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Mahler measures, special values of -functions and complex multiplication
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This thesis studies the relations between special values of -functions of arithmetic objects and heights, as well as the arithmetic of torsion points on elliptic curves with complex multiplication. The rst of the main results of this thesis, exposed in its last chapter, shows that the special value * ( , 0) of the -function associated to an elliptic curve de ned over Q which has complex multiplication can be expressed as an explicit rational linear combination of a logarithm of an algebraic number and the Mahler measure of a polynomial. The other main result of this thesis, exposed in its penultimate chapter and obtained in collaboration with Francesco Campagna, shows that the family of ∞ -division elds associated to an elliptic curve de ned over a number eld containing the CM eld becomes linearly disjoint after removing a nite and explicit subfamily of elds, which we expect to be never linearly disjoint over as soon as it contains more than one element, and satis es a technical condition (see De nition 7.1.30). We prove this expectation if = and is the base-change of an elliptic curve de ned over Q.

The content of this thesis is articulated in the following chapters:

• the rst chapter contains background material on the notion of height, and on Diophantine properties of heights;

• the eight and ninth chapter contain the expositions of the main results of this thesis, which were described in the previous paragraph.

• the second chapter contains background material on motives, motivic cohomology and regulators;

• the third chapter contains background material on -functions, together with some results concerning the niteness of the family of -functions having bounded special values, which is based on joint work in progress with Fabien Pazuki;

• the fourth chapter contains background material on the Mahler measure, as well as some computations concerning explicit families of polynomials;

• the fth chapter contains the outline of an ongoing project joint with François Brunault, whose aim is to give a geometric interpretation of results by Lalín, inspired by an insight from Maillot, concerning the Mahler measures associated to polynomials satisfying a suitable exactness condition;

• the sixth chapter, which is based on joint work in progress with Francesco Campagna, introduces the notion of ray class elds associated to orders in algebraic number elds. This is probably well known to the experts but not so well documented in the literature;

• the seventh chapter contains background material on elliptic curves and abelian varieties with complex multiplication, together with the proof of an optimal upper bound for the index of the image of the Galois representation attached to the torsion points of an elliptic curve with complex multiplication, which is based on joint work in progress with Francesco Campagna;

• det første kapitel indeholder baggrundsmateriale om begrebet højde og om diofantine egenskaber af højder;

• det andet kapitel indeholder baggrundsmateriale om motiver, motivisk cohomologi og regulatorer;

• det tredje kapitel indeholder baggrundsmateriale om -funktioner sammen med nogle resultater vedrørende endeligheden af familien af -funktioner med begraensede specielle vaerdier, som er baseret på et igangvaerende samarbejde med Fabien Pazuki;

• det fjerde kapitel indeholder baggrundsmateriale om Mahlermål sammen med nogle beregninger forbundet med eksplicitte familier af polynomier;

• det femte kapitel indeholder en skitse af et igangvaerende projekt i samarbejde med François Brunault, hvis formål er at give en geometrisk fortolkning af resultater fra Lalín, inspirerede af en indsigt af Maillot, vedrørende Mahlermålet associeret til polynomier, der opfylder en passende eksakthedsbetingelse;

• det sjette kapitel, som er baseret på et igangvaerende samarbejde med Francesco Campagna, introducerer idéen om stråleklasselegemer associeret til ordner i algebraiske tallegemer. Dette er sandsynligvis velkendt for eksperter, men ikke så veldokumenteret i litteraturen;

• det syvende kapitel indeholder baggrundsmateriale om elliptiske kurver og abelske varieteter med kompleks multiplikation sammen med et bevis for en optimal øvre graense for indekset af billedet af Galois repraesentationen forbundet med torsionspunkterne på en elliptisk kurve med kompleks multiplikation. Dette er også baseret på et samarbejde med Francesco Campagna;

• det ottende og niende kapitel indeholder en fremstilling af hovedresultaterne i denne afhandling, som var beskrevet i de foregående paragra er;

• bilaget indeholder tabellerne naevnt i afhandlingens hovedtekst.

Nøgleord: -funktioner, højder, specielle vaerdier, Mahlermål, kompleks multiplikation, elliptiske kurver.

2020 Matematik Fagklassi cering: 11G05, 14K22, 11G15, 11S15, 11F80, 11R06, 11S40, 14K22, 19F27.
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Preface: an outline of this PhD thesis

Freedom of the spirit is beyond price, but this world wants to impose a price on everything.

Wu Ming, Q

It was probably very cold in Saint Petersburg on the 5th of December 1735, when a paper entitled De summis serierum reciprocarum was read to the Saint Petersburg Academy of sciences. This paper, presented by the 28 year old Swiss mathematician Leonhard Euler, computes the values of the in nite series

( ) := +∞ =1 1 (0.1)
evaluated at even natural numbers = 2 , with ∈ N. More precisely, Euler proves that

(2 ) 2 = (-1) +1 2 2 -1 2 (2 )! ∈ Q × (0.2)
where 2 ∈ Q × is the 2 -th Bernoulli number, de ned by the generating series

+∞ =0 ! = -1
which was introduced in Jakob Bernoulli's book Ars Conjectandi, published in Basel in 1713, eight years after the death of Jakob Bernoulli and twenty-two years before Euler's remarkable discovery. Euler's proof solved in particular the so-called Basel problem, which asked to nd the explicit value of (2). This was posed in 1650, thus more than eighty years earlier than Euler's solution, by the Italian mathematician Pietro Mengoli. We refer the interested reader to Raymond Ayoub's survey [START_REF] Ayoub | Euler and the Zeta Function[END_REF] for a thorough exposition of Euler's insights on the series (0.1). Euler's theorem was a profound breakthrough, and contributed to bring him the fame that lasts until this very day. Moreover, Euler himself extended the study of the series (0.1) to the real values ∈ R such that > 1, but it wasn't until Bernhard Riemann's 1859 work Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse that this function was shown to have a meromorphic continuation to the whole complex plane, with a pole only at = 1, corresponding to the fact that (0.1) degenerates to the notoriously divergent harmonic series in this case. As it can be xiii evinced from the German title of Riemann's paper, this work also focused on the profound relations between the function ( ), which is today known as Riemann's -function, and the distribution of prime numbers. These relations occur in the form of Riemann's explicit formula, which links the prime counting function ( ) to the complex numbers ∈ C such that ( ) = 0 and 0 < ( ) < 1. Riemann then conjectured that all such complex numbers must lie on the vertical line ( ) = 1/2. This problem, which is known as the Riemann hypothesis, remains unsolved to this day, despite numerous attempts and partial results towards it, among which lies the fundamental prime number theorem, which asserts that ( ) ≠ 0 on the vertical line ( ) = 1. We refer the interested reader to Alain Connes's survey [START_REF] Connes | An essay on the Riemann hypothesis[END_REF] for more historical background on the Riemann hypothesis.

Going back to the equality (0.2), one might wonder if similar formulas exist for the values (2 + 1) of the Riemann -function at odd positive integers. This is, perhaps surprisingly, still unknown to this day, despite the fact that the interest in this problem goes back to Euler himself (see [START_REF] Ayoub | Euler and the Zeta Function[END_REF]§ 7]). Nevertheless, it is expected that formulas like (0.2) should not hold for

(2 + 1), in a very strong sense. More precisely, it is conjectured that, for every ∈ N such that ≥ 1, the real numbers { , (3), (5), . . . , (2 + 1)} should be algebraically independent over Q. The partial results known towards this conjecture are quite little. Most notably, Roger Apéry mesmerised the audience attending his talk at the Journées arithmétiques in Luminy on the 22nd of June, 1978, by presenting a surprisingly simple proof that the real number (3) ∈ R is irrational. His proof was later clari ed by several mathematicians, and its developments through the following year are recounted in Alfred van der Poorten's survey paper [START_REF] Van Der Poorten | A proof that Euler missed[END_REF]. Moreover, it is today known that one amongst the four real numbers { (5), ( 7), ( 9), (11)} is irrational, by work of Wadim Zudilin (see [START_REF] Zudilin | Arithmetic of linear forms involving odd zeta values[END_REF]), and it is also known that the sequence { (2 + 1)} ≥1 contains in nitely many irrational numbers. This was rstly shown by the work of Keith Ball and Tanguy Rivoal (see [START_REF] Ball | Irrationalité d'une in nité de valeurs de la fonction zêta aux entiers impairs[END_REF]), and it is now known that a big proportion of odd -values is irrational, thanks to the work of Stéphane Fischler, Johannes Sprang and Wadim Zudilin (see [START_REF] Fischler | Many odd zeta values are irrational[END_REF]), as well as the recent work [START_REF] Lai | A note on the number of irrational odd zeta values[END_REF] by Li Lai and Pin Yu.

We point out that, to this day, it is not known whether a single odd -value is transcendental. Thus one may ask why it is in fact reasonable to believe that all the odd -values are transcendental, and also algebraically independent amongst themselves. One of the reasons comes from the link between the transcendence of odd zeta values and some deep conjectures in algebraic geometry. To be more precise, for every ∈ N the special value * ( ) := lim → ( ) ( -) ord = ( ( )) (0.3) is known to be a period, i.e. to be expressible as the integral of an algebraic di erential form over an semi-algebraic domain. Then the transcendence of each of the values * ( ) = ( ) for ≥ 1 can be shown to follow from the period conjecture, which predicts (as formulated by Maxim Kontsevich and Don Zagier in [KZ01, Conjecture I]) that each equality between periods can be proved using only the elementary rules of calculus (change of variables, linearity and Stokes' theorem). We refer the interested reader to Joseph Ayoub's article [START_REF] Ayoub | Periods and the conjectures of Grothendieck and Kontsevich-Zagier[END_REF] for a survey of the period conjecture, and to Yves André's survey [START_REF] André | Une introduction aux motifs (motifs purs, motifs mixtes, périodes). Vol. 17. Panoramas et Synthèses [Panoramas and Syntheses[END_REF]§ 25.7] of the relations between the transcendence of special values of the function and the period conjecture. These conjectures are nowadays known to be related to multiple -values, which are higher-dimensional analogues of the values of at the positive integers. We refer the interested reader to the forthcoming book [BF] by José Ignacio Burgos Gil and Javier Fresán for an in-depth survey of the theory of multiple -values, with particular focus on its relations to motives.

