is a function that shows the relation between the average
value of ẋ (wih respect to time) and the average value

R

I(t)dt of the current. For the junc-
tion described by the equation (1.4) the current is sinusoidal and equal to I(t) = a + b sin t.
Hence a volt-ampere characteristic corresponds to the graph of a rotation number ra,b,µ which
is studied as a function of parameter a with fixed b and µ. And the study of volt-ampere
characteristics is translated in our model to the study of the rotation number ra,b,µ of a circle
diffeomorphism Pa,b,µ as a function of parameters. Here the parameter µ plays a role of the
ratio between the frequence of exterior signal to the internal frequency of the junction, see [17]
for details.

In generic families of circle diffeomorphisms rational rotation numbers exist for intervals
in the space of parameters (since small perturbations do not destroy a quality of having a
hyperbolic periodic point). For Josephson equation, the corresponding sections of Arnold
tongues (by the lines {b = const, µ = const}) are called Shapiro steps by physicists. On Figure
1.1 one can see a picture of the steps from the original article of Sidney Shapiro in 1963 who
first noticed the existence of the steps experimentally [29].

We will although see that Josephson equation doesn’t satisfy the general paradigm of the
existence of steps for each rational value of rotation number r : the tongues for the equation
(1.2) exist only for integer values of r. This has a nice mathematical explanation, to which we
pass immediately.
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Chapitre 1. Dynamics of the equation modeling a Josephson junction

Figure 1.1 – A Cantor staircase with Shapiro steps from the original article [29]

1.1.3 Mathematical motivations

The first time the rotation numbers of families of circle diffeomorphisms were considered
by V. I. Arnold for the following two-parametric family of diffeomorphisms of the circle (for #

small enough)

x 7! x + 2pa + # sin x, (1.6)

where x 2 S1 is a point on the circle, a 2 R and # 2 [0, 1) are parameters. Note first that
for # = 0 the family is just a family of rotations and hence ra,0 = a.

Arnold considered the level sets of the rotation number in the plane of parameters (a, #)
and he obtained the picture that can be seen on Figure 1.2. He was interested in the phase-
lock areas (later baptized Arnold tongues) : level sets of the rotation number of non-empty
interior. Arnold noticed that for the family (1.6) the tongues do not exist for irrational values
of rotation number because of the Denjoy theorem and monotonicity arguments : it is easy
to see that the set {r(a, #) = a 6= Q} is a continuous curve starting from the point (a, 0), see
[1]. Then, for each a 2 Q the corresponding tongue {r(a, #) = a} exists and "grows" from the
point (a, 0). One can note that for a fixed # > 0 the rotation number as a function of parameter
a is a Cantor staircase, see Figure 1.3. But, contrary to the classical Cantor staircase, in this case
the Cantor set of the points of growth (the closure of the set of parameters a corresponding to
the irrational rotation numbers) has a positive Lebesgue measure.

The study of Arnold tongues of Josephson equation continues the process initiated by Ar-
nold. But in the case of the equation (1.2) and the corresponding circle map Pa,b,µ the situation
is drastically different. We will describe this situation in the next Section.
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1.1. Introduction

Figure 1.2 – Arnold tongues for a classical family (1.6) on the plane of parameters (a, #) : the tongues
that are drawn on the picture are those corresponding to rational values with denominator no bigger
than 5.

Figure 1.3 – A Cantor staircase for a standard Arnold family of circle diffeomorphisms (1.6) : the graph
is a section of the picture on Figure 1.2 by a line {# = const}
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Chapitre 1. Dynamics of the equation modeling a Josephson junction

1.2 Why this equation is special ?

1.2.1 Only integer tongues exist : Riccati equation

First note that since the right-hand side of the equation (1.2) (and thus the map ePa,b,µ)
grows monotonically with a, there is no phase lock for k /2 Q. As said before, this happens
generically to Arnold tongues : they are absent for irrational values of rotation number. But
the specificity of the equation (1.1) gives that for k 2 Q \Z there is no phase lock as well. This
follows from the following lemma that was proven by R. Foote [11] and then rediscovered
independently by Buchstaber-Karpov-Tertychnyi and Ilyashenko in [5] and in [16, 17] in the
context of Josephson equation.

Lemma 1.3. The Josephson equation (1.2) is conjugated to the Riccati equation with 2p- periodic
coefficients and its Poincaré map Pa,b,µ from the transversal {t = 0} to itself is conjugated to a Mœbius
map.

Proof. After a change of variables

u = tan
x
2

,
2u̇

u2 + 1
= ẋ, cos x =

1 � u2

1 + u2 (1.7)

the system (1.2) becomes :
8

>

<

>

:

∂u
∂t

= a(t)u2 + b(t)u + g(t),

∂t
∂t

= µ.
(1.8)

where a(t) = a + b cos t � 1
2 , b(t) = 0, g(t) = a + b cos t + 1

2 . The equation (1.8) is a Riccati
equation with periodic coefficients – for this equation its Poincaré map from the transversal
{t = 0} to itself is Mœbius, see for example [9] for the proof.⇤

This Lemma gives immediately the result of the absence of the non-integer Arnold tongues.

Proposition 1.4. The Arnold tongues for the rotation number ra,b,µ corresponding to the Poincaré map
Pa,b,µ of Josephson equation (1.2) do not exist for non-integer values of rotation number r /2 Z.

Proof. In the coordinates of Lemma 1.3 Josephson family corresponds to the family of Ric-
cati equations with periodic coefficients. Hence the Poincaré map Pa,b,µis a Mœbius map in
coordinates defined in (1.7).

But any Mœbius map has zero, one or two fixed points and is called in these cases respec-
tively elliptic, parabolic or hyperbolic. Suppose ra,b,µ = p

q /2 Z, then the Poincaré map Pa,b,µ is
elliptic in some coordinates. Then, considering this map P

r

as a map of a circle, after a change
of coordinates it is just a circle rotation. And in this case, rotation number is destroyed by a
small perturbation. ⇤

So, Arnold tongues exist only for integer rotation numbers, and moreover, for a fixed µ

a point (a, b) lies in the interior of the tongue if and only if the corresponding map Pa,b,µ is
hyperbolic, and on the boundary of the tongue if and only if Pa,b,µ is parabolic (or identical).
Indeed, the boundary corresponds to the case of fixed points of the map that disappear by
small perturbation : those points are called parabolic. When one moves on the curve in the
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1.2. Why this equation is special ?

space of parameters starting inside the Arnold tongue in the direction of the boundary, the
real solutions of the equation Pa,b,µ(z) = z collapse in one solution and on the exit the map to
complex conjugated points.

This property of Josephson family (1.1) of not having the Arnold tongues for all rational
values of the rotation number is unique : as has been proven recently by A. Glutsyuk and L.
Rybnikov in [13] the family of equations on the torus of the form ẋ = v(x) + A + B f (t) won’t
have all of the rational Arnold tongues for all analytic functions f if and only if the function
v(x) is a sum of harmonics with the same frequencies v(x) = a sin(mx) + b cos(mx) + c. In
this case the Arnold tongues exist for the values of rotation number lying in the set 1

m Z.

1.2.2 Dynamical description of the boundaries

In addition to the Mœbius property the additional important property of the Josephson
equation (1.2) which is the symmetry of phase curves under the map

t : (t, x) 7! (�t,�x). (1.9)

This symmetry property is easier to work with in the cosine form (1.1) than in sine form
(1.4) – this is the main practical reason we passed from physical convention to this form.

This central symmetry property together with the Mœbius property of Poincaré map give
an analytic description of the boundaries of Arnold tongues in terms of Poincaré map. This is
a very useful fact : for the theoretical study of the geometry of Arnold tongues as well as for
computer simulations of their boundaries.

Indeed, suppose the Poincaré map is not identical Pa,b,µ 6= id and a point (a, b) is lying on
a boundary of some Arnold tongue Ek defined by (1.3) corresponding to some integer value
of rotation number ra,b,µ = k, k 2 Z for a fixed µ. Then as we know from Lemma 1.3, k 2 Z. In
this case the map Pa,b,µ has a fixed point : but since phase curves are preserved by the central
symmetry this fixed point has to be mapped to another fixed point of the map Pa,b,µ by the
mapping t : x 7! �x on the circle S1. But a parabolic map has a unique fixed point hence this
fixed point has to map to itself. There are two solutions of the equation x = �x mod 2p and
hence two fixed points of the mapping t : 0 and p. So the boundaries of an Arnold tongue Ek
with the rotation number equal to k 2 Z are two analytic curves a0,k(b) and a

p,k(b) that are
given correspondingly by the conditions

a = a0,k(b) , Pa,b,µ(0) = 0
a = a

p,k(b) , Pa,b,µ(p) = p

Numerical experiments show that these curves {(b, a0,k(b)) |b 2 R} and {(b, a
p,k(b)) |b 2 R}

(for a fixed µ) intersect in a countable number of points that we will call adjacency points, see
Figure 1.4. The mathematical proof of this fact is an easy consequence of our Theorem with
Alexey Klimenko that we will present later. On the Figure 1.4 one can see that the boundaries
"oscilate" : we prove that this oscilation in vertical direction (when b ! •) is close to the os-
cilation of integer Bessel functions, see our article in Subsection 1.3 for the precise statement.
This effect of approximation of the boundaries by Bessel functions was first empirically obser-
ved in [15] by physicists Shapiro, Janus and Holly and we prove this result rigorously for the
model (1.2).
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Chapitre 1. Dynamics of the equation modeling a Josephson junction

Figure 1.4 – Arnold tongues for Josephson equation on the plane of parameters (a, b) for a fixed µ,
here µ = 1. One can see that each Arnold tongue looks like a braid and has adjacency points - points
of the intersection of its two analytic boundaries.

One can see from the Figure 1.4 that the adjacency points seem to occur on the same
vertical line {a = kµ} where k is a number of the tongue (corresponding rotation number).
IThis nice fact was proven (for µ � 1) recently in [12] using the Stokes phenomena. For µ < 1
this is not yet proven but stays a reasonable conjecture. The difficulty resides in a study of
adjacency points near the line {b = 0}.

1.2.3 The roots of the tongues

We want to give two small remarks about the geometrical structure of the tongues that
will be useful for the following : first, for the reasons of symmetry discussed in Subsection
1.2.2 we will be interested in the structure of the tongues in the first quadrant {a, b > 0} 2 R2

of the parameter plane. The second remark is that we actually know the roots of the tongues
(the points on the {b = 0} axis where the tongues "start"). In other words, the exact value of
rotation number ra,0,µ can be calculated since for b = 0 the equation (1.1) can be explicitly
integrated. After some calculations [17], one can find that the tongue number k intersects the
line {b = 0} in the point (sgn k ·pk2

µ

2 + 1, 0) if k 6= 0 and on the whole interval [�1, 1] for
k = 0. So the empirical picture is the following : except for the tongue number 0, the tongues
for k > 0 root slightly on the right and then incline to the left and oscillate around the line
{a = kµ} with Bessel asymptotic.

In this chapter, we present two main results. We study the sections of Arnold tongues by
the planes with fixed µ in two different regimes :

• First regime : big amplitude. We suppose that the amplitude of the current is big enough.
We call this case b ! •. It is considered in our article with Alexey Klimenko, see
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1.3. First regime : big amplitude

Subsection 1.3, and we describe an interesting asymptotic form of the tongues in this
regime. Although in this case µ will be fixed, we still take it into account. Particularly,
the dependence of estimating functions on µ will be explicit.

Second regime : small external frequency. This case corresponds to the limit µ ! 0 and is more
relevant for applications for Josephson junction dynamics. We explain the qualitative
behavior of the system in this case and show the connection between the geometrical
structure of the tongues with slow-fast properties of the equation (1.2). We show the
zones in the space of parameters which are almost covered by the carpet of Arnold
tongues (except for the gaps, exponentially small in µ). We also exhibit an effective
algorithm of construction of the boundaries of those tongues for small values of µ, µ ⇠
0.01).

1.3 First regime : big amplitude

This case is completely described in our article that is joined untouched (references in the
article correspond to the bibliography of the article and not the bibliography of the Chapter).
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Asymptotic properties of Arnold tongues and

Josephson e↵ect

A. Klimenko ⇤, O. Romaskevich †‡

To our dear teacher Yu.S. Ilyashenko on his 70-th birthday

Abstract

A three-parametrical family of ODEs on a torus arises from a
model of Josephson e↵ect in a resistive case when a Josephson junction
is biased by a sinusoidal microwave current. We study asymptotics of
Arnold tongues of this family on the parametric plane (the third pa-
rameter is fixed) and prove that the boundaries of the tongues are
asymptotically close to Bessel functions.

1 Introduction

We will deal with a family of di↵erential equations on a circle R/2⇡Z

dx

dt
=

cos x+ a+ b cos t

µ
, (1)

which arises in physics of the Josephson e↵ect1. In the paper we refer to (1)
as to the Josephson equation.

Here a, b 2 R, and µ > 0 are parameters. Such a family was studied in
the context of Prytz planimeter [16] as well as in the context of bicycle track
trajectories [1, 2]. For the first time the techniques of slow-fast systems (for
µ ⌧ 1) were applied to this equation by J. Guckenheimer and Yu. Ilyashenko

⇤Steklov Mathematical Institute of RAS, Email: klimenko05@mail.ru
†National Research University Higher School of Economics, École Normale Superieure

de Lyon, Email: olga.romaskevich@gmail.com
‡Supported by part by RFBR grants 12-01-31241-mol-a and 12-01-33020-mol-a-ved
1In physical literature this equation is often written with sines instead of cosines. Sub-

stitutions x ! x ± ⇡/2, t ! t ± ⇡/2 transform one variant to another; one can see that
these substitutions do not a↵ect all results of this paper.
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in [7] but in the context of Josephson e↵ect the family (1) has not been
studied from a mathematical point of view till the series of works [8, 9] by
V.M. Buchstaber, O.V. Karpov and S.I. Tertychnyi. Now this subject has
become quite popular, see for instance [10, 11, 12, 13, 17, 18].

The family (1) can be generalized to the following form:

dx

dt
=

f(x) + a+ bg(t)

µ
, (2)

where f and g are 2⇡-periodic functions with zero averages:

Z

2⇡

0

f(x) dx = 0,

Z

2⇡

0

g(t) dt = 0. (3)

Any equation of the form (2) defines a vector field on a two-dimensional torus
R2/2⇡Z2 with coordinates x and t. Namely, introducing a new time variable
⌧ , we can express this vector field as

8

>

<

>

:

@x

@⌧
= f(x) + a+ bg(t),

@t

@⌧
= µ.

(4)

The same vector field can also be considered as a vector field on a cylinder
R2/((x, t) ⇠ (x, t+2⇡)). In both cases the Poincaré map from the transversal
line {t = 0 mod 2⇡} to itself can be defined, we denote it as P

a,b,µ

for the

torus, and eP
a,b,µ

for the cylinder. Clearly, eP
a,b,µ

is a lift of P
a,b,µ

.
Consider the rotation number ⇢

a,b,µ

of the map P
a,b,µ

which is, by defini-
tion, a limit

⇢
a,b,µ

:= lim
n!1

eP �n
a,b,µ

(x)� x

2⇡n
.

It is well known that this limit exists and does not depend on the point x 2 R
(see, for example, [14]). The value of the rotation number is an important
characteristic of a map P

a,b,µ

: for instance, it is invariant under conjugation
by homeomorphisms.

Definition 1. We say that the phase lock occurs for the value k 2 R of
rotation number if the level set

E
k

:= {(a, b, µ)|⇢
a,b,µ

= k}

in the space of parameters R2 ⇥ R
+

has nonempty interior. In this case the
level set E

k

is called an Arnold tongue.
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The structure of Arnold tongues for the equation (1) and its generaliza-
tions is of a great interest for physical applications as well as from a purely
mathematical point of view. We study sections of Arnold tongues by the
planes with fixed µ. Nevertheless, we still take µ into account, particularly,
constants in the O( · )’s do not depend on µ.

Since the right-hand side of the equation (2) (and thus the map eP
a,b,µ

)
grows monotonically with a there is no phase lock for k /2 Q. This happens
generically to Arnold tongues: they are absent for irrational values of rotation
number. Moreover, the specificity of the equation (1) gives that for k 2 Q\Z
there is no phase lock as well.

It’s easy to see that the substitution u = tan x

2

conjugates the equation
(1) to a Riccati equation. This fact was noticed by R.Foote in [16] in the con-
text of Prytz planimeter then rediscovered independently by Yu.Ilyashenko
[15, 12] and V.Buchstaber, O.Karpov, S.Tertychnyj [10] in the context of
Josephson e↵ect. This simple but important remark gives that the Poincaré
map P

a,b,µ

is conjugated to a Möbius transformation. Lots of uncommon
properties of Josephson equation follow from this fact, the absence of phase
lock for non-integer rotation numbers as one of the examples.

Indeed, if ⇢
a,b,µ

= p/q, q > 1, then the Poincaré map has a periodic point
of period q. But a Möbius transformation with periodic non-fixed points
should be periodic itself. Therefore, ( eP

a,b,µ

)q(x) = x + p. Monotonicity in a
yields that this identity can appear for only one value of a provided b and µ
are fixed, hence the level set has empty interior.

So for a fixed µ there is a countable number of tongues on the plane of
parameters (a, b), corresponding to integer rotation numbers. From now on
we will consider the half-plane b > 0; another half-plane could be studied
using symmetries of the equation.

The previous argument uses only the fact that f(x) = cos x, imposing no
conditions on g(t). But when g is even (in particular, when g(t) = cos t) the
equation (4) possesses an additional symmetry: the map (x, t) 7! (�x,�t)
brings phase curves to themselves with orientation reversed. This means that
�P

a,b,µ

(�x) = P�1

a,b,µ

(x). Hence, if x
0

is fixed point of P
a,b,µ

, then �x
0

is also
a fixed point. If the point (a, b, µ) lies on the boundary of an Arnold tongue
then the Möbius map eP

a,b,µ

is either parabolic or identity. In the parabolic
case its only fixed point x̂ should satisfy x̂ ⌘ �x̂ (mod 2⇡), hence x̂ is either
0 or ⇡.

For any fixed b and µ the set Eb,µ

k

= {a 2 R : (a, b, µ) 2 E
k

} is a closed
interval Eb,µ

k

= [a�
b,µ

, a+
b,µ

]. When a varies from left end a�
b,µ

of the interval

Eb,µ

k

to its right end a+
b,µ

, the set {x : eP
a,b,µ

(x) > x+ k} grows monotonically
since the right-hand side of the equation (2) is monotonic in a. Thus, if x̂

3



is a fixed point of P
a,b,µ

for a = a�
b,µ

, then eP
a,b,µ

(x̂) > x̂ + k for all a 2 Eb,µ

k

,
except a = a�

b,µ

, and x̂ can not be a fixed point of P
a,b,µ

for a = a+
b,µ

. Hence

P
a,b,µ

has a fixed point 0 at one end of the segment Eb,µ

k

and ⇡ on its other
end.

Therefore, for a fixed µ, boundary of the Arnold tongue with rotation
number equal to k 2 Z can be presented as a union of two graphs of analytic
functions denoted by a

0,k

(b) and a
⇡,k

(b), where 0 (respectively, ⇡) is fixed by
Poincaré map when a = a

0,k

(b) (respectively, a = a
⇡,k

(b)). These graphs can
intersect, and the Poincaré map P̃

a,b,µ

is identical at the intersection points.

2 Main results

We are interested in the asymptotics of the boundaries a
0,k

(b) and a
⇡,k

(b) of
Arnold tongues for (1) as b ! 1. These estimates will be established in two
steps. First, in Theorem 1 we show that the boundaries a

0,k

(b) and a
⇡,k

(b)
are close to the line a = kµ. Thereupon we show in Theorem 2 that the
functions a

0,k

(b)�kµ and a
⇡,k

(b)�kµ are asymptotically close to normalized
integer Bessel functions. This fact was noticed for the first time in [6], right
after the discovery of the Josephson e↵ect in 1962 with the first explanation
on a physical level of rigor; see also chapter 5 in [4], §11.1 in [5], and [10]. In
this paper we give a complete proof of this statement, as well as the estimates
on the di↵erence.

Theorem 1. There exist positive constants C
1

, C
2

, K
1

, K
2

such that the fol-
lowing holds.

If the parameters a, b, µ are such that

|a|+ 1  C
1

p

bµ, b � C
2

µ (5)

then
�

�

�

�

a

µ
� ⇢

a,b,µ

�

�

�

�

 K
1p
bµ

+
K

2

bµ
ln

✓

b

µ

◆

 K
1p
bµ

+
2K

2

p

bµ3

. (6)

Theorem 2. There exist positive constants C 0
1

, C 0
2

, K 0
1

, K 0
2

, K 0
3

such that the
following holds.

For the parameters b, µ and a number k 2 Z satisfying inequalities

|kµ|+ 1  C 0
1

p

bµ, b � C 0
2

µ (7)

the following estimates hold
�

�

�

�

a
0,k

(b)

µ
� k +

1

µ
J
k

✓

� b

µ

◆

�

�

�

�

 1

b

✓

K 0
1

+
K 0

2

µ3

+K 0
3

ln

✓

b

µ

◆◆

,
�

�

�

�

a
⇡,k

(b)

µ
� k � 1

µ
J
k

✓

� b

µ

◆

�

�

�

�

 1

b

✓

K 0
1

+
K 0

2

µ3

+K 0
3

ln

✓

b

µ

◆◆

.

(8)
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Theorem 2 is our main result – it shows how the boundaries of Arnold
tongues could be approximated by Bessel functions if b is su�ciently large;
this is illustrated by Figure 1.

Recall that the Bessel function of the first kind can be defined as

J
k

(�z) =
1

2⇡

Z

2⇡

0

cos(kt+ z sin t)dt. (9)

It has the following asymptotics for large z (see [3]):

J
k

(�z) =

r

2

⇡z
cos

✓

�z � k⇡

2
+
⇡

4

◆

+O

✓

1

z3/2

◆

as z ! +1.

Applying this to (8) we obtain

a
...,k

(b) = k ±
r

2

⇡bµ
cos

✓

b

µ
� k⇡

2
+
⇡

4

◆

+O
µ

(b�1 ln b). (10)

(HereO
µ

( · ) isO( · ) with the constant depending on µ.) Therefore, the Bessel
asymptotics is indeed the main term for a

...,k

(b). In particular, (10) means
that the graphs of a

0,k

(b) and a
⇡,k

(b) do have infinitely many intersections,
that is, each Arnold tongue has infinitely many horizontal sections of zero
width. The points (a, b) on the plane of parameters corresponding to the
intersections of the boundaries of some Arnold tongue are clearly very special.
Poincaré map P

a,b,µ

corresponding to such points is an identity map.

Definition 2. Point (a, b) 2 R2, b 6= 0 on the boundary of the Arnold tongue
with ⇢

a,b,µ

= k 2 Z is called an adjacency point if it lies on the intersection
of the boundaries, i.e. a = a

0,k

(b) = a
⇡,k

(b).

Recently many interesting results on the structure of Arnold tongues for
the Josephson equation were discovered. Here we present a brief summary.

First of all, the k-th Arnold tongue E
k

intersect the line b = 0 at one point
(sgn k · pk2µ2 + 1, 0) if k 6= 0, and E

0

intersects this line by the segment
[�1, 1] (for b = 0 the equation (1) does not depend on time and can be easily
integrated). As we have noted above, Theorem 2 implies that each tongue
has infinitely many adjacency points.

What is more surprising, Figure 1 suggests the following conjecture: the
adjacency points of a k-th Arnold tongue lie on the same line a(b) ⌘ kµ
(dotted lines on Fig. 1). This is proven in [17] for µ � 1 and the proof uses
the classical theory of non-autonomous linear equations of complex variable.
For µ < 1 this fact is not yet proven and rests a reasonable conjecture. The
di�culty resides in a study of adjacency points near the line b = 0.
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Figure 1: Arnold tongues of Josephson equation in the domain on the plane
of parameters (a, b) for a fixed µ = 0.4.

Grey domains are Arnold tongues E
k

for k = �4, . . . , 4, their boundaries
(solid lines) are curves a = a

0,k

(b) and a = a
⇡,k

(b).
Curves �

1

and �
2

are defined by conditions of the form (5). The estimates
of Theorem 2 are applicable in the domain above both �

1

and �
2

(contoured
with bold line). Relations between conditions of the form (5) and the con-
ditions (7) of Theorem 2 are discussed in the first part of the proof of this
theorem. Dashed lines in this domain represent Bessel approximations given
by Theorem 2.
Dotted lines are the lines a = kµ, which contain all adjacency points of
Arnold tongues [17].
Domain between the lines `

1

and `
2

is where the slow-fast techniques work
[13].
The computer simulations for this picture were done by I.Schurov.
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The result in [17] is the only global non-trivial result on the structure of
Arnold tongues of (1), other results concentrate attention on the behaviour
in some domains of the parameter plane.

For instance, for µ small enough the techniques of slow-fast systems can
be used to show that the domain between the lines `

1

= {b = a + 1} and
`
2

= {b = a � 1} is filled up tightly with Arnold tongues and the distances
between the tongues diminish exponentially in µ. For the review of slow-fast
techniques for (1) see [13].

The overall picture of the behaviour of Arnold tongues is the following: in
any finite domain around the line b = 0 the tongues fill up tightly the space
[13] and for b tending to infinity (when “b is bigger than µ is smaller”) Bessel
behaviour prevails over the slow-fast one. This is, however, very sketchy, and
many questions still can be asked on a local behaviour of Arnold tongues. As
an example, it seems from the picture that the right boundaries of Arnold
tongues E

k

, k > 0, have inflection points on the line `
2

. We have no idea if
it is true or not and how to prove it.

Now let us sketch proofs of Theorem 1 and Theorem 2. First of all, we
rewrite (1) as an integral equation

x(t)� x(0) =
at+ b sin t+

R

t

0

cos x(⌧) d⌧

µ
(11)

and use the fact that for the most part of the segment [0, 2⇡] the function
cos x(t) oscillates very fast, since dx/dt is large if only |cos t| is not very small.
It will be shown that this implies that the integral in (11) is quite small, hence
for all solutions of (1) the di↵erence x(2⇡)�x(0) = eP

a,b,µ

(x(0))�x(0) is close
to 2⇡a/µ. But if the circle map is uniformly 2⇡"-close to the rigid rotation
by the angle 2⇡↵, then its rotation number is "-close to ↵. Therefore, inside
the k-th Arnold tongue a/µ should be close to k, hence a is close to kµ.

For the second theorem, we expand the integral in (11) using the formula
(11) itself:

x(2⇡)� x(0) =
2⇡a

µ
+

1

µ

Z

2⇡

0

cos

✓

a⌧ + b sin ⌧ +
R

⌧

0

cos x(s) ds

µ
+ x(0)

◆

d⌧.

(12)
On the boundary of the Arnold tongue, where either a = a

0,k

(b) or a =
a
⇡,k

(b), the left-hand side equals 2⇡k if either x(0) = 0 or x(0) = ⇡. We will
show that the inner integral is small and its influence on the value of the
outer integral is also small so it can be dropped. Then, we replace a⌧ with
kµ⌧ inside the outer integral (since a� kµ is small due to Theorem 1). This
yields a change of the outer integral in (12) by the amount of the next order
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of magnitude. Therefore

2⇡k ⇡ 2⇡a

µ
+

1

µ

Z

2⇡

0

cos

✓

k⌧ +
b

µ
sin ⌧ + x(0)

◆

d⌧.

The integral on the right-hand side can be expressed in terms of J
k

(z) by (9)
and we thus obtain

k ⇡ a

µ
± 1

µ
J
k

(�b/µ),

where the sign is “+” if x(0) = 0 and “�” if x(0) = ⇡.

The remaining part of this paper is organized as follows. In the next
section we obtain several estimates for the integral

R

⌧

0

cos x(s) ds and related
values. In Section 4 we deduce Theorems 1 and 2 from these estimates.
Finally, in Section 5 we discuss partial generalizations of these results to the
equations of type (2).

3 Estimations of the integrals

In what follows in the next section we will need estimates for the integral
expressions contained both in (11) and (9). Fortunately, these estimates can
be obtained simultaneously. Indeed, consider an equation

dx

dt
=
� cos x+ a+ b cos t

µ
. (13)

If � = 1, we obtain the standard Josephson equation (1), while if � = 0 we
obtain integrable di↵erential equation with solutions

x(t) = x(0) +
at+ b sin t

µ
.

Therefore, if x̂(t) is the solution of an equation corresponding to � = 0 with
an initial condition x̂(0) = 0 , then

R

2⇡

0

cos x̂(⌧) d⌧ coincides with the integral
in (9) for k = a

µ

and z = � b

µ

.
Below we always assume that

|�|  1.