xiv

The conjectural transcendence of odd -values leaves us with the question of nding formulas relating them to other (conjecturally transcendental) numbers of interest (e.g. periods having a particularly simple integral representation). In fact, one may wonder whether relations of this kind exist for the special values of more general meromorphic functions : C → C, which satisfy a functional equation and admit an Euler product representation analogous to the ones which are known to hold for Riemann's -function. There is a way, at least conjecturally, to produce such kinds of functions from algebraic varieties. More precisely, one can associate to each smooth and proper algebraic variety de ned over a number eld a plethora of cohomology theories, such as the ℓ-adic bi-graded cohomologies , ℓ ( ) := ét ( ; Q ℓ ( )). Since these are de ned by base-changing to the algebraic closure of , we see immediately that the Galois group G := Gal( / ) acts on , ℓ ( ). Hence, one can consider the characteristic polynomial of every element ∈ G acting on , ℓ ( ). These characteristic polynomials can be "assembled together", to create the -function associated to the -th cohomology of . More generally, one can carry out this procedure for every mixed motive de ned over the number eld , which is an object "cut out", by means of linear algebra, from objects of the form ( ) associated to smooth and proper varieties . We refer the interested reader to Chapter 2 for a survey of the theory of motives, and to Section 3.2 for an overview of the construction of the -function ( , ) associated to a mixed motive . These functions are de ned as formal Euler products, which converge for every ∈ C with real part ( ) > 0 ( ) for some real number 0 ( ) ∈ R >0 . Moreover, it is conjectured that these -functions admit a meromorphic continuation to the whole complex plane (see Conjecture 3.3.4) and that this meromorphic continuation satis es a suitable functional equation (see Conjecture 3.3.6). Finally, deep conjectures of Selberg predict that all the functions having these properties arise as motivic -functions. We refer the interested reader to Alberto Perelli's survey articles [START_REF] Perelli | A Survey of the Selberg Class of -functions, Part I[END_REF][START_REF] Perelli | A survey of the Selberg class of -functions, Part II[END_REF] for an introduction to this circle of ideas. Now, for every -function ( , ) associated to a mixed motive ∈ MM ( ; Q), which is de ned over a number eld and has rational coe cients, one can de ne the special values * ( , ) := lim → ( , ) ( -) ord = ( ( , )) ∈ R associated to any integer ∈ Z. These generalise the special values * ( ) de ned in (0.3), which can be obtained by taking = 0 (Spec(Q)) ∈ MM (Q, Q). Then one may ask, in complete analogy to what happens for the special values * ( ), if the special values * ( , ) are irrational, transcendental or even algebraically independent amongst themselves. Moreover, one could ask if these numbers are periods, and if so one could try to nd the "simplest" integral representation of such periods. It probably comes as no surprise to the reader, given how little we know already about the special values * ( ), that even less is known about the irrationality and transcendence of the values * ( , ) for a general motive . For example, the value * ( -4 , 2) = ( -4 , 2) of the -function associated to unique non-trivial Dirichlet character -4 : (Z/4Z) × → C × , equals the famous Catalan constant ∈ R, which is not known to be irrational (see Yuri Nesterenko's survey [START_REF] Nesterenko | On Catalan's constant[END_REF]). Nevertheless, if these numbers were periods then their transcendence might be related once again to the period conjecture.

Luckily enough, these numbers are indeed known to be periods, in the case of Dirichlet -functions. This can be seen as an instance of the conjectures of Pierre Deligne (see [START_REF] Deligne | Valeurs de fonctions et périodes d'intégrales[END_REF]) and Alexander Beilinson (see [START_REF] Beilinson | Higher regulators and values of -functions[END_REF]) on special values of -functions, which are known to hold for the -functions associated to Dirichlet characters by the work of Beilinson himself. We refer xv the reader to Section 3.3.2 for an introduction to Beilinson's conjecture, and to Jürgen Neukirch's survey [START_REF] Neukirch | The Beilinson conjecture for algebraic number elds[END_REF] for an account of Beilinson's work concerning the Dirichlet -functions ( , ). Now, let us come back to the problem of expressing the periods * ( ) and * ( , ) in the "simplest form possible". This notion is of course subjective, and depends on the reader's taste for what should be considered a "simple" integral expression. One key example of "simple period" is given by the Mahler measure:

( ) := ∫ 1 0 • • • ∫ 1 0 log| ( 2 1 , . . . , 2 )| 1 • • •
de ned by Kurt Mahler (see [START_REF] Mahler | On some inequalities for polynomials in several variables[END_REF]) for every Laurent polynomial ∈ C[ ±1 1 , . . . , ±1 ] \ {0}. One of the rst relations between Mahler measures and special values of -functions comes from the work of Christopher Smyth, who proved in [START_REF] Smyth | On measures of polynomials in several variables[END_REF] that ( + + 1) = ( -3 , -1) ( + + + 1) = -14 (-2) (0.4)

where -3 : (Z/3Z) × → C × is the unique non-trivial character (see Theorem 4.2.4). Using the functional equations for ( ) we see for example that Smyth's result gives us one possible integral expression for Apéry's number (3). We refer the interested reader to the work [START_REF] Lalín | Mahler measure of some -variable polynomial families[END_REF] by Matilde Lalín for a list of identities involving Mahler measures and the special values (2 + 1) for every ≥ 1, which generalise Smyth's result. Moreover, we point the reader to Chapter 4 for an introduction to the Mahler measure.

Other special values of -functions which are known to be periods are given by * ( , ) for ≠ 1, where is an elliptic curve. More precisely, if is an elliptic curve de ned over Q then the modularity theorem (see for instance Bas Edixhoven's survey [START_REF] Edixhoven | Rational elliptic curves are modular[END_REF]) shows that the motivic -function ( , ) := ( 1 ( ), ) coincides with the automorphic -function ( , ) associated to a newform ∈ 2 (Γ 0 ( )). Thus the modularity theorem can be combined with a result of Beilinson (see Christopher Deninger and Anthony Scholl's survey [START_REF] Deninger | The Beilinson conjectures[END_REF]) to show that * ( , ) is indeed a period. On the other hand, if is any number eld and / is an elliptic curve with complex multiplication (see De nition 7.1.5) which satis es a suitable technical condition (see De nition 7.1.30), then a result of Deninger, proved in the works [START_REF] Deninger | Higher regulators and Hecke L-series of imaginary quadratic elds I[END_REF] and [START_REF] Deninger | Higher Regulators and Hecke L-Series of Imaginary Quadratic Fields II[END_REF], shows that * ( , ) is again a period, for ≠ 1.

Hence one may wonder whether the special values * ( , ) satisfy suitable identities which relate them to simpler periods, for instance to Mahler measures of Laurent polynomials. This seems indeed plausible, at least for the special value * ( , 0), thanks to the extensive numerical computations performed by David Boyd during the last decade of the past century, which are contained in [START_REF] Boyd | Mahler's measure and special values of -functions[END_REF], and more recently by Hang Liu and Houroung Qin (see [START_REF] Liu | Mahler measure of polynomials de ning genus 2 and 3 curves[END_REF]). These computations show that, for many Laurent polynomials ∈ Z[ ±1 , ±1 ], one should expect a relation of the form * ( , 0)

( ) ∈ Q × (0.5)
where is an elliptic curve which appears as a factor of the Jacobian of the curve de ned by { = 0}. On the other hand, if the Jacobian of the curve de ned by does not have any elliptic factor, then one should not expect a relation like (0.5), as we point out at the end of Section 4.2.

It is now natural to ask what happens for polynomials having multiple variables. First of all, it is often the case that the Mahler measure ( ) of a Laurent polynomial ∈ Z[ ±1 1 , . . . , ±1 ] in variables, appears to be related to the special value of some -function at = . Finding out xvi which -function this is can be tricky. For example, why is it the case that the Dirichlet character -3 and the Riemann -function make their appearance in Smyth's computations (0.4)? This question was partially answered by Vincent Maillot, during a talk which took place on the 30th of April, 2003 at the Ban International Research Station, in occasion of the meeting The many aspects of Mahler's measure (see [START_REF] Boyd | The many aspects of Mahler's measure. Final report of a Workshop at the Ban International Research Station[END_REF]§ 8]). More precisely, Maillot proved that in certain cases the -function to be considered comes from the cohomology of the variety = * = 0, where * ( 1 , . . . , ) := ( -1 1 , . . . , -1 ) is the reciprocal of the polynomial . In these cases, the polynomial is said to be exact. For example, the polynomial + + 1 is exact, and the variety = * = 0 consists of two points de ned over Q( √ -3), which shows where the Dirichlet character -3 comes from. On the other hand, to explain the appearance of * (-2) in the second of Smyth's computations (0.4), one needs to introduce the notion of successive exactness for a polynomial . This has been done in the PhD thesis of Matilde Lalín (see [START_REF] Lalín | Some relations of Mahler measure with hyperbolic volumes and special values of -functions[END_REF][START_REF] Lalín | An algebraic integration for Mahler measure[END_REF]), mostly for polynomials in two and three variables, using the exactness of suitable di erential forms. We devote Chapter 5 to report on joint work in progress with François Brunault, whose aim is to give a notion of -exactness for polynomials in -variables, where 0 ≤ ≤ . We present two candidates for this notion, and we use our approach to provide a strategy of proof for a conjecture concerning the special value * ( 1 (15), -1) associated to the elliptic modular curve 1 (15). This is all related to the following general question: is every special value * ( , ) of a motivic -function always related to the Mahler measure of one or more polynomials? While this question is completely out of reach in general, the following theorem, which is the rst main result of this thesis, shows that this conjecture holds for the special value * ( , 0) = ( , 0) of the -function associated to a CM elliptic curve which is also de ned over Q.

Theorem A -Mahler measures and CM elliptic curves (see Theorem 9.2.4) Let be an elliptic curve de ned over Q such that End( Q ) O for some imaginary quadratic eld . Then there exists a polynomial ∈ Z[ , ] such that:

• its zero locus ↩→ G 2 is birationally equivalent to ;

• ( ) = ( , 0) + log| | for two explicit numbers ∈ Q × and ∈ Q × de ned in (9.15). Before moving on, let us point out that the general question concerning the relations between * ( , ) and Mahler measures can be seen as parts of even broader speculations concerning the relations between special values of -functions and di erent kinds of heights. The Mahler measure has indeed been introduced as a height function on polynomials (at least on those with integer coe cients), which satis es (at least conjecturally) many of the required Diophantine properties of a height function, such as the Northcott, Bogomolov and Lehmer properties. We refer the reader to Chapter 1 for an axiomatic introduction to these di erent properties. It is then natural to ask whether the special values * ( , ) can also be considered as a kind of height, and in particular if they satisfy the aforementioned Diophantine properties. We devote Section 3.4, which is based on joint work in progress with Fabien Pazuki, to the study of these questions.

Let us now go back to the proof of Theorem A, which is contained in Chapter 9. This proof rests on Deninger's foundational work [START_REF] Deninger | Deligne periods of mixed motives, -theory and the entropy of certain Z -actions[END_REF], which provides a way of relating the Mahler measure ( ) of a polynomial to periods coming from algebraic geometry, and on xvii David Rohrlich's work [START_REF] Rohrlich | Elliptic curves and values of -functions[END_REF], which provides a very explicit result that proves a weak form of Beilinson's conjectures (see Conjecture 3.3.28) for the special values * ( , 0) associated to a CM elliptic curve de ned over Q. We refer the reader to Section 4.3 for an introduction to Deninger's results, and to Section 7.4 for an exposition of Rohrlich's work.