The main instrument in our proof is the following Lemma 1. Informally
speaking, it states that if x(t) is moving with almost constant speed, then
the time average of a bounded function  and its space average along the
same arc of a trajectory are close to each other.
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Lemma 1. Suppose that ẋ(t) is of the constant sign for t 2 [t
0

, t
1

]. Denote

|ẋ|
min

= min
t2[t0,t1]

|ẋ(t)|, |ẋ|
max

= max
t2[t0,t1]

|ẋ(t)|, osc
[t0,t1]

(ẋ) = |ẋ|
max

� |ẋ|
min

.

Then for any bounded integrable function  on a circle we have

�

�

�

�

1

t
1

� t
0

Z

t1

t0

 (x(t)) dt� 1

x
1

� x
0

Z

x1

x0

 (x) dx

�

�

�

�

 osc
[t0,t1](ẋ)

|ẋ|
min

· k k
C

0 , (14)

where x
0

= x(t
0

), x
1

= x(t
1

), k k
C

0 = sup
x2R/2⇡Z| (x)|.

Proof. Indeed,

�

�

�

�

1

t
1

� t
0

Z

t1

t0

 (x(t)) dt� 1

x
1

� x
0

Z

x1

x0

 (x) dx

�

�

�

�

=

=

�

�

�

�

1

x
1

� x
0

Z

x1

x0



x
1

� x
0

t
1

� t
0

· dt
dx

� 1

�

 (x) dx

�

�

�

�

.

It remains to show that the absolute value of the expression in square brackets
is not more than osc

[t0,t1](ẋ)/|ẋ|min

. Suppose that ẋ(t) is positive on [t
0

, t
1

].
Then (x

1

� x
0

)/(t
1

� t
0

) and dx/dt belong to [|ẋ|
min

, |ẋ|
max

], hence

|ẋ|
min

|ẋ|
max

� 1  x
1

� x
0

t
1

� t
0

· dt
dx

� 1  |ẋ|
max

|ẋ|
min

� 1,

and finally, we obtain that
�

�

�

�

x
1

� x
0

t
1

� t
0

· dt
dx

� 1

�

�

�

�

 osc
[t0,t1](ẋ)

|ẋ|
min

,

so inequality (14) is proven. The case of negative ẋ(t) is treated similarly.

Consider a solution x(t) of equation (13) on some interval [0, t⇤]. Take
all points 0 = t

0

< t
1

< · · · < t
k

 t⇤ such that x(t
k

) ⌘ x(0) (mod 2⇡)
and split the interval [0, t⇤] by these points into subsegments I

i

= [t
i�1

, t
i

],
i = 1, . . . , k, and I⇤ = [t

k

, t⇤].
As it was said before, the subintervals with “small” and “not so small”

values of |ẋ| are treated di↵erently. Consider a set

M
�

= {⌧ 2 [0, t] : |cos ⌧ | < �},

where � will be chosen later.
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However, from now on we assume that

A := |a|+ 1  b�

C
a

, (15a)

� � C
b

r

µ

b
, (15b)

�  1 (15c)

where positive constants C
a

and C
b

are su�ciently large.
The subsegments I

i

and I⇤ thus fall into the following categories:
type 1 segments : the subsegments that are fully covered by M

�

;
type 2 segments : the subsegments I

i

that are partially covered by M
�

and I⇤

in the case if it is not fully covered by M
�

;
type 3 segments : the subsegments I

i

that are not intersecting with M
�

.
Note that there is no more than five segments of type 2 since any such
segment is either I⇤, or contains one of the four points ⌧ with |cos ⌧ | = � in
its interior. Let us also denote by I

1

, I
2

, and I
3

the union of all the segments
of corresponding type.

We start with an estimate for the length of the segment of type 2 or 3.

Remark. In the exposition below we use the notation u(s) = O(v(s)) in the
following precise sense: there exist a constant C such that |u(s)|  Cv(s)
(here v(s) is always positive), and this constant is assumed to be independent
from parameters a, b, µ, from the values of �, C

a

, C
b

(but we still suppose
that (15) holds), and from any other variables. Informally speaking, one
can fix some large explicit values for C

a

and C
b

(say, one million) and then
replace all O( · )’s in the text below with some explicit estimates. We prefer
not to make these hindsight substitutions in order not to hide dependencies
between constants in di↵erent estimates.

Proposition 1. If C
a

and C
b

in (15) are su�ciently large, then the following
holds.

Let I be any segment of type 2 or 3. Let t̂ be any point in I \M
�

. Then
the length |I| of this segment satisfies the following estimate:

|I| = O

✓

µ

b cos t̂

◆

.

Proof. The proof for type 3 segments is trivial: x(t) travels distance not more
than 2⇡ with its speed bounded from below, thus the time of the travel is
bounded from above. However, for the type 2 segments we need a sort of
bootstrapping argument: the lower bound for the speed holds only for initial

10



moment t̂ and it worsens as time goes; nevertheless, it worsens so slowly that
we cannot travel distance of 2⇡ for such a long time that the speed estimate
is totally ruined.

Let us pass to the formal proof. Denote I = [t�, t+], L = |I| = t
+

� t�.
Inequality |x(t

+

)� x(t�)|  2⇡ and the mean value theorem yields that

|I| ·min
I

|ẋ|  |x(t
i

)� x(t
i�1

)|  2⇡. (16)

For any ⌧ 2 I we have ⌧ = t̂+ s for some s with |s|  L. Therefore,

|ẋ(t̂+ s)| �
�

�

�

�

b cos(t̂+ s)

µ

�

�

�

�

�
�

�

�

�

� cos x+ a

µ

�

�

�

�

� b
�|cos t̂|� |cos(t̂+ s)� cos t̂|�

µ
� A

µ
� b|cos t̂|� A� b · L

µ

since the cosine is a Lipschitz function with constant equal to one. Now (16)
yields

L · b|cos t̂|� A� b · L
µ

 2⇡.

The same argument works for any subsegment Ĩ ⇢ I such that t̂ 2 Ĩ. We
can choose such Ĩ to be of any length between zero and L, so

by2 � (b|cos t̂|� A)y + 2⇡µ � 0 for any y 2 [0, L].

Since |cos t̂| > �, one can see that if C
a

� 2 and C
b

� 32⇡ then it follows
from (15a) and (15b) that this quadratic polynomial has two positive real
roots. Therefore, L does not exceed its smaller root:

L 
b|cos t̂|� A�

q

(b|cos t̂|� A)2 � 8⇡bµ

2b

=
4⇡µ

b|cos t̂|� A+
q

(b|cos t̂|� A)2 � 8⇡bµ
 4⇡µ

b|cos t̂|� A
 8⇡µ

b|cos t̂| .

The last inequality here uses (15a) with C
a

� 2. The proposition is proven.

This yields the estimate of a Lebesgue measure of I
1

[I
2

, which we denote
by the symbol mes( · ).
Proposition 2. If C

a

and C
b

in (15) are su�ciently large, then

mes(I
1

[ I
2

) = O

✓

µ

b�
+ �

◆

.
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Proof. The set I
2

consists of not more than five segments, and the length of
each of them is bounded by Proposition 1 (we choose t̂ with |cos t̂| = �):

mes I
2

= 5 ·O(µ/b�).

The set I
1

is a subset of M
�

, hence

mes I
1

 mesM
�

 4 arcsin �  4 · ⇡
2
� = O(�).

Now, let us estimate the integral over any subsegment I
k

of type 3.

Proposition 3. If C
a

and C
b

in (15) are su�ciently large then for any
bounded function h : R/2⇡Z ! R with zero average:

Z

2⇡

0

h(⇠) d⇠ = 0,

and for any segment I
j

of the type 3 we have
�

�

�

�

�

Z

Ij

h(x(⌧)) d⌧

�

�

�

�

�

 khk
C

0

Z

Ij



O

✓

1

b|cos t̂|

◆

+O

✓

µ

b cos2 t̂

◆�

dt̂.

Proof. It follows from Lemma 1 that

1

|I
j

|

�

�

�

�

�

Z

Ij

h(x(⌧)) d⌧

�

�

�

�

�

 khk
C

0 · oscIj(ẋ)
min

Ij |ẋ|
. (17)

Here we use that x(t
j

)� x(t
j�1

) = ±2⇡, hence
R

x(tj)

x(tj�1)
h(x) dx = 0.

In order to estimate expressions in the right-hand side of (17), we take
any t̂ 2 I

j

; Proposition 1 and Lipschitz property of cosine then give us that

osc
Ij(cos t)  |I

j

|  O

✓

µ

b|cos t̂|

◆

.

Further,

osc
Ij(ẋ(t)) 

1

µ

�

osc
Ij cos x(t) + b osc

Ij(cos t)
�  2

µ
+O

✓

1

|cos t̂|

◆

,

min
Ij |ẋ(t)| �

1

µ

�

min
Ij |b cos t|� A

� � 1

µ

�

b|cos t̂|� osc
Ij(b cos t)� A

�

=
1

µ

✓

b|cos t̂|�O

✓

µ

|cos t̂|

◆

� A

◆

. (18)
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For su�ciently large C
a

and C
b

, (15a) and (15b) make the second and the
third terms in the right-hand side of (18) to be smaller than b|cos t̂|/3, hence

min
Ij

|ẋ(t)| � b|cos t̂|
3µ

.

Therefore,

1

|I
j

|

�

�

�

�

�

Z

Ij

h(x(⌧)) d⌧

�

�

�

�

�

 khk
C

0 ·O
✓

1

b|cos t̂| +
µ

b cos2 t̂

◆

,

and it remains to integrate the last inequality over t̂ 2 I
j

.

4 Proofs of theorems

Proof of Theorem 1. Note that if a circle map is uniformly 2⇡"-close to the
rigid rotation by the angle 2⇡a/µ, then its rotation number is "-close to a/µ.
For any solution x(t) of (1) we have

�

�

�

�

x(2⇡)� x(0)

2⇡
� a

µ

�

�

�

�

=

�

�

�

�

1

2⇡µ

Z

2⇡

0

cos x(t) dt

�

�

�

�

,

hence the first inequality in (6) follows from the next proposition. The second
inequality in (6) uses simple estimate ln z < 2

p
z.

Proposition 4. There exist positive constants C
1

, C
2

, K
1

, K
2

such that the
following holds.

If parameters a, b, µ satisfy (5) then for any t⇤ 2 [0, 2⇡] and any solution
x(t) of (1) we have

�

�

�

�

Z

t

⇤

0

cos x(t) dt

�

�

�

�

 K
1

r

µ

b
+

K
2

b
ln

✓

b

µ

◆

. (19)

Proof. 1. Fix values of C
a

and C
b

such that Propositions 1, 2, and 3 hold for
them. Let us also assume that C

b

� 2. Set

� = C
b

r

µ

b
, C

1

=
C

b

C
a

, C
2

= C2

b

. (20)

One can see that if a, b, and µ satisfy (5) with these values of C
1

and C
2

then all inequalities in (15) hold.
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2. Split the integral in (19) into the integrals over subintervals I
i

and
I⇤. For the subintervals of types 1 or 2 we use Proposition 2 and bound the
integrand by 1. For the subintervals of type 3 we use Proposition 3. Hence

�

�

�

�

Z

2⇡

0

cos x(t) dt

�

�

�

�

 O

✓

µ

b�
+ �

◆

+

Z

I3
O

✓

1

b|cos t̂| +
µ

b cos2 t̂

◆

dt.

Since I
3

⇢ [0, 2⇡] \M
�

, the last integral is not more than the corresponding
integral over [0, 2⇡] \M

�

, which equals

4

Z

arccos �

0

O

✓

1

b|cos t̂| +
µ

b cos2 t̂

◆

dt̂

= O

✓

1

b

◆

· ln 1 +
p
1� �2

�
+O

✓

µ

b

◆

·
p
1� �2

�

 O

✓

1

b
ln

2

�

◆

+O

✓

µ

b�

◆

= O

✓

1

b



ln

s

b

µ
+ ln

2

C
b

�◆

+O

✓

r

µ

b

◆

. (21)

As C
b

� 2, the second term in square brackets is negative and can be dis-
carded. This yields (19).

Proof of Theorem 2. The proof contains two parts. The core part (see items
2–6 below) shows that if some conditions similar to those of Theorem 1
hold for a = a

0,k

(b, µ) (or a = a
⇡,k

(b, µ)), b, and µ, then a is close to the
Bessel function as stated in (8). However, a priori we do not know that
for a given b and µ the boundaries a

...,k

(b, µ) of k-th Arnold tongue satisfy
these estimates. Thus we start with preliminary part (item 1 below) showing
that under some conditions on k, b, and µ the triples (a

0,k

(b, µ), b, µ) and
(a

⇡,k

(b, µ), b, µ) satisfy conditions needed for the core part of the proof.
1. First of all, fix C

a

and C
b

such that Propositions 1, 2, and 3 hold for
them. Now fix values of C

1

, C
2

and � = C
b

p

b/µ defined by (20).
Let us show that if C 0

1

and C 0
2

are appropriately chosen, then for any b,
µ, and k that satisfy (7), each one of the triples

(kµ, b, µ), (a
0,k

(b, µ), b, µ), (a
⇡,k

(b, µ), b, µ) (22)

satisfies (5). For the first triple this obviously holds for any C 0
1

 C
1

, C 0
2

� C
2

.
Consider the second triple (the argument for the third one is exactly the
same). If C 0

1

is su�ciently small and C 0
2

is su�ciently large, then the following
inequalities hold:

K
1

p

C 0
2

+K
2

C 0
1

< 1, C 0
1

 C
1

/2, C 0
2

� C
2

, (23)
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Take any constants C 0
1

and C 0
2

that satisfy (23). We now show that for any
b, µ, k satisfying (7) we have

|a
0,k

(b, µ)� kµ| < 1. (24)

Indeed, the inequality (24) holds for all su�ciently large b due to Theo-
rem 1. Therefore, if it fails for some b0, µ0, and k0 satisfying (7) then by
continuity there exist b00 � b0 such that (24) “almost holds”: |a

0,k

0(b00, µ0) �
k0µ0| = 1. Clearly, the triple (b00, µ0, k0) also satisfies (7), and the triple
(a

0,k

0(b00, µ0), b00, µ0) satisfies conditions (5) of Theorem 1 because

|a
0,k

0(b00, µ0)|+ 1  |k0µ0|+ 2  2C 0
1

p

b00µ0  C
1

p

b00µ0.

Therefore, Theorem 1 yields

|a
0,k

0(b00, µ0)� k0µ0|  K
1

r

µ0

b0
+

K
2p

b0µ0 
K

1

p

C 0
2

+K
2

C 0
1

< 1,

this contradicts our assumption |a
0,k

0(b00, µ0)� k0µ0| = 1.
2. From now on we fix C 0

1,2

that satisfy (23). In particular this means
that Propositions 1, 2, and 3 hold for all triples in (22), where b, µ, and k
satisfy (7).

Consider a point a
0,k

(b, µ) with such values of b, µ, and k. Let x
0

(t) be
the solution of (1) with a = a

0,k

(b, µ) such that x
0

(0) = 0. As it was said
before, then x

0

(2⇡)� x
0

(0) = 2⇡k, and (11) yields

k =
x
0

(2⇡)� x
0

(0)

2⇡
=

a
0,k

(b, µ)

µ
+

1

µ

Z

2⇡

0

cos x
0

(⌧) d⌧.

Therefore,

a
0,k

(b, µ)�kµ+J
k

⇣

� b

µ

⌘

= � 1

2⇡

Z

2⇡

0

cos
⇣

kt+
b

µ
sin t+ (t)

⌘

�cos
⇣

kt+
b

µ
sin t

⌘

dt,

(25)
where

 (t) =

✓

a
0,k

(b, µ)

µ
� k

◆

t+
1

µ

Z

t

0

cos x
0

(⌧) d⌧. (26)

Denote also x̂(t) = kt+ (b/µ) sin t. Then the right-hand side in (25) equals

� 1

2⇡

Z

2⇡

0

cos(x̂(t)) · (cos (t)� 1) dt+
1

2⇡

Z

2⇡

0

sin(x̂(t)) · sin (t) dt.

Denote the summands here as S
1

and S
2

respectively.
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3. Let us start by estimating the norm of  . The triple (a
0,k

(b, µ), b, µ)
satisfies conditions (5), hence we may apply Theorem 1 for the first summand
in (26) and Proposition 4 for the second one. Then we obtain

k k
C

0 = O

✓

1p
b

✓

1

µ1/2

+
1

µ3/2

◆◆

, (27)

In order to estimate S
1

, we bound the first cosine by 1 and the second mul-
tiplier by k k2

C

0/2. This yields

|S
1

| = O

✓

1

b

✓

1

µ
+

1

µ3

◆◆

.

4. The estimation of S
2

goes along the lines of proof of Proposition 4.
We split [0, 2⇡] into subsegments J

j

and J⇤ by the points where x̂(t) ⌘ 0
(mod 2⇡), consider the set M

�

, and classify these subsegments into types 1,
2, or 3 as above.

Recall that x̂(t) is a solution of the equation (13) with � = 0, and the
parameters equal to â = kµ, b̂ = b, µ̂ = µ. As it was said before, we can
apply Propositions 1, 2, and 3 to it.

The integral in S
2

splits into the sum of integrals over subintervals J
j

and
J⇤. We denote the part of this sum corresponding to the segments of types
1 and 2 by S(1,2)

2

and the part corresponding to the segments of type 3 by

S(3)

2

. Proposition 2 applies to S(1,2)

2

:

|S(1,2)

2

| 
X

J=Jj ,J
⇤

of types 1 or 2

�

�

�

�

1

2⇡

Z

J

sin x̂(t) · sin (t) dt
�

�

�

�

 ksin k
C

0

2⇡

X

J=Jj ,J
⇤

of types 1 or 2

|J |


✓

1p
b

✓

1

µ1/2

+
1

µ3/2

◆◆

·O
✓

µ

b�
+ �

◆

= O

✓

1

b

✓

1 +
1

µ

◆◆

.

5. The part S(3)

2

is estimated as follows. Fix any point t
j

in each I
j

. Then

|S(3)

2

| 
X

Jj of type 3

�

�

�

�

�

1

2⇡

Z

Jj

sin x̂(t) · sin (t
j

) dt

�

�

�

�

�

+
X

Jj of type 3

�

�

�

�

�

1

2⇡

Z

Jj

sin x̂(t) · ⇥sin (t)� sin (t
j

)
⇤

dt

�

�

�

�

�

.

Denote the two sums on the right-hand side by S(3)

?

2

and S(3)

??

2

, respectively.

The first sum, S(3)

?

2

is estimated by Proposition 3:

S(3)

?

2

 k k
C

0

Z

J3



O

✓

1

b|cos t̂|

◆

+O

✓

µ

b cos2 t̂

◆�

dt̂.
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The integral is managed exactly in the same way as the integral over I
3

in
the proof of Proposition 4; together with inequality ln z  2

p
z and (27) this

yields

S(3)

?

2

= O

✓

1

b

✓

1 +
1

µ2

◆◆

.

6. In the sum S(3)

??

2

we bound sin x̂(t) by 1 and the di↵erence in square
brackets by osc

Jj   |J
j

| ·max
Jj | 0|  |J

j

| · (|a� kµ|+ 1)/µ:

S(3)

??

2


X

Jj of type 3

|J
j

| osc
Jj  

X

Jj of type 3

|J
j

|2 ·
✓

�

�

�

�

a

µ
� k

�

�

�

�

+
1

µ

◆

.

We have already seen in (24) that |a� kµ| = O(1) hence the last bracket is
O(1/µ). Proposition 1 yields

|J
j

|2 
Z

Jj

O

✓

µ

b|cos t̂|

◆

dt̂,

therefore by (21) we obtain

S(3)

??

2


Z

[0,2⇡]\M�

O

✓

dt̂

b|cos t̂|

◆

= O

✓

ln(b/µ)

b

◆

.

Joining together the estimates for S
1

, S(1,2)

2

, S(3)

?

2

, and S(3)

??

2

, we complete
the proof.

5 Generalizations

Let us now discuss some possible generalizations of Theorems 1 and 2. The-
orem 1 can be straightforwardly generalized to any equation of the form (2)
such that the graph of the function g transversely crosses the line {t = 0}.
More precisely, the proof given above uses only the following properties of
the functions f and g:

1. functions f and g are bounded by 1;

2. g is Lipschitz with constant 1;

3. the graph y = g(t) transversely intersects the line y = 0.

(Recall that also
R

2⇡

0

f(x) dx = 0,
R

2⇡

0

g(t) dt = 0.)
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Constants equal to one in these properties can be easily replaced by any
other constants by the means of the substitutions

(f, g, a, b, µ) ! (f/D, g/D, a/D, b, µ/D),

(f, g, a, b, µ) ! (f, g/D, a, bD, µ)

with someD > 0. As for the last condition, it is used in two parts of the proof:
(1) estimates of mesM

�

and (2) estimates of the integrals
R

[0,2⇡]\M�
dt̂/|g(t̂)|

and
R

[0,2⇡]\M�
dt̂/g2(t̂) in (21). Let us express transversality condition in the

following quantitative way: there exists "
0

> 0 and L > 0 such that for any
"  "

0

we have
mesM

"

:= mes{t : |g(t)|  "}  L".

Suppose that �  "
0

(this is a required modification of condition (15c)), then
mesM

�

is estimated exactly in the same way as in the proof, and for integrals
we use the following estimate:

Z

[0,2⇡]\M�

dt̂

g2(t̂)
=

Z 1

0

mes

⇢

t̂ 2 [0, 2⇡] \M
�

:
1

g2(t̂)
� y

�

dy

=

Z 1

0

mes

⇢

t̂ 2 [0, 2⇡] : �  g(t̂)  1p
y

�

dy.

The set is empty if y > 1/�2, otherwise we bound its measure by mesM
1/

p
y

,
which is estimated via transverality condition:

Z

1/�

2

0

mesM
1/

p
y

dy 
Z

1/"

2
0

0

2⇡ dy +

Z

1/�

2

1/"

2
0

Lp
y
dy  O(1) +O

✓

1

�

◆

.

Another integral is bounded similarly, and (21) preserves its form. Therefore,
we obtain the following generalization of Theorem 1.

Theorem 3. Fix any positive constants L
0

, L
1

, L
2

, L
3

. Then there exist
positive constants C

1

, C
2

, K
1

, K
2

depending on L
0,1,2,3

such that the following
holds. Consider any functions f and g with zero averages such that

1. their continuous norms are bounded: kfk
C0  L

1

, kgk
C0  L

1

,

2. g is Lipschitz with constant L
2

: |g(t
1

)� g(t
2

)|  L
2

|t
1

� t
2

|,
3. for any � < 1/L

0

there is a bound mes{|g(t)| < �}  L
3

�.
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Then if the parameters a, b, µ of the equation (2) are such that

|a|+ 1  C
1

p

bµ, b � C
2

µ

we have
�

�

�

�

a

µ
� ⇢

a,b,µ

�

�

�

�

 K
1p
bµ

+
K

2

bµ
ln

✓

b

µ

◆

 K
1p
bµ

+
2K

2

p

bµ3

.

As for Theorem 2, we have seen in Section 1 that the reduction to a
Riccati equation and identification of fixed point of eP

a,b,µ

for the Arnold
tongue boundaries with 0 and ⇡ works only if f(x) = cosx and g(t) is
even. These conditions cannot be significantly extended (trivial extension
is obtained by coordinate change x0 = x+ x

0

, t0 = t+ t
0

; the conditions take
form f(x0) = cos(x0 � x

0

), g(t0) = g(2t
0

� t0)). Under these assumptions and
transversality condition discussed above the following analogue of Theorem 2
holds. Modifications in its proof are exactly the same as above.

Theorem 4. Fix any positive constants L
0

, L
1

, L
2

, L
3

. Then there exist pos-
itive constants C 0

1

, C 0
2

, K 0
1

, K 0
2

, K 0
3

depending on L
0,1,2,3

such that the following
holds.

Consider any function g with zero average that satisfies conditions 1–3
of Theorem 3 and the condition g(t) = g(�t). Let a

0,k

(b, µ) and a
⇡,k

(b, µ)
be the boundaries of k-th Arnold tongue of the equation (2) with this g and
f(x) = cosx. Then if the parameters b, µ and a number k 2 Z satisfy
inequalities

|kµ|+ 1  C 0
1

p

bµ, b � C 0
2

µ

the following estimates hold
�

�

�

�

a
0,k

(b)

µ
� k +

1

µ
J̃
k

✓

� b

µ

◆

�

�

�

�

 1

b

✓

K 0
1

+
K 0

2

µ3

+K 0
3

ln

✓

b

µ

◆◆

,
�

�

�

�

a
⇡,k

(b)

µ
� k � 1

µ
J̃
k

✓

� b

µ

◆

�

�

�

�

 1

b

✓

K 0
1

+
K 0

2

µ3

+K 0
3

ln

✓

b

µ

◆◆

,

where

J̃
k

(�z) =
1

2⇡

Z

2⇡

0

cos(kt+ zG(t)) dt, G(t) =

Z

t

0

g(⌧) d⌧.

The function J̃
k

stems from integral representations (11) (12), which now
have the form

x(t)� x(0) =
at+ bG(t) +

R

t

0

cos x(⌧) d⌧

µ
,

x(2⇡)� x(0) =
2⇡a

µ
+

1

µ

Z

2⇡

0

cos

✓

a⌧ + bG(⌧) +
R

⌧

0

cos x(s) ds

µ
+ x(0)

◆

d⌧
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(note that G(2⇡) = 0 due to (3)). The function J̃
k

also has asymptotic
representation similar to the one for J

k

:

J̃
k

(�z) ⇠
X

j

1
p

2⇡z|g0(t
j

)| cos
✓

zG(t
j

) + kt
j

+
⇡

4
sgn(g0(t

j

))

◆

as z ! +1, (28)

where the sum is taken over all the zeros t
j

of the function g on a circle.
Recall that these zeroes are simple (and hence the denominators in (28)

are nonzero) due to transversality condition 3 of Theorems 3 and 4.
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1.4. Second regime : small external frequency

1.4 Second regime : small external frequency

Let us consider the equation (1.2) in a different from the Subsection 1.3 mode, i.e. when
µ is small. The totally different world opens to us : the world of slow-fast systems, and the
techniques of the study in this Subsection differ from the techniques of Subsection 1.3. This
Chapter is based on our paper [21] with Victor Kleptsyn and Ilya Schurov written in Russian.
The presentation was improved and some pictures and proofs were added.

1.4.1 Zonal behavior of the tongues

Thanks to the use of the algorithm that is described later in Subsection 1.4.5 we obtained
the pictures of boundaries of Arnold tongues for different values of µ, see Figures 1.5 and
1.6. On these pictures one can see that when µ diminishes, the tongues are approaching each
other and three domains (zones) with qualitatively different behavior of the tongues emerge :

• Zone A : A = {(a, b)|b < a � 1}.The tongues are thin.
• Zone B : B = {(a, b)|a � 1 < b < a + 1}. The tongues fill up almost all the space of

parameters, and there are no adjacency points for each fixed tongue in this zone.
• Zone C : C = {(a, b)|b > a + 1}. The tongues are organized in a lattice-form structure,

and they pave almost all of the space of parameters, adjacency points are present.

We should note that zones B and C exist only in the bounded neighborhood of zero (not
depending on µ). For example, as we see from theorems in Subsection 1.3 for b big enough
the boundaries stop approaching each other and do not give a lattice-form structure : the
better approximation for the boundaries in this case is Bessel approximation. The zone C is
dispersing in this case and the theorems of Subsection 1.3 give some estimates on when the
lattice structure starts to disappear and Bessel behavior wins over it.

The goal of this Subsection is two formulate mathematically some of the descriptions of
zonal behavior stated above and to prove them as well as to establish an effective algorithm
that permits to calculate the boundaries of Arnold tongues and draw pictures as those from
Figues 1.5 and 1.6.

1.4.2 Slow-fast systems reminder

The structure of zones B and C described in previous Subsection can be understood with
the help of the theory of slow-fast systems. Let us remind its basic notions.

Definition 1.5. Consider a family of differential equations
(

ẋ = f (x, y, µ)

ẏ = µg(x, y, µ)
(1.10)

where µ 2 R
>0, µ << 1 and x, y are multidimensional variables, x 2 Rn, y 2 Rm, and f , g :

Rn ⇥ Rm ! R are some functions.
Such a family of differential equations is called a slow-fast system. The variables x are called fast

variables, and the variables y – a slow variables.
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Chapitre 1. Dynamics of the equation modeling a Josephson junction

Figure 1.5 – The black lines correspond to the boundaries of Arnold tongues for Josephson equation
on the parametric plane (a, b) corresponding to rotation numbers r = 0, 1, 2, . . . , 10 for µ = 0.2

Figure 1.6 – By diminishing µ and taking µ = 0.1 one can see that the tongues become closer to each
other, and the gaps between the tongues are impossible to detect with an eye
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1.4. Second regime : small external frequency

The slow-fast system terminology comes from the idea that the rates of change of the
variables y and x differ drastically. The variables y change approximately µ times slower than
the variables x (at least, in a generic point of a phase space where f 6= 0).