The aforementioned results of Rohrlich concern pairs of functions , : → P 1 Q whose zeros and poles are torsion points, not necessarily de ned over Q. The coordinates of these torsion points can also be used to generate some nite extensions of Q, called division elds associated to the elliptic curve , which are among the most studied families of number elds. More generally, if is any CM elliptic curve de ned over a number eld , which has complex multiplication by an order O inside an imaginary quadratic eld , one can de ne for every ideal ⊆ O a nite Galois extension ⊆ ( [ ]) generated by the coordinates of those points ∈ ( ) such that [ ] ( ) = 0 for every ∈ , where [ ] : → denotes the multiplication map associated to . Then one can form the in nite Galois extension ⊆ ( tors ) given as the compositum of all the division elds ( [ ]), and to this extension one may attach a Galois representation : Gal( ( tors )/ ) ↩→ Aut O ( tors ) (0.6)

where Aut O ( tors ) denotes the group of automorphisms of the O-module tors , de ned as tors := ( ) tors = lim --→ ∈N [ ] ( ). More generally, one can form the in nite Galois extensions ⊆ ( [ ∞ ]) associated to every rational prime ∈ N, which are de ned as the compositum of the family of division elds { ( [ ]) : ∈ N}. The following theorem, proved in collaboration with Francesco Campagna, shows that the family of in nite extensions { ( [ ∞ ])} with ∈ N varying amongst the rational primes, becomes linearly disjoint over after removing a nite, explicit sub-family.

Theorem B -Entanglement of CM division elds (see Theorem 8.2.6) Let be a number eld and / an elliptic curve with complex multiplication by an order O in an imaginary quadratic eld ⊆ . Denote by := O Δ /Q ( ) the product of the conductor O := |O : O| of the order O, the absolute discriminant Δ ∈ Z of the number eld and the norm /Q ( ) := |O / | of the conductor ideal ⊆ O .

Then the natural inclusion Gal( ( tors )/ ) ↩→ Gal( ( [ ∞ ])/ )

where the product runs over all rational primes ∈ N, induces an isomorphism

Gal( ( tors )/ ) Gal( ( [ ∞ ])/ ) × ∉ Gal( ( [ ∞ ])/ )
∼ where ⊆ N denotes the nite set of primes dividing .

It now a natural question to ask whether the nite family of elds { ( [ ∞ ]) : | } is linearly disjoint or not. We study this question in Section 8.3 and Section 8.4. On the one hand, we prove in Corollary 8. 3.4 that this family is linearly disjoint for every number eld which is an abelian extension of an imaginary quadratic eld , and for every elliptic curve de ned xviii over which has complex multiplication by an order O ⊆ and does not satisfy a suitable technical condition (see De nition 7.1.30), which was introduced in the foundational work of Goro Shimura and Yutaka Taniyama (see in particular [START_REF] Shimura | Introduction to the arithmetic theory of automorphic functions[END_REF]). On the other hand, we prove in Theorem 8.4.4 that the nite family of division elds { ( [ ∞ ]) : | } is never linearly disjoint over as soon as it contains more than one element, under the condition that = is an imaginary quadratic eld and / is the base-change of an elliptic curve de ned over Q, which has potential complex multiplication by an order O ⊆ such that

O ∉ Z -1+ √ -3 2 , Z[ √ -1] .
Our study of division elds of elliptic curves with complex multiplication led Francesco Campagna and the author also to extend the usual de nition of ray class elds to ray class elds relative to orders in number elds. This was already done for orders contained in imaginary quadratic elds in the PhD thesis of Heinz Söhngen [START_REF] Söhngen | Zur komplexen Multiplikation[END_REF] using the classical language of class eld theory (see also Reinhard Schertz's survey [START_REF] Schertz | Complex multiplication[END_REF]). We generalise this de nition to any order inside any number eld , using both the classical and the modern language of class eld theory, which involves the group of idèles A × (see De nition 6.1.6). We report on our current progress concerning these generalised ray class elds in Chapter 6.

We observe as well that the ray class elds ,O associated to imaginary quadratic orders are always contained in the division elds ( [ ]), whenever the ideal is invertible (see Lemma 6.2.7). This was already proved by Söhngen in [START_REF] Söhngen | Zur komplexen Multiplikation[END_REF], and we give another proof in Section 7.2, using the language introduced in Chapter 6. This inclusion shows that the division elds ( [ ]) can not be "too small", hence that the image of the Galois representation (0.6) cannot be too small either. In particular, we prove in Section 7.3 that the index [Aut O ( tors ) : Im( )] is nite and explicitly bounded from above. The niteness of this index is originally due to Max Deuring, and it is the precursor of the celebrated "open image theorem", proved by Jean-Pierre Serre in [START_REF] Serre | Propriétés galoisiennes des points d'ordre ni des courbes elliptiques[END_REF], which states that for an elliptic curve without complex multiplication, the index [Aut Z ( tors ) : Im( )] is also nite. Moreover, the aforementioned Corollary 8. 3.4 proves that the upper bound for the index [Aut O ( tors ) : Im( )] provided by Theorem 7.3.1 is optimal, at least for elliptic curves de ned over the ring class eld O .

To conclude, let us mention the leitmotiv of this PhD thesis. On the one hand, the world of algebraic geometry, and in particular of motives, gives us a great amount of conjectures to ponder upon, which often rest over a great deal of abstraction (such as a heavy use of category theory). On the other hand, periods and heights, of which the Mahler measure is an instance, give us concretely computable complex (or, more often, real) numbers that measure the complexity, in a suitable sense, of some arithmetic objects, such as algebraic numbers, points on abelian varieties, or even number elds, abelian varieties themselves and so on. A bridge between these two worlds is provided by the realisations of a motive , which allow one to speak about the periods and the -function attached to . The special values of this -function give us other more or less computable complex numbers, and it is thus a natural question to ask if these can be related to heights of various sort. In this thesis we show how to do this for elliptic curves with complex multiplication, and for one particular special value (at = 0) and one particular height (the Mahler measure). This is possible because of the extra symmetries with which a CM elliptic curve is endowed. These symmetries can be exploited in many di erent ways, for example to study the division elds of these elliptic curves, or the ray class elds associated to imaginary quadratic orders. Thus we have seen that heights, which are supposed to measure the complexity of an arithmetic object, turn out to be easier to handle when we apply them to objects with extra symmetries, which might appear more complicated at a rst sight. This proves yet again the unwavering truth that a rst sight is usually taken from a wrong perspective.

Heights and their Diophantine properties

What pleasure lives in height (the shepherd sang) In height and cold, the splendour of the hills?

Alfred Tennyson, The Princess

The aim of this chapter is to introduce the notion of height (or height function) in wide generality, and to de ne the main Diophantine properties of height functions, which are named after Northcott, Bogomolov and Lehmer. The second section of this chapter is then devoted to give examples of heights and to survey what is known about their Diophantine properties.

An axiomatic approach to heights and their properties

The notion of height is the central cornerstone of modern Diophantine geometry. Height functions were originally meant to be a measure for the size of solutions to Diophantine equations. Since these can be understood as rational points (Q) on an algebraic variety de ned over the eld of rational numbers Q, height functions in this setting can be understood as set-theoretic functions ℎ : (Q) → R which measure the complexity of an algebraic point ∈ (Q). This height function can then be used to single out the subset ( ) ⊆ (Q) of -rational points for any given number eld ⊆ Q. The most striking example of this approach is Vojta's proof of Mordell's conjecture, which asserts that the set ( ) is nite for every smooth, projective curve de ned over a number eld . One of the ingredients that are part of Vojta's theorem is the fact that, if ( ) ≠ ∅, one can associate to a given rational point ∈ ( ) the so called canonical height ℎ , : ( ) → R, initially introduced for abelian varieties by Néron in [START_REF] Néron | Quasi-fonctions et Hauteurs sur les Varietes Abeliennes[END_REF], which has the property that for every ∈ R the set { ∈ ( ) : | ℎ , ( )| ≤ } is nite. We refer the interested reader to [HS00, Part E] for an exposition of Vojta's proof.

The niteness property enjoyed by the canonical height is called Northcott's property, in view of the fact that Northcott showed a similar property for the Weil height of algebraic numbers (see Section 1.2.1), which is closely related to the canonical height. In fact, the rst proof of Mordell's conjecture, due to Faltings, employs a similar kind of Northcott property. More precisely, Faltings de ned a function ℎ Fal : A (Q) → R on the set of Q-isomorphism classes of abelian varieties de ned over Q, with the property that for every 1 , 2 ∈ R the set

{ ∈ A (Q) : deg( ) ≤ 1 , ℎ Fal ( ) ≤ 2 }
is nite, where deg( ) ∈ N denotes the minimal degree of a number eld over which can be de ned. The interested reader might nd a complete account of Faltings's proof in the survey volumes [START_REF] Faltings | Rational points[END_REF], [START_REF] Szpiro | Séminaire sur les pinceaux arithmétiques: la conjecture de Mordell[END_REF] and [START_REF]Arithmetic geometry[END_REF].

The previous examples show that the notion of height is a very general one, and indeed di erent kinds of heights have been de ned for a plethora of di erent kinds of objects. This leads us to give the following working de nition.

De nition 1.1.1 -Height functions

A height (or height function) on a set is a function ℎ : → Γ with values in a partially ordered set Γ.

The most common examples of heights land in Γ = R, but we introduce this general framework because it makes some de nitions cleaner, using the product height (1.1).

The rest of the section is devoted to the description of three properties of heights:

• the Northcott property, which asserts that the sets of points of bounded height are nite;

• the Bogomolov property, which concerns the lower bound of the set ℎ( ) ⊆ Γ;

• the Lehmer property, which is a Bogomolov property for a slightly modi ed height.

Northcott property

As we already said in the introduction, an important property of heights → Γ is that they often allow one to cut the set into smaller pieces, by limiting the height from above. This property can be axiomatically de ned as follows.

De nition 1.1.2 -Northcott property

Let ℎ : → Γ be a height function, and let S be a collection of subsets of . Then the height ℎ has:

• the bre-wise S-Northcott property if and only if the bres of ℎ lie in S;

• the S-Northcott property if and only if { ∈ | ℎ( ) ≤ } ∈ S for every ∈ Γ.

If S consists of the collection of nite subsets of , we omit it from the notation.

The name Northcott properties comes from the fact, already stated in the introduction of this section, that one of the rst niteness results of this type was proved by Northcott for the height of algebraic numbers (see Section 1.2.1). To be precise, this height (as most height functions) does not satisfy a Northcott property by itself, but it does if one also bounds the degree of the algebraic numbers in question. This leads to the following generalisation of De nition 1.1.2.

De nition 1.1.3 -Northcott property for a set of heights

If h = {ℎ : → Γ } ∈ is a set of height functions we say that h has one of the properties described in De nition 1.1.2 if and only if the "product height"

h : → ∈ Γ ↦ → (ℎ ( )) ∈
(1.1) has these properties, where the set ∈ Γ is endowed with the product order (see [START_REF] Bourbaki | Theory of Sets[END_REF] Chapter III, § 1.4]).

Before moving on, let us mention the following evident implication ℎ has S-Northcott + S is lower-closed ⇒ ℎ has bre-wise S-Northcott

(1.2)

where S is called lower-closed if for all ⊆ ⊆ we have that ∈ S ⇒ ∈ S. Moreover, if S is the collection of nite subsets of then ℎ has bre-wise Northcott + ℎ( ) is upper-nite ⇒ ℎ has Northcott where we say that ⊆ Γ is upper-nite if ≤ := { ∈ | ≤ } is nite for all ∈ Γ.

Bogomolov property

Let us now shift to the de nition of the Bogomolov property, which concerns the in mum of the set ℎ( ) ⊆ Γ. This property, which has been widely investigated for the height of algebraic numbers (see the introduction of [START_REF] Checcoli | On the Northcott property and local degrees[END_REF] and the references therein), takes his name from the toric version of Bogomolov's conjecture, which has been proved by Zhang in [START_REF] Zhang | Positive line bundles on arithmetic varieties[END_REF]. Zhang's proof uses the concept of successive minimum for the canonical height. This notion can be generalised as follows to arbitrary subsets of a partially ordered set Γ.

De nition 1.1.4 -Successive in ma and minima

Let Γ be a partially ordered set and let ∈ N. Then a subset ⊆ Γ has at least successive in ma (respectively at least successive minima) if:

• is bounded from below;

• whenever ≥ 1, the set has at least -1 successive in ma (resp. minima), and \ -1 has an in mum (resp. minimum) ( ) ∈ Γ. Here we de ne 0 := ∅ and

-1 := { ∈ | ≤ -1 ( )} ∪ -1
for any ≥ 2, where -1 ⊆ Γ denotes the connected component of ∪ { -1 ( )} that contains -1 ( ). This connected component is taken with respect to the subspace topology induced on ∪ { -1 ( )} by the order topology on Γ.

1.1 An axiomatic approach to heights and their properties

It is easy to see that ( ) ≤ +1 ( ) for any ∈ Z ≥1 . Moreover if +1 ( ) = ( ) for some ∈ Z ≥1 then has at least successive in ma for every ∈ N and ( ) = ( ) for every ≥ . This leads to the following de nition.

De nition 1.1.5 -Exact number of successive in ma/minima

Let Γ be a partially ordered set. Then any subset ⊆ Γ has exacly successive in ma (respectively exacly successive minima) for some ∈ N if it has at least successive in ma (resp. minima) and at least one of the following holds:

• does not have at least + 1 successive in ma (resp. minima);

• +1 ( ) = ( ).
A related notion is the one of essential minimum (see the introduction of [START_REF] Amoroso | Minoration de la hauteur normalisée dans un tore[END_REF]), which can be generalised as follows.

De nition 1.1.6 -Essential in mum/minimum

Let Γ be a partially ordered set, let ⊆ Γ and let X be a collection of subsets of . Write ≤ := { ∈ | ≤ } for every ∈ Γ. Then has a X-essential in mum (resp. X-essential minimum) if the set

{ ∈ Γ | ≤ ∉ X} ⊆ Γ
has an in mum (resp. a minimum). In this case we denote this element by ess ( , X) ∈ Γ, where Γ := Γ {+∞} is the partially ordered set obtained by adjoining to Γ a global maximum +∞. In particular, ess ( , X) = +∞ if and only if ≤ ∈ X for every ∈ Γ.

We are now ready to give the de nition of Bogomolov property.

De nition 1.1.7 -Bogomolov property

Let ℎ : → Γ be a height function, and let S be a collection of subsets of . Then ℎ has:

• the S-essential Bogomolov property if the set ℎ( ) ⊆ Γ has an ℎ(S)-essential in mum, denoted by ess (ℎ, S) ∈ Γ;

• Bogomolov number B (ℎ) ∈ N if the set ℎ( ) ⊆ Γ has exactly B (ℎ) successive in ma, denoted by (ℎ) for ∈ {1, . . . , B (ℎ)};

• the very weak Bogomolov property if and only if B (ℎ) ≥ 0, i.e. if and only if the set ℎ( ) ⊆ Γ is bounded from below; • the weak Bogomolov property if and only if B (ℎ) ≥ 1 and 1 (ℎ) ∈ ℎ( ), i.e. if and only if ℎ( ) has a minimum;

• the Bogomolov property if and only if either |ℎ( )| = 1 or B (ℎ) ≥ 2 and 1 (ℎ) ∈ ℎ( ), i.e. if and only if ℎ( ) has an isolated minimum.

If h = {ℎ : → Γ } ∈ is a set of height functions we write B (h) and ess (h, S) for the Bogomolov number and the essential in mum of the product height (1.1), and we say that h has one of the various Bogomolov properties if and only if the product height does.

Clearly one has the chains of implications ℎ has Bogomolov ⇒ ℎ has weak Bogomolov ⇒ ℎ has very weak Bogomolov ℎ has Northcott ⇒ ℎ has Bogomolov .

Interlude: examples of successive infima

Before moving to the de nition of Lehmer's property, we devote this subsection to the study of examples of successive in ma and minima. In particular, we show that our de nitions De nition 1.1.4 and De nition 1.1.5 recover the notions of successive in ma and minima present in Arakelov geometry, due to Minkowski (for lattices) and Zhang (for heights associated to hermitian line bundles).

Example 1.1.8. Let Γ = R. In this case the order topology coincides with the Euclidean topology. Then every set which has at least zero successive in ma (i.e. is bounded from below) has also has at least successive in ma for every ∈ N. Moreover, if ⊆ R is a nite union of open intervals = =1 ( , ) with 1 < 1 < 2 < 2 < . . . , then it is easy to see that has exactly successive in ma, with ( ) = for every ∈ {1, . . . , }. Finally, if ⊆ R is countable then has exactly ∈ Z ≥1 successive minima if and only if there exists a Cauchy sequence { } ∈N ⊆ such that |{ ∈ | ≤ , ∀ ∈ N}| = .

Example 1.1.9 (Minkowski). Let Λ ⊆ R be a lattice, and let : R → R ≥0 be any distance function (see [START_REF] Cassels | An introduction to the geometry of numbers[END_REF] Chapter IV]), i.e. any continuous function such that ( • x) = | | (x) for all ∈ R. Then the image of the map

Λ → R ≥0 × N ↦ → ( ), dim R ( , )
where , := { ∈ Λ | ( ) ≤ ( )} R has exactly successive in ma, which are given by the pairs ( (Λ, ), ) for some sequence

0 < 1 (Λ, ) ≤ 2 (Λ, ) ≤ • • • ≤ (Λ, ) < +∞
with (Λ, ) ∈ R >0 for every ∈ {1, . . . , }. The numbers { (Λ, )} are usually called successive minima of the function on the lattice Λ (see [START_REF] Cassels | An introduction to the geometry of numbers[END_REF]Chapter VIII]). However, these numbers are really in ma and not minima in general.

Example 1.1.10 (Zhang). Let X → Spec(Z) be an arithmetic variety of dimension , as de ned in [START_REF] Zhang | Positive line bundles on arithmetic varieties[END_REF], and let Cl( ) be the set of closed sub-schemes of the generic bre := X Q . Fix L to be a relatively semi-ample hermitian line bundle on X with ample generic bre, and let ℎ L : (Q) → R be the associated height. Then the image of the map

Cl( ) → R × N ↦ → inf {ℎ L ( ) | ∈ (Q) \ (Q)} , dim( )
1.1 An axiomatic approach to heights and their properties has exactly + 1 successive in ma, which are given by pairs ( (X, L), ) for some sequence 0 (X, L) ≤ 1 (X, L) ≤ • • • ≤ (X, L) ≤ +∞ with (X, L) ∈ R for every ∈ {0, . . . , -1} and (X, L) ∈ R {+∞}. It is easy to see that (X, L) = +∞ if and only if is irreducible, and that for every ∈ {0, . . . , -1} we have (X, L) = -(L), where 1 (L) ≥ • • • ≥ (L) is the sequence de ned in [START_REF] Zhang | Positive line bundles on arithmetic varieties[END_REF]§ 5]. We also refer the interested reader to the seminal paper [START_REF] Gaudron | Pentes des Fibrés Vectoriels Adéliques sur un Corps Global[END_REF], and in particular to [START_REF] Gaudron | Pentes des Fibrés Vectoriels Adéliques sur un Corps Global[END_REF]§ 5.4], for more examples of successive minima.

Lehmer property

As we point out in Section 1.2.1, the height of algebraic numbers has the weak Bogomolov property, because zero the set ℎ(Q) has a minimum in zero), but not the Bogomolov property, since ℎ( √ 2) → 0 for → ∞. Nevertheless, there is no known sequence { } ⊆ Q such that ℎ( ) ≠ 0 for all ∈ N, lim →+∞ ℎ( ) = 0 and deg( ) is bounded. Moreover, it is expected that the function ↦ → ℎ( ) deg( ) should have the Bogomolov property, thereby proving that no such sequence { } should exist. This expectation is linked to the famous problem posed by Lehmer in [Leh33, § 13], which is discussed in Section 4.1.1. It is now clear why the following property, which generalises the aforementioned conjectural property of the height of algebraic numbers, is called "Lehmer property".

De nition 1.1.11 -Lehmer property

Let h = {ℎ : → Γ } ∈ be a set of heights, and let :

∈ Γ → Γ be any map of sets, where Γ is a partially ordered set. Then the Lehmer number L (h, ) ∈ N is de ned to be the Bogomolov number of the height • h, where h denotes the product height (1.1). The successive in ma of ( h( )) are denoted accordingly by (h, ) for ∈ {1, . . . , L (h, )}. Moreover, the pair (h, ) has:

• the very weak Lehmer where ℎ : → Γ is any height and • h ≥ ℎ means that ( h( )) ≥ ℎ ( ) for every ∈ .
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Chapter 1 Heights and their Diophantine properties

Examples of heights

We devote the rest of this chapter to list examples of heights and their properties, and to relate these examples to special values of -functions. Let us start with the logarithmic Weil height, which was the main inspiration to give the general de nitions in Section 1.1.

The height of algebraic numbers

Let ℎ : Q → R be the absolute logarithmic Weil height (see [BG06, De nition 1.5.4]), and let deg : Q → Z ≥1 denote the degree deg(

) := [Q( ) : Q].
It is immediate to see that ℎ does not have the bre-wise Northcott property (with respect to the collection of nite subsets of Q), for example because ℎ( ) = 0 for any root of unity ∈ Q. Hence ℎ does not have the Northcott property. It is also immediate to see that the same holds for the degree function. However, Northcott's theorem (see [START_REF] Bombieri | Heights in Diophantine geometry[END_REF]Theorem 1.6.8]) shows that the set h = {ℎ, deg} has the Northcott property. Moreover, it is immediate to see that ℎ has the weak Bogomolov property, because 0 ∈ R is a minimum for ℎ(Q), attained exactly at the roots of unity (see [START_REF] Bombieri | Heights in Diophantine geometry[END_REF] Theorem 1.5.9]). However, it is easy to see that this minimum is not isolated, because for example lim →+∞ ℎ( √ 2) = 0. Hence B (ℎ) = 1, and ℎ does not have the Bogomolov property. Finally, asking whether the set h = {ℎ, deg} has the Lehmer property with respect to the function : R × Z ≥1 → R ( , ) ↦ → • is equivalent to Lehmer's celebrated problem (see [START_REF] Bombieri | Heights in Diophantine geometry[END_REF]§ 1.6.15]).