For µ = 0 the system (1.10) becomes a system of equations on the variable x since y in this
case can be considered as a parameter. This system is called a fast system.

Definition 1.6. A set of fixed points

M = {(x, y) 2 Rn ⇥ Rm | f (x, y, 0) = 0}

of a fast system is called a slow hypersurface, and in two-dimensional case, a slow curve.

A generic trajectory of a generic slow-fast system with one fast and one slow variable
admits the following description [26] : it has alternating phases of slow (with a velocity of
order O(µ)) motion near the slow curve and fast (with a velocity of order O(1)) jumps along
the trajectories {y = const} of a fast system. Those jumps occur near the points where the
tangent line to a slow curve is parallel to the axis of slow motion, the so-called fold points.

In the case of our study we see that when µ << 1 the system of equations (1.2) can be
considered as a slow-fast system with one fast variable x and one slow variable t. The study
of Josephson equation as a slow-fast system has been started by J. Guckenheimer and Yu.
Ilyashenko [14] even if the authors didn’t use this terminology. The Josephson equation was
chosen by them in order to produce some duck solutions for slow systems.

1.4.3 Slow curve for Josephson equation

The slow curve for (1.2) is the following subset M of the torus

M = {(x, t) | cos x + a + b cos t = 0} (1.11)

By simple calculation one can prove a following

Proposition 1.7. In the zone A the slow curve is an empty set, in the zone B the slow curve is a
contractible convex curve with two fold points and in the zone C the curve M is split into two non-
contractible curves with homotopy type (1, 0)each of them having two fold points.

The little stop-motion film of how the slow curve changes is depicted in Figure 1.7.

1.4.4 Description of the behavior

Theorem 1.8. Let B0 be some open bounded set in the space of parameters (a, b) for which B̄0 b B =
{(a, b)|a � 1 < b < a + 1}. Then for µ small enough there exist constants C1, C2 > 0 such that the
distance between two neighboring Arnold tongues in B0 is bounded by C1 exp

⇣

�C2
µ

⌘

.

Proof. From the considerations of Subsection 1.2.2 we know that the boundaries of Arnold
tongues are given by a following condition : a trajectory with an initial condition (x0, 0) 2 T2

should be passing through a point (x0, 2p) 2 T2 on the torus with coordinates (x, t), where
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Chapitre 1. Dynamics of the equation modeling a Josephson junction

Figure 1.7 – A stop–motion movie showing the change of a slow curve with a fixed a and growing b.
There is no slow curve for small b then it appears when b = a� 1 (it is a point in this case). The the slow
curve continues growing and at b = a + 1 there is a new bifurcation : the curve starts intersecting itself.
Then it falls into two non-intersecting homotopic circles that tend to torus meridians while b ! •

x0 = 0 or x0 = p. With the use of the solutions x(t) of the equation (1.2), the points x0 can be
lifted to the universal covering of the circle S1 and the conditions above can be rewritten as

x̃0(2p) = 2pk, (1.12)
x̃

p

(2p) = p + 2pk, (1.13)

where k 2 Z is a number of Arnold’s tongue whose boundaries we are describing. And x̃0(t)
(x̃

p

(t) is a phase curve of the equation (1.2) with an initial condition x̃0(0) = 0 (correspondin-
gly, x̃

p

(0) = p correspondingly), lifted to the covering (a cylinder in terms of phase space, a
line in terms of Poincaré map).

The property of symmetry of phase curves under the central symemetry t (see formula
(1.9) in Subsection 1.2.2) gives us the following. If the Poincaré map for a full period of time
(T = 2p) displaces some point by a distance of D = 2pk, k 2 Z then this same point will be
displaced by a Poincaré map corresponding to the half of the period T

2 = p by twice a smaller
distance, D

2 = pk. Hence the conditions described above in (1.12) can be rewritten as

x̃0(p) = pk, (1.14)
x̃

p

(p) = p + pk. (1.15)

In other words, the boundaries of the tongues are described by one of these two conditions :
Zero boundary. A point 0 maps to 0 or p mod 2p) after a half-period
Pi boundary. A point p maps to 0 or p mod 2p) after a half-period

The 0 or p response depends on the oddity of k 2 Z.
Note that when the parameters of the equation (1.2) a and b change continuously, the value

x0(p) (x
p

(p) correspondingly) changes continuously from 0 to p (correspondingly, from p to
2p), so the shift for the half of the period is one half of the turn on the circle. Consequently,
for the full period the shift will give the full circle and the rotation number will grow by 1.
This corresponds to the passage to the neighboring tongue.

Now suppose that the parameters (a0, b0) 2 B0 belong to the boundary of some tongue.
Without loss of generality, we will suppose that this is the zero boundary and that the condition
0 maps to p holds. Other cases are treated by analogy.

Let us consider an arc Ju = [(p, p), (2p, p)] ⇢ {t = p} containing a point x = 3p

2 , see
Figure 1.8. This arc intersects the repelling part of the slow curve. Let us reverse time for a
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1.4. Second regime : small external frequency

Figure 1.8 – The flow of the vector field (1.2) corresponding to the parameters (a, b, µ) belonging to
the zero boundary of the tongue, a = a0,k(b) for a fixed µ. The interval Ju corresponds to the half of
the circle {t = p} and covers the repelling part of the slow curve. Its preimage D under the flow of
Josephson equation is exponentially small in µ. The slow curve is the violet curve.

moment : in this case, the repelling part becomes an attractive one. The image D of the arc
Ju under the Poincaré map from the transversal {t = p} to the transversal {t = 0} (in the
inversed time) has a length O

⇣

exp
⇣

�C
µ

⌘⌘

. This follows from the fact that while moving near
the stable part of a slow curve the trajectories of a slow-fast system exponentially attract to
each other, see a detailed proof by Ilyashenko-Guckenheimer [14], Proposition 4. The precise
bounds for C can be found following the works of I.Schurov on canard cycles in generic
slow-fast systems [28], Lemma 5.4.

Note that since the condition "0 maps to p after the half of the period" holds then the lower
extremity of the interval Ju will map to 0. Hence, its preimage D can be written as D = [0, x],
where x = O

⇣

exp�C
µ

⌘

.
This is not hard to show that the derivative of the solution with respect to parameters a

and b in the domain t 2 [0, p] is bounded away from zero (and in fact has order of O
⇣

1
µ

⌘

).

Hence, by changing the parameter a or b up to the size of the order of O
⇣

1
µ

⌘

one can map the
higher extremity of D to zero. In the course of this continuous change the value x0(p) will be
continuously changing from p to 2p, what corresponds to the changing in rotation number
by 1, i.e. to the jump to the next Arnold tongue. ⇤

The analogous statement can be proven also for the domain C and the lattice-like behavior
of Arnold tongues :

Theorem 1.9. Let C0 be some open bounded set in the space of parameters (a, b) for which C̄0 b C =
{(a, b)|b > a + 1}. Then for µ small enough there exist constants C1, C2 > 0 such that the distance
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Chapitre 1. Dynamics of the equation modeling a Josephson junction

Figure 1.9 – The idea of the proof of Theorem 1.9 is shown on this Figure. The slow curve in the
domain C (in violet) has two components – two circles. Under the supposition we make in the proof
of Theorem 1.9 the picture is the following.The circle {t = a} is divided into two parts : an attractive
part Js and a repelling part Ju. The trajectories of all the points of the transversal {t = 0} except for an
exponentially small interval Du will cross the section Js : so the trajectories x0(t) and x

p

(t) will be very
close once they have stayed some time near the attracting part of the slow curve. And since x0(p) = p

then, by a small change of parameters one can obtain x
p

(p) = p and pass to the neighboring tongue.

between two neighboring Arnold tongues in C0 is bounded by C1 exp
⇣

�C2
µ

⌘

.

Proof. Basic ideas of the proof are analogous to those from the proof of Theorem 1.8. Suppose
that a point (a0, b0) lies on a boundary of some Arnold tongue. As in the proof of Theorem
1.8 we can suppose that the condition "0 maps to p after a half of the period" holds.

Let us consider a transversal G = {t = a}, where a 2 [0, p] is chosen in such a way that G
intersects a slow curve in two points (in other words, G is far away from fold points). Let us
break G into two intervals. One of them Js intersects a stable part of a slow curve, and another
one Ju – an unstable part :

Js = {(x, t) | t = a, x 2 [0, p)} ⇢ G,
Ju = {(x, t) | t = a, x 2 [p, 2p)} ⇢ G.

See Figure 1.9 for the illustration.
Let us also denote as Du the image of the interval Ju under the Poincaré map from the

transversal G to the transversal {t = 0} in the negative time, and as Ds — the image of the
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1.4. Second regime : small external frequency

interval Js under the Poincaré map from the transversal G to the transveral {t = p} in the po-
sitive time. Following the same arguments as in Theorem 1.8, one can prove that the intervals
Du and Ds are exponentially thin.

Let us now consider a trajectory x0(t) (correspondingly, x
p

(t)), that passes through a point
(0, 0) (correspondingly, (p, 0)). There are two possible cases :

1. The point 0 lies in the interval Du and hence, x0(a) 2 Ju.
2. The point 0 doesn’t belong to the interval Du and in this case x0(a) 2 Js and x0(p) =

p 2 Ds (remember : we supposed that the condition 0 maps to p» holds).
Let us suppose that the case 2 holds. Suppose p 62 Du and then x

p

(a) 2 Js and x
p

(p) 2 Ds.
In this case the distance between p = x0(p) and x

p

(p) is exponentially small, and after an
exponentially small change of parameters one can obtain the condition «p maps to p». In this
case rotation number either grows by 1 either diminishes by 1. And if p 2 Du, then one can
exponentially change one of the parameters a or b so that this condition breaks.

The case 1 can be considered in an analogous way (we just have to exchange indices u and
s). ⇤

Remark 1.10. From the proof of Theorem 1.9 follows that any point on the boundary of the
tongue verifies one of these two conditions : {0, p} \ Du 6= ? or {0, p} \ Ds 6= ?. These
conditions give a family of the exponentially thin tubes in the space of parameters to which
the boundaries of tongues belong. These are those tubes that one can see on the images of
numerical experiments, as on Figures 1.6 and 1.5 in the zone C.

When one moves along the boundary of a tongue, the corresponding characteristic trajec-
tory passes near stable or unstable part of the slow curve : it depends on which one of the
cases 1 or 2 holds. This corresponds to the "left" or "right" movement of the boundary of the
tongue on the plane of parameters. In the moment, when the boundary makes a turn, the
trajectory passes the comparable times near stable and unstable parts of slow curve. Those
solutions are colled duck solutions, see [2]. One says that the name duck solutions is related to
the form of solutions as well as to the fact that their discovery was unexpected.

1.4.5 Boundary programming and Newton’s method

This Subsection is dedicated to the problem of constructing Arnold tongues for the equa-
tion (1.2) with numerical methods. Such a problem is highly difficult if one approaches it
directly. Indeed, in order to calculate a rotation number with the formula (1.1) one needs to
integrate the equation (1.2) for some long periods of time. To find the rotation number with
a mistake not more than # one needs to integrate the equation on the period of time of the
length of the order (#µ)�1. And for the construction of Arnold tongues, one needs to know
the rotation number on a considerably dense net in the space of parameters.

Although, if one uses the special properties of Josephson equation described in Section 1.2,
one can propose a much more effective algorithm of construction of the Arnold tongues. We
will describe this algorithm in the rest of this Subsection.

As already explained in a previous Subsection, the boundaries of Arnold tongues can be
defined by fixing the images of points 0 and p under the Poincaré map on the half of the
period, see (1.14).
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Figure 1.10 – The picture of domains A, B and C described euristically in Subsection 1.4.1. The domains
B and C correspond to non-empty slow curves : the techniques of slow-fast systems are applied to
study Arnold tongues, the domain A is much harder to study and almost nothing is known about the
behaviour of the tongues in this domain.

Let us suppose that condition "0 maps to 0" holds (in this case the number of the tongue
k is even, k = 2l). Other conditions can be considered in the same manner. Suppose x =
x0(t; a, b, µ) gives a phase trajectory passing by the point (0, 0).

Let us fix some parameter µ and put

Q(a, b) = x0(p; a, b, µ) (1.16)

We are interested in the level line of the function Q(a, b), corresponding to the value pk :

Lk := {(a, b) | Q(a, b) = pk = 2pl}.

Suppose the boundary of the tongue Lk is given by the graph of the function a = a(b). When
b = 0, the equation (1.2) can be integrated explicitly (as mentionned before in Subsection 1.2.3)
and the value a(0) is known :

a(0) =
q

1 + l2
µ

2

Now let us suppose that the value a0 = a(b0) for some b0 is known. Let us take some small
step of size h and find an approximate value of a(b0 + h). This is equivalent to solving the
equation

Q(a, b0 + h)� pk = 0 (1.17)

with respect to a. As a zero-approximation solution let us put a = a0. Now consider the system
8

<

:

x0 = cos x + a + b cos t,
t0 = µ,
u0 = �u sin x + 1.

(1.18)
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1.4. Second regime : small external frequency

The third equation in the system corresponds to the equation in variations with respect to a
parameter, u = ∂x

∂a .
After the numerical calculation of the system of differential equations (1.18), we can find

Q0 = Q(a0, b0 + h) as well as Q0 = ∂Q
∂a |a0,b0+h. Now we replace Q as a function of a by a

tangent in the point a0 (in other words, we apply Newton’s method to find out the solution of
the equation (1.17)), and as a first approximation to a we find :

a1 = a0 � (Q0 � pk)/Q0.

After finding out a1, we make a substitution b0 + h 7! b0, a1 7! a0 and we repeat the procedure.
In such a way, one can find the value a(b) for any value b on the net with a step h.

On each step with respect to b we do only one step of Newton’s method. But the mistake
won’t grow : one can show by induction that on each step the mistake of the zero-order
approximation is O(h) and of the first-order approximation is O(h2). This assures that on the
next step the mistake in the 0-order approximation will be equal to O(h2 + h) = O(h) etc.

The described algorithm works effectively for µ of order 1 but for smaller µ (around 0.1)
the problems of convergence of Newton’s method reappear. The secret is in the fact that the
trajectory comes closer near the repelling part of the slow curve M. In this case a big derivative
with respect to the initial condition is stocking up, and it gives the computational instability
of our method.

When one computes the tongues in the domain B this problem can be solved by conside-
ring an inverse map : Q�1 instead of Q. In other words, one integrates the system (1.18) in the
reversed time. In this case the considered trajectory goes near the attracting part of the slow
curve and the problem that was described doesn’t occur anymore.

Unfortunately, in the domain C this simple trick doesn’t work : when one passes near the
adjacency point of the neighboring tongue the trajectory we consider is a duck trajectory, in
other words it passes near the repelling part of the slow curve in positive and in negative
time as well. So, in this case we adapt our Newton’s algorithm and we make several steps of
Newton’s method which uses a method of bisection of intervals (stable but less effective) in
the case when there is no convergence of initial method.

In this way, we manage to construct the tongues for µ = 0.01 with this method. As far as
we know, before the algorithms for the construction of Arnold tongues for Josephson equation
were known only for µ of order 0.1 (see [23, 3]).
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2

Lagrange problem and the asymptotic
angular velocity of a swiveling arm

In this Chapter we study a classical problem of finding an asymptotic angular velo-
city of the motion represented as a sum of circular motions. This problem was first
considered by Lagrange who was studying the movement of celestial bodies. We give
a solution of this problem for a complete oriented riemannian surface of a curvature
that is close to constant. As a particular case, we obtain an explicit answer to the ini-
tial Anatoly Stepin’s question for the value of the asymptotic angular velocity of a
swiveling arm on the hyperbolic plane.
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The problem to which this Chapter is devoted was first formulated by Joseph-Louis La-
grange in the XVIIIth century. He has been interested in the understanding of the asymptotic
behavior of the end of the chain of intervals, each one of which is turning around its first
vertex with a constant angular velocity.

The organization of the Chapter is the following : in Section 2.1 we formulate the classical
case of this problem – the movement on the euclidian plane. This case was studied in a series of
works by P. Bohl, P. Hartman, E. R. Van Kampen, A. Wintner and H. Weyl. After giving some
bibliographical information, we give a new proof of the Lagrange problem for this classical
case. In Section 2.2 we formulate the problem for the case of an arbitrary riemannian surface,
and we present a solution for this case based on a new proof from Section 2.1.

2.1 Classical Lagrange problem : motion of the swiveling arm on the
euclidian plane

2.1.1 Setting : definitions and history of the problem

For the fixed numbers l1, l2, . . . , lN 2 C consider the map Y from the N-torus to the com-
plex plane, Y : TN ! C that sends a point (q1, . . . , qN) 2 TN = RN/ (2pZ)N to the point

N

Â
j=1

lje2piqj . (2.1)

We will call Y a swiveling arm of type l = (l1, . . . , lN) on the complex plane. Note that one
can think of such a map as of a set of intervals on the complex plane, attached one to another
in a chain. Note that in the given definition the complex numbers lj 2 C give the following
information about this chain : their modules |lj| correspond to the lengths of the intervals in
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2.1. Classical Lagrange problem : motion of the swiveling arm on the euclidian plane

a chain and their arguments arg lj correspond to the angles that the intervals have with the
horizontal direction in the position Y(0, . . . , 0).

The topology of Y�1(z) for some fixed z is an interesting question, considered, among
others, by Jean-Claude Haussmann in [4, 5]. We will spice up this geometrical construction
with some dynamics.

Let us consider the linear flow Tt on TN given by a vector field

X =
N

Â
j=1

wj
∂

∂qj
, wj 2 R. (2.2)

This linear flow Tt gives the dynamics of a swiveling arm : each joint of an arm is turning
with a constant angular speed wj around the end of a previous joint, see Figure 2.1.

The question that interests us is the following :
Let us fix an initial position of the arm. Does the end of it (the end of the Nth joint) have

an asymptotic angular velocity in such a movement and if yes, is it possible to calculate its
value w as a function of the lengths |lj| and angular speeds wj ? And does the answer depend
on the initial position ?

Let us consider an initial condition for the vector field be (q0
1, . . . , q

0
N). Then the extremity

of a swiveling arm of type (l1, . . . , ln) moving in a vector field (2.2) at the time t will be given
by a point

z(t) = l1eiq0
1 eiw1t + . . . + lNeiq0

N eiwNt 2 C. (2.3)

We will suppose from now on that lj = |lj|eiq0
j , in other words that arg lj = q

0
j . So lj encodes

the initial position of the swiveling arm and the equation (2.3) can be rewritten in a simpler
form, encoding the information about initial conditions :

z(t) = l1eiw1t + . . . + lNeiwNt (2.4)

Definition 2.1. For a swiveling arm of type l = (l1, . . . , lN) in dynamics defined by the flow of the
vector field (2.2), the asymptotic velocity of the endpoint of the system w is defined as a limit

w = lim
T!+•

arg z(T)
T

, (2.5)

where arg is a continuous determination of the argument z(t) and z(t) 2 C is the end of the system of
swiveling arms, see (2.3).

Remark 2.2. For the time being we assume that z(t) 6= 0. In this case one can choose a
continuous determination of the argument function along the path z(t), t 2 R+.

The question of finding the angular asymptotic velocity (2.5) of a swiveling arm in the vec-
tor field (2.2) was first stated by Lagrange in his two volume work [7] on celestial mechanics.
The formulation of the problem makes one think about the theory of epicycles developed by
Hipparchus of Rhodes in the 2nd century BC who was decomposing the motion of planets in a
superposition of periodic motions. But naturally, Lagrange was wide aware (after the works of
Kepler, Newton and others) that this theory was not appropriate to describe the solar system.
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Figure 2.1 – A swiveling arm of type (l1, l2, l3) rotating in a vector field (2.2) with N = 3.

He knew that the movement of the planets under the gravitational forces was complicated
although close to an elliptical one. The swiveling arm motion appears in Lagrange’s calcula-
tions as an approximation of the variation of the longitude of the perihelion for the orbit of a
planet in the N-body problem.

From now on, we will call the question of finding the angular asymptotic velocity of a
swiveling arm in the vector field (2.2) a Lagrange problem.

Lagrange solved this problem in a simple case when one of the intervals is longer than
the sum of the lengths of all others. In this case, w = wj where j is the number of the longest
joint. In this case we will say that a swiveling arm is Lagrangian : its end point never passes
by zero and the asymptotic velocity w is equal to the angular velocity corresponding to the
longest of the joints. Moreover, the angle j(t) chosen as a continuous branch of the argument
j(t) = arg z(t) has the linear asymptotics of the form

j(t) = wjt + O(1).

For the general case, Lagrange didn’t consider it and he even added : "Il est fort difficile et
peut-être même impossible de se prononcer, en général, sur la nature de l’angle j." 54. The existence
of the asymptotic angular velocity was obtained for a general case in a sequence of works
by P. Bohl, P. Hartman, E. R. Van Kampen, A. Wintner and H. Weyl in [1, 3, 10] by some
straightforward calculation coupled with the use of ergodic theorem but the explicit formula
for this velocity w is still not established.

One can note some subtleties : the question of Lagrange is asked for all all values of
asymptotic velocitites wj. As we will see later, the proof simplifies in the case when wj are
rationally independent because of the possibility of use of ergodic theorem. This proof was
obtained by Hartman-Van Kampen-Wintner and Weyl. The general case was studied by Jessen
and Tornehave, see [9] for a very nice survey of the question.

Let us also note that Lagrange problem was studied in a much more wider context of
almost periodic functions, see [8].

54. It is hard and maybe even impossible to understand, in general, the nature of the angle j
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2.1.2 What happens if the swiveling arm that passes by 0

If there is no preponderant term in the exponential polynomial (2.3) (non-Lagrangian case)
then a swiveling arm considered by Lagrange may pass by zero. Although in this case, one
still can find a way to define the limit (2.5). First of all, if z(t) passes by 0 only a finite number
of times, one gives the sense to the limit (2.5) when T ! • in an obvious way.

Although, it can happen that the set {t : z(t) = 0} is not finite (note for example that even
in the simplest case N = 2 it always occurs when l1 = l2). But even in this case, one can define
the limit (2.5) in the following way.

Since z(t) is an analytic function then if z(t) = 0, the tangent line to z(t) is still well defined
and the argument arg z(t) is then well defined mod p. So the argument of the function z(t)
at 0 can be defined as an angle corresponding to the inclination of this tangent line.

By considering the argument as a function mod p and not 2p and if one accepts that r(t)
can be negative (it changes sign if t passes a zero of z(t) of the odd order), one can give sense
to the formula (2.5). In what follows we place ourselves in this setting.

So for example, in the case N = 2 and l1 = l2 this improved definition will give the
asymptotics for j(t) = 1

2 (w1 + w2)t + o(t) that can be checked by direct calculation, see [9, 2].

2.1.3 The answer for Lagrange problem for N = 3 and rationally independent
angular velocities

The case N = 2 being completely treated, the first non-trivial case of the Lagrangian
problem is N = 3. This Chapter is dedicated to a new purely geometric proof of the classical
result

Theorem 2.3. [3, 6] For the dynamics of a swiveling arm of type l = (l1, l2, l3) in the plane C ⇠= R2

governed by a vector field (2.2) such that lj satisfy all of three triangle inequalities and for w1, w2, w3
rationally independent, the asymptotic velocity for the movement exists and is equal to the convex sum

w =
a1

p

w1 +
a2

p

w2 +
a3

p

w3 (2.6)

where aj are the angles in the triangle formed by intervals with sides l1, l2, l3. The angle aj > 0 is the
angle corresponding to the side lj, j = 1, 2, 3.

Note that the formulation of the Theorem contains that the resulting asymptotic angular
velocity doesn’t depend on the initial conditions arg lj. This is true in the case when wj are
rationally independent but is not true in general case.

2.1.4 Formulation of the Hartman-van Kampen-Wintner theorem for general N

The result for N = 3 stated in previous Subsection can be deduced from a more general
theorem for any N :

Theorem 2.4. [3, 6] For the dynamics of a swiveling arm of type l = (l1, . . . , lN) in the plane C ⇠= R2

governed by a vector field (2.2) and for w1, w2, . . . , wN rationally independent, the asymptotic velocity
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Figure 2.2 – For a fixed position of the first interval, the angles q2 corresponding to the position of
the second interval that correspond to the inequality |l1eiq1 + l2eiq2 | < |l3|, are contained in the range
(�a3, a3) where a3 is the angle in the triangle with the sides |lj|. On the picture one can see two
positions of the swiveling arm in which

�

�l1eiq1 + l2eiq2
�

� = |l3|.

for the movement exists and is equal to the convex sum w = ÂN
j=1 wjqj where the coefficients qj

correspond to the following volumes of the subsets of the torus TN with coordinates (q1, . . . , qN) :

qk = mesN

n

(q1, . . . , qN) 2 TN | |l1eiq1 + . . . + lk�1eiqk�1 + lk+1eiqk+1 + . . . + lNeiqN | < |lk|
o

,
(2.7)

where mesN is a normalised Lebesgue measure of the torus TN.

Let us first remark how Theorem 2.3 can be deduced from Theorem 2.4. First of all, one
can think that w1 = 0 (after passing to the rotating system of coordinates, see Proposition 2.5
for more precision). Then, from formula (2.7) for the coefficients one has

q3 = mes2

n

(q1, q2) 2 TN | |l1eiq1 + l2eiq2 | < |l3|
o

. (2.8)

For a fixed q1 one can easily see that the measure in question is equal to a3
p

and doesn’t
depend on q1, see Picture 2.2. Then the integration with respect to q1 gives the same answer.
Since all the coefficients are obviously symmetrical with respect to the change of the order of
intervals then the final answer is given by formula (2.6).

2.1.5 Classical proof of Hartman-van Kampen-Wintner theorem for general N

Let us remind the reader of the classical proof of Hartman, van Kampen and Wintner of
Theorem 2.4. The ideas of the proof are given in [6] but we find it useful to give a detailed
argument here. We are interested in the study of the asymptotic behavior of the argument of
the function z(t) : R+ ! C defined by (2.4). For now, let us suppose that arg z(t) 6= 0 8t 2 R+

and the swiveling arm doesn’t pass through 0 2 C. Then we can write z(t) in its polar form,
z(t) = r(t) exp j(t). Let us proceed with the following computation :
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ln z(t) = ln r(t) + ij(t) ) j(t) = Re
✓

ln z(t)
i

◆

) dj

dt
= Re

✓

1
i

z0(t)
z(t)

◆

. (2.9)

The last expression can be calculated explicitly using (2.4). We then obtain

dj

dt
= Re

 

1
i

ÂN
j=1 ljiwjeiwj t

ÂN
j=1 ljeiwj t

!

= Re

0

@

ÂN
j=1 |lj|wje

i(wj t+q

(0)
j )

ÂN
j=1 |lj|ei(wj t+q

(0)
j )

1

A . (2.10)

Here lj = |lj|eiq(0)j where
⇣

q

(0)
1 , . . . , q

(0)
N

⌘

2 TN is a vector corresponding to the initial
position of the swiveling arm.

The asymptotic angular velocity in which we are interested can be represented as

w = lim
T!•

j(T)
T

= lim
T!•

Z T

0

dj(t)
dt

dt. (2.11)

The idea of the proof of Hartman, van Kampen and Wintner was that this expression is
a time average of some function and that in this case the ergodic theorem can be applied to
obtain w as an explicit mean of this function. Indeed, let f : TN ! R be a following function
on the torus :

f (q1, . . . , qN) := Re

 

ÂN
j=1 |lj|wjeiqj

ÂN
j=1 |lj|eiqj

!

. (2.12)

Note that now we can express dj

dt as a value of this function at the point which is the image
of the initial condition q

0 = (q0
1, . . . , q

0
N) 2 TN by the flow Tt of the linear vector field (2.2) on

the torus dj

dt = f
�

Tt
q

0�.
Hence 8t1, t2 2 R we have j(t2)� j(t1) =

R t2
t1

f
⇣

Tt

q

(0)dt

⌘

and the formula (2.11) gives

w = lim
T!•

1
T

Z T

0
f
⇣

Tt

q

(0)
⌘

dt. (2.13)

Now let us remind ourselves that the swiveling arm may pass by 0. In this case the function
f : TN ! R defined by (2.12) is not continuous and takes infinite values when the end of the
swiveling arm z(t) passes by zero. But this function is integrable, f 2 L1(TN , mes).

Take some T0 2 R and denote f̃ (q) := 1
T0

R T0
0 f � Tt(q)dt. This new function being an

average of f is a continuous function on the torus, f 2 C(TN).
Note also that the time averages as well as space averages of these two functions f and f̃

coincide.
Indeed, for the space averages since Tt is a measure-preserving flow,

Z

TN
f̃ (q) =

Z

TN

1
T0

Z T0

0
f � Tt(q)dtdq =

Z T0

0

1
T0

Z

TN
f � Tt(q)dqdt =

=
Z T0

0

1
T0

Z

TN
f (q)dqdt =

Z

TN
f (q)dq. (2.14)
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And for the time averages f•(q) and f̃•(q), analogically, we get

f̃•(q) := lim
T!•

1
T

Z T

0
f̃ � Tt(q)dt = lim

T!•

1
T

Z T

0

1
T0

Z T0

0
f � Tt+t(q)dtdt =

=
1
T0

Z T0

0
lim

T!•

1
T

Z T

0
f � Tt+t(q)dtdt = f•(q). (2.15)

Note that the flow Tt is uniquely ergodic (since wj are rationally independent 55) and
f̃ 2 C(Tn) hence the space averages of f̃ coincide with time averages of f̃ for all values of
q 2 TN . Hence the same is true for f and the limit (2.13) can be written as a space average for
all q 2 TN . Hence we obtain that the limit (2.5) for any initial position of the swiveling arm
z(0) 2 C is just given by the space integral that can be explicitly calculated :

Z

TN
f (q)dq = Re

Z

TN

Âj wj|lj|eiqj

Âj |lj|eiqj
dq1 . . . dqN =

N

Â
j=1

wj|lj|Re
Z

TN

eiqj dq1 . . . dqN

Âj |lj|eiqj
=

=
N

Â
j=1

wj|lj|Re
Z

TN�1

Z 2p

0

eiqj dqj

|lj|eiqj + B(q1, . . . , qj�1, qj+1, . . . , qN)
dq1 . . . qj�1qj+1 . . . qN =

=
N

Â
j=1

wj|lj|Re
Z

TN�1

Z 2p

0

1
i|lj|

∂ ln(Bj + |lj|eiqj)

∂qj
dq1 . . . qj�1qj+1 . . . qN =

N

Â
j=1

wj Re
Z

TN�1

Z 2p

0

1
i

∂ ln(Bj + |lj|eiqj)

∂qj
dq1 . . . qj�1qj+1 . . . qN , (2.16)

where Bj = B(q1, . . . , qj�1, qj+1, . . . , qN) := Âk2{1,...,j�1,j+1,...,N} |lk|eiqk .
Now note that the internal integral over qj is equal to 1 if 0 is inside the circle of center Bj

and radius |lj|, in other words if |lj| > Bj and 0 otherwise. So from this we deduce that

Z

TN
f (q)dq =

N

Â
j=1

wjmesN�1
�

B(q1, . . . , qj�1, qj+1, . . . , qN) < |lj|
 

(2.17)

so we obtain exactly the needed response. ⇤

2.1.6 A new proof for N = 3 : a dipolar form

In the previous Subsection we have shown the classical argument which is essentially a
computation. In this Subsection we will give a new geometric proof of Theorem 2.3 that is
based on the following idea : the argument of the swiveling arm changes significantly only
when the arm passes by zero, and that happens (in case N = 3) when this arm closes up into
a triangle.

First of all, let us note that we can suppose w1 = 0 – it is sufficient to obtain the main
result of Theorem 2.10 for arbitrary w1.

55. The same assumptions about wj hold for the Theorem 2.10 and the swiveling arm on the hyperbolic plane.
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2.1. Classical Lagrange problem : motion of the swiveling arm on the euclidian plane

Proposition 2.5. Suppose the limiting asymptotic velocity w exists for a swiveling arm of type
(l1, l2, l3) with a corresponding vector field

(w2 � w1)
∂

∂q2
+ (w3 � w1)

∂

∂q3
(2.18)

Then the limiting asymptotic velocity exists as well for a swiveling arm of the same type with a corres-
ponding vector field

w1
∂

∂q1
+ w2

∂

∂q2
+ w3

∂

∂q3
(2.19)

exists as well and is equal to w1 + w.

Proof. This is almost obvious : the two systems described in the formulation, one with angular
velocities (w1, w2, w3) and the other with angular velocities (0, w2 �w1, w3 �w1) are related by
the rotation. Indeed, the position of the first system at time t is just the image of the position
of the second one at time t to which the rotation by the angle w1t around the base point 0 is
applied. ⇤

So now we suppose w1 = 0 and we will think about Y as a map from T2 with coordinates
(q2, q3) to C. Also let us think about the flow Tt as a linear flow on the two-dimensional torus
corresponding to the vector field

X = w2
∂

∂q2
+ w3

∂

∂q3
.

Definition 2.6. For any analytic curve g let us define the argument map f
g

= arg : C ! R which
is a multivalued map that defines an argument arg g(t) of the point on this curve. Each time we use
this notation we suppose that we take the continuous determination of the argument (the argument can
be defined even when g passes by 0, see Subsection 2.1.2).

The limiting angular velocity (2.5) that interests us can be written as a time average

lim
T!•

1
T

Z T

0
d f

g(t)

where g(t) = Y(Tt(q2,0 q

0
3)) for some initial position (q0

2, q

0
3) of the swiveling arm.

So for each trajectory z(t) of the swiveling arm in the complex plane we have defined a 1-
form d arg(z). Taking the limit of the time average of this form on the part of the path z(t), t 2
[0, T] is equivalent to the calculation of the change of the argument. The map Y : T2 ! C

transports this form d arg(z) to the form on the torus. We will call this 1-form b a Lagrange
form and we will study it carefully.

Let us note that the form b may be singular since Y sends some points on the torus T2 to
0 2 C. Indeed, there are two points A, B 2 T2 that correspond to the values of q2 and q3 that
make swiveling arms close up into triangles, see Figure 2.3.

Let us choose the coordinates on the torus T2 in a following way : the coordinates (q2, q3)
define a swiveling arm such that the second (third) vector forms an angle q2 (q3) with the po-
sitive direction of horizontal axis (counted counterclockwise). From now on, we work in these
coordinates.Then the points on the torus corresponding to the moments when the swiveling
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Chapitre 2. Lagrange problem and the asymptotic angular velocity of a swiveling arm

Figure 2.3 – Two positions of the swiveling arm that give singular points of the form b : the system
forms one of two closed-up triangles A or B

arm closes up are A = (�p + a3, p � a2) and B = (p � a3, p + a2), see Figure 2.3. Now we
will understand in more detail how the form b looks like and hence, how to take its time
averages.

Let us first formulate a proposition that will be useful for us in the work with a non-
singular part of the form b.

Proposition 2.7. Consider a space M with a measure µ on it and a uniquely ergodic flow Tt : M ! M
of a vector field X on this space, the measure µ being the only invariant measure for the action.

a. Then, for any point x 2 M and for any continuous function f 2 C(M, µ) there exists a limit of
time averages limT!•

1
T
R T

0 f � Tt(x)dt and this limit
• doesn’t depend on the point x 2 M
• is equal to the space average

R

M f dµ of the function f .
b. If one replaces f by f̄ = f + X(g), where g 2 L1(M, R), the time averages of f and f̄ coincide.

c. For any closed 1-form b on M define the function f := b(X). Then its space average
R

M f dµ

is well defined on the cohomology class of b, in other words, it doesn’t change if b is remplaced by
b̄ = b + dg where g 2 C1(M, R).

d. For the case when M = TN and X is a vector field given by (2.2), for any smooth 1-form b holds
R

M b(X) = [b][w1, . . . , wN ], where [b] 2 H1(TN , R) and [w1, . . . , wN ] 2 H1(TN , R) corresponds
to the sum of the coordinate circles with coefficients wj 2 R. Note that [b] has a representative with
breg 2 [b] with constant coefficients b j 2 R : breg = ÂN

j=1 b jdqj.

Proof. a. The existence of the limit and its independence from the initial point x 2 M follows
from the ergodic theorem.

b. Now let us replace f by f̄ . In this case, the difference of limits for f and f̄ is equal to
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2.1. Classical Lagrange problem : motion of the swiveling arm on the euclidian plane

Figure 2.4 – Multivalued function f (z) = arg z�A
z�B is well-defined outside the big ball containing points

A and B as an angle between two rays connecting z to A and to B correspondingly (there is a continuous
determination for this function)

(we apply Newton-Leibnitz formula here)

lim
T!•

1
T

Z T

0
X(g) � Tt(x)dt = lim

T!•

g(TT(x))� g(x)
T

= 0 (2.20)

since g is bounded.
c. The statement of this point can be deduced to the statement of the point b. To prove

that the addition of dg doesn’t change the space integral we can replace it by the time average
using ergodic theorem, and then apply the argument in equation (2.20).

d. The first statement of this point is just the application of point c. to this particular case,
M = Tn, X = Âj wj

∂

∂qj
. The fact that each form has its representative with constant coefficients

follows from the fact that H1(TN , R) ⇠= RN . In conclusion, to find the integral
R

TN b(X) for a
smooth form b we just have to find its cohomology representative with constant coefficients.
⇤

The form b which is measuring the change of the argument in the system is not smooth,
as stated above. Although we know how its singular part looks like.

Definition 2.8. Fix two distinct points A, B 2 C. Let us consider a following multifunction f on
the complex plane : f (z) = arg z�A

z�B . This multifunction can not be defined on all of the plane in a
continuous way although it is well defined outside a large enough ball B(R) around A and B, see
Figure 2.4. Then let us choose a function f̄ : C ! R such that f̄ = f in C \ B(R) and f̄ 2 C•. Then
g = f � f̄ is a multifunction that g = 0 in C \ B(R) and its differential dg defines a singular one-form
that we will call a dipolar form.
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Chapitre 2. Lagrange problem and the asymptotic angular velocity of a swiveling arm

Figure 2.5 – The torus T2 corresponding to the position of the swiveling arm with three joints in the
assumption w1 = 0. Points A, B 2 T2 corresponding to singularities of the form b are put inside the
(blue) disk and hence the form bsing is defined as a dipolar form on the torus.

The dipolar form defined on the complex plane can be transported to a form on the two-
torus that has singularities in the points A, B 2 T2 corresponding to the moments when the
chain closes up into the triangles. For this, we will choose a disk on the torus containing the
points A, B and transport the dipolar form on the plane to the form that we call bsing, a dipolar
form on the torus. Note that bsing depends on the choice of this disk. We choose it as shown
on Figure 2.5.

Then we have a following

Proposition 2.9. For each triple of |lj|, j = 1, 2, 3 satisfying all of the triangle inequalities, the La-
grange 1-form b associated to this triple can be represented as a sum of a regular part having constant
coefficients, a singular part, corresponding to a dipolar form bsing on the torus, defined before and a
differential of a smooth function f . In other words, there exists a form breg 2 H1(T2, R) with constant
coefficients and a function f 2 C1(T2) that b = breg + bsing + d f .

Proof. First of all, let us note that b � bsing is a smooth 1-form on the torus. Indeed, when a
point q 2 T2 makes a loop around the point A (respectively, B) on the torus, the argument
of the end of the swiveling arm grows (or, respectively, diminishes) by 2p exactly as a value
of the dipolar form. This means hat A, B can’t be the singularities of the difference. Neither
any other point of course. The difference between the form and the corresponding dipolar
form bsing has its representative breg in a family of forms with constant coefficients since
H1(TN , R) ⇠= RN and the difference b � bsing � breg is a differential of a smooth function. ⇤
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2.1. Classical Lagrange problem : motion of the swiveling arm on the euclidian plane

Figure 2.6 – A special path connecting the points A and B on the two-torus (chosen inside a blue disc
used for a definition of the form bsing. The flux of the vector field X through this path is equal to
the evaluation of the dipolar part of the form b on X. The paths corresponding to the generators in
cohomology of the torus correspond to the periods of the regular part of the form b.

2.1.7 A new proof for N = 3 : evaluation of Lagrange form

As noticed before, to calculate the change of the argument, we have to calculate the time
average of the form b. This average is the sum of three terms : the averages for bsing, breg
and d f . Since f is smooth, its time average is equal to the space integral and hence 0, see
Proposition 2.7. Following the same Proposition, the time average of breg is its evaluation on
the vector-field X = w2

∂

∂q2
+ w3

∂

∂q3
, in other words, a space integral.

But let us first understand the time average of the dipolar singular part.
Let us choose a path g connecting A and B on the torus that is contained in the disk used

for the definition of bsing. Note that all of such paths are homotopic. We will choose a special
path connecting A and B as drawn on the Figure 2.6. This path corresponds to the passage
from the first singular point A to the second point B by first rotating the second joint and then
finishing the movement by rotating the third joint. Note that the time average of the dipolar
form is equal to the flux of the vector field X through this path. The intuition under this
statement is that the argument of arg z(t) changes by 2p (grows or diminishes in dependence
of the direction) only if the trajectory z(t) crosses the path between A and B.

Let us count the flux of the vector field X = [w2, w3] through this path. On the first way,
when q2 is changing and q3 = p � a2 remains constant, the flux depends only on the vertical
component of the field, w3. Also, the trajectories are transverse to the path and intersect it
from the left to the right, it means we need to calculate the flux with the sign and obtain the
response on this interval of the path equal to the � 2p�2a3

2p

w3. Analogously, the flux through
the vertical component of the path is equal to 2a2

2p

w2.
Now let us calculate the regular part breg of the Lagrange 1-form b : breg = b2dq2 + b3dq3

where b2, b3 2 Z. Note that the regular part depends on the choice of the homotopy path of
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Chapitre 2. Lagrange problem and the asymptotic angular velocity of a swiveling arm

the path g or, equivalently, of the disk containing singular points A and B.
The numbers b2, b3 are the periods of the form. Two calculate them, we can integrate this

form on the paths in T2 which correspond to the first and second generator of cohomology
H1(T2, R). What is important here is that those paths can not intersect the path g that was
connecting the singularities. Because only in this case the evaluation of a regular part will
give us the correct quantity corresponding to the time average of the form b � bsing. We
choose these paths as shown on Figure 2.6 : geometrically, b2 corresponds to the change of the
argument of the end of the system when q3 = 0. In this case, the argument of the end of the
system of swiveling arms doesn’t change when q2 makes one turn of the circle. Indeed, since
triangle inequality holds true, l2 < l1 + l3 and the turning second vector will never get around
0 if the first and the third one are pointing in one direction. Analogously, b3 = 1 because the
argument changes by 2p when the third interval is making one turn and the second is fixed,
pointing in the direction q2 = p. So we have that breg[w2, w3] = w3.

Summing up the effect given by a dipolar part and an effect given by regular part (a
differential gives no effect), we obtain the answer for the asymptotic speed : w = a2

p

w2 +
a3
p

w3.
Passing back to the system where the first interval is turning, we obtain the answer in a
general case, w = w1 +

a2
p

(w2 � w1) +
a3
p

(w3 � w1) = Âj
aj
p

wj. The proof of Lagrange problem
in the euclidian case is finished. ⇤

2.2 Lagrange problem on the riemannian surface with non-zero cur-
vature

Let us now note that the similar problem can be formulated on any riemannian surface M
which is oriented (in order to define the angular velocities and rotations) and complete (in order
to be able to connect the points on this surface by geodesic paths).

Let us fix some point 0 2 M which will be the base for the swiveling arm. We will consider
N geodesic intervals of lengths |l1|, |l2|, . . . , |lN | on M that are forming a chain exactly in the
same way as swiveling arms do on the euclidian plane. These intervals exist due to complete-
ness. Let us also fix some initial positions for these intervals. Then, each of the intervals will
turn with a constant angular speed around the end of the previous interval (or around 0 2 M
for the first interval).

If the lengths |lj|, j = 1, . . . , N are small enough then one may consider a local chart near
0 2 M corresponding to an open domain in the complex plane and to define the conti-
nuous determination of the argument. Then, analogically to the definition (2.5) one can define
asymptotic angular velocity of the extremity of the system in a case of a swiveling arm on
the complete riemannian surface and ask the same question : does a corresponding limit exist
and what is it equal to ?

2.2.1 Redefining the angles

Note that there is one important complication in the case of a general riemannian surface.
In the euclidian case the angles q

0
1, . . . , q

0
N were used to define the initial position of the swi-

veling arm on the euclidian plane (see Formula (2.3) as the angles of the respectful positions
of the intervals, in comparison with the horizontal level. Note that this definition makes no
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2.2. Lagrange problem on the riemannian surface with non-zero curvature

Figure 2.7 – Different ways to define the initial positions of the intervals : in the first case, with respect
to the common horizontal direction (as an euclidian case where the translations exist) and with respect
to the previous interval (in general case).

sense on the general riemmanian surface since there is no common horizontal level, in other
words, global translations do not exist.

So we have to change the coordinates on the space of positions of a swiveling arm. We
will count the angle now as with respect to the initial positions of the previous interval in the
chain. So from now on q

0
j is an angle between the geodesic line continuing in the direction

corresponding to lj�1 and the interval lj, see Figure 2.7 for the comparison of two approaches.
Note that the map Y from the torus TN to M that corresponds to the end of the system of

swiveling arms of lengths l1, . . . , lN still can be defined with the use of these new coordinates.
Indeed, by fixing the angular velocities wj, we can say that each interval is turning around
the end of the previous one with the corresponding velocity since the notion of the angle is
defined. Hence, with the use of the vector field (2.2) we define a movement of the sum of
periodic motions on the oriented complete surface M.

To standardize our approach, let us rewrite the formulation of Theorem 2.3 in the case of
these new coordinates first on the euclidian plane. Let us denote (q1, q2, q3) 2 T3 the coordi-
nates that were used in Section 2.1 corresponding to the angles that the intervals make with a
horizontal axis. And let us denote (q̃1, q̃2, q̃3) 2 T3. Then one can easily see that the connection
between these two sets of coordinates is a linear transformation of a following form :

q̃1 = q1

q̃2 = q2 � q1

q̃3 = q3 � q2.

Its inverse is

q1 = q̃1

q2 = q̃1 + q̃2

q3 = q̃1 + q̃2 + q̃3.

One can see that in the euclidian case the consideration of the second set of coordinates
corresponds to the change of the set of angular velocities wj to w1, w1 + w2, w1 + w2 + w3.
Hence in these coordinates the asymptotic angular velocity from Theorem 2.3 will take the
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following form :

w =
a1

p

w1 +
a2

p

(w1 + w2) +
a3

p

(w1 + w2 + w3) = = w1 + w2
a2 + a3

p

+ w3
a3

p

. (2.21)

In the following we suppose that the coordinates on T3 that we are working with are
(q̃1, q̃2, q̃3) and they correspond to the angles of the intervals made with a previous interval in
the chain.

2.2.2 Constant curvature case

The question of finding the asymptotic velocity of such a system for N = 3 was commu-
nicated to us by Anatoly Stepin for the case of the hyperbolic plane M = H2. If we place
ourselves in the Poincaré disc model then the end of the swiveling arm for N = 3 can be writ-
ten out explicitely and actually the same classical argument (explained wonderfully in [6])
can be applied to this case to obtain the final answer but the formulas will take much more
place. We actually have done the calculation, and it takes eight pages of double integrals. This
motivated us to search for a simpler argument. The argument we presented in Subsections
2.1.6 and 2.1.7 is purely geometrical and once it is elaborated in the euclidian case, it can be
expanded to the hyperbolic case to obtain the following

Theorem 2.10. Consider a torus T3 with coordinates (q̃1, q̃2, q̃3). For a swiveling arm of type l =
(l1, l2, l3) in the hyperbolic plane H2 such that lj satisfy all of three triangle inequalities, and for
w1, w2, w3 rationally independent, the asymptotic velocity wfor the movement governed by the vector
field

X = Â
j

wj
∂

∂q̃j
(2.22)

exists and is equal to the sum

w = w1 + w2
a2 + a3 + A

p

+ w3
a3

p

, (2.23)

where aj are the angles in the triangle formed by intervals with sides |l1|, |l2|, |l3| and A is the area of
this triangle. The angle aj is the angle corresponding to the side lj.

Here the angles (q̃1, q̃2, q̃3) correspond to the angles that the interval in a swiveling arm makes with
the previous interval as explained in Subsection 2.2.1.

Proof. Note that the answer for the euclidian case was obtained in 2.1.7 without almost any
calculation and is due only to the geometry of the movement.

First of all, by repeating the argument of Proposition 2.5 word by word for the hyperbolic
geometry, we can suppose that w1 = 0. Now, since we are studying a vector field (2.22) then
the passage back to w1 will be just adding w1 to the final answer (for the limit angular velocity
w) for w1 = 0.

We will apply the argument of Subsections 2.1.6 and 2.1.7 to the hyperbolic case. All the
ideas and notations are preserved, the only change to make is a change of coordinates : instead
of coordinates (q2, q3) the coordinates (q̃2, q̃3) are considered. This changes the coordinates of
the singular points for the form bsing. But note that the principal properties still do hold :
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2.2. Lagrange problem on the riemannian surface with non-zero curvature

Figure 2.8 – Two positions corresponding to the singular points of the form bsing on the hyperbolic
plane : the positions in which the swiveling arm closes up into a triangle. This triangle has the sides of
lengths |lj|, j = 1, 2, 3 and the angles of values aj, j = 1, 2, 3. The corresponding to singularities points
on the torus T2 with coordinates (q̃2, q̃3) are the points A(�p + a3,�p + a1) and B(p � a3, p � a1).
Note that now the coordinates are defined as angles between the present direction of the interval and
the positive direction of the previous interval in the chain. We suppose that the coordinate is growing
when the angle changes counterclockwise.

there are exactly two positions for a couple second and third joint for which the swiveling
arm closes up. This is related to the fact that the angles of the hyperbolic triangle are defined
by its sides in a unique way, and the triangles with the lengths verifying triangle inequalities
do exist.

Let us reconsider the analogues of Figures 2.3, 2.5 and 2.6 in the new set of coordinates.
The singular points of the form bsing that we will still call A and B now will have the

coordinates A(�p + a3,�p + a1) and B(p � a3, p � a1), see Figure 2.8. Then, we will choose
a path from A to B as on Figure 2.9 consisting of two straight intervals : one corresponding to
the growth of q̃2 for a constant q̃3 = �p + a1 and one corresponding to the growth of q̃3 for
a constant q̃2 = p � a3. Note that when q̃3 grows (counterclockwise), the vertical part of this
path from �p + a1 to p � a1 passes through p.

Analogically the proof in Subsection 2.1.7 we count the evaluation of Lagrange 1-form on
the vector field (2.22). The singular part bsing gives

�2p � 2a3

2p

w3 � 2a1

2p

w2. (2.24)

The regular part breg (with constant coefficients) is equal to breg = b2dq̃2 + b3dq̃3. Then b2
is a period corresponding to the integration on the circle {q̃3 = 0} : this integration will give
b2 = 1. Analogically, b3 corresponds to the integration on the circle {q̃2 = p} that will give
b3 = 1 as well. Hence the evaluation of the regular part on the vector field X given by (2.22)
is equal to w2 + w3 and by summing the two effects we have : w = p�a1

p

w2 +
a3
p

w3. By adding
w1 (passing to the rotating system of coordinates), we have the answer.⇤
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Chapitre 2. Lagrange problem and the asymptotic angular velocity of a swiveling arm

Figure 2.9 – A path of integration for a singular part of Lagrange form in the hyperbolic case on
the two-torus with coordinates (q̃2, q̃3). The path corresponds to turning first the second interval and
then the third interval to come from one singular point to the other. Here the coordinates q̃j, j = 2, 3
correspond to the relative positions of the intervals (with respect to a previous interval). The green
paths

�

q̃3 = 0
 

and q̃2 = p are used after for the calculation of the periods of the regular part of
Lagrangian 1-form.
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2.2. Lagrange problem on the riemannian surface with non-zero curvature

So we see that the proof in the euclidian case extends to the hyperbolic case because
hyperbolic geometry is a. isotropic (the geometry is the same in all directions, existence of
local rotations) b. if one fixes three lengths of the sides of a triangle, such a triangle is uniquely
defined (up to isometry) and its angles are the functions of lengths and nothing else.

Let us give an important

Remark 2.11. The possibility to pass to the case w1 = 0 as explained in Proposition 2.5 reduces
the configuration space of our system and we deal with a two-dimensional dynamics rather
than three-dimensional. Note that after this remark and after reducing the system from the
system with velocities (w1, w2, w3) to the system with velocities (0, w̃2, w̃3) with w̃j = wj � w1
we see that the only important condition for us is the rational independence of w̃2 and w̃3. For
rationally dependent w̃2 and w̃3 the proof is also obvious since the system will be completely
periodic. So, in general, for any N by this simple rotation one can diminish the dimension
by 1 in case of euclidian as well as hyperbolic geometry. So one can say that the asymptotic
velocity w exists in any case (for N=3), not only if wj are rationally independent. This is true
for euclidian geometry (as proven for any N by Jessen and Tornehave, and in case N = 3 by
Bohl already) but also (and what is new) for hyperbolic geometry. In this case, the limiting
velocity is obviously a ratio between a variation of the argument in a period to the length of
the period.

Note that for the movement on the sphere the arguments of Theorems 2.3 and 2.10 will
follow and the same theorem will be true modulo the remark that if the intervals in the
swiveling arm are too big, the argument won’t be defined on the sphere. So our theorem will
hold only for small values of lj. The formulation is the following (note a change in the sign) :

Theorem 2.12. Consider a torus T3 with coordinates (q̃1, q̃2, q̃3). Consider a swiveling arm of type
l = (l1, l2, l3) on the sphere S2 such that |lj| satisfy all of three triangle inequalities and are small
enough : |l1| + |l2| + |l3| should be less than the distance between the north and south poles of the
sphere. Then for w1, w2, w3 rationally independent, the asymptotic velocity for the movement governed
by the vector field (2.22) exists and is equal to the sum

w = w1 + w2
a2 + a3 � A

p

+ w3
a3

p

, (2.25)

where aj are the angles in the triangle formed by intervals with sides |l1|, |l2|, |l3| and A is the area of
this triangle. The angle aj is the angle corresponding to the side lj.

Here the angles (q̃1, q̃2, q̃3) correspond to the angles that the interval in a swiveling arm makes with
the previous interval as explained in Subsection 2.2.1.

Remark 2.13. Let us remark that the answer for the constant curvature geometries (Theorems
2.3, 2.10 and 2.12) can be rewritten in a unified form as

w = w1 + w2
p � a1

p

+ w3
a3

p

2.2.3 An arbitrary riemmanian surface : kite property

Let us now prove the Lagrange problem on the arbitrary oriented complete riemannian
surface. The difference with a constant curvature case is that the isotropic property doesn’t
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Chapitre 2. Lagrange problem and the asymptotic angular velocity of a swiveling arm

hold anymore : the geometry is different in dependence of the direction. This problem can
easily be dealt with by taking the mean values of the functions considered in previous Section.

More precisely, let us fix some point 0 on the surface and let us consider a swiveling
arm of type (l1, l2, l3) with a base in the point 0. As one can see from the main argument in
Subsections 2.1.6 and 2.1.7, the most important positions (the only that actually do influence
the change of the argument) of a swiveling arm are those which correspond to the passages by
0 of the extremity of the system. In other words, the interesting configurations of the swiveling
arm are related to the triangles formed by the intervals of lenghts |l1|, |l2|, |l3| with one of the
vertices in 0 and the edges of lengths |l1| and |l3| passing by this vertex.

Note than in the euclidian M = R2 (as well as in hyperbolic M = H2 and spherical M = S2

geometries) geometry the following property holds :

Definition 2.14 (Kite 56 property for the surface M.). We will say that an orientable complete
riemannian surface M has a kite property in the point 0 2 M if for any l1, l2, l3 2 R+ – three numbers
verifying all triangle inequalities and for any direction j 2 S1 there exist two triangles on M with
sides of lengths l1, l2, l3 such that

• both of these triangles have a vertex in 0
• for both triangles, the sides of lengths l1 and l3 pass by 0
• the side of length l1 is the same for both triangles, and goes in the direction j (formally, the
corresponding tangent vector on the geodesic is equal to the vector defined by j)

This precise property that we use in the proof of Theorems 2.3 and 2.10. Even more, we
use that the angles a1, a2 and a3 in the triangles forming a kite do not change with j 2 S1.
For a general surface the kite property may not hold in all generality and of course, the
corresponding angles (if they exist) will be now the functions a

±
1 (j), a

±
2 (j), a

±
3 (j) of direction

j in which the first interval l1 goes, see Fig. 2.10. But note that the following Proposition holds

Proposition 2.15. For any complete oriented riemannian surface M the kite property holds for l1, l2, l3
small enough.

Proof. This almost obvious and follows from the fact that the small discs are convex on any
riemannian surface. Hence the disc with radius l2 and center at the end of the side of length l1
will intersect the disc with radius l3 and center 0 in exactly two points that correspond to the
missing vertices of two triangles that we wish to find, see Figure 2.11. Of course, the angles in
those triangles will depend on the direction j. ⇤

After making this remark, we can formulate the answer to the Lagrange problem in the
general case which comes from the averaging of the answer in a constant curvature case.