Let us mention some of the recent work concerning Northcott, Bogomolov and Lehmer properties relative to the logarithmic Weil height. First of all, it is known that ℎ has the Bogomolov property when restricted to suitable in nite sub-extensions of Q, such as the maximal abelian extension Q ab ⊆ Q (see [START_REF] Amoroso | A uniform relative Dobrowolski's lower bound over abelian extensions[END_REF]) or the extension obtained by adjoining to Q the coordinates of torsion points of elliptic curves (see [START_REF] Habegger | Small height and in nite nonabelian extensions[END_REF]). We refer the interested reader to the introduction of [START_REF] Checcoli | On the Northcott property and local degrees[END_REF] for a complete list of references of known results. Moreover, Smyth's theorem [START_REF] Bombieri | Heights in Diophantine geometry[END_REF]Theorem 4.4.15] says that (h, ) has the Lehmer property when restricted to the set ⊆ Q of algebraic numbers which are not Galois-conjugate to their multiplicative inverse. Finally, Dobrowolski's theorem [START_REF] Bombieri | Heights in Diophantine geometry[END_REF]Theorem 4.4.1] says that, if we let

: R × Z ≥1 → R ( , ) ↦ → • • log(3 ) log log(3 ) 3 (1.3)
then the pair (h, ) has Lehmer's property.

Mahler measure

This height can be seen as a multi-dimensional analogue of the function

• h : Q → R ↦ → ℎ( ) • deg( ) 1.2 Examples of heights
appearing in Section 1.2.1, and it is one of the protagonists of this work. As such, we devote to it the entire fourth chapter of this thesis. See in particular De nition 4.1.1 for the de nition of the Mahler measure, which is a height : C[ ±1 1 , ±1 2 , . . . ] \ {0} → R de ned for non-zero polynomials with complex coe cients, in any number of variables. Concerning Diophantine properties of the Mahler measure, it is known that the height has the weak Bogomolov property if one restricts it to the ring Z[ ±1 1 , ±1 2 , . . . ] of Laurent polynomials with integral coe cients, because for every ∈ Z[ ±1 1 , ±1 2 , . . . ] one has that ( ) ≥ 0 and ( ) = 0 if and only if is a product of cyclotomic polynomials evaluated at monomials (see Theorem 4.1.15). Moreover, if we let

: C[ ±1 1 , ±1 2 , . . . ] → Z ≥1 ↦ → +∞ =1
• deg ( ) then the pair ( , ) has the Northcott property, when restricted to polynomials with integer coe cients. Indeed, this follows from [START_REF] Mahler | On some inequalities for polynomials in several variables[END_REF], which gives the inequality exp( ( )

) = exp( ( )) ≥ 2 -+∞ =1 deg ( ) • j | j |
where { j } j ⊆ Z are the coe cients of = j j j written in multi-index notation.

Finally, let us mention that, for every algebraic number ∈ Q × we have that

( ) = ℎ( ) deg( )
where ∈ Z[ ] is the integral minimal polynomial of (see Example 4.1.9).

Canonical height

The Mahler measure of an integral polynomial ∈ Z[ ±1 1 , . . . , ±1 ] has been related, by work of Maillot, to the canonical height of the hypersurface de ned by this polynomial. To be more precise, let ⊆ G be the zero locus of , let Δ ⊆ R be the Newton polytope of (see [START_REF] Gelfand | Discriminants, resultants, and multidimensional determinants[END_REF]Chapter 6]) and let ⊆ P(Δ ) denote the closure of inside the projective toric variety P(Δ ) associated to Δ . Fix also a family of toric Cartier divisors D = { 1 , . . . , } de ned on P(Δ ) which are generated by global sections. Then [Mai00, Proposition 7.2.1] (see also [START_REF] Gualdi | Heights of hypersurfaces in toric varieties[END_REF]Corollary 6.3]) shows that the canonical height ℎ can D ( ) can be computed as

ℎ can D ( ) = deg D (P(Δ )) • ( ( ) -log|gcd( )|) (1.4)
where gcd( ) ∈ N denotes the greatest common divisor of the coe cients of and

deg D (P(Δ )) := deg( [ 1 ] ∪ • • • ∪ [ ]) ∈ Z
denotes the geometric degree. We point out that (1.4) is somehow surprising. Indeed, the Mahler measure of a polynomial can be thought of as a height measuring the complexity of the zero locus . However, one needs to keep in mind that this height does not only depend on , but on the speci c model that we have chosen. Nevertheless, (1.4) shows that this dependency is not particularly sensitive to changes in . Moreover, we remark that also the canonical height ℎ can D ( ) does not depend solely on , because the compacti cation depends on the Newton polytope Δ .

We refer the interested reader to [START_REF] Hindry | Diophantine geometry[END_REF]§ B.4] for an introduction to canonical heights on abelian varieties, and to [START_REF] Gualdi | Heights of hypersurfaces in toric varieties[END_REF]§ 3] for an introduction to canonical heights in toric varieties, such as the height ℎ can D appearing in (1.4). Other important contributions to the eld are given by the works of Zhang (see [START_REF] Zhang | Positive line bundles on arithmetic varieties[END_REF][START_REF] Zhang | Small points and adelic metrics[END_REF]), Philippon (see [START_REF] Philippon | Sur des hauteurs alternatives. I[END_REF][START_REF] Philippon | Sur des hauteurs alternatives. II[END_REF][START_REF] Philippon | Sur des hauteurs alternatives. III[END_REF]) and Faltings (see [START_REF] Faltings | Diophantine approximation on abelian varieties[END_REF] and [Sou92, Chapter III, § 6]), all of whom explore di erent de nitions for the notions of "canonical" heights of sub-varieties (inside P , for instance). Numerous Diophantine properties have been proved for these heights in the papers mentioned above. We chose not to describe these properties explicitly. Instead, let us move to another, even more canonical, type of height that can be associated to algebraic varieties.

Faltings's height

Let A (Q) be the set of isomorphism classes of abelian varieties de ned over Q, and let ℎ : A (Q) → R be the stable Faltings height (see [START_REF] Faltings | Finiteness theorems for abelian varieties over number elds[END_REF]Section 3] and [Del85a, Page 27], which use two di erent normalizations). Then ℎ satis es the very weak Bogomolov property with respect to the dimension dim : A (Q) → N, since one has the lower bound

ℎ( ) ≥ -log( √ 2 ) • dim( )
which is due to Bost (see [START_REF] Gaudron | Théorème des périodes et degrés minimaux d'isogénies[END_REF]Corollary 8.4]). Then [START_REF] Deligne | Preuve des conjectures de Tate et de Shafarevitch (d'après G. Faltings)[END_REF]Page 29] shows that ℎ has the weak Bogomolov property if we restrict to the set A 1 (Q) of Q-isomorphism classes of elliptic curves de ned over Q. Moreover, [START_REF] Löbrich | A gap in the spectrum of the Faltings height[END_REF] and [START_REF] Burgos Gil | On the essential minimum of Faltings' height[END_REF] show that ℎ : A 1 (Q) → R has the Bogomolov property tout court. It seems reasonable to ask whether ℎ itself satis es a Bogomolov property with respect to the dimension. Finally Faltings's theorem [Fal86, Theorem 1], combined with Zahrin's "trick" [Mil86, Remark 16.12], shows that ℎ has the Northcott property with respect to the pair f = {dim, deg}. This degree function is de ned by deg :

A (Q) → N ↦ → min{[ : Q] | is de ned over }
where we say that an abelian variety de ned over a eld L is de ned over a sub-eld K if there exists an abelian variety de ned over K and such that × Spec(K) Spec(L). Then deg is well de ned, because every abelian variety de ned over Q can be de ned over a number eld (see [EGA IV.3, Théorème 8.8.2]). We note that sometimes the degree of a polarised abelian variety is de ned to be the degree of its polarisation (see [START_REF] Milne | Abelian varieties[END_REF][START_REF] Bertin | Mahler measure of some singular 3-surfaces[END_REF]), but this has nothing to do with our function deg :

A (Q) → N.
We conclude by pointing out that Mocz has recently proved that (if one assumes Artin's and Colmez's conjectures) the function ℎ satis es Northcott's property with respect to ∅ if we restrict to the subset of isomorphism classes of abelian varieties with complex multiplication (see [START_REF] Mocz | A New Northcott Property for Faltings Height[END_REF]Theorem 1.4]).

Examples of heights

Conductors of complex Galois representations

The Faltings height of an abelian variety is a quite di cult invariant to compute. In the case of elliptic curves, an explicit formula for the unstable version of the Faltings height is provided in [Sil86, Proposition 1.1]. Another case in which the Faltings height is conjectured to be explicitly computable is given by abelian varieties with complex multiplication (see De nition 7.1.5). Indeed, the seminal work of Colmez [START_REF] Colmez | Algébricité de valeurs spéciales de fonctions[END_REF] predicts that the Faltings height of a CM abelian variety should be computable using the logarithmic derivatives of some -functions related to the CM eld associated to . We refer the interested reader to Example 3.4.3 for a brief account of Colmez's conjectural formula.

For now, we only want to point out that Colmez's formula involves the Artin conductor ∈ N of some Artin characters : Q → C. By de nition := N( ) coincides with the norm of the conductor associated to any complex representation : Q → GL (C) such that = tr • , where tr : GL (C) → C denotes the trace map. The aim of this subsection is to show that the association ↦ → behaves almost like a height. In particular it satis es a Northcott property, at least if we include the Archimedean places in the de nition of the conductor.

Let be a number eld, x ∈ N and let A ( ) be the set of cuspidal automorphic representations of GL (A ) (see [IS10, § 1]). Then [START_REF] Brumley | E ective multiplicity one on and narrow zero-free regions for Rankin-Selberg -functions[END_REF]Corollary 9] shows that the analytic conductor C : A ( ) → R ≥1 , which is de ned in [IS10, Equation (31)], satis es the Northcott property. In particular, the = 1 case shows that the set of Hecke characters : A × → C × with bounded analytic conductor is nite.