2.2.4 Formulation and proof

Theorem 2.16. Consider a torus T3 with coordinates (q̃1, q̃2, q̃3) defined in Subsection 2.2.1. Consider
an arbitrary oriented and complete riemmanian surface M and a swiveling arm of type (l1, l2, l3) on it
corresponding to the vector field

X = w1
∂

∂q̃1
+ w2

∂

∂q̃2
+ w3

∂

∂q̃3
(2.26)

56. Kite is cerf-volant in French i.e. a flying deer. In Russian it is a flying snake though...
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2.2. Lagrange problem on the riemannian surface with non-zero curvature

Figure 2.10 – In each direction j 2 T1
0 M of the unitary tangent bundle to the surface in the base

point 0 2 M there is a corresponding geodesic going out of the point 0. To each of these geodesics
corresponds a "kite" of two triangles D+(j) and D�(j) with the sides of the lengths l1, l2, l3 as shown
on the picture. The triangles D+(j) and D�(j) have a common side of length l1. Those kites change
their form hence the angles of these triangles are the functions of j : a

�
1 (j), a

�
2 (j), a

�
3 (j), for D� and

a

+
1 (j), a

+
2 (j), a

+
3 (j), for D�. The difference between the triangles D� and D+ is done with the help of

orientation on the surface.

Figure 2.11 – The intersection of two convex discs gives two points that correspond to the vertices of
two triangles with the sides of lengths l1, l2, l3.
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Chapitre 2. Lagrange problem and the asymptotic angular velocity of a swiveling arm

on the three torus T3. Suppose a base point of the arm is 0. Suppose also that angular velocities
wj 2 R are rationally independent. Then for any swiveling arm with the lengths of the intervals lj
small enough such that the kite property holds, the asymptotic angular velocity exists and is equal to
the linear combination of angular velocities wj

w = w1 + w2
p � ā1

p

+ w3
ā3

p

where

āj =
ā

+
j + ā

�
j

2
, j = 1, 2, 3,

ā

±
j =

1
2p

Z

S1
a

±
j (j)dj

are the means of the angles in triangles with the sides |lj|, j = 1, 2, 3 in the kite property, see Pic.
2.10 with respect to the direction of the first interval. Here the parameter j comes from the definition of
a kite property.

Proof. Since the problem a priori doesn’t have any rotational symmetry anymore we can’t pass
to the case w1 = 0 as we did in Proposition 2.5. So we will consider the three-dimensional
torus T3 with coordinates (q1, q2, q3). But still, the proof will repeat step by step the proof of
Subsections 2.1.6, 2.1.7. There will be once more a Lagrange 1- form (now on a three-torus)
encoding (with the vector field (2.26)) the dynamics of a swiveling arm. This form has singular
and regular parts, b = breg + bsing + d f , f being a smooth function on T3.

The asymptotic velocity we are interested in is, as before, given by the evaluation of this
form on the vector field X. The evaluation of a regular part is a space integral and for the
calculation of the evaluation of its singular part we have to consider a flux through a surface
with a boundary (in the proof of Subsection 2.1.7 we were dealing with paths because the
dimension was 2 but here we will deal with surfaces).

Note that the points A and B corresponding to the positions of a swiveling arm in which
it closes up into a triangle, still exist but they do now depend on the parameter j 2 S1 from
the kite property, now we will have

A(j) =
��p + a

�
3 (j),�p + a

�
1 (j)

�

,
B(j) =

�

p � a

+
3 (j), p � a

+
1 (j)

�

.

So for each j the plane q̃1 = j intersects a singular set of a Lagrangian form in two points.
So the singular set of the form b is represented (for small lj) by two circles.

Hence for each value of q1 (or one can say j, see the definition of a kite) one has two
corresponding triangles with the sides of lengths |lj|, j = 1, 2, 3 and the angles a

±
j (j), j = 1, 2, 3

that correspond to two points on T3 in which a form b has a singularity.
So to calculate the evaluation of bsing on X, we need to calculate the flux of X through a

cylinder whose boundary is the union of before-mentioned circles, see Picture 2.12. We will
represent this cylinder as the union of the paths with fixed q1. Those are the paths analogical
to the paths in the proof for constant curvature case.
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2.2. Lagrange problem on the riemannian surface with non-zero curvature

Figure 2.12 – The calculation of asymptotic velocity is related to the calculation of the flux of the vector
field X through the cylinder foliated by intervals q1 = const depicted on the picture. The cube on the
picture is a fondamental domain of the torus T3 so its opposite sides are identified.

Then the flux of the vector field in the components number 2 and 3 along the path with a
fixed q̃1 = j will be equal to the values analogous to the values before (modulo the fact that
the angles now are not the same for D�(j) and D+(j), so the evaluation of a singular part on
the vector field X will give, analogously to the formula (2.24) :

�2p � a

+
3 (j)� a

�
3 (j)

2p

w3 � a

+
1 (j) + a

�
1 (j)

2p

w2.

Note that since the A(j) and B(j), j 2 S1 are two closed circles hence the q̃1 component
of the vector field X won’t give any contribution to the evaluation of a singular part.

Now, to sum up the contributions for each j, we will take a mean over j when q1 is
changing and so we will obtain that the evaluation of the singular part of b on X gives :

bsing[X] = �p � ā3

p

w3 � ā1

p

w2.

To calculate the evaluation of the regular part of the form breg = b1dq̃1 + b2dq̃2 + b3dq̃3
where b1, b2, b3 2 R we need to find the periods of this form.

To do this we will integrate the form on three circles :

• �q̃2 = p, q̃3 = 0
 

for the calculation of b1

• �q̃1 = 0, q̃3 = 0
 

for the calculation of b2

• �q̃1 = 0, q̃2 = p

 

for the calculation of b3

Let us note that all of these three circles can be chosen in a way that they are disjoint
from the cylinder of singularities (and even more, there is a torus containing this cylinder
disjoint from these three circles). This is clear for the two last paths since q1 = const and this
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Chapitre 2. Lagrange problem and the asymptotic angular velocity of a swiveling arm

follows from the 2-dimensional pictures drawn before, see for example Figure 2.9. The first
circle neither doesn’t intersect the cylinder since this corresponds to a degenerate position that
is never approached by continuous curves A(j) and B(j), j 2 S1.

One can easily see that in all of these cases, b j = 1, j = 1, 2, 3 and hence the evaluation of
the regular part will give breg[X] = w1 + w2 + w3. By summing up two contributions we get
the final answer. ⇤
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3

A problem of the incenters of
triangular orbits in an elliptic billiard

and complex reflection

This chapter reproduces our article in the Enseignement Mathématique devoted to
the study of one planimetrical problem related to the elliptic billiard. We consider 3-
periodic orbits in an elliptic billiard. Numerical experiments conducted by Dan Reznik
have suggested that the locus of the centers of inscribed circles of the corresponding
triangles is an ellipse. It turns out that methods of complex algebraic geometry are
more effective in the study of this problem than real planimetry ones. We prove the fact
observed by Reznik by the complexification of the problem coupled with the complex
law of reflection.
In the end of the Chapter we have inserted a small bonus to the initial article – the
simplest proof of the main theorem by the methods of plane geometry that are within
a reach of a school program although not trivial.
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Chapitre 3. A problem of the incenters of triangular orbits in an elliptic billiard and complex reflection

Figure 3.1 – The illustration for the main theorem : an ellipse, one of the periodic orbits, its incircle
and the center of this circle. The locus of incenters is forming an ellipse.
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3.1 Introduction

Let us state a nice geometric fact that will be of interest for us in this Chapter.

Theorem 3.1. Consider a set of three-periodic trajectories of an elliptic billiard. Then the set of the
incenters (the centers of the inscribed circles) corresponding to the triangles formed by three points of
the trajectory lying on the ellipse is an ellipse itself, see Figure 3.1 for illustration.

In Section 3.2 of this chapter we will prove this theorem by somewhat unexpected methods
in this context – methods of complex algebraic geometry. In Section 3.3 of this chapter we will
give a plane geometry proof of this Theorem. The reader can compare those two proofs and
choose which one she (or he) prefers. In our opinion although a plane geometry proof from
Section 3.3 juggles with lots of nice plane geometry facts, the complex one is actually less
complex and more conceptual.

Let us note that both of the proofs use in a crucial way a following corollary of Poncelet
theorem and integrability of the elliptical billiard :

Proposition 3.2. All 3-periodic orbits in an elliptical billiard are tangent to some ellipse confocal to
the initial ellipse.

3.2 A proof of the theorem with complex methods
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ON THE INCENTERS OF TRIANGULAR
ORBITS IN ELLIPTIC BILLIARD

by Olga ROMASKEVICH ⇤ )

ABSTRACT. We consider 3-periodic orbits in an elliptic billiard. Numerical
experiments conducted by Dan Reznik have shown that the locus of the centers
of inscribed circles of the corresponding triangles is an ellipse. We prove this fact by
the complexification of the problem coupled with the complex law of reflection.

1. THE STATEMENT OF THE THEOREM AND THE IDEA OF THE PROOF

Elliptic billiards are at the same time classical and popular subject (see,
for example [1], [2], [3] and [4]) since they continue to deliver interesting
problems. We will consider an ellipse and a billiard in it with the standard
reflection law : the angle of incidence equals the angle of reflection. Let the
trajectory from a point on the boundary repeat itself after two reflections : this
means that we obtained a triangle which presents a 3-periodic trajectory of
the ball in the elliptic billiard. Poncelet’s famous theorem [5] states that the
sides of these triangles are tangent to some smaller ellipse confocal to the
initial one.

We prove the following fact which was observed experimentally by Dan
Reznik [10] :

THEOREM 1.1. For every elliptic billiard the set of incenters (the centers
of the inscribed circles) of its triangular orbits is an ellipse.

⇤ ) Supported in part by RFBR grants 12�01�31241 mol-a and 12�01�33020 mol-a-ved.
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2 O. ROMASKEVICH

The proof uses very classical ideas : complexify and projectivize, that is,
replace the Euclidean plane by the complex projective plane. This approach
was used by Ph. Griffiths and J. Harris in [6] and, more recently, by R.
Schwartz in [9]. The main tool in the proof is that of complex reflection :
we consider an ellipse as a complex curve and define a complex law of
reflection off a complex curve. The locus of the incenters will be also a
complex algebraic (even rational) curve. We will prove that the latter curve
is a conic in CP2 . Its real part will be a bounded conic – an ellipse.

The reasons for developping complex methods for the solution of a
problem in planimetry are twofold : first of all, such an approach shows
that sometimes complexification paradoxically simplifies things. We think that
complex methods could be a useful tool in obtaining many results of this kind.
Ideologically, this work is related with the recent work by A. Glutsyuk where
he studies complex reflection, see for example [13] an the joint work with
Yu. Kudryashov [14]. The second reason to develop the complex approach
for this particular problem was the incompetence of the author to prove this
fact with real tools besides computation. The reader is encouraged to find an
alternative proof of the Theorem 1.1.

Complex reflection law and its basic properties needed here are reviewed
in Section 2. Section 3 contains the proof of Theorem 1.1. In Section 4 we
discuss the position of the foci of an obtained ellipse.

2. COMPLEX REFLECTION LAW

For our purposes it will be useful to pass from the Euclidean plane R2

to the complex projective plane CP2 : the metric now is replaced, in local
complex coordinates (z, w) , by a quadratic form ds2 = dz2 + dw2 . In the
following we will be interested in the geometry of this new space CP2 with
quadratic form ds2 . One could have replaced the initial Euclidean metric by
a pseudo-euclidean one : the geometry of such a space is also interesting and
somewhat similar to our case. The best references here will be [7] and [8].

DEFINITION 2.1. The lines with directing vectors that have zero length
are called isotropic. All other lines are called non-isotropic.

Let us fix a point x 2 CP2 and define complex symmetry with respect to
a line passing through x as a map acting on the space Lx of all lines passing
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through x . There are two isotropic lines Lv1
x and Lv2

x in Lx with directing
vectors v1 = (1, i) and v2 = (1,�i) .

DEFINITION 2.2 (Complex reflection law). For a point x 2 CP2 , the
complex reflection (symmetry) in a non-isotropic line Lx 2 Lx is the mapping
given by the same formula as in the case of standard real symmetry : it’s a
linear map that in the coordinates defined by the line Lx and its orthogonal

line L?
x has a diagonal matrix

✓

1 0
0 �1

◆

.

The image of any line L under reflection in an isotropic line Lv1
x (or Lv2

x )
is defined as a limit of its images under reflections with respect to a sequence
of non-isotropic lines converging to Lv1

x (or Lv2
x ).

Moreover, the complex reflection in a curve is the reflection in its tangent
line.

THEOREM 2.3 ([13]).

a. The complex symmetry with respect to any isotropic line L at some point
x 2 L is well defined for all non-isotropic lines (i.e. the latter limit of
the images of a sequence of non-isotropic lines exists) and maps every
non-isotropic line X 3 x to L.

b. Under the reflection at the point x with respect to some isotropic line
L 2 Lx , the line L itself may be mapped to any line passing through x
(i.e. the mapping in this case is multivalued). In particular, it can stay
fixed.

The isotropic directions generated by the vectors v1 and v2 can be
represented by the points I1 = (1 : i : 0) 2 CP2 and I2 = (1 : �i : 0) 2
CP2 , respectively. We choose an affine coordinate z on the projective line
CP1 = C [1 at infinity, that is, the line through points I1 and I2 in such
a way that I1 = 0 and I2 = 1 . The lemma below implies Theorem 2.3 and
follows easily from the definition. It describes the reflection in a line close to
isotropic.

LEMMA 2.4 ([13]). For any " 2 C̄ \ {0,1} , let L" be the line through
the origin (0, 0) 2 C2 and having direction " . Let ⌧" : CP1 ! CP1 be the
reflection in L" acting on the space CP1 of the lines through the origin. Then
⌧"(z) = "2

z in the above introduced coordinate z .
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Proof. The map ⌧" is a projective transformation that preserves L" as
well as the set of isotropic lines. So ⌧"(") = " and ⌧"{0,1} = {0,1} . Let
us show that ⌧" permutes 0 and 1 . Otherwise, it would have three fixed
points on the infinity line CP2 \ C2 and therefore be identity map of the
infinity line. Moreover, the points lying on L" are fixed for ⌧" . In this case
⌧" should be identity but it’s a nontrivial involution, contradiction.

We see that the restriction of ⌧" is a nontrivial conformal involution of
CP2 \ C fixing " and permuting 0 and 1 . So it should map z to "

z2 .

3. THE PROOF

Let us consider triangular orbits of the complexified elliptic billiard : the
triangles inscribed into a complexified ellipse and satisfying the complex
reflection law. Denote the initial ellipse from Theorem 1.1 by � , and the
Poncelet ellipse tangent to all triangular orbits by � . We use the same symbols
for complexifications of these conics. The following classical fact will be used
for � and � , and for the inscribed circles.

LEMMA 3.1 ([11], p. 179, [12], p.334).
a. Ellipses � and � in the real plane are confocal if and only if their

complexifications have 4 common isotropic tangent lines and their common
foci lie on the intersections of these lines.

b. The two tangent lines to the complexified circle passing through its center
are isotropic.

DEFINITION 3.2 (Sides and degenerate sides of a triangle). A side of a
triangle in CP2 with disctinct vertices is a complex line through a pair of
its vertices. A triangle is called degenerate if all its vertices lie on the same
line. A priori, a triangular orbit may have coinciding vertices. We will call
A the degenerate side through two coinciding vertices if A is obtained as a
limit of sides A", " ! 0 of non-degenerate triangular orbits. For such a side
A its image under reflection is defined as a limit (which exists as the limit in
Definition 2.2) of images of A" .

By taking a family A" of lines tangent to � and converging to A , and
computing their images (in fact, applying Lemma 3.3 below), one could deduce
the structure of degenerate triangular orbits formulated in Lemma 3.4.
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LEMMA 3.3. Let A be a common isotropic tangent line to two analytic
(algebraic) curves � and � and let the tangency points be quadratic and
distinct. If A is deformed in a family A" (A = A0 ) of lines tangent to � then
the image of A" under the reflection in � tends to some non-isotropic line
as " ! 0 .

Proof. The more general case of this lemma is contained in [13], see
Proposition 2.8 and Addendum 2 there.

The isotropic line A is deformed in a family A" : let us suppose that the
family is chosen in such a way that the angle between A and A" is precisely
" . Suppose that A" intersects � in some point a" tending to the point a0

of isotropic tangency. The simple computation shows that since the tangency
points are quadratic, the tangent line T" to � at the point a" has the angle
of the order

p
" with A . This with lemma 2.4 gives that the limit of the

reflected lines is a non-isotropic one.

Now we can describe the degenerate triangles occuring in our problem.

LEMMA 3.4. If a triangular orbit in the complexified ellipse � is
degenerate then it has two coinciding non-isotropic non-degenerate sides B
and one degenerate isotropic side A.

Proof. Since deg� = 2, two vertices should merge, so the degenerate
side A through them is tangent to � and to � , and hence is isotropic by
Lemma 3.1. The other two sides are non-isotropic by Lemma 3.3 and they
coincide.

LEMMA 3.5 (Main lemma). The complex curve of incenters C intersects
the complex line F through the foci of � at exactly two points with index 1 .

Proof. Let c 2 C \ F and suppose that the corresponding triangle is
degenerate, see Figure 1. By Lemma 3.4 one of its sides is isotropic, and two
other sides coincide and are non-isotropic. We will denote the isotropic line
as A and non–isotropic line as B . Line A is tangent to the inscribed circle,
so by Lemma 3.1, c 2 F\A . Also c is a point of intersection of bisectors, so
either c 2 B or c 2 B? . Note that B is tangent to the inscribed circle, hence
if c 2 B , then B should be isotropic, which is a contradiction. So c 2 B? ,
but by Lemma 3.1 c is a focus. B? is tangent to � and passes through the
focus, so it should be isotropic which is impossible since B is not isotropic.



6 O. ROMASKEVICH

FIGURE 1
Two complex confocal ellipses � and � having four common isotropic tangent lines. The line
F of real foci passes through the intersections of isotropic lines. A degenerate trajectory for an

elliptic billiard in � with caustic � : the degenerate triangle is an interval between points 1
and 2 and its sides are lines A and B . Line A is isotropic while B is not.

Now consider the case of a not degenerate triangle corresponding to
c 2 C \ F . Consider the reflection in F : the inscribed circle, as well as
its center c , are mapped to themselves. If the set of the sides of a triangle
and their images under the reflection in F consists of six lines, then the
inscribed circle and the ellipse � should be tangent to all of them. But five
tangent lines already define a conic, so � must be a circle. But in this case,
Theorem 1.1 is trivial and the locus under consideration is a point.

Therefore some sides of the triangle should map to some other sides. One
needs to consider two cases : either there is a side which maps to itself, or
there are two sides which map to each other. But the latter case reduces to the
former : indeed, the points of intersection of the two exchanging lines with
� (not lying on F ) are mapped to each other, so the line connecting them
is mapped to itself. Therefore, in the non-degenerate case, the corresponding
triangle has a side which is symmetric with respect to F and tangent to � .
There are only two such lines, and hence only two intersections c1 and c2 ,
both real (see Figure 2), and only two triangles corresponding to them, for
each ci, i = 1, 2.

Let us now prove that the intersections C \ F have index 1. Let us
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FIGURE 2
Two triangular orbits in � corresponding to the centers c1, c2 of inscribed circles lying on the

foci line F

parametrize an ellipse � by a parameter " , and consider the corresponding
center c(") 2 C , assuming that c(0) 2 F . It suffices to prove that @c

@" (0) 6= 0.
Suppose the contrary : the centers of the circles do not change in the linear
approximation : c(") = c(0) + O("2) . Then the radius of the incircle r(") has
nonzero derivative at " = 0, unless for " = 0 both the incircle and the
ellipse � are tangent to the sides of the triangle at the same points. This is
impossible if � is not a circle, since two distinct conics can not be tangent
at more than two distinct points. So we have that the radii of the incircles
change linearly : r(") = r(0)+↵"(1+o(1)) for ↵ 6= 0. But this is not possible
due to symmetry : indeed, the radius has to be an even function of " .

Theorem 1.1 follows directly from the Lemma 3.5 since an algebraic curve
intersecting some line in exactly two points (with multiplicities) is a conic.

4. FOCI STUDY

One could surmise that the ellipse C that is obtained in Theorem 1.1 is
confocal to the initial one. It appears that it is not so. Picture 3 shows how
the foci of the ellipse C move regarding the foci of the ellipse � .
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FIGURE 3
Distances between the common center of ellipses � and C and their foci as functions of the

ratio of semi-axes of an initial ellipse

We suppose that the ratio between the semi-axis of the initial ellipse � is
t 2 (0, 1) . The upper graph on Figure 3 is a graph of the distance from the
center of � to its foci : just the arc of the circle {

⇣

t,
p

1 � t2
⌘

, t 2 (0, 1)} .
The lower graph is a graph of analogous (quite complicated) function for
the ellipse C . This graph was obtained by pure computation. The reader is
encouraged to find the geometrical meaning for the position of the foci of C .
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Chapitre 3. A problem of the incenters of triangular orbits in an elliptic billiard and complex reflection

3.3 A proof of the theorem with plane geometry methods

We set for ourselves a motivating goal to prove Theorem 3.1 by the use of simple plane
geometry methods without any calculations. The proof stated here is not at all trivial but it is
the simplest one we have found and we hope that maybe a reader can suggest an easier way.
This proof will use some basic ideas of projective geometry as well as some theorems about
Gergonne point and isogonal conjugacy.

Let us first remind the reader about some basic facts.

3.3.1 A polar and a pole

Definition 3.3. A polar of a point P with respect to a non–degenarate curve g of second order is
the set of points N which are harmonically conjugated with the point P with respect to the points M1
and M2 of intersection of the curve g by lines passing through P. Harmonic conjugation means that a
cross-ratio of those 4 points is fixed and equal to �1 :

(M2, M1, P, N) =
M2P
M2N

· M1N
M1P

= �1 (3.1)

if we consider the segments with respectful orientations. See Figure 3.2.

One can prove that a polar is a line and for this line a point P is called a pole. Note that
if one can draw two real tangent lines to the quadric from the point P then a polar line is
passing through the points of tangency, see Figure 3.2.

One can also define a polar transformation with respect to a non–degenerate quadric of the
projective space to its set of lines (which is in the bijection with the space itself) : each point is
mapped to the corresponding polar line. So, for example, one can define an image under the
polar transformation (with respect to some quadric) of a quadric by looking at the images of
the tangent lines. It is a simple fact (that can be proven algebraically or geometrically) that the
image of a quadric under a polar transformation is, once more, a quadric, see for example [1].
We will use these facts in the proof, for more information on polar transform see for example
[1, 3, 5, 6].

3.3.2 Gergonne point and isogonal conjugacy

Our proof will be also using a notion of Gergonne point. It was discovered by Joseph Diaz
Gergonne in the beginning of XIX century. The definition of this point comes with a theorem :

Theorem 3.4. For any triangle ABC and for its inscribed circle denote by A1, B1, C1 correspondingly
the points of tangency of the inscribed circle with the sides of the triangle. Then the lines AA1, BB1 and
CC1 intersect in one point G that is called the Gergonne point, see Figure 3.3.

Gergonne point has lots of nice properties : for around twenty of them discovered by
a computer, see the article by Deko Dekov, [2]. The other interesting definition that will be

important for us is isogonal conjugacy. It also comes along with a theorem :
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3.3. A proof of the theorem with plane geometry methods

Figure 3.2 – For each point P one can define a corresponding line p : for any line intersecting the conic
in two points M1, M2 the point N of the intersection of this line with a conic satisfies the cross-ratio
equation (3.1). In the case of a point P outside an ellipse, its polar line is a line connecting two tangency
points

Figure 3.3 – Gergonne point in the triangle ABC : a point of the intersection of lines joining the vertices
with the points of tangency of the inscribed circle.
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Chapitre 3. A problem of the incenters of triangular orbits in an elliptic billiard and complex reflection

Figure 3.4 – Construction of an isogonally conjugated point P1 to a point P in the triangle ABC : dotted
lines are bisectors, and red lines are reflected to green ones under the reflections with respect to those
bisectors.

Theorem 3.5. Fix a triangle ABC. For any point P of the plane consider the lines AP, BP, CP.
Then if one takes their reflections with respect to corresponding bisectors of the triangle ABC, the new
reflected lines will intersect in one point. The point P1 obtained in such a manner is called an isogonally
conjugated point to P with respect to the triangle ABC, see Figure 3.4.

Isogonal conjugacy has lots of beautiful properties but we will restrict ourselves to the
property we will need. It is contained in a following :

Proposition 3.6. Gergonne point is isogonally conjugated to the center of negative homothety of in-
circle and circumcircle.

For more general information on Gergonne point and isogonal conjugacy, see [1]. Now,
after these reminders, we are ready to start the proof.

3.3.3 Proof of the main result with plane geometry methods

Let us call our initial ellipse G and a corresponding Poncelet ellipse g (see Proposition 3.2),
as we were already doing in Section 3.2. Consider some 3-periodic orbit and a corresponding
triangle ABC. Let us follow the proof step by step :

1. Let us draw three tangent lines to the ellipse G in the points A, B, C. Those tangent lines
will intersect in the points that we will call correspondingly A⇤, B⇤, C⇤. Note that those
points are actually the centers of excircles. These are the circles inscribed in the infinite
domains, bounded by one of the sides and the continuations of two other sides. This
is almost obvious since one can see that the line BA⇤ bisects the corresponding angle
(that follows from the fact that the reflection in the point B preserves the angles. This
explanation is easier to draw than to write down, so see Figure 3.5.

2. Then note that the line AB is a polar of the point C⇤ as well as BC is a polar of A⇤ and
AC a polar of B⇤ (with respect to G). This follows from our remarks in Subsection 3.3.1.
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3.3. A proof of the theorem with plane geometry methods

3. Note that the lines AB, BC and AC are tangent to the so-called Poncelet ellipse g.
Consider now a polar transform of this ellipse g with respect to the bigger ellipse
Gamma : it will map to some conic that is passing by the points A⇤, B⇤ and C⇤. Let us
denote this conic Ḡ. So, once again, this conic Ḡ is conjugated to the conic g with respect
to the initial ellipse G.

4. So now we actually we can look at our problem in a new way. Before we were thinking
that the triangle ABC was moving inside the ellipse G and outside the ellipse g (when
we say outside we mean that its sides were tangent to g). Now we will be thinking of
a triangle A⇤B⇤C⇤ moving inside the conic Ḡ and, at the same moment, outside of the
ellipse G. See Figure 3.6.

5. How to define a center of the inscribed circle of ABC in terms of A⇤B⇤C⇤ ? It is actually
the intersection point of AA⇤, BB⇤ and CC⇤. In other words, the intersection point of
the lines connecting the vertices of A⇤B⇤C⇤ with its tangency points with an ellipse G.

6. The problem is then reformulated as following : for two conics and a triangle moving
"between" them in such a way that its vertices stay on one conic and that its sides are
tangent to the other conic, prove that the intersection point of the lines connecting the
vertices and tangent points a. exists and b. moves on an ellipse.

7. Note that the existence of such a point is the same statement as Theorem 3.4. Indeed,
by a projective transformation, we can map an inside ellipse G to a circle. Actually, we
can prove this theorem in the case when G and Ḡ are circles : indeed, by a projective
transformation we can map two conics to the circles, and all the tangency and intersec-
tion properties as well as the class of conics are preserved. From now on, we think of G
and Ḡ as of circles.

8. The fact that this point moves on an ellipse is much less trivial but it follows from the
following beautiful Theorem by Alexander Skutin, [4] :
Theorem 3.7. Consider a family of triangles with a fixed inscribed and circumscribed circles.
There are isogonal transformations related to each one of these triangles. Then, for any fixed
point on the plane, the images of its isogonal transformations related to the family of these
triangles, form a conic.
Note that this theorem is very powerful hence it has a free parameter – the position of
a point on a plane. By applying this theorem in a particular case when this point is an
inverse homothety center of G and Ḡ, we prove the theorem.

2
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Chapitre 3. A problem of the incenters of triangular orbits in an elliptic billiard and complex reflection

Figure 3.5 – The intersections of tangent lines to the ellipse in the points corresponding to the trajecto-
ries of a billiard define the centers of excircles : indeed, they are intersections of two outer bisectors.

Figure 3.6 – The initial 3-periodic trajectory A � B � C and a corresponding triangle A⇤B⇤C⇤ with
vertices – centers of excircles. The study of the triangle ABC between g and G is replaced by the study
of triangle A⇤B⇤C⇤ between G and Ḡ.
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4

Markovian spherical averages for
measure-preserving actions of the free

group

This chapter is devoted to the ergodic theory of measure-preserving actions of a
finitely-generated free group. We establish the mean convergence of the spherical ave-
rages in the very general case of Markov chains under some mild nondegeneracy as-
sumptions on the stochastic matrix defining our Markov chain. This convergence was
previously known only for symmetric Markov chains, while the conditions ensuring
convergence in our paper are inequalities rather than equalities, so mean convergence
of spherical averages is established for a much larger class of Markov chains.
This is a joint work with Alexander Bufetov and Lewis Bowen, and the chapter here
reproduces our article published in Geometriae Dedicata.
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MEAN CONVERGENCE OF MARKOVIAN SPHERICAL AVERAGES
FOR MEASURE-PRESERVING ACTIONS OF THE FREE GROUP

LEWIS BOWEN, ALEXANDER BUFETOV, AND OLGA ROMASKEVICH

Abstract. Mean convergence of Markovian spherical averages is established for a measure-
preserving action of a finitely-generated free group on a probability space. We endow the
set of generators with a generalized Markov chain and establish the mean convergence of
resulting spherical averages in this case under mild nondegeneracy assumptions on the sto-
chastic matrix ⇧ defining our Markov chain. Equivalently, we establish the triviality of the
tail sigma-algebra of the corresponding Markov operator. This convergence was previously
known only for symmetric Markov chains, while the conditions ensuring convergence in our
paper are inequalities rather than equalities, so mean convergence of spherical averages is
established for a much larger class of Markov chains.

1. Introduction

Consider a finitely generated free group F and a probability space (X,µ).
Let T : F ! Aut(X, µ) denote a homomorphism of F into the group of measure-preserving

transformations of (X,µ). We consider a finite alphabet V with a labeling map L : V ! F.
We will study an arbitrary Markov chain with V being its set of states. That is, take a

stochastic matrix ⇧ = (⇧
v,w

)
v,w2V with rows and columns indexed by the elements of V (so

P

w

⇧
v,w

= 1 for every v). We assume that ⇧ has a stationary distribution ⌫ : V ! [0, 1]
with ⌫(v) > 0 for all v 2 V . Stationarity means that

P

v2V ⇧w,v

⌫(v) = ⌫(w) for any w.
Let G = (V,E) denote the directed graph on V with edge set

E := {(w, v) : ⇧
vw

> 0}.
Note (w, v) is the reverse of (v, w) above. This is intentional.
By a directed path in G we mean a sequence s = (s

1

, . . . , s
n

) 2 V n of vertices such that
(s

i

, s
i+1

) 2 E for all i. The length of such a path is |s| := n. For any such path we denote

L(s) = L(s
1

) · · · L(s
n

) 2 F, T
s

= TL(s) 2 Aut(X, µ), ⇧
s

= ⇧
snsn�1 · · ·⇧s2s1 .

Define spherical averages S
n

: L1(X,µ) ! L1(X,µ) by the formula

(1) S
n

(�)(x) :=
X

s=(s1,...,sn)

⌫(s
n

)⇧
s

�(T
s

x)

The goal of this paper is to prove that, under mild additional conditions on ⇧, there is
a constant k such that the averages 1

2k

P

2k�1

i=0

S
n+i

are mean ergodic in L1. To state these
conditions properly, we need more notation.
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Figure 1. A good subgraph with paths p = (p
1

, . . . , p
k

) and q = (q
1

, . . . , q
k

)
from Definition 1. We have used the notation p⇤ = (p�1

k

, . . . , p�1

1

) and q⇤ =
(q�1

k

, . . . , q�1

1

).

Notation 1. If p 2 V k and q 2 V l then we let pq 2 V k+l be their concatenation. So
if p = (p

1

, . . . , p
k

) and q = (q
1

, . . . , q
l

) then pq = (p
1

, . . . p
k

, q
1

, . . . , q
l

). We let L(p) =
L(p

1

) · · · L(p
k

) 2 F denote the product of the labels.

Definition 1. A subgraph H ⇢ G is good of order k if it consists of vertices u, w and directed
paths p, q, p⇤, q⇤ of length k so that

• upw, uqw, pq⇤p, qp⇤q are directed paths in G
• L(p⇤) = L(p)�1, L(q⇤) = L(q)�1

Figure 1 illustrates the structure of a good subgraph. We do not require that a good subgraph
be induced.

Definition 2. For each v 2 V , let �
v

 F be the subgroup generated by all elements of the
form L(p) where pv is a directed path from v to itself in G. To be more precise, the condition
on p is that it be a directed path of the form p = (p

1

, . . . , p
n

) 2 V n such that p
1

= v and
(p

n

, v) 2 E is an edge of G.

Definition 3. We will say that ⇧ is admissible of order k if

• its associated graph G contains a good subgraph of order k,
• G is strongly connected and
• there is some v 2 V such that �

v

= F.

Theorem 1.1. Suppose ⇧ is admissible of order k. Then for any probability-measure-
preserving action Fy(X,µ) and any f 2 L1(X,µ)

1

2k

2k�1

X

i=0

S
n+i

f

converges in L1 to E[f |F] as n ! 1, where E[f |F] is the conditional expectation on the
sigma algebra of F-invariant measurable subsets.
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Figure 2. Su�cient condition for a graph G to contain a good subgraph, see
Proposition 1.2

Remark 1. Note that the conditions on ⇧ depend only on which entries are positive and
which are zero. In particular, no relations are assumed between the entries of the Markov
chain.

In practice, it is a straightforward task to check whether ⇧ is admissible. We note for
example, the following special case:

Proposition 1.2. Suppose V is finite and L : V ! F is injective, so that we may iden-
tify V as a subset of F. Also suppose G is strongly connected and for every (a, b) 2 E,
(b�1, a�1) 2 E where the inverse is taken in the group F. If there exist v, w, u 2 V such that
(v, w), (u, w), (u, v�1) 2 E (see Figure 2) then G contains a good subgraph. So if there is
some v 2 V such that �

v

= F then the conclusion to Theorem 1.1 holds.

Proof. Note (v, u�1), (w�1, v�1) 2 E. Because G is strongly connected and finite, there exists
a k so that for any ordered pair of vertices of G there exists a directed path between them of
length k. In particular there exists a directed path p := (p

1

, . . . , p
k

) from p
1

:= w to p
k

:= v
and a directed path q := (q

1

, . . . , q
k

) from q
1

:= v�1 to q
k

:= u. It is now elementary to check
that upw, uqw, pq⇤p, qp⇤q are directed paths in G where p⇤ is the unique directed path in G
with L(p⇤) = L(p)�1. ⇤
1.1. Historical remarks. For two rotations of a sphere, convergence of spherical averages
was established by Arnold and Krylov [1], and a general mean ergodic theorem for actions
of free groups was proved by Guivarc’h [23].
A first general pointwise ergodic theorem for convolution averages on a countable group

is due to Oseledets [29] who relied on the martingale convergence theorem.
First general pointwise ergodic theorems for free semigroups and groups were given by R.I.

Grigorchuk in 1986 [19], where the main result is Cesàro convergence of spherical averages
for measure-preserving actions of a free semigroup and group. Convergence of the spherical
averages themselves was established by Nevo [25] for functions in L

2

and Nevo and Stein [27]
for functions in L

p

, p > 1 using deep spectral theory methods. Whether uniform spherical
averages of an integrable function under the action of a free group converge almost surely
remains an open problem (it is tempting to speculate that a counterexample might be possible
along the lines of Ornstein’s example [28]). The method of Markov operators in the proof of
ergodic theorems for actions of free semigroups and groups was suggested by R. I. Grigorchuk
[20], J.-P. Thouvenot (oral communication), and in [10]. In [12] pointwise convergence is
proved for Markovian spherical averages under the additional assumption that the Markov
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chain be reversible. The key step in [12] is the triviality of the tail sigma-algebra for the
corresponding Markov operator; this is proved using Rota’s “Alternierende Verfahren” [30],
that is to say, martingale convergence. The reduction of powers of the Markov operator to
Rota’s “Alternierende Verfahren” in [12] essentially relies on the reversibility of the Markov
chain. In this paper, we show that the triviality of the tail sigma-algebra still holds under
much milder assumptions on the underlying chain.
The study of Markovian averages is motivated by the problem of ergodic theorems for

general countable groups, specifically, for groups admitting a Markovian coding such as
Gromov hyperbolic groups [22] (see e.g. Ghys-de la Harpe [18] for a detailed discussion
of the Markovian coding for Gromov hyperbolic groups). First results on convergence of
spherical averages for Gromov hyperbolic groups, obtained under strong exponential mixing
assumptions on the action, are due to Fujiwara and Nevo [17]. For actions of hyperbolic
groups on finite spaces, an ergodic theorem was obtained by Bowen in [3].
Cesàro convergence of spherical averages for all measure-preserving actions of Markov

semigroups, and, in particular, Gromov hyperbolic groups, was established by Bufetov, Kli-
menko and Khristoforov in [13]. In the special case of hyperbolic groups, a short and very
elegant proof of this theorem, using the method of Calegari and Fujiwara [15], was later given
by Pollicott and Sharp [31]. Using the method of amenable equivalence relations, Bowen and
Nevo [4], [5], [6], [7] established ergodic theorems for “spherical shells” in Gromov hyperbolic
groups. The latter do not require any mixing assumptions.

1.2. Examples.

1.2.1. Uniform spherical averages. Consider the special case in which F = ha
1

, . . . , a
r

i and
V = {a

1

, . . . , a
r

} [ {a�1

1

, . . . , a�1

r

} ⇢ F. We let L : V ! F be the inclusion map and
⇧

a,b

= 1

2r�1

if a 6= b�1, ⇧
a,b

= 0 otherwise. We let ⌫ be the stationary distribution that is
uniformly distributed on V . In this case, ⇧ is admissible of order 1 and S

n

is the uniform
average on the sphere of radius n centered at the identity in F. That is,

S
n

(�)(x) = |{g 2 F : |g| = n}|�1

X

|g|=n

�(T
g

x)

for � 2 L1(X,µ) and x 2 X. So Theorem 1.1 proves the mean ergodic theorem for the
averages Sn+Sn+1

2

. This result was first obtained by Guivarc’h [23].

1.2.2. A surface group example. Let ⇤ = ha, b, c, d|[a, b][c, d] = 1i denote the fundamental
group of the closed genus 2 surface. There is a natural Markov coding of this group, developed
by Bowen-Series [8], that was used in [14] to prove a pointwise ergodic theorem for Cesàro
averages of spherical averages (with respect to the word metric on this group). Using this
coding and Theorem 1.1 we will show:

Corollary 1.3. There exists a sequence ⇡
n

of probability measures on ⇤ such that

• ⇡
n

is supported on the union of the spheres of radius n and radius n+ 1 centered at
the identity in ⇤ (with respect to the word metric);
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Figure 3. This is a distorted view of the region R in the hyperbolic plane
together with all of the geodesics of the tesselation T incident to R. Every
interior angle incident to the inner circle in this diagram is ⇡/4. There are 48
intervals in I total. Only 8 special intervals are labeled.

• ⇡
n

is mean ergodic in L1 in the sense that: if ⇤y(X,µ) is any probability-measure-
preserving action and f 2 L1(X,µ) then the averages ⇡

n

(f) 2 L1(X,µ) defined by

⇡
n

(f)(x) =
X

g2⇤
⇡
n

(g)f(g�1x)

converge in L1(X,µ) to E[f |⇤], the conditional expectation of f on the sigma-algebra
of ⇤-invariant subsets.

To explain the coding, let R denote a regular octogon in the hyperbolic plane (which we
identify with D the unit disk in the complex plane) with all interior angles equal to ⇡/4.
This is a fundamental domain for an action of ⇤ on D by isometries. It can be arranged that
if S = {a, b, c, d, a�1, b�1, c�1, d�1} then R \ sR is an edge of R for any s 2 S.
Let T = [

g2⇤g@R be the union of the boundaries of ⇤-translates of R. We may think of
T as a union of bi-infinite geodesics. Let P ⇢ @D denote the collection of endpoints of those
geodesics in T which meet R (crucially this includes lines which meet @R only in a vertex of
R). The points P partition @D� P into connected open intervals; we denote the collection
of all these intervals by I. See figure 3.
For s 2 S, consider the edge R\ sR. This edge is contained in a bi-infinite geodesic that

separates the hyperbolic plane into two half-spaces. Let L(s) denote the open arc of @D
bounding the half space that contains sR. For each I 2 I let s

I

2 S be an element such
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that I ⇢ L(s
I

). For each I there are either one or two choices for s
I

. Define f : @D ! @D
by f(x) = s�1

I

x for x 2 I. As observed in [8, 32], the map f is Markov in the sense that for
any J 2 I, f(I) \ J 6= ; implies f(I) � J .
Let V = I, E = {(I, J) 2 V ⇥ V : f(I) � J}, G = (V,E) be the associated directed

graph, F = ha, b, c, di be the rank 4 free group, and L : V ! F be the map L(I) = s
I

. We
extend L to the set of all finite directed paths in G as explained in the introduction. In [32,
Theorem 5.10 and Corollary 5.11] (see also [2, Theorem 2.8]), the following is proven:

Lemma 1.4. Let ⇡ : F ! ⇤ be the canonical surjection ⇡(s) = s for s 2 S. Then for every
g 2 ⇤ � {e} there is a unique element w 2 F such that (a) ⇡(w) = g and (b) there exists
some directed path p in G such that L(p) = w. Moreover, the word length of w is the word
length of g.

Theorem 1.5. If ⇧ = (⇧
v,w

)
v,w2V is any stochastic matrix with ⇧

v,w

> 0 for all (w, v) 2 E
then it is admissible of order 1.

Proof. In [14], it is shown that the adjacency matrix of G is irreducible. Equivalently, G is
strongly connected.
For s 2 S, let I

s

⇢ I = V be the unique interval contained in L(s) \ [
t 6=s

L(t). By direct
inspection we see that for any s, t 2 S, (I

s

, I
t

) 2 E if and only if: t 6= s�1 and I
t

is not
adjacent to I

s

�1 . For example, there are directed edges from I
a

to I
c

, I
c

�1 , I
d

and I
d

�1 but
there are no directed edges from I

a

to I
a

�1 , I
b

or I
b

�1 . There is also a loop from I
a

to itself.
So if v = a then �

v

contains L(I
a

) = a, L(I
a

, I
c

) = ac, L(I
a

, I
d

, I
c

) = adc, L(I
a

, I
d

, I
b

) = adb.
Since a, ac, adc, adb generate F

4

, we have �
v

= F
4

.
Let u = w = I

a

, p = (I
a

), q = (I
c

), p⇤ = (I
a

�1), q⇤ = (I
c

�1). Then

• upw, uqw, pq⇤p, qp⇤q are directed paths in G;
• L(p⇤) = L(p)�1, L(q⇤) = L(q)�1.

So G contains a good subgraph of order 1. ⇤
Corollary 1.3 follows immediately from Lemma 1.4 and Theorems 1.5 and 1.1.

1.3. Outline of the argument. We consider the synchronous tail equivalence relationR
sync

on V N given by
R

sync

= {(s, t) 2 V N ⇥ V N : 9N (s
i

= t
i

8i � N)}.
For a natural number k > 0 we also consider the k-step asynchronous tail equivalence relation
on V N given by

R
k

= {(s, t) 2 V N ⇥ V N : 9p 2 Z, N 2 N (s
pk+i

= t
i

8i � N)}.
Let � : V N ! V N denote the shift map �(s)

i

= s
i+1

. Observe that R
k

is generated by R
sync

and the orbit-equivalence relation of �k. So we have the following natural inclusions:

R
sync

⇢ R
k

⇢ R
1

.

More generally, R
k

⇢ R
d

if d | k. We also have a cocycle ↵ : R
1

! F defined by

↵(s, t) = L(s
1

) · · · L(s
N+p

) · (L(t
1

) · · · L(t
N

))�1

where N, p are such that s
p+i

= t
i

8i � N .
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Given a measure-preserving action Fy(X,µ) on a probability space and a subequivalence
relation S of R

1

, we let SX denote the skew-product equivalence relation on V N ⇥X:

SX =
n

�

(s, x), (t, y)
�

: sSt,↵(t, s)x = y
o

.

Given a subequivalence relation S ⇢ R
1

, let FX

S denote the sigma-algebra of measurable
subsets of V N ⇥ X that are unions of SX-equivalence classes. In other words, FX

S is the
SX-invariant sigma-algebra.
For convenience, we will let FX

sync

,FX

k

denote the RX

sync

and RX

k

-invariant sigma-algebras
respectively. The main technical step in the proof of Theorem 1.1 is:

Theorem 1.6. If the directed graph G contains a good subgraph (as in Definition 1) then
FX

2k

= FX

sync

(up to sets of measure zero).

We prove this in the next section and in §3 use it to prove Theorem 1.1.

1.4. Acknowledgements. The authors are deeply grateful to Vadim Kaimanovich for use-
ful discussions. Lewis Bowen is supported in part by NSF grant DMS-0968762, NSF CA-
REER Award DMS-0954606 and BSF grant 2008274. Alexander Bufetov’s research is carried
out thanks to the support of the A*MIDEX project (no. ANR-11-IDEX-0001-02) funded
by the programme “Investissements d’Avenir ” of the Government of the French Repub-
lic, managed by the French National Research Agency (ANR). Bufetov is also supported
in part by the Grant MD-2859.2014.1 of the President of the Russian Federation, by the
Programme “Dynamical systems and mathematical control theory” of the Presidium of the
Russian Academy of Sciences, by the ANR under the project “VALET” of the Programme
JCJC SIMI 1, and by the RFBR grants 12-01-31284, 12-01-33020, 13-01-12449.

2. Proof of Theorem 1.6

Let u, w 2 V and p, q, p⇤, q⇤ be directed paths in G satisfying the requirements of Definition
1. We need more notation:

Notation 2. If s 2 V N and n < m are natural numbers then we let s
[n,m]

= (s
n

, s
n+1

, . . . , s
m

) 2
V m�n+1. We also write s

[n,1)

= (s
n

, s
n+1

, . . .) 2 V N.

Let us define

• ⌧
n

: V N ! N so that ⌧
n

(s) is the n-th time of occurrence of either upq or uqw. In other
words, ⌧

n

(s) is the smallest natural number so that there exist i
1

< i
2

< . . . < i
n

with i
n

= ⌧
n

(s) so that for each j

s
[ij ,ij+k+1]

2 {upw, uqw}.
• !

n

: V N ! V N by

!
n

(s) =

⇢

s
[1,⌧n(s)]qs[⌧n(s)+k+1,1)

if s
[⌧n(s),⌧n(s)+k+1]

= upw
s
[1,⌧n(s)]ps[⌧n(s)+k+1,1)

if s
[⌧n(s),⌧n(s)+k+1]

= uqw

• Note that !
n

is invertible. So we can define  
n

: V N ! V N by

( 
n

!
n

(s)) =

⇢

!
n

(s)
[2k+1,⌧n(s)+k]

p⇤!
n

(s)
[⌧n(s)+1,1)

if s
[⌧n(s),⌧n(s)+k+1]

= upw
!
n

(s)
[2k+1,⌧n(s)+k]

q⇤!
n

(s)
[⌧n(s)+1,1)

if s
[⌧n(s),⌧n(s)+k+1]

= uqw
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=

⇢

s
[2k+1,⌧n(s)]qp

⇤qs
[⌧n(s)+k+1,1)

if s
[⌧n(s),⌧n(s)+k+1]

= upw
s
[2k+1,⌧n(s)]pq

⇤ps
[⌧n(s)+k+1,1)

if s
[⌧n(s),⌧n(s)+k+1]

= uqw

• Recall that ⌫ is the ⇧-stationary measure on V . Let ⌫̃ be the associated measure on
V N. To be precise, for any t

1

, . . . , t
n

2 V ,

⌫̃({s 2 V N : s
i

= t
i

81  i  n}) = ⌫(t
n

)⇧
t

= ⌫(t
n

)⇧
tn,tn�1 · · ·⇧t2,t1 .

• C > 0 be a constant so that almost everywhere holds

C�1  d(!�1

n

)⇤⌫̃
d⌫̃

(s)  C, C�1  d(( 
n

!
n

)�1)⇤⌫̃
d⌫̃

(s)  C

The existence of such a constant follows from the finiteness of V (so that there is a
uniform bound on the ratio of any two nonzero entries of ⇧) and explicit computation
using the formulae above.

Recall that � : V N ! V N is defined by �(s)
i

= s
i+1

. Let d
V

N denote the distance function
on V N defined by d

V

N
�

(s
1

, s
2

, . . .), (t
1

, t
2

, . . .)
�

= 1

n

where n is the largest natural number
such that s

i

= t
i

for all i < n.

Proposition 2.1. For every n > 2k + 1,

(1) 8s 2 V N, d
V

N
�

 
n

!
n

(s), �2k!
n

(s)
�  1

⌧n(s)�k

;

(2) 8s 2 V N, d
V

N(s,!
n

s)  1

⌧n(s)
;

(3) the graphs of !
n

and  
n

are contained in R
sync

;
(4) 8s 2 AN, ↵( 

n

!
n

s,!
n

s) = ↵(�2k!
n

s, s).
(5) 8f 2 L1(AN), kf � !

n

k
1

 C kfk
1

and kf �  
n

k
1

 C2 kfk
1

.

Proof. Items 1 and 2 are obvious. It is clear that the graph of !
n

is contained in R
sync

.
This implies the graph of  

n

!
n

is contained in R
sync

and therefore, since !
n

is invertible,
the graph of  

n

is contained in R
sync

.
For simplicity’s sake, we will drop the subscripts n in the following computations. So

 =  
n

,! = !
n

, ⌧ = ⌧
n

.
Suppose that s 2 V N satisfies s

[⌧(s),⌧(s)+k+1]

= upw. Let N = ⌧(s). Because ( !(s))
i

=
!(s)

i

for all i > N the definition of ↵ implies

↵( !s,!s) = L( !(s)
1

) · · · L( !(s)
N

)
⇣

L(!(s)
1

) · · · L(!(s)
N

)
⌘�1

= L(s
1+2k

) · · · L(s
N

)L(q
1

) · · · L(q
k

)L(p
k

)�1 · · · L(p
1

)�1

⇣

L(s
1

) · · · L(s
N

)
⌘�1

Because (�2k!s)
i�2k

= (!s)
i

= s
i

for all i > N + k the definition of ↵ implies

↵(�2k!s, s) = L(�2k!(s)
1

) · · · L(�2k!(s)
N�k

)
⇣

L(s
1

) · · · L(s
N+k

)
⌘�1

= L((!s)
1+2k

) · · · L((!s)
N+k

)
⇣

L(s
1

) · · · L(s
N+k

)
⌘�1

= L(s
1+2k

) · · · L(s
N

)L(q
1

) · · · L(q
k

)
⇣

L(s
1

) · · · L(s
N

)L(p
1

) · · · L(p
k

)
⌘�1

= ↵( !s,!s).
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The case when s
[⌧(s),⌧(s)+k+1]

= uqw is similar. This proves item 4.
It follows from the choice of C > 0 (made right before this proposition) that for every

f 2 L1(V N),
kf � !k

1

 C kfk
1

, kf �  !k
1

 Ckfk
1

.

Since ! is invertible, this implies

kf �  k
1

= kf �  ! � !�1k
1

 Ckf �  !k
1

 C2kfk
1

.

Here we used that ! = !�1. This establishes the last claim. ⇤
Definition 4. Define �

X

: V N⇥X ! V N⇥X by �
X

(s, x) = (�s,↵(�s, s)x). Note ↵(�s, s) =
s�1

1

. So we can also write �
X

(s, x) = (�s, s�1

1

x).

Lemma 2.2. There exist measurable maps �
n

, 
n

,⌦
n

: V N⇥X ! V N⇥X (for n > 2k+1)
such that

(1) for all f 2 L1(V N ⇥X), lim
n!1 kf � 

n

� ⌦
n

� f � �2k

X

� �
n

k
1

= 0;
(2) for all f 2 L1(V N ⇥X), lim

n!1 kf � ⌦
n

� fk
1

= 0;
(3) the graphs of � and  are contained in RX

sync

.

Proof. For n > 2k + 1 an integer, let  
n

and !
n

be as in Proposition 2.1. Define

⌦
n

(s, x) := (!
n

s, x)

�
n

(s, x) := (!
n

s,↵(!
n

s, s)x)

 
n

(s, x) := ( 
n

s,↵( 
n

s, s)x).

Since the graphs of  
n

and !
n

are contained inR
sync

, the graphs of �
n

and 
n

are contained
in RX

sync

. Let d
X

be a metric on X that induces its Borel structure and makes X into a
compact space. For (s, x), (s0, x0) 2 V N⇥X, define d⇤((s, x), (s0, x0)) = d

X

(x, x0)+ d
V

N(s, s0).
By the previous proposition, d⇤(⌦n

(s, x), (s, x)) = d
V

N(!
n

(s), s)  1/⌧
n

(s)  1/n. Also by
the previous proposition:

 
n

⌦
n

(s, x) = ( 
n

!
n

s,↵( 
n

!
n

s,!
n

s)x)

�2k

X

�
n

(s, x) = �2k

X

(!
n

s,↵(!
n

s, s)x) = (�2k!
n

s,↵(�2k!
n

s,!
n

s)↵(!
n

s, s)x)

= (�2k!
n

s,↵(�2k!
n

s, s)x) = (�2k!
n

s,↵( 
n

!
n

s,!
n

s)x).

So the previous proposition implies d⇤( n

� ⌦
n

(s, x), �2k

X

� �
n

(s, x))  1/(n � k). So if f is
a continuous function on V N ⇥X then the bounded convergence theorem implies

lim
n!1

kf � 
n

� ⌦
n

� f � �2k

X

� �
n

k
1

= 0

lim
n!1

kf � ⌦
n

� fk
1

= 0.

It follows from the previous proposition that the operators f 7! f � ⌦
n

, f 7! f � �
n

and
f 7! f �  

n

are all bounded for f 2 L1(V N ⇥ X) with bound independent of n. It easy to
see that f 7! f � �2k

X

is also a bounded operator on L1(V N ⇥X) (because V is finite and ⌫̃ is
the Markov measure). Since the continuous functions are dense in L1(V N ⇥X), this implies
the lemma. ⇤
We can now prove Theorem 1.6.
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Proof of Theorem 1.6. Note FX

2k

� FX

sync

. So it su�ces to show that if f 2 L1(V N ⇥ X) is
RX

sync

-invariant then it is RX

2k

-invariant. Because the map �2k

X

together with RX

sync

generates
RX

2k

, it su�ces to show that if f 2 L1(V N ⇥X) is RX

sync

-invariant then f � �2k

X

= f .
Let �

n

, 
n

,⌦
n

(n > 2k + 1) be as in the previous lemma. Because f is RX

sync

-invariant
and the graph of  

n

is contained in RX

sync

, it follows that f �  
n

= f for all n. An easy
exercise shows that �

X

preserves the equivalence relation in the sense that
⇣

(s, x), (t, y)
⌘

2 R
sync

)
⇣

�
X

(s, x), �
X

(t, y)
⌘

2 R
sync

.

It follows that f � �2k

X

is RX

sync

-invariant. Since the graph of �
n

is contained in RX

sync

,
f � �2k

X

� �
n

= f � �2k

X

for all n. We now have

kf � f � �2k

X

k
1

= kf � f � �2k

X

� �
n

k
1

 kf � f � 
n

� ⌦
n

k
1

+ kf � 
n

� ⌦
n

� f � �2k

X

� �
n

k
1

= kf � f � ⌦
n

k
1

+ kf � 
n

� ⌦
n

� f � �2k

X

� �
n

k
1

.

We take the limit as n ! 1 (using the previous lemma) to obtain f = f � �2k

X

as claimed.
⇤

3. Proof of Theorem 1.1

Proposition 3.1. Let ⇧, V,L be as above. For each v 2 V , let �
v

 F be the subgroup
generated by all elements of the form L(p) where pv is a directed path from v to v in G. If
�
v

= F for some v 2 V and G is strongly connected then FX

1

is the �-algebra generated by
all sets of the form V N ⇥ A where A ⇢ X is a measurable F-invariant set. In particular, if
Fy(X,µ) is ergodic then FX

1

is trivial.

Proof. By decomposing into ergodic components, we may assume that Fy(X,µ) is ergodic.
Because RX

1

is generated by �
X

, it su�ces to prove �
X

is ergodic.
Let Y ⇢ V N ⇥X be the set of all (s, x) such that s

1

= v where v 2 V is chosen so that
�
v

= F. Let T : Y ! Y be the induced transformation:

T (s, v) = �n

X

(s, v)

where n � 1 is the smallest natural number such that �n

X

(s, v) 2 Y . By Kakutani’s random
ergodic theorem [24, Theorem 3 (a) ) (f)], the ergodicity of Fy(X,µ) implies T is ergodic.

Now suppose Z ⇢ V N ⇥ X is measurable, �
X

-invariant and has positive measure. Then
Y \ Z is T -invariant. Because the graph G is strongly connected, ⌫̃ ⇥ µ(Y \ Z) > 0. Since
T is ergodic, this implies Y \Z = Y up to measure zero. However, [1

i=0

�i

X

Y = V N ⇥X (up
to measure zero) because G is strongly connected. This implies Z is conull and therefore �

X

is ergodic as claimed. ⇤
Lemma 3.2. For any f 2 L1(V N ⇥X) and any k 2 N,

1

k

k�1

X

i=0

E[f � �i

X

|FX

k

] = E[f |FX

1

].
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Proof. Because FX

1

is the sigma-algebra of �
X

-invariant measurable subsets, von Neumann’s
mean ergodic theorem implies that

1

nk

nk�1

X

i=0

f � �i

X

! E[f |FX

1

]

in L1 as n ! 1. By taking conditional expectations on both sides (and remembering that
FX

1

⇢ FX

k

), we have

1

nk

nk�1

X

i=0

E[f � �i

X

|FX

k

] ! E[f |FX

1

].