Let now W C ( ) be the set of isomorphism classes of pairs ( , ) where is a nite dimensional complex vector space and :

→ GL( ) is a continuous semi-simple representation of the Weil group (see [Tat79, § 1]). Then there is a function :

W C ( ) → O sending each ( , ) to its global Artin conductor ideal ⊆ O (see [Neu99, Chapter VII, § 11 
]). Moreover, the Archimedean local Langlands correspondence, explained for example in [START_REF] Knapp | Local Langlands correspondence: the Archimedean case[END_REF], allows one to associate to each ( , ) ∈ W C ( ) an Archimedean conductor C ∞ (( , )) ∈ R, de ned in exactly the same way as the Archimedean part of the analytic conductor of a cuspidal automorphic form. Then [And+94, Theorem 3.3] can be combined with our previous discussion to show that the function C : W C ( ) → R de ned as C(( , )) := N /Q ( ) • C ∞ (( , )) satis es the Northcott property. Let us observe that:

• one can consider all the number elds at once as follows: if W C denotes the set of isomorphism classes of triples ( , , ), where is a number eld and ( , ) ∈ W C ( ), then [Roh94, Property (a2)] shows that the composite map C • Ind :

W C → W C (Q) → R
satis es the Northcott property, where Ind :

W C → W C (Q) sends ( , , ) to the induced representation on Q ⊇ ;
• the conductor is related to -functions by means of the functional equation (see [Tat79, Theorem 3.5.3]).

Conductors of ℓ-adic representations

This subsection is the analogue of the previous one for representations valued in vector spaces de ned over Q ℓ .

Let ℓ ∈ N be a prime number and let be a number eld. We denote by 0 the set of non-Archimedean places of , and for every ∈ 0 we write Frob ⊆ Gal( / )/I for the conjugacy class of geometric Frobenius elements relative to , where I denotes the -adic inertia subgroup. We de ne G ℓ ( ) to be the set of isomorphism classes of pairs ( , ) where is a nite dimensional vector space over Q ℓ and : Gal( / ) → GL( ) is a continuous semi-simple representation satisfying the following properties: 10 Chapter 1 Heights and their Diophantine properties

• the set (ram) ⊆ 0 of non-Archimedean places at which is rami ed is nite;

• the set (int) ⊆ 0 of non-Archimedean places ∈ 0 such that tr( (Frob )) ∈ Z has nite complement. Here tr : GL( ) → C denotes the trace.

Let now ( , ) ∈ G ℓ ( ). We set := (ram) ∪ ( 0 \ (int) ) and we denote by T the family of nite sets ⊆ 0 such that ∩ = ∅ and the restriction map

∈ Frob → Gal( / )
is surjective for every extension ⊆ of number elds which is unrami ed outside and such that [ : ] ≤ ℓ 2 dim( ) 2 . We de ne two functions : G ℓ ( ) → N and : G ℓ ( ) → N as

( , ) := max{char( ) : ∈ (ram) } ( , ) := min ∈T (max{|tr( (Frob ))| : ∈ })
where denotes the residue eld of at . Note in particular that T ≠ ∅, as follows from a combination of Chebotarev's density theorem and Hermite's theorem.

Then [Del85b, Théorème 1] shows that the set h = {dim, , } has the Northcott property. Moreover, the functions and are related to more classical invariants as follows: where, for any ∈ End( ), we denote by Sp( ) the set of its eigenvalues. In particular, if we restrict to the subset M ℓ ( ) ⊆ G ℓ ( ) consisting of those Galois representations that admit a weight ltration with nitely many non-zero graded pieces (see [Jan10, § 2]), then the sets {dim, , max } and {dim, C 0 , max } have the Northcott property, where max : M ℓ ( ) → N sends a representation to the greatest of its weights. Let us conclude by making the following observations:

• ( , ) ≤ C 0 ( , ), where C 0 ( , ) := N /Q ( )
• the semi-sempli cations of the ℓ-adic étale cohomology groups ét ( ; Q ℓ ( )) associated to a smooth and proper variety de ned over which has good reduction at all the primes of lying above ℓ give rise to elements of M ℓ ( ) which are pure of weight -2 . For these Galois representations the set equals the set of primes of which either lie above ℓ or are primes of bad reduction for . This follows from the smooth and proper base change theorem for étale cohomology, combined with Deligne's proof of the Weil conjectures (see [Jan90, Appendix C]).

• we can consider all the number elds at once, as we did in Section 1.2.5, by de ning G ℓ as the set of isomorphism classes of triples ( , , ) where is a number eld and ( , ) ∈ G ℓ ( ). Then [Roh94, Property (a'2)] implies that the sets {dim • Ind, • Ind, } and {dim, C 0 • Ind, } have the Northcott property. Here Ind : G ℓ → G ℓ (Q) is again the map sending ( , , ) to the representation induced on Gal(Q/Q) ⊇ Gal( / );

Examples of heights

• the conductor is supposed to be related to the -function ( , ) by means of the conjectural functional equation (compare with [Tat79, § 4.5]).

Volumes of hyperbolic manifolds

We conclude this roundup of examples by talking about a more geometric example of height, given by the volume of hyperbolic manifolds.

Let H be the set of isomorphism classes of hyperbolic manifolds of nite volume. Then it is conjectured that the volume vol : H → R ≥0 has the Bogomolov property, and that the minimum is attained at an arithmetic hyperbolic manifold /Γ, where Γ is an arithmetic subgroup of the isometry group of the hyperbolic space (see [START_REF] Belolipetsky | Hyperbolic manifolds of small volume[END_REF]). Moreover, if we restrict to the set H ar ⊆ H of isomorphism classes of arithmetic hyperbolic manifolds, it is conjectured that the set h = {vol, dim, deg} has the Northcott property, where the degree is de ned by deg(

) := [Q(tr( 1 ( ) (2) )) : Q].
Here we denote by 1 ( ) (2) the sub-group generated by the squares, and by tr : 1 ( ) → C the trace map induced from the embedding of 1 ( ) into the isomorphism group of . This Northcott property has been proved for three dimensional arithmetic hyperbolic manifolds (see [START_REF] Jeon | Hyperbolic three manifolds of bounded volume and trace eld degree II[END_REF]).

The aim of this chapter is to review the notion of a motive. This was envisioned by Grothendieck as an attempt to gather the properties common to the di erent cohomology theories which could be de ned for algebraic varieties. Most notably, as Serre points out in [START_REF] Serre | Motifs[END_REF], there are in nitely many ℓ-adic cohomology theories , ℓ (-), one for every rational prime ℓ ∈ N, and it is a challenging question to determine under what circumstances a Q ℓ -linear map ℓ : , ℓ ( ) → , ℓ ( ) induces a Q ℓ linear map ℓ : , ℓ ( ) → , ℓ ( ) for a prime ℓ ≠ ℓ. This is clearly true if ℓ = * for some : → , and more generally if ℓ is induced by a span ← → where → is proper and of relative dimension zero. These are examples of Q ℓ -linear maps ℓ which are "motivated", i.e. which come from the algebraic geometry of the varieties and , and thus have a good reason to extend to ℓ -adic cohomology theories for ℓ ≠ ℓ. This notion of motivated maps can be encoded in essentially two di erent ways:

• by the compatibility of ℓ with the various comparison isomorphisms which relate ℓ-adic cohomology to singular cohomology (for varieties de ned over sub-elds);

• by keeping only the maps ℓ which come from algebraic correspondences, thereby taking into account the geometry of the varieties in question. Usually one does this by considering the correspondences between and , which are suitable linear combinations of closed sub-varieties of × , modulo an "adequate" equivalence relation (see De nition 2.2.1).

These two notions of "motivated" give rise to two very di erent notions of "motive": the rst type of construction allows one to get abelian categories (which we describe in Section 2.2.2), whereas the second kind of construction allows one to get abelian categories of "pure motives" (see Section 2.2.1), related to smooth and projective varieties, only if one considers algebraic cycles modulo numerical equivalence, which is the coarsest of all adequate equivalence relations.

If one wants instead to consider ner equivalence relations (like the ones induced by cohomology theories, which would link the two approaches) one faces immediately some important obstacles, which have been encoded in the form of the "standard conjectures" (see [And04, Chapitre 5]). Moreover, the cohomological approach described in Section 2.2.2 allows one to get an abelian category of "mixed motives", where in particular there are objects associated to each separated scheme of nite type de ned over the eld we are working with. In contrast, the best one can do to this day with the second approach is to get a triangulated category of "mixed motives" (see Section 2.2.3). Nevertheless, a far reaching program laid down by Beilinson in the foundational papers [Bei87, § 5] and [Bei86b, § 0.3] predicts that the second approach should also lead to an abelian category of mixed motives, and the two approaches should agree. We warn the reader that these two tasks are likely to be extremely di cult: the existence of a "geometric" abelian category of mixed motive would give a positive answer to the standard conjectures (see [START_REF] Beilinson | Remarks on Grothendieck's standard conjectures[END_REF]). This is also profoundly related to the conjectures concerning the fullness and conservativity of the realisation functors (see for instance [HM17, Proposition 10.2.1]). Nevertheless, the existing constructions of triangulated categories of mixed motives (due to the work of Voevodsky, Morel, Suslin, Ayoub, Cisinski and Déglise, Robalo, etc.) allow one to talk about the motivic cohomology of a scheme . This is an incredibly rich invariant, which is (conjecturally) linked to the algebraic -theory of perfect complexes of sheaves on (see Section 2.3.1) on the one hand, and to complexes of algebraic cycles (see Section 2.3.2) and functions (see Section 2.3.3) on . Finally, motivic cohomology is suppose to have the role of a "universal cohomology theory", in the sense that every cohomology theory satisfying the axioms that we outline in the next section should receive a map from motivic cohomology. These maps are usually called regulators, because they help to tame down, hence to regulate, the wildness of algebraic cycles present in motivic cohomology. We outline their construction and their basic properties in Section 2.4.

What is a cohomology theory?

The world of algebraic and analytic geometry is a very chaotic one. Algebraic varieties, manifolds and (more generally) topological spaces can be deformed in many di erent ways, which can become di cult to control. Homology and cohomology theories are a copious source of powerful invariants which allow one to use methods of linear and (co)homological algebra to study the geometric world. The aim of the present section is to recall some of the working de nitions for the concept of cohomology theory (due to Weil, Bloch and Ogus, Cisinski and Déglise) and to recall how many familiar cohomology theories (singular cohomology, de Rham cohomology, étale cohomology) t into this picture.

Axioms for cohomology theories

The question of nding suitable axioms for the concept of homology (or cohomology) is a highly non-trivial one. In algebraic topology, this subject has a very rich history (see [START_REF] Dieudonné | A History of Algebraic and Di erential Topology, 1900 -1960[END_REF] Chapter IV]), and has led to the following notion (see [AGP02, De nition 12.1.1]).

De nition 2.1.1 -Cohomology theory (for topological spaces)

Let V denote a sub-category of the category of topological spaces, closed under nite products and such that R ∈ V. Let V * denote the category of pairs ( , ) of objects of V such that ⊆ is a subspace, and let V * be the category of triples ( , , ) of objects of V such that ⊆ ⊆ . This category is endowed with two functors 1 , 2 : V * → V * de ned by 1 ( , , ) := ( , ) and 2 ( , , ) := ( , ). Fix an abelian category A and let • : (V * ) op → A Z be a functor with values in Z-graded objects of A, and

• : • • 2 → • • • 1 be a natural transformation, where : A Z → A Z is de ned by (A) := +1 for every A := { } ∈Z ∈ A Z .
The pair ( • , • ) is an A-valued cohomology theory if the following conditions are satis ed: Homotopy invariance for every ∈ V, the projection map : × R → induces an isomorphism • ( )

: • ( ) -→ ∼ • ( × R), where • ( ) := • ( , ∅) for every ∈ V.

Excision

for every ( , ) ∈ V * and every subset ⊆ whose closure is contained in the interior of , the inclusion :

( \ , \ ) ↩→ ( , ) induces an isomorphism • ( ) : • ( , ) -→ ∼ • ( \ , \ ).

Exact Sequence in Cohomology

for every ( , , ) ∈ V * one has a long exact sequence

. . . ( , ) ( , ) 
+1 ( , ) +1 ( , ) . . .

( ) +1 ( )
where : ( , ) ↩→ ( , ) and : ( , ) ↩→ ( , ) are the obvious inclusions.

Moreover, ( • , • ) is said to be additive if the following axiom is satis ed: Additivity A is closed under products and • preserves products, i.e. (remember that • is contravariant) for every set and every collection {( , )} ∈ ⊆ V * the inclusions inside the disjoint union :

( , ) → ∈ ( , ) induce an isomorphism ∈ • ( ) : • ∈ , ∈ -→ ∼ ∈ • ( , ).
and ( • , • ) is said to be ordinary if the following axiom is satis ed: Dimension Axiom ({ * }, ∅) = 0 if ≠ 0, where { * } ∈ V is the topological space with only one point.

Remark 2.1.2. Thanks to the homotopy axiom, the functor • : (V * ) op → A Z factors through a functor ℎ • : (ℎV * ) op → A Z , where ℎV * denotes the homotopy category, which has the same objects of V * but where the morphisms are homotopy classes of maps. 

De nition 2.1.4 -Cohomology theory (algebraic geometry)

Let be a scheme, let V be a category of schemes over and let V * be the category whose objects are pairs ( , ) where ∈ V and ↩→ is an open immersion in V. Assume that A 1 ∈ V and that V is closed under products. Denote by V * the category of triples ( , , ) where ∈ V and ↩→ ↩→ are open immersions in V. This category is endowed with the functors 1 , 2 : V * → V * de ned as 1 ( , , ) := ( , ) and 2 ( , , ) := ( , ). Fix an abelian cateogry A, let A Z be the category of Z-2.1 What is a cohomology theory? graded objects in A and let : A Z → A Z be the shift functor de ned in De nition 2.1.1. Then a pair ( • , • ) consisting of a functor • : (V * ) op → A Z together with a natural transformation • : • • 2 → • • • 1 is an A-valued cohomology theory if the following conditions are satis ed: Homotopy invariance for every ∈ V the projection map :

× A 1 → induces an isomorphism • ( ) : • ( ) -→ ∼ • ( × A 1 )
, where • ( ) := • ( , ∅) for every ∈ V.

Excision

every Nisnevich distinguished morphism : ( , ) → ( , ) in V * induces an isomorphism • ( ) : • ( , ) -→ ∼ • ( , ). By de nition, is given by a Cartesian square (2.1) such that the map is étale and induces an isomorphism

-1 (( \ ( )) red ) -→ ∼ ( \ ( )) red
where ( \ ( )) red denotes \ ( ), considered as a closed sub-scheme of with its reduced sub-scheme structure.

Exact Sequence in Cohomology

for every ( , , ) ∈ V * we have a long exact sequence

. . . ( , ) ( , ) 
+1 ( , ) +1 ( , ) . . .

( ) +1 ( ) (2.2)
where : ( , ) → ( , ) and : ( , ) → ( , ) are the obvious morphisms in V * .

Suppose now that A is an abelian tensor category, as de ned in [DM82, De nition 1.15],

and let 1 A denote the unit object. Then an A-valued cohomology theory ( • , • ) is said to be ordinary if the following axiom is satis ed Dimension Axiom ∈ V, 0 ( ) 1 A and ( ) = 0 for > 0.

and it is said to be stable if the following axiom is satis ed

Stability G , ∈ V, 0 (G , ) 1 (G , ) 1 A and (G , ) = 0 for > 1.
where G , → denotes the multiplicative group (see [START_REF]The Stacks project authors[END_REF]Example 022U]). Moreover, a cross product on a cohomology theory ( • , • ) is a natural transformation

× : • ⊗ • → • •
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Chapter 2 Cohomology theories, motives and regulators where the functors • ⊗ • and : (V * ) 2 → V * are de ned by

( ) ⊗ ( , ) + ( × , × ) + (( × ) ∪ ( × ), × ) +1 ( , ) ⊗ ( , ) + +1 ( × , ( × ) ∪ ( × )) ⊗Id × + ( ) -1 ∼ + × Figure 2.
• ⊗ • (( , ), ( , 
)) := • ( , ) ⊗ • ( , ) (( , ), ( , 
)) := ( × , ( × ) ∪ ( × ))
for every (( , ), ( , )) ∈ (V * ) 2 . We demand moreover that for every ( , ), ( , ) ∈ V * the diagram in Figure 2.1 is commutative. Finally, a mixed Weil cohomology is a triplet ( • , • , ×) consisting of an ordinary and stable cohomology theory ( • , • ) together with a cross product × satisfying the following axiom: Künneth formula the cross product is an isomorphism, when restricted to the category V ( ) ⊆ V of schemes ∈ V which are smooth over .

Remark 2.1.5. Observe that the de nition of mixed Weil cohomology given in [START_REF] Cisinski | Mixed Weil cohomologies[END_REF] and [START_REF] Drew | Réalisations tannakiennes des motifs mixtes triangulés[END_REF] is not entirely axiomatic, as the one we have given here, but assumes that the cohomology comes from an A-valued Nisnevich sheaf of complexes (see also Section 2.1.2).

Remark 2.1.6. Specialising the cross product to the pair (( , ), ( , )) one gets the cup product

⌣ : • ( , ) ⊗2 -→ × • ( × , ( × ) ∪ ( × )) -----→ • (Δ) • ( , )
where Δ : ( , ) → ( × , × ) ↩→ ( × , ( × ) ∪ ( × )) is the diagonal map. Vice-versa, the cross product is determined by the cup product as

× : • ( , ) ⊗ • ( , ) -------------→ • ( ) ⊗ • ( ) • ( × , ( × ) ∪ ( × )) ⊗2 ⌣ --→ • ( × , ( × ) ∪ ( × ))
where : ( × , ( × )∪( × )) → ( , ) and : ( × , ( × )∪( × )) → ( , ) denote the obvious projections. The cup product makes • ( , ) into a graded ring, and sometimes (for example in [CD19, § 17.2]) the cross product is called exterior cup product.

Remark 2.1.7. The name "mixed Weil cohomology" is related to the fact that every such cohomology theory is expected to give rise to a Weil cohomology theory, in the sense of [And04, De nition 3.3.1.1], when restricted to the sub-category V ( ) ⊆ V consisting of those ∈ V which are smooth and projective over . This is proved in [START_REF] Cisinski | Mixed Weil cohomologies[END_REF] when = Spec( ) for a perfect eld , modulo the fact that the cohomology is not known to vanish in negative degrees.

Remark 2.1.8. Sometimes it is useful to have relative cohomology groups ( , ) de ned for a map → which is not necessarily an open immersion. This is done for example in [START_REF] Deninger | Extensions of motives associated to symmetric powers of elliptic curves and to Hecke characters of imaginary quadratic elds[END_REF] or [START_REF] Besser | p-adic Mahler measures[END_REF], where relative cohomology is taken with respect to a closed sub-scheme. We believe that all the axioms laid out in De nition 2.1.4 should carry over to a more general setting (where V * is a more general arrow category), except perhaps for the excision axiom.

Remark 2.1.9. De nition 2.1.1 and De nition 2.1.4 admit a common generalisation, where V * is taken to be a sub-category of the category of morphisms Arr(V), where V is a Grothendieck site (see [START_REF]The Stacks project authors[END_REF]Section 03NF]). An example of this can be any category of schemes with one of the many topology which can be de ned on them (see e.g. [SP, Chapter 020K]). Other examples could be the category of manifolds, or the category of rigid analytic spaces. One of the most general de nitions of the notion of cohomology theory, which uses the language of ∞-categories, is given in [Lur17, De nition 1.4.1.6].

Let us conclude this section by mentioning another possible set of axioms for a cohomology theory, which was described by Bloch and Ogus in [BO74, § 2], and was re ned by Gillet [Gil81, De nition 1.2], Jannsen [Jan90, § 6] and Levine [Lev98, Chapter V, De nition 1.1.6]. In fact, their setting requires a pair ( • , • ) consisting of a cohomology and a homology theory, which should be related by a cap product and by Poincaré duality. We decided to include this set of axioms here, following the exposition given by Jannsen, because it is used in some de nitions of the abelian categories of mixed motives given in De nition 2.2.7.

De nition 2.1.10 -Twisted Poincaré duality theory

Let be a eld and let V be a full sub-category of the category of schemes of nite type over , which contains all the quasi-projective ones (in the sense of [EGA II, Dé nition 5.3.1]). Denote by V * the category with the same objects of V, but only proper morphisms, and by V * the category whose objects are closed immersions ↩→ with , ∈ V, and whose morphisms are Cartesian squares. Let A be an abelian tensor category, as de where the horizontal arrows are closed immersions and the squares are Cartesian, the two exact sequences corresponding to ( , ) and ( , ) t in a commutative diagram whose vertical arrows are given by * , ( • ), * , ( ) and * , (ℎ), where ℎ is the square

\ ( ) \ ( ( )) \ ( ) \ ( ( ))
ℎ induced by (2.3), which is evidently Cartesian.

Excision if :

↩→ is a closed immersion and :

↩→ is an open immersion, the natural map , ( • ) → , ( ) is an isomorphism;

Étale Contravariance

for every , ∈ Z and every étale morphism : → between two objects , ∈ V there exists a map * : , ( ) → , ( ) such that for every Cartesian square where and are proper and and are étale, the square and for every proper map : → , the long exact sequences associated to and to : ( ) ↩→ t in a commutative diagram where the vertical arrows are given by , ( ), , ( ) and , (ℎ) • * . Here : \ -1 ( ( ( ))) ↩→ \ ( ) is the obvious immersion and ℎ : \ -1 ( ( ( ))) → \ ( ) is the restriction of .

Cap product

for every , , , ∈ Z and every closed immersion : ↩→ there is a pairing

, ( ) ⊗ , ( ) --→ ⌢ -, -( ) 2.1 What is a cohomology theory?
such that for every Cartesian square and every ∈ , ( ), ∈ , ( ) and ∈ , ( ) we have that * ( ⌢ ) = * ( ) ⌢ * ( ) if and are étale, and

, ( ) ( ) ⌢ = , ( ) ( ⌢ , ( ) ( ))
if and are proper.