Because FX

k

is �k

X

-invariant, we have E[f � �k+i

X

|FX

k

] = E[f � �i

X

|FX

k

] for any i. So for any n

1

nk

nk�1

X

i=0

E[f � �i

X

|FX

k

] =
1

k

k�1

X

i=0

E[f � �i

X

|FX

k

].

This implies the lemma. ⇤
Proof of Theorem 1.1 from Theorem 1.6. Without loss of generality, we may assume Fy(X,µ)
is ergodic. Let ⇡ : V N ⇥X ! V ⇥X denote the projection map ⇡(s, x) = (s

1

, x).
Let B

V⇥X

denote the Borel sigma-algebra on V ⇥X and let FX

�n

be the smallest sigma-
algebra of V N ⇥X containing (⇡ � �m

X

)�1(B
V⇥X

) for every m � n.
Consider the induced Markov operator ⇧

X

: L1(V ⇥X) ! L1(V ⇥X) given by

⇧
X

(')(x, v) =
X

w2V
⇧

w,v

'(w, T
v

x).

Observe that for n � 2

⇧n

X

(')(x, v) =
X

t1,...,tn2V
⇧

(t1,...,tn,v)'(t1, T(t2,...,tn,v)x).

Thus

(⇧n

X

') � ⇡ � �n

X

)(s, x) = (⇧n

X

')(s
n+1

, T�1

(s1,...,sn)
x)

=
X

t1,...,tn2V
⇧

(t1,...,tn,sn+1)'(t1, T(t2,...,tn,sn+1)T
�1

(s1,...,sn)
x)

= E['⇡|FX

�n+1

](s, x).

The reverse martingale convergence theorem yields

E['⇡|FX

�n+1

] ! E['⇡|FX

sync

]

in L1(V N ⇥X) as n ! 1. By Theorem 1.6, FX

sync

= FX

2k

. Therefore,

(⇧n

X

') � ⇡ � �n

X

! E['⇡|FX

2k

]

in L1(V N ⇥X) as n ! 1. Because conditioning on FX

2k

commutes with �
X

, for any i � 0

(⇧n

X

') � ⇡ � �n+i

X

! E['⇡ � �i

X

|FX

2k

]
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in L1(V N ⇥X) as n ! 1. Since E['⇡ � �i

X

|FX

2k

] = E['⇡ � �2k+i

X

|FX

2k

] we can also write this
as: for any 0  i < 2k,

(⇧n

X

') � ⇡ � �n�i

X

! E['⇡ � �2k�i

X

|FX

2k

]

in L1(V N ⇥X) as n ! 1. Now Lemma 3.2 and Proposition 3.1 imply

1

2k

2k�1

X

i=0

(⇧n

X

') � ⇡ � �n�i

X

! 1

2k

2k�1

X

i=0

E['⇡ � �i

X

|FX

2k

] = E['⇡|FX

1

] =

Z

' d⌫ ⇥ µ

in L1 as n ! 1. However,

(⇧n

X

') � ⇡ � �n�i

X

= (⇧n�i

X

⇧i

X

') � ⇡ � �n�i

X

! E[⇧i

X

'⇡|FX

2k

]

in L1(V N ⇥X) as n ! 1. Similarly,

(⇧n+i

X

') � ⇡ � �n

X

! ⇧i

X

⇣

E['⇡|FX

2k

]
⌘

= E[⇧i

X

'⇡|FX

2k

]

in L1(V N ⇥X) as n ! 1. So we have

1

2k

2k�1

X

i=0

(⇧n+i

X

') � ⇡ � �n

X

!
Z

' d⌫ ⇥ µ

in L1 as n ! 1.
Without loss of generality, we may assume

R

' d⌫⇥µ = 0 in which case the above implies
�

�

�

�

�

1

2k

2k�1

X

i=0

(⇧n+i

X

') � ⇡ � �n

X

�

�

�

�

�

! 0

as n ! 1. However,
�

�

�

�

�

1

2k

2k�1

X

i=0

(⇧n+i

X

') � ⇡ � �n

X

�

�

�

�

�

=

�

�

�

�

�

1

2k

2k�1

X

i=0

⇧n+i

X

'

�

�

�

�

�

.

So
1

2k

2k�1

X

i=0

⇧n+i

X

'! 0

in L1 as n ! 1. Next we note that if '(v, x) = �(x) for some � 2 L1(X) then by a change
of variables argument

(S
n

�)(x) =
X

s1,...,sn2V
⌫(s

n

)⇧
(s1,...,sn)�(T(s1,...,sn)x)

=
X

v2V

X

s1,...,sn�12V
⌫(v)⇧

(s1,...,sn�1,v)�(T(s2,...,sn�1,v)x)

=
X

v2V
⌫(v)(⇧n�1

X

')(v, x).

Thus S
n

� converges to 0 in L1 as n ! 1.
⇤
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preserving actions of Markov semigroups and groups, Int. Math. Res. Not. IMRN, 2012:21 (2012),
4797–4829.

[14] A. I. Bufetov, C. Series, A pointwise ergodic theorem for Fuchsian groups, arXiv:1010.3362v1 [math.DS].
[15] D. Calegari, K. Fujiwara, Combable functions, quasimorphisms, and the central limit theorem. Ergodic

Theory Dynam. Systems 30 (2010), no. 5, 1343–1369.
[16] J. Cannon, The combinatorial structure of cocompact discrete hyperbolic groups. Geom. Dedicata, 16

(1984), no. 2, 123–148.
[17] K. Fujiwara and A. Nevo, Maximal and pointwise ergodic theorems for word-hyperbolic groups, Ergodic

Theory Dynam. Systems 18 (1998), 843–858.
[18] Sur les groupes hyperboliques d’après Mikhael Gromov. Papers from the Swiss Seminar on Hyperbolic
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5

Sternberg linearization theorem for
skew products

This Chapter concerns normalization theory : we search for a simpler form of a dif-
feomoprhism that can be obtained by a change of coordinates. We are interested in
a special kind of normalization that works for skew product diffeomorphisms. The
normal form is a linear map and what is the most important for us, the conjugacy
preserves the fibered structure (more precisely, it changes only the fiber coordinate). It
appears, that even in the smooth case, the conjugacy is only Hölder continuous with
respect to the base. We calculate explicit bounds for its Hölder exponent and its Höl-
der constant as well. The Hölder exponent, as often in this subject, reflects the ratio of
the dynamics in the fiber and in the base. This normalization theorem may be applied
to perturbations of skew products and to the study of new persistent properties of
attractors.
This Chapter is reproducing our work with Yulij Ilyashenko. Its results were published
in Journal of Dynamical and Control Systems.
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STERNBERG LINEARIZATION THEOREM FOR SKEW PRODUCTS

YULIJ ILYASHENKO ⇤
1,2, OLGA ROMASKEVICH†

1,3

1 National Research University Higher School of Economics, Moscow
2 Cornell University 3 École Normale Supérieure de Lyon

Abstract. We present a new kind of normalization theorem: linearization theorem for skew products.
The normal form is a skew product again, with the fiber maps linear. It appears, that even in the smooth
case, the conjugacy is only Hölder continuous with respect to the base. The normalization theorem
mentioned above may be applied to perturbations of skew products and to the study of new persistent
properties of attractors.

1. Setting and statements

1.1. Motivation. This paper is devoted to a normalization theorem for Hölder skew products. We
begin with the motivation for the choice of this class of maps.

According to a heuristic principle going back to [1], generic phenomena that occur in random dynami-
cal systems on a compact manifold may also occur for di↵eomorphisms of manifolds of higher dimensions.
Random dynamical systems are equivalent to skew product homeomorhisms over Bernoulli shift. Some
new e↵ects found for these homeomorphisms were transported later to skew product di↵eomorphisms
over hyperbolic maps with compact fibers. These di↵eomorphisms are in no way generic. Their small
perturbations are skew products again, whose fiber maps are smooth but only continuous with respect
to the base point [8].

Recently it was discovered that these fiber maps are in fact Hölder with respect to the base point
[4, 13, 21].

New e↵ects found for skew product di↵eomorphisms are then transported to Hölder skew products,
and thus proved to be generic. This program was carried on in [3, 9, 10, 11, 16, 17].

This motivates the study of Hölder skew products. We now pass to our main results.

1.2. Main statements. Consider a skew product di↵eomorphism over an Anosov map in the base with
the fiber a segment. In more detail, let M = Td ⇥ I, Td is a a d-dimensional torus, I = [0, 1]. Consider
a boundary preserving skew product

(1) F : M ! M, (b, x) 7! (Ab, f
b

(x)) ,

where f
b

(0) = 0, f
b

(1) = 1, the fiber map f
b

is an orientation preserving di↵eomorphism I ! I and the
base map A is a linear hyperbolic automorphism of a torus.

Suppose also that f is Hölder continuous in x with respect to the Ck-norm; i.e. that there exist
constants C

k

, � > 0 such that for any b, b0 2 Td the following holds:

(2) ||f
b

� f
b

0 ||
C

k  C
k

||b� b0||�
This assumption appears in slightly di↵erent settings as a statement in a number of articles on partial

hyperbolicity: for exmple, in [21] the estimate (2) is true for k = 0, in [2] for k = 1 and in [4] for any
k. Now we will state the main results that we are proving in a hope to apply them to the study of the
skew products: for example, to drastically simplify the proofs in [10].

⇤email: yulij@math.cornell.edu
†email:olga.romaskevich@ens-lyon.fr
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2 STERNBERG LINEARIZATION THEOREM FOR SKEW PRODUCTS

Theorem 1. Consider a map F of the form (1) with the property (2) for some fixed k and Ck – smooth
on the x variable, k � 2. Let O 2 Td⇥{0} be its hyperbolic fixed point. Then there exists a neighborhood
U of O and a fiber preserving homeomorphism

(3) H : (U,O) ! U, (b, x) 7! (b, x+ h
b

(x)) h
b

(0) =
@h

b

@x
(0) = 0,

such that

1. H conjugates F in (U,O) with its ”fiberwize linearization”

(4) F
0

: (b, x) 7! (Ab,�
b

x),

where

(5) �
b

= f 0
b

(0).

This means that

(6) F �H = H � F
0

.

2. H is smooth on x for b fixed: the degree of smoothness is k � 2
3. H is fiberwise Hölder: there exist constants C̃

l

,↵ > 0 such that for any l, 0  l  k � 2 holds

(7) ||h
b

� h
b

0 ||
C

l  C̃
l

||b� b0||↵

such that

(8) ↵ 2 min(�, log
µ

q),

where µ is the largest magnitude of eigenvalues of A.

This theorem is local: the conjugacy relation F �H = H � F
0

holds in a neighborhood of O only. We
will reduce this theorem to the following two results.

Theorem 2. Consider the same F as in Theorem 1, with k = 2. Let in addition

�
b

 q < 1 8b 2 Td

Then the map H with the properties 1, 2, 3 mentioned in Theorem 1 is defined in a set

M
"

=
�

(b, x) 2 Td ⇥ [0, 1] | x 2 [0, "]
 

for some " > 0 and is continuous on this set. Moreover, for l = 0, the relation (7) holds for any ↵ as
in (8).

Theorem 3. Suppose that all assumptions of Theorem 2 hold, except for k is arbitrary now. Then the
map H with the same properties as in Theorem 2 exists. Moreover, H is Ck�2 fiberwise smooth, and
satisfies the Hölder condition (8) for l = k � 2.

Theorems 2 and 3 are the main results of the paper. They are similar: the first one claims that the
fiberwise conjugacy H is continuous in the C-norm with respect to the point of the fiber, and the second
one improves this result – by decreasing the neighborhood in the fiber, and replacing the C-norm by
the C l one. The main part of the paper to follow is the proof of Theorem 2. At the end we present a
part of the proof of Theorem 3. Namely, we prove that the maps h

b

are (k� 2)-smooth , but we do not
prove that the derivatives @

j
hb

@x

j , 1  j  k � 2 are Hölder in b. This may be proven in the same way as
the Hölder property for h

b

, but requires more technical details that we skip here.
At the beginning of the next section we deduce Theorem 1 from Theorems 2, 3.
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1.3. Comparison with the theory of “nonstationary normal forms”. This theory is developed
in [6] and [5]. The closer to our results is Theorem 1.2 of [6] proved in full detail as Theorem 1 of [5].
For future references we will call it the GK-Theorem. This theorem considers a wide class of maps to
which the map (1) belongs, provided that it satisfies the so called narrow band spectrum condition. In
assumptions of our Theorem 1, this condition has the form:

(9) (max
b2Td

�
b

)2 < min
b2Td

�
b

.

This is a restrictive condition, not required in Theorem 2. Moreover, GK-Theorem claims properties
1 and 2 of the map H , that is, H is a fiberwise smooth topological conjugacy, and does not claim Hölder
continuity of the fiberwise maps of H , see (8). To summarize, Theorems 2, 3 improve the GK-Theorem
for the particular class of maps (1), skipping the narrow band spectrum condition and adding Property
3, the Hölder continuity.

Statements 1 and 2 of Theorem 1 may be deduced from the GK-Theorem. Indeed, any continuous
function � < 1 satisfies condition (9) in a suitable neighborhood of any point. On the other hand,
Theorem 1 in its full extent is easily deduced from Theorems 2, 3.

2. The plan of the proof

2.1. Globalization. Theorem 1 is proved with the help of standard globalization technics (see, for
instance, [14]). Without loss of generality, hyperbolicity of the skew-product F implies that �

b

< 1 in
the neighborhood U 2 Td of the fixed point O. If not, we pass to the inverse mapping F�1. Let K be a
compact subset of U . Let us take a smooth cut function ' : Td ! [0, 1] such that

(10) '|
K

⌘ 0,'|Td\U ⌘ 1

Instead of the initial function f
b

(x) on the fibers let us consider the function

(11) f̃
b

(x) = f
b

(x)(1� ') +
x

2
'

Then a map

(12) F̃ : X
"

! X, (b, x) 7! (Ab, f̃
b

(x))

has the following list of properties:

1. F̃ coincides with F in the neighborhood of the fixed point O
2. F̃ is attracting near the zero layer: if �̃

b

:= f̃ 0
b

(0) then

(13) �̃
b

< 1 8b 2 Td

So without loss of generality we may assume from the very beginning that �
b

2 (0, 1) everywhere on
the base Td. Moreover, the conjugacy H is to be found in the whole M

"

: in other words, the equality
F �H = H � F

0

will hold on the full neigbourhood M
"

of the base.
All the rest of the article deals with the proof of the global result, i.e. Theorem 2 and Theorem 3.
Now let us prove Theorem 2: the main idea is to use fixed point theorem to prove the existence of the

conjugacy H : we should just properly define the functional space and a contraction operator in it. In
the following sections we will do all of it, postponing some calculcations as well as the proof of Theorem
3 to the Appendix (Section 6).
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2.2. Homological and functional equations. Suppose that

(14) f
b

(x) = �
b

x+R
b

(x), R
b

(x) = O(x2), x ! 0.

Then finding the conjugacy H : M
"

! M
"

of the form (3) satisfying (6) is equivalent to finding the
solution h̄

b

(x) of a so-called functional equation

(15) h̄
Ab

(�
b

x)� �
b

h̄
b

(x) = R
b

�

x+ h̄
b

(x)
�

More briefly, this equation can be written in a compositional form as

(16) h̄ � F
0

� �h̄ = R �H
Here we denote by � the operator of multiplication by �

b

, here b is an argument of the considered
function.

In the following we will be working not with the quadratic part of the conjugacy itself but with this
part divided by x2. That’s why we change the notations in such a way: we write bars for the functions in
the space of quadratic parts for possible conjugacy maps and we don’t write bars for the same functions
divided by x2, for instance, h

b

(x) :=
¯

hb(x)

x

2 . In a similar fashion, Q
b

(x) := Rb(x)

x

2 .
The functional equation is a hard one to solve since the function h̄

b

(x) is present in both sides of the
equation. One may simplify functional equation and consider a gentler form of the equation on h̄

b

(x),
a homological equation:

(17) h̄ � F
0

� �h̄ = R

The solution of the homological equation doesn’t give the conjugacy but is a useful tool in the
investigation. Homological eqation can be rewritten equivalently in terms of h and Q as

(18) �2h � F
0

� �h = Q

2.3. Operator approach. Let us consider a space M of real-valued functions defined on M which are
continuous on b 2 Td and smooth in x 2 [0, 1]:

(19) M :=
�

h̄
b

(x) 2 M | h̄·(x) 2 C(Td), h̄
b

(·) 2 Ck[0, 1]
 

Let us define an operator  ̄ : M ! M on it which acts on a function h(b, x) by associating to it the
left-hand side of the homological equation (17). With the use of this operator, equation (17) can be
rewritten in a form  ̄h̄ = R.

Denote L̄ an inverse operator to  ̄. The operator L̄ is solving homological equation: if the right-hand
side is R then L̄R = h̄ and L̄ ̄ = id. From now on, operator L̄ will be referred as homological operator.

Let us define a shift operator �̄ : M ! M which acts as

(20) �̄h̄(b, x) = R
b

�

x+ h̄
b

(x)
�

Then the functional equation on the function h̄ can be rewritten in the form  ̄h̄ = �̄h̄ or, equivalently,
h̄ = L̄�̄h̄. So the search for conjugacy is equivalent to the search of a fixed point for the operator L̄�̄
in the space M.

Let us note for the future that the operator  ̄ (as well as its inverse L̄) is a linear operator on the
space of formal series although operator �̄ is not at all linear: for instance, it sends a zero function to
R

b

(x).
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2.4. Choice of a functional space for the Banach fixed point theorem. We will be using the
simplest of the forms of a contraction mapping principle by considering a contracting mapping defined
on a metric space N and preserving its closed subspace N .

Let us define N , d and N for our problem: a contraction mapping f will be a slight modification of
the composition of operators L̄�̄ considered in Section 2.3. Note that operator L̄ as well as operator
�̄ preserve the subspace of M of functions starting with quadratic terms in x which we will denote by
M2:

(21) M2 =
�

h̄
b

(x) 2 M|h̄
b

(x) = x2h
b

(x), h
b

(x) 2 M 

That’s why for our comfort we will define the operators L and � acting on M as

Lh :=
L̄[x2h]

x2

�h :=
�̄[x2h]

x2

(22)

These operators correspond to the solution of homological equation and to the shift operator but are
somewhat normalized.

The linearization theorems we prove will be applicable only in the vicinity of the base, i.e. in Td⇥[0, "].
The conditions on the small constant " will be formulated later. Contraction mapping theorem will be
applied to the operator L� acting in the complete metric space M

"

of functions from M restricted to
the small neighborhood of a torus Td ⇥ [0, "]. A norm on this space is simply a continuous one, for
h(b, x) 2 M

"

it is defined by

(23) ||h||
C,"

= sup
(b,x)2Td⇥[0,"]

|h
b

(x)| .

To use contraction mapping principle we define a space

(24) N := {h 2 M
"

, ||h||
C,"

 A} , ⇢(h
1

, h
2

) := ||h
1

� h
2

||
C,"

.

with a continuous norm on it.
The constant A will be chosen later. Now we pass to the definition of the set N .

2.5. Hölder property and a closed subspace N . To prove Theorem 2 we shall work with the three
norms: continuous one || · ||

C,"

was already defined, now we will define the Lipschitz norm Lip
x,"

as well
as the Hölder one || · ||

[↵],"

. The index " indicates that these norms are considered for the subspaces of
functions in M2

"

; but it will be omitted in the case it is matter-of-course.

Definition 1. For a function h 2 M define its Hölder norm ||h||
[↵]

as

(25) ||h||
[↵]

:= sup
b1,b22Td

,x2[0,1]

|h
b1(x)� h

b2(x)|
||b

1

� b
2

||↵
Hölder norm of a function is sometimes called its Hölder constant.
The subspace of functions h 2 M for which this norm is finite, will be called the space of Hölder

functions with exponent ↵ and denoted by H↵. In much the same way, the space H↵

"

is a subset of
functions h in M

"

such that ||h||
[↵],"

< 1 where

(26) ||h||
[↵],"

:= sup
b1,b22Td

,x2[0,"]

|h
b1(x)� h

b2(x)|
||b

1

� b
2

||↵

Definition 2. For a function h 2 M define its fiberwise Lipschitz norm Lip
x

h as

(27) Lip
x

h := sup
b2Td

,x,y2[0,1]

|h
b

(x)� h
b

(y)|
|x� y|
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Analogously, for h 2 M
"

(28) Lip
x,"

h := sup
b2Td

,x,y2[0,"]

|h
b

(x)� h
b

(y)|
|x� y|

Once these definitions given, we can say what will be the closed subspace N of the functional space
N (see (24)) for the contraction mapping principle. We will show that there exist constants " > 0 as
well as A

C

, A
Lip

and A
↵

such that the space

(29) N =
�

h 2 M
"

, h 2 H↵

"

| ||h||
C,"

 A
C

,Lip
x,"

h  A
Lip

, ||h||
[↵],"

 A
↵

 

is closed in (N , ⇢) and preserved under L�. Note that here we need A � A
C

. In the proof, we will first
choose constants A

C

, A
Lip

and A
↵

, A can be chosen later as A := A
C

.

2.6. Three main lemmas and the proof of Theorem 2. To prove Theorem 2, one needs simply
to show that all the conditions of contraction mapping principle hold for N , ⇢ and N defined corre-
spondingly in (24) and (29). Here we state three main lemmas that will give the result of Theorem
2.

Lemma 1 deals with homological equation and provides an explicit solution of (17) as a formal series.
It also states that this series converges exponentially and gives a continuous function on M . Moreover,
for ↵ chosen accordingly to (8), the operator L in the space M preserves the subspace H↵ of Hölder
functions with this particular exponent. This is a crucial point that gives us the main claim – Hölder
property of a conjugacy.

The two lemmas that are left enable us to apply contraction mapping principle. Lemma 2 deals with
composition L�: it states that one can choose a closed subspace N ⇢ N of the form (29) such that is
mapped into itself under the composition L�. Lemma 3 proves that L� is indeed a contraction on the
space M

"

in continuous norm.
Let us state precisely these lemmas.

Lemma 1. [Solution of a homological equation] Consider a skew product (1). Let us define a sequence
of functions on Td as

(30) ⇧
0

(b) := 1,⇧
n

(b) := �
b

�
Ab

. . .�
A

n�1
b

, n = 1, 2, . . .

Let ↵ be given by (8), and set

(31) ✓ = ✓(↵) := µ↵q < 1

Suppose that conditions (2) and (31) hold, and let Q 2 H↵.
Then the following holds:
1. There exist a solution h

b

(x) of the homological equation (18); it can be represented as a formal
series

(32) h
b

(x) = �
1
X

k=0

⇧
k

(b)Q � F k

0

(b, x)

�
A

k
b

2. The series (32) converges uniformly on M and its sum is continuous in b and as smooth in x as
Q.

3. The solution h satisfies Hölder condition with the exponent equal to ↵ : h 2 H↵.
4. The operator L : Q 7! h is bounded in C–norm on the space M.

Lemma 2. [A closed subspace maps inside itself ] For a skew product of the form (1) there exist constants
", A

C

, A
Lip

, A
↵

> 0 such that the operator L� acting in the space M maps the closed space N defined
by (29) into itself.
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Lemma 3. [Contraction property] There exists a constant A > 0 such that for any su�ciently small
" > 0 the operator L� acting in the space N (which depends on A and on ", see (24)) is contracting in
the continuous norm.

Proof of Theorem 2.
Now the proof follows: first, we take " defined by Lemma 2 and fix all constants A

C

, A
Lip

, A
↵

provided
by the same lemma. Then we diminish " for Lemma 3 to hold. Then the set N corresponding to such
an " and a constant A = A

C

has a C-norm on it defining a complete metric space. Operator L� acts
in this space and, by Lemma 3, is a contracting map. Note that the set N defined in (29) is a closed
subspace of N since A = A

C

. This subspace N ⇢ H↵

"

with a fixed Hölder constant ↵ is preserved by
L�. Then, by contraction mapping principle, L� has a fixed point h 2 N (and hence in H↵

"

) which
gives Hölder conjugacy of the initial skew product with its linearization. Strictly speaking, the Hölder
property is proven not for the conjugacy but for its quadratic part divided by x2 but the Hölder property
of the conjugacy follows just because x is bounded. 2

3. Proof of Lemma 1: homological equation solution

From the form (18) of the homological equation we deduce that h(b, x) can be represented as

(33) h = ���1Q + �h � F
0

Let us take the right composition of this equation with the normalized map F
0

given by (4). And then
let us apply the operator of multiplication by � to this equation. The equality (33) implies

(34) � (h � F
0

) = �� ���1 � A�Q � F
0

+ � (� � A)h � F 2

0

Note that the left side of (34) is equal to one of the terms in the right hand side of (33). We continue
such a process of taking right composition with F

0

and multiplying by �. Thus we obtain the infinite
sequence of equations that can be all summed up. Let us sum the first N +1 of them, then we will have

(35) h
b

= ⇧
N+1

(b)h
b

� FN+1

0

�
N

X

k=0

⇧
k

(b)Q � F k

0

�
A

k
b

Let us now pass to the limit when N ! 1: since h 2 N , ||h||
C

 A and � is bounded by some q < 1,
we have that the first term on the right-hand side of (35) is bounded by AqN+1 and hence tends to 0.
Thus we obtain formula (32) for h(b, x).

Since F is a di↵eomorphism, then 8b 2 Td we have: �
b

6= 0. Then, since �
b

is a continuous function
on a compact manifold Td, there exists a lower bound D > 0 such that

(36) �
b

� D > 0 8b 2 Td.

Then, since obviously

(37) |⇧
k

(b)|  qk,

the series (32) is bounded by a converging number series

(38)
1
X

k=0

qk

D
||Q||

C

=
||Q||

C

D(1� q)

So by the Weierstrass majorant theorem, its sum is a continuous function on M , and the normalized
homological operator L is bounded in continuous norm. Namely,

(39) ||L||
C

 1

D(1� q)
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Solution h
b

(x) is as smooth in x as Q is: that can be verified by di↵erentiation of the series (32) and
repetitive applying of Weierstrass majorant theorem. Convergence of the series for the derivative of the
solution of homological equation h will be even faster than the convergence of the series for the function
itself: indeed, the coe�cients in the series (32) will be multiplied by the factors ⇧

k

(b) which are rapidly
decreasing.

So assertions 1, 2 and 4 of Lemma 1 are proven. What is left to prove is that Hölder property with
exponent ↵ is preserved by operator L. We will need the following

Proposition 1. In the setting of Theorem 1, let the Hölder property (2) for f
b

and some k hold. Then,
for �

b

and Q
b

(x) given by f
b

(x) = �
b

x+ x2Q
b

(x) we have Hölder properties: for �
b

and for the same k
as in (2); for Q

b

(x) and for k � 2.

Proof. The property for �
b

is obvious since �
b

= @fb(x)

@x

|
x=0

. The property for Q
b

(x) follows from an
analogue of Hadamard’s lemma: for ' 2 C2

[0,1]

,'(0) = '0(0) = 0 and  = '

x

2 we have

(40) || ||
C

 ||'||
C

2

This follows from the well-known formula  (x) =
R

x

0

(x� t)'00((t))dt. The coordinate change t = xs, s 2
[0, 1] implies  (x) = x2

R

1

0

(1 � s)f 00(xs)ds. From this (40) follows. The needed corollary that Q
b

is
Hölder continuous assuming f

b

is Hölder as an element of C2, follows. ⇤
To prove assumption 3 of Lemma 1 let us denote by C

Q

:= ||Q||
[↵]

and C
�

:= ||�||
[↵]

the Hölder
constants for functions Q and � respectively. We need to find such C > 0 that for all b

1

, b
2

2 Td:

(41) |h
b1(x)� h

b2(x)|  C||b
1

� b
2

||↵
Note that even though Hölder exponents for Q and � can be close to 1, the Hölder exponent for the

solution h of normalized homological equation will be close to zero.
For each k 2 Z

+

denote

(42) P
k

(b) :=
⇧

k

(b)

�
A

k
b

Then, obviously,

(43) |P
k

(b)|  qkD.

Let Q
k

(b, x) := Q � F k

0

(b, x). Then the solution h can be written in the form

(44) h
b

(x) = �
1
X

k=0

P
k

(b)Q
k

(b, x)

Take b
1

, b
2

2 Td and denote Q
k,j

:= Q � F k

0

(b
j

, x), j = 1, 2. Then

(45) |h
b1(x)� h

b2(x)| =
1
X

k=0

[(P
k

(b
1

)� P
k

(b
2

))Q
k,1

+ P
k

(b
2

)(Q
k,1

�Q
k,2

)]

So we have the estimate

(46) |h
b1(x)� h

b2(x)| 
1
X

k=0

✓
1,k

(b
1

, b
2

) + ✓
2,k

(b
1

, b
2

)

where

(47) ✓
1,k

(b
1

, b
2

) = |P
k

(b
1

)� P
k

(b
2

)| ||Q||
C

, ✓
2,k

(b
1

, b
2

) = |P
k

(b
2

)||Q
k,1

�Q
k,2

|
Let us formulate some propositions that we will need, and postpone their proofs to the Appendix,

Section 6.
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Proposition 2. Function ⇧
n

(b) defined as a product of �
b

in the first n points of the orbit of a linear
di↵eomorphism A, see (30), is Hölder continuous with the exponent ↵, see (8) , and

(48) ||⇧
n

||
[↵]

 C
�

✓n

(µ↵ � 1)q

where C
�

is the Hölder constant for �, ✓ is defined in (31), and µ is the largest magnitude of eigenvalues
of A.

Proposition 3. Function P
n

(b) defined by (42) is Hölder with the exponent ↵, and

(49) ||P
n

||
[↵]

 D2C
�

B✓n,

where B depends only on the initial map, the precise formula for B is given below, see (71).

Now, using Proposition 3 we can prove that

(50) ✓
1,k

(b
1

, b
2

)  ||Q||
C

D2C
�

B✓k||b
1

� b
2

||↵
The estimate of ✓

2,k

is somewhat lengthier.

Proposition 4. Function ✓
2,k

(b
1

, b
2

) defined in (47) is Hölder with the exponent ↵, and

(51) ||✓
2,k

||
[↵]

 ✓kD

✓

C
Q

+ qk�1Lip
x

Q
C

�

µ↵ � 1

◆

The proof of this proposition is using only the triangle inequality and we postpone it till the appendix.
Inserting estimates on ✓

1,k

and ✓
2,k

from (50) and (51) into the inequality (46), we can finally use
our special choice of ↵. It is in this place where we crucially use the fact that ✓ < 1 to establish the
convergence of estimating series in the right-hand side of (46). By simple computation of the sum of a
geometric progression, we obtain that h is Hölder, and (41) holds for some C

h

. The expicit form of C
h

is not important for the proof of this lemma, but it will be used in the proof of Lemma 2. That’s why
we write it out explicitely:

(52) C
h

= ||Q||
C

L
C

+ C
Q

L
[↵]

+ Lip
x

QL
Lip

.

where

(53) L
C

=
D2C

�

B

1� ✓
, L

[↵]

=
D

1� ✓
, L

Lip

=
C

�

(µ↵ � 1) q

1

1� ✓q
.

This completes the proof of Lemma 1. 2

4. Proof of Lemma 2: the shift operator

Take some h 2 N and let us estimate continuous, Lipschitz and Hölder norms of its image under the
composition of operators L and �.

The plan of the proof is the following: we will first show that there exist constants "
C

> 0 and
A = A

C

> 0 such that the space N defined by (24) is mapped by L� to itself. So the operator L�
doesn’t increase too much the continuous norm if we consider it on an appropriate space.

In the following step, we will diminish even more the "-neighborhood of the base in which the functions
are defined, and search for "

Lip

< "
C

and we will also search for a good bound A
Lip

in (24). We will
find such "

Lip

and A
Lip

that L� won’t increase the Lipschitz norm of the function h with conditions
||h||

C

 A
C

, ||h||
Lip

 A
Lip

in the vicinity of the base.
And, in the final step, we will find "

↵

< "
Lip

and A
↵

such that the space N defined by (29) is preserved
by L�.

From the definition (20) of the shift operator �̄ we have

(54) �̄h̄(b, x) = R
b

�

x+ h̄
b

(x)
�

= (x+ h̄
b

(x))2Q(b, x+ x2h
b

(x)) = x2(1 + xh
b

(x))2Q(b, x+ x2h
b

(x))
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hence

(55) �h = (1 + xh)2Q(b, x+ x2h)

Using the definition (29) of the subspace N as well as the estimate (38) and the expression (55), for any
h 2 N we have

(56) ||L�h||
C,"

 1

D(1� q)
||�h||

C,"

 ||Q||
C

D(1� q)
(1 + "A

C

)2

Hence let us first fix any

(57) A
C

>
||Q||

C

D(1� q)

and then choose " = "
C

such that

(58)
||Q||

C

D(1� q)
(1 + "A

C

)2 < A
C

Note that in the definition of the space N the constant A bounding the norm should be greater than
A

C

defined by (57).
For the Lipschitz norm bound, we will need the proposition concerning only the homological operator:

it preserves the space of smooth on fiber functions. Since we will deal with derivatives of functions along
the fiber let us agree on notations: let us denote the l-th derivative of a function h(b, x) with respect to
fiber coordinate x as h(l), l 2 N.

Proposition 5. The operator L is bounded in the Lipschitz norm: there exists a constant Lip
x

L such
that for any h 2 M the following holds:

Lip
x

(Lh)  Lip
x

L · Lip
x

h.

Moreover, if for any b 2 Td, the function h(b, ·) 2 C l, then Lh has the same smoothness as well and

(59)
�

�

�

�(Lh)(l)
�

�

�

�

C

 C
k

(L)
�

�

�

�h(l)

�

�

�

�

C

The proof of this proposition is an easy consequence of the explicit form (32) for the solution of the
normalized homological equation, and we give it in the Appendix, Section 6.

Now let us pass to the Lipschitz norm Lip
x,"

[L�h]  Lip
x

L⇥Lip
x,"

�h. By using the simple arguments
one can prove the following

Proposition 6. There exist polynomials T
3

(") and T 0

4

(") of degrees respectively 3 and 4 such that
T 0

4

(0) = 0 and for any h 2 N holds

(60) Lip
x,"

[�h]  T
3

(") + T 0

4

(")A
Lip

We postpone the proof to the Appendix.
From here we see that there exists a constant A

Lip

such that for " small enough, say " < "
Lip

, Lipschitz
constant of the image of any function h 2 N is bounded by A

Lip

:

Lip
x,"

[L�h]  A
Lip

.

We can assume that "
Lip

< "
C

.
What is left is to estimate ||L�h||

[↵],"

: for this, we will need the bounds on how operators L and �
behave on the space of ↵-Hölder functions separately.

For the shift operator in Appendix, Section 6 we will prove
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Proposition 7. If h 2 H↵

"

then �h 2 H↵

"

as well. And, moreover, for h 2 N , there exist polynomials
T̃
2

(") and T̃ 0

4

("), T̃ 0

4

(")(0) = 0 of degrees 2 and 4 correspondingly such that

(61) || �h||
[↵],"

 T̃ 0

4

(")A
↵

+ T̃
2

(")

While proving Lemma 1, we have deduced the bound (52) on Hölder norm of normalized homological
operator with L

C

, L
[↵]

, L
Lip

being some fixed constants defined by (53):

(62) ||Lh||
[↵],"

 L
C

||h||
C,"

+ L
[↵]

||h||
[↵],"

+ L
Lip

Lip
x,"

h

Let us now combine (61) and (62) for h := �h to get the bound for ||L�h||
[↵],"

. Here we will be using
Propositions 6 and 7 as well as inequality (56) to get the bounds on di↵erent norms of �h in the space
M

"

.

(63) ||L�h||
[↵],"

 L
C

||�h||
C,"

+ L
[↵]

||�h||
[↵],"

+ L
Lip

Lip
x,"

�h 
 L

C

||Q||
C

(1 + "A
C

)2 + L
[↵]

⇣

T̃ 0

2

(")A
↵

+ T̃
2

(")
⌘

+ L
Lip

�

T
2

(") + T 0

4

(")A
Lip

�

So we see that there exist polynomials Q0

2

("), Q
4

(") such that degQ0

2

= 2, Q0

2

(0) = 0, degQ
4

(") = 4
and

(64) ||L�h||
[↵],"

 A
↵

Q0

2

(") +Q
4

(")

So for " small enough, " < "
[↵]

, and for some A
↵

> 0 the right-hand side of inequality (64) can be
made less than A

↵

. We can take "
[↵]

< "
Lip

. By taking " = "
[↵]

we obtain the desired preservation of N
by operator L�. This space is obviously closed in N .

2

5. Proof of Lemma 3: contraction property

Since operator L is linear and uniformly bounded by (38) in the continuous norm, the only thing
to prove is that normalized shift operator � is strongly contracting in this norm, i.e. for any " small
enough there exists some constant ⌫ = ⌫(") 2 (0, 1) such that for any h, g 2 N

(65) ||�h� �g||
C,"

 ⌫||h� g||
C,"

Proof.
Suppose h, g 2 M and define h̄, ḡ 2 M2 by h̄

b

(x) = x2h(b, x), ḡ
b

(x) = x2g
b

(x). Also denote Q
h

=
Q
�

b, x+ h̄
b

(x)
�

.

(66) ||�h� �g||
C,"

=
�

�

�

�(1 + xh
b

(x))2Q
h

� (1 + xg
b

(x))2Q
g

)
�

�

�

� 
 ||Q

h

�Q
g

||
C,"

+ ||2xh
b

(x)Q
h

� 2xg
b

(x)Q
g

||
C,"

+
�

�

�

�x2h2

b

(x)Q
h

� x2g2
b

(x)Q
g

�

�

�

�

C,"


 Lip

x

Q||h̄� ḡ||
C,"

+ 2"||h� g||
C,"

||Q||
C

+ 2"A||Q
h

�Q
g

||
C,"

+ "2
�

�

�

�(h2 � g2)Q
h

+ g2(Q
h

�Q
g

)
�

�

�

�

C,"


||h� g||

C,"

�

"2Lip
x

Q+ 2"||Q||
C

+ 2"2Lip
x

QA
�

+ "2
�

2A||h� g||
C,"

||Q||
C

+ A2Lip
x

Q"2||h� g||
C,"

�

=

= ||h� g||
C,"

o(").

Hence operator � is strongly contracting. And since from (39) for any function h 2 N the norm
||Lh||

C,"

 D

1�q

||h||
C,"

, applying this to �h with the fact of the strong contraction property for � we get
the strong contraction property for L�. 2
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6. Appendix: Proof of Theorem 3 and other calculations

In the appendix we will prove the technical propositions stated above.

6.1. Hölder properties of some auxiliary functions. First let us prove
Proposition 2. Function ⇧

n

(b) defined as a product of �
b

in the first n points of the orbit of a linear
di↵eomorphism A, see (30), is Hölder with the exponent ↵ and

(67) ||⇧
n

||
[↵]

 C
�

✓n

(µ↵ � 1)q

where C
�

is Hölder constant for �, ✓ is defined in (31). Here and below ↵ is given by (8) and µ is the
largest magnitude of eigenvalues of A.

Proof of Proposition 2:

(68)

|⇧
n

(b
1

)�⇧
n

(b
2

)| =
�

�

�

�

�

n�1

Y

k=0

�
A

k
b1
�

n�1

Y

k=0

�
A

k
b2

�

�

�

�

�

= |�
b1 � �

b2|⇥
�

�

�

�

�

n�1

Y

k=1

�
A

k
b1

�

�

�

�

�

+|�
b2 | |⇧n�1

(Ab
1

)� ⇧
n�1

(Ab
2

)|  . . .

 qn�1C
�

n�1

X

k=0

�

�

�

�Akb
1

� Akb
2

�

�

�

�

↵  qn�1C
�

µn↵ � 1

µ↵ � 1
||b

1

� b
2

||↵  C
�

✓n

(µ↵ � 1)q
||b

1

� b
2

||↵

2

Proposition 3. Function P
n

(b) defined by P
n

(b) := ⇧n(b)

�Anb
is Hölder with exponent ↵ and

(69) ||P
n

||
[↵]

 D2C
�

B✓n

where B depends only on the initial map, the precise formula for B is given below, see (71).

Proof.

(70) |P
n

(b
1

)� P
n

(b
2

)| =
�

�

�

�

⇧
n

(b
1

)�
A

n
b2 � ⇧n

(b
2

)�
A

n
b1

�
A

n
b1�An

b2

�

�

�

�

 D2

�

�

�

�

�

�
A

n
b2

n�1

Y

k=0

�
A

k
b1

� �
A

n
b1

n�1

Y

k=0

�
A

k
b2

�

�

�

�

�

=

= D2 |(�
A

n
b2 � �

A

n
b1)⇧n

(b
1

) + ⇧
n+1

(b
1

) � (�
A

n
b1 � �

A

n
b2)⇧n

(b
2

)�⇧
n+1

(b
2

))| 
 |⇧

n+1

(b
1

)�⇧
n+1

(b
2

)|+ |�
A

n
b1 � �

A

n
b2 ||⇧n

(b
1

)�⇧
n

(b
2

)| 

 D2



C
�

✓n+1

(µ↵ � 1)q
+ 2qnC

�

µn↵

�

||b
1

� b
2

||↵  D2C
�

B✓n||b
1

� b
2

||↵

where B doesn’t depend on anything but initial skew product:

(71) B(✓, µ,↵, q) =
✓

(µ↵ � 1)q
+ 2

⇤

Proposition 4. Function ✓
2,k

(b
1

, b
2

) defined as ✓
2,k

(b
1

, b
2

) = |P
k

(b
2

)||Q
k,1

�Q
k,2

| is Hölder with ↵ as
exponent and

(72) ||✓
2,k

||
[↵]

 ✓kD

✓

C
Q

+ qk�1Lip
x

Q
C

�

µ↵ � 1

◆

Here Q
k,1

= Q � F k

0

(b
1

, x) and Q
k,2

= Q � F k

0

(b
2

, x), and the definition of P
k

(b) was reminded in
Proposition 2 above.
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Proof. We use the results of Proposition 2 in the following chain of inequalities.

(73) ✓
2,k

 qkD |Q
A

k
b1
(⇧

k

(b
1

)x)�Q
A

k
b2
(⇧

k

(b
2

)x)|  qkD |Q
A

k
b1
(⇧

k

(b
1

)x)�Q
A

k
b2
(⇧

k

(b
1

)x)|+
+ qkD |Q

A

k
b2
(⇧

k

(b
2

)x)�Q
A

k
b2
(⇧

k

(b
1

)x)|  qkDC
Q

µk↵||b
1

� b
2

||↵ + qkDLip
x

Q||⇧
k

||H↵||b
1

� b
2

||↵ 

✓kD

✓

C
Q

+ qk�1Lip
x

Q
C

�

µ↵ � 1

◆

||b
1

� b
2

||↵

⇤

Proposition 5. Operator L is bounded in the Lipschitz norm: there exists a constant Lip
x

L such
that for any h 2 M holds

Lip
x

(Lh)  Lip
x

L⇥ Lip
x

h.

Moreover, if h(b, ·) 2 C l for any b 2 Td, then Lh has the same smoothness as well and

(74)
�

�

�

�(Lh)(l)
�

�

�

�

C

 C
k

(L)
�

�

�

�h(l)

�

�

�

�

C

.

Proof. Using the explicit formula for the solution (32), as well as bounds (37) and (43), we have:

(75) sup
x,y2[0,1]

�

�

�

�

Lh(b, x)� Lh(b, y)

x� y

�

�

�

�

= sup
x,y2[0,1]

�

�

�

�

�

1
X

k=0

P
k

(b)
h � F k

0

(b, x)� h � F k

0

(b, y)

x� y

�

�

�

�

�



 sup
x,y2[0,1]

1
X

k=0

P
k

(b)
Lip

x

h|⇧
k

(b)x�⇧
k

(b)y|
|x� y| = Lip

x

h
D

1� q2
.

The bounds for the derivatives are obtained analgously by di↵erentiating term by term the series (32):

(Lh)(l) = �
1
X

k=0

P
k

(b)⇧l

k

(b)h(l) � F k

0

.(76)

Therefore,

(77)
�

�

�

�(Lh)(l)
�

�

�

�

C

 D

1� ql+1

�

�

�

�h(l)

�

�

�

�

C

.

⇤

Proposition 6. There exist polynomials T
3

(") and T 0

4

(") of degrees respectively 3 and 4 such that
T 0

4

(0) = 0 and for any h 2 N holds

(78) Lip
x,"

[�h]  T
3

(") + T 0

4

(")A
Lip

Proof of Proposition 6: The proof of this proposition deals with an expression for Lip
x,"

�h which is
given by

(79) sup
x,y2[0,"]

�

�(1 + xh
b

(x))2Q(b, x+ h̄
b

(x))� (1 + yh
b

(y))2Q(b, y + h̄
b

(y))
�

�

|x� y|
Since in this proposition the base coordinate b is fixed and x is changing we will permit to ourselves not
to write the b index and just suppose that Q(x) = Q(b, x + h̄

b

(x)) as well as h(x) = h
b

(x). The bound
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is a triangle inequality formula:

(80) Lip
x,"

�h  sup
x,y2[0,"]

�

�

�

�

Q(x)�Q(y)

x� y

�

�

�

�

+ 2 sup
x,y2[0,"]

�

�

�

�

xh(x)Q(x) � yh(y)Q(y)

x� y

�

�

�

�

+

+ sup
x,y2[0,"]

�

�

�

�

x2h(x)Q(x) � y2h(y)Q(y)

x� y

�

�

�

�

 Lip
x

Q(1 + Lip
x,"

h̄)+

+ 2 sup
x,y2[0,"]

�

�

�

�

xh(x) (Q(x)�Q(y))

x� y

�

�

�

�

+ 2 sup
x,y2[0,"]

�

�

�

�

xQ(y)(h(x)� h(y))

x� y

�

�

�

�

+ 2 sup
y2[0,"]

|Q(y)h(y)|+

+ sup
x,y2[0,"]

�

�

�

�

x2h(x) (Q(x)�Q(y))

x� y

�

�

�

�

+ sup
x,y2[0,"]

�

�

�

�

Q(y) [x2 (h(x)� h(y)) + (x2 � y2)h(y)]

x� y

�

�

�

�



 Lip
x

Q(1 + Lip
x,"

h̄) + 2"A
C

Lip
x

QLip
x,"

h̄+ 2"||Q||
C

A
Lip

+

+ 2||Q||
C

A
C

+ "2A
C

Lip
x

QLip
x,"

h̄ + ||Q||
C

("2A
Lip

+ 2"A
C

)

Let us note that

(81) Lip
x,"

h̄ = sup
x,y2[0,"]

�

�

�

�

x2h(x)� y2h(y)

x� y

�

�

�

�

 sup
x,y2[0,"]

�

�

�

�

x2(h(x)� h(y))

x� y

�

�

�

�

+ sup
x,y2[0,"]

�

�

�

�

h(y)(x2 � y2)

x� y

�

�

�

�



 A
Lip

"2 + A
C

2"

After substitution of Lip
x,"

h̄ in (80) by (81) we have the result with

T
3

(") = 2A2

C

Lip
x

Q"3 + 4A2

C

Lip
x

Q"2 + 2A
C

(Lip
x

Q+ ||Q||
C

)"+ Lip
x

Q + 2||Q||
C

A
C

T 0

4

(") = Lip
x

QA
C

"4 + 2A
C

Lip
x

Q"3 + Lip
x

Q"2 + 2||Q||
C

"

2
Now let us prove the analogous proposition for the Hölder norm of the operator �:
Proposition 7. If h 2 H↵

"

then �h 2 H↵

"

as well. And, moreover, for h 2 N , there exist
polynomials T̃

2

(") and T̃ 0

4

("), T̃ 0

4

(")(0) = 0 of degrees 2 and 4 correspondingly such that

(82) || �h||
[↵],"

 T̃ 0

4

(")A
↵

+ T̃
2

(")

Proof. To estimate Hölder norm of the shift operator, we need some more triangle inequalities.

(83) |�h(b
1

, x)� �h(b
2

, x)| = |(1 + xh
b1)

2Q
b1 � (1 + xh

b2)
2Q

b2 | 
 |Q

b1 �Q
b2 |+ 2x |h

b1Qb1 � h
b2Qb2 |+ x2

�

�h2

b1
Q

b1 � h2

b2
Q

b2

�

� 
 ��Q(b

1

, x+ h̄
b1)�Q(b

1

, x+ h̄
b2)
�

�+
�

�Q(b
1

, x+ h̄
b2)�Q(b

2

, x+ h̄
b2)
�

�+

+ 2"
�

�h
b1

�

Q(b
1

, x+ h̄
b1)�Q(b

1

, x+ h̄
b2)
�

�

� + 2"
�

�h
b1

�

Q(b
1

, x+ h̄
b2) �

�Q(b
2

, x+ h̄
b2)
�

�

�+ 2" |Q
b2(hb1 � h

b2)|+ "2h2

b1

�

�Q(b
1

, x+ h̄
b1)�Q(b

1

, x+ h̄
b2)
�

�+

+ "2h2

b1

�

�Q(b
1

, x+ h̄
b2)�Q(b

2

, x+ h̄
b2)
�

� + "2|Q
b2 |
�

�h2

b1
� h2

b2

�

� 
 ||b

1

� b
2

||↵
⇣

T̃ 0

4

(")A
↵

+ T̃
2

(")
⌘

where

(84) T̃
4

0

(") = Lip
x

Q"2 + 2"3ALip
x

Q+ 2"||Q||
C

+ "4A2Lip
Q

+ 2||Q||
C

A"2

and

(85) T̃
2

(") = C
Q

+ 2"AC
Q

+ "2A2C
Q

⇤



STERNBERG LINEARIZATION THEOREM FOR SKEW PRODUCTS 15

All the propositions stated above are proven. This completes the proof of our main result – Theorem
2.

Now we are ready to prove that the conjugacy is smooth in fiber variable, and Hölder with its
derivatives in base variables.

Proof of Theorem 3:
The proof of a smooth version of Theorem 2 is analogous to the proof of the latter theorem. Here we

will give a sketch of the proof: we will only show that the conjugacy H is (k� 2)– smooth with respect
to the fiber variable. The proof of the fact that its fiber derivatives are now Hölder on b is analogous to
the proof of the Hölder property fot the function H itself and we don’t give it here.

The idea is to change the space N in an appropriate way. For some constants A
0

, . . . , A
l

> 0 and
{
0

, . . . ,{
l

> 0 let us define the space

(86) N
l

:=
�

h(·, b) 2 C l([0, "]) : ||h||
C

 A
0

, . . . ,
�

�

�

�h(l)

�

�

�

�

C

 A
l

 

with the norm

(87) ||h||⇤ = {
0

||h||
C

+ . . .+ {
l

||h(l)||
C

.

We have now to prove the analogues of Lemmas 1, 3 and 2 above, and then follow the argument in
Theorem 2. The homological and shift operators will stay the same although the functional spaces in
which they act will be smaller, and the metric will be not continuous but a smooth one.

Lemma 1 (smooth case) Operator L is bounded in the norm (87).

Proof.

(88) ||Lh||⇤ =
l

X

j=0

{
j

||(Lh)(j)||
C


l

X

j=0

D{
j

1� qj+1

||h(j)||
C

 D

1� q

1
X

j=0

{
j

||h(j)||
C

=
D

1� q
||h||⇤

⇤
For the space N

l

to map to itself by L�, we should choose constants A
0

, A
1

, . . . , A
l

appropriately. For
L� to be contracting in the space, we should appropriately choose {

0

, . . . ,{
l

. Let us show that these
two choices can be made without complications and the analogues of Lemmas 3 and 2 hold.

In what concerns the operator �, we will use its presentation (55) and calculate the derivatives for
k = 0, . . . , l : by the Leibnitz rule:

(89) (�h)(k) =
k

X

j=0

Cj

k

((1 + xh(b, x))2)(j)Q(k�j)(b, x+ h̄)

The explicit form of the right-hand side is not as important as a fact that it can be written as a sum
of polynomials in derivatives of h, h̄ and Q. Indeed, there exist polynomials ⌧

0

, . . . , ⌧
l

and �
0

, . . . , �
l

such
that

(�h)(k) =
k

X

j=0

Cj

k

⌧
j

(x, h, . . . , h(j))�
j

�

x, h̄, . . . , h̄(k�j), Q
�

b, x+ h̄), . . . , Q(k�j)(b, x+ h̄
��

(90)

We will estimate the continuous norm of the right-hand side of (90) in Td ⇥ [0, "]. So we will have
that for some polynomials T

j

and S
j

there is a bound

||L�h(k)||
C,"


k

X

j=0

Cj

k

T
j

(", A
0

, . . . , A
j

)S
j

(", A
0

, . . . , A
k�j

, ||Q||
C

, . . . , ||Q(k�j)||
C

�

(91)
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Note that the coe�cient in front of A
k

in this expression is a polynomial that has no free term. Indeed,
A

k

comes only from T
k

or S
0

: in both of the cases A
k

is multiplied by at least one ". Hence we need to
find A

0

, . . . A
l

such that l + 1 equations hold for some polynomials P
k

, P 0

k

, P 0

k

(0) = 0:

(92) P 0

k

(")A
k

+ P
k

(")C(A
0

, . . . , A
k�1

)  A
k

, k = 0, . . . , l

First we take " such that all polynomials P 0

k

(") < 1. Then we satisfy the equations (92) one by one,
starting from k = 0 by choosing A

k

one by one, starting with A
0

and by increasing the index.
Now we have to prove that operator L� is contracting in the space N if {

0

, . . .{
l

are properly chosen.
One can show that

(93) ||L�h� L�g||⇤ 
D

1� q

l

X

j=0

{
j

||
j

X

k=0

Ck

j

�

⌧
k

(x, h, . . . h(k))�
k

�

x, h̄, . . . , h̄(j�k), Q(b, x+ h), . . . ,

Q(j�k)(b, x+ h)
�� ⌧

k

�

x, g, . . . g(k))�
k

(x, ḡ, . . . , ḡ(j�k), Q(b, x+ g), . . . ,

Q(j�k)(b, x+ g)
�� ||

C,"


l

X

j=0

||h(k) � g(k)||
C,"

 

{
k

U0

k

(") +
l

X

j=k+1

U
j

("){
j

!

for some polynomials U
j

, U0

j

. For the right-hand side to be less than ⇠||h � g||⇤ for some ⇠ < 1 the
following system should be satisfied:

U0

0

(") +
{
1

{
0

U
0

(") + . . .
{
l

{
0

U
0

(")  ⇠

U0

1

(") +
{
2

{
1

U
0

(") + . . .
{
l

{
1

U
0

(")  ⇠

. . .

U0

l�1

(") +
{
l

{
l�1

U
l�1

(")  ⇠

U0

l

(")  ⇠

One can choose " in such a way that U0

k

(") < ⇠. Then, the last inequality in the list is true, by taking
any {

l

and {
l�1

big enough, we satisfy the before-last inequality and we proceed in staisfying these
inequalities from the last one till the first one.

So, we obtain a contracting operator. We haven provent that in the space N
l

of functions defined in
a neighborhood of the base with a metric chosen appropriately, there is a contracting operator L�. Its
fixed point is the needed conjugacy which will be su�ciently smooth on the fiber variable x.

2
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Abstract

This thesis deals with the questions of asymptotic behavior of dynamical systems and
consists of six independent chapters.

In the first part of this thesis we consider three particular dynamical systems. The first two
chapters deal with the models of two physical systems : in the first chapter, we study the geo-
metric structure and limit behavior of Arnold tongues of the equation modeling a Josephson
contact ; in the second chapter, we are interested in the Lagrange problem of establishing the
asymptotic angular velocity of the swiveling arm on the surface. The third chapter deals with
planar geometry of an elliptic billiard.

The forth and fifth chapters are devoted to general methods of studying the asymptotic
behavior of dynamical systems. In the forth chapter we prove the convergence of markovian
spherical averages for free group actions on a probablility space. In the fifth chapter we pro-
vide a normal form for skew-product diffeomorphisms that can be useful in the study of
strange attractors of dynamical systems.

Keywords: ergodic theory, Arnold tongues, elliptic billiard, normal forms
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Résumé

Cette thèse porte sur le comportement asymptotique des systèmes dynamiques et contient
cinq chapitres indépendants.

Nous considérons dans la première partie de la thèse trois systèmes dynamiques concrets.
Les deux premiers chapitres présentent deux modèles de systèmes physiques : dans le pre-
mier, nous étudions la structure géométrique des langues d’Arnold de l’équation modélisant
le contact de Josephson ; dans le deuxième, nous nous intéressons au problème de Lagrange
de recherche de la vitesse angulaire asymptotique d’un bras articulé sur une surface. Dans le
troisième chapitre nous étudions la géométrie plane du billard elliptique avec des méthodes
de la géométrie complexe.

Les quatrième et cinquième chapitres sont dédiés aux méthodes générales d’étude asymp-
totique des systèmes dynamiques. Dans le quatrième chapitre nous prouvons la convergence
des moyennes sphériques pour des actions du groupe libre sur un espace mesuré. Dans le cin-
quième chapitre nous fournissons une forme normale pour un produit croisé qui peut s’avérer
utile dans l’étude des attracteurs étranges de systèmes dynamiques.

Mots-clés: théorie ergodique, langues d’Arnold, billard elliptique, formes normales
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