Fundamental Class

if ∈ V is irreducible and has dimension then there exists a morphism : 1 A → 2 , ( ), where 1 A ∈ A denotes the identity object for the tensor product. Moreover, if : → is étale then * • = , which makes sense because has relative dimension zero (see [START_REF]The Stacks project authors[END_REF]Section 02GH]).

Poincaré duality if ∈ V is smooth, irreducible of dimension and : ↩→ is a closed immersion, the map

1 A ⊗ 2 -, -( ) -----→ ⊗Id 2 , ( ) ⊗ 2 -, -( ) --→ ⌢ , ( )
is an isomorphism. From this we get the Poincaré duality 2 -, -( ) -→ ∼ , ( ) 

using the identi cation 2 -, -( ) -→ ∼ 1 A ⊗
1 A ( ) := ( 1 (G , ) ⊗ ) ∨ , if ≥ 0 1 (G , ) ⊗ (-) , if ≤ 0
where ∨ denotes the ⊗-dual of an object ∈ A (see [START_REF] Deligne | Tannakian Categories[END_REF]Page 110]). This dual might not always exist, but in our case it does because • is assumed to be stable. Moreover, if ↩→ is a closed immersion we might set 

Constructing cohomology theories

The aim of this section is to survey some ways in which cohomology theories can be constructed. All the cohomology theories that we describe in Section 2.1.3 can be constructed in one or more of these ways.

Example 2.1.13 (Spectra). Let us start with cohomology theories de ned on topological spaces, which were described in De nition 2.1.1. First of all, the mapping cone (see [AGP02, Examples 3.1.2]) de nes a functor : V * → V + , where V + denotes the category of pointed spaces ( , ) with ∈ V. Then a natural way of constructing a family of functors { : (V * ) op → Sets : ∈ Z} is by the composition

: (V * ) op --→ op (V + ) op --→ ℎ op (ℎV + ) op ---------→ [-,( , ) ]

Sets

(2.4)

where ℎV + denotes the homotopy category of pointed spaces in V + and [-, ( , )] denotes the representable functor which sends ( , ) ∈ V + to the set of homotopy classes of maps into ( , ). Let us write := [-, ( , )] • ℎ op , so that = • op . Then the existence of a natural transformation • as in De nition 2.1.1 can be encoded in the existence of a natural equivalence

• : • -→ ∼ • • • Σ op
, where Σ : V + → V + denotes the suspension (see [AGP02, § 2.10]). In turn the existence of • is equivalent to the existence of pointed homotopy equivalences ( , ) -→ ∼ Ω( +1 , +1 ), where Ω( +1 , +1 ) denotes the loop space of ( +1 , +1 ) (see [AGP02, De nition 1.3.9]). One says that such a sequence of pointed topological spaces {( , )} ∈Z together with pointed homotopy equivalences ( , ) -→ ∼ Ω( +1 , +1 ) forms a spectrum (see [START_REF] Aguilar | Algebraic topology from a homotopical viewpoint[END_REF]§ 12.3]), and under these circumstances the functors de ned by (2.4) form a cohomology theory in the sense of De nition 2.1.1, which is valued in abelian groups. Indeed, for every pointed space ( , ) ∈ V + the two-fold suspension Σ 2 ( , ) := Σ(Σ( , )) is an abelian co-group object in the homotopy category ℎV + , with respect to the smash product, and this implies that for every space ( , ) ∈ V + the set [( , ), Σ 2 ( , )] has the structure of an abelian group. A fundamental result in homotopy theory, called Brown's representability theorem (see [START_REF] Aguilar | Algebraic topology from a homotopical viewpoint[END_REF][START_REF] Borwein | Densities of Short Uniform Random Walks[END_REF].2]), says that each cohomology theory arises in this way, at least if V is a category of CW-complexes (see [START_REF] Aguilar | Algebraic topology from a homotopical viewpoint[END_REF]§ 5.1]). Moreover, a previous result of Milnor (see [START_REF] Aguilar | Algebraic topology from a homotopical viewpoint[END_REF]Theorem 12.1.19]) asserts that every additive and ordinary cohomology theory can be represented by an Eilenberg-MacLane spectrum ( ) for some abelian group , and thus that each additive and ordinary cohomology theory coincides with singular cohomology

• (-; ) with coe cients in (see Example 2.1.20). This cohomology admits a cup product if and only if has the structure of a commutative ring with unity.

In the previous example, we have seen a natural way to construct cohomology theories on topological spaces, as functors represented by spectra, and Brown's representability theorem shows that this is essentially the only way in which a reduced cohomology theory • de ned on topological spaces can arise. Let us give another possible way of constructing cohomology theories, which is perhaps more familiar, and more amenable to computations.

Example 2.1.14 (Complexes). One way to construct a family of functors • : (V * ) op → A Z , where V * is any category and A is an abelian category, is to construct a functor

Γ : (V * ) op → C(A)
to the category of A-valued cochain complexes, and then to de ne • := • A • Γ, where

• A : C(A) → A Z denotes the usual cohomology of a cochain complex.

2.1

What is a cohomology theory?

Suppose from now on that V * is a sub-category of the category of morphisms Arr(V) on a given category V. Then for every functor Γ V : V op → C(A), one can de ne a functor Γ : (V * ) op → C(A) by setting Γ( ) := Cone(Γ ( )) [-1] (see [START_REF]The Stacks project authors[END_REF]Section 014D]). Using the properties of the cone, it is easy to obtain the natural transformation • and the long exact

Γ V ( ) Γ V ( ) Γ V ( ) Γ V ( ) (2.6) is Cartesian in C(A).
If A is a tensor category then one can de ne a cup product (or equivalently a cross product) on • by de ning a natural transformation Γ ⊗ Γ → Γ which endows Γ( ) with the structure of a commutative di erential graded algebra (see [SP, De nition 061W]) for every ∈ V.

Remark 2.1.15. Since we are only interested in the cohomology of chain complexes, one would like to replace every occurrence of C(A) appearing in Example 2.1.14 with the homotopy category ℎ C(A). The problem is that, doing this, one loses functoriality of cones (compare with [SP, Lemma 014F]).

Remark 2.1.16. Another approach to de ne a cohomology theory on V, which is similar to Example 2.1.14 but is more challenging for computational purposes, is to de ne a complex of sheaves Γ • V ∈ C(Shv(V; A)) with respect to some Grothendieck topology de ned on V, and then to set

• ( ) := H • (Cone(Γ • V ( )) [-1])
, where H • denotes hyper-cohomology (see [HM17, § 1.4]). Employing this approach usually allows one to specify the functor Γ V only on a sub-category (e.g. the category of smooth a ne schemes), using the covering properties of the Grothendieck topology. This is the approach adopted in [START_REF] Gillet | Riemann-Roch theorems for higher algebraic -theory[END_REF] (see also [BKK07, § 1.5]) and [START_REF] Cisinski | Mixed Weil cohomologies[END_REF].

Let us conclude with the last approach to de ne a cohomology theory that we would like to mention, which is intimately related to the theory of motives.

Example 2.1.17 (Extensions). One can construct a cohomology theory • : (V * ) op → A Z with values in an abelian category A, starting from an object ∈ A (to be thought of as the coe cient object of our cohomology theory) and a covariant functor : V * → A, by setting

• := Ext • (-, ) • op , where Ext • (-, ) : A op → A Z denote the usual Ext-groups (see [SP, Section 06XP]). Then the various properties characterising a cohomology theory (homotopy invariance, excision, long exact sequences etc.) can all be restated in terms of properties of the functor .

Remark 2.1.18. Another way to de ne a cohomology theory is to de ne a functor : V * → T with values in a tensor triangulated category T (see [MVW06, Appendix 8A]), and then to de ne (-; ) := Hom T (-, [ ]) • op , for any ∈ Z. This would in general only de ne a functor : (V * ) op → Sets, but usually one is able to enrich this to an A-valued functor for some abelian category A. A typical example is A = T ♥ , where T ♥ denotes the heart of T with respect to a -structure de ned on T . One can take T := (A) to be the derived category of some abelian category A, showing that this approach generalises Example 2.1.17.

Let us conclude by observing that the three constructions given in this section can be understood as examples of the following general construction.

Example 2.1.19 (Stable cohomology). To de ne a cohomology theory on an ∞-category V * endowed with a Grothendieck topology (in the sense of [Lur09, De nition 6.2.2.1]) one can de ne a functor : V * → H, where H is an ∞-category, and for every coe cient object ∈ Sp(H) lying in the category of spectrum objects in H (see [START_REF] Lurie | Higher algebra[END_REF]§ 1.4.2]), one can de ne the cohomology theory • (-, ) := 0 (H(-; Ω ∞ (Σ ( ))))• op given by the groups of connected components of the spaces of maps ( ) → Ω ∞ (Σ ( )), where Ω ∞ : Sp(H) → H is the functor de ned in [Lur17, Notation 1.4.2.20] and Σ denotes the -fold iterate of the suspension functor Σ : Sp(H) → Sp(H). This makes sense for every ∈ Z because Sp(H) is stable (see [Lur17, Corollary 1.4.2.17]), and thus Σ is an equivalence (see [Lur17, Page 23]).

Examples of cohomology theories

We devote this section to a brief roundup of examples of cohomology theories. All the constructions that we mention are examples of the general procedures described in Section 2.1.2. Let us start with three cohomology theories coming from the Archimedean world, which are deeply interrelated.

Example 2.1.20 (Singular cohomology). Fix a topological space endowed with a subspace ⊆ . The singular cohomology • sing ( , ; ) with coe cients in a ring can be de ned in the following ways:

• as the additive and ordinary cohomology theory induced by the spectrum ( ), as mentioned in Example 2.1.13;

• as the cohomology of the singular cochain complex

• ( , ; ) := Hom ( • ( ; )/ • ( ; ), )
where ( ; ) is the free -module generated by continuous maps : Δ → , and ( ; ) is de ned analogously. Here Δ ⊆ (R ≥1 ) +1 denotes the standard simplex, de ned by the equation =0 = 1;

• as the cohomology of the direct image with compact supports ! ( \ ) (see [START_REF] Iversen | Cohomology of sheaves[END_REF]ter VII, De nition 1.1]), where : \ ↩→ is the complementary inclusion to ⊆ and \ ∈ Shv( \ ; ) denotes the constant sheaf associated to . The usual properties of sheaf cohomology imply that sing ( , ;

) Ext Shv( ; ) ( , ! ( \ )) Hom (Shv( ; )) ( , ! ( \ ) [ ])
which shows that singular cohomology is an example of the construction given in Example 2.1.14 and Remark 2.1.18.

These de nitions agree on suitable sub-categories of topological spaces: for example the second and the third de nitions are known to agree on topological spaces which are semi-locally contractible, as explained in [START_REF] Sella | Comparison of sheaf cohomology and singular cohomology[END_REF]. Moreover, if ( , ) is the geometric realisation of a pair ( * , * ) of simplicial complexes, singular cohomology coincides with the cohomology of the cochain complex

• ( * , * ; ) := Hom ( • ( * ; )/ • ( * ; ), ) where • ( * ; ) is the free -module on the set of -simplices in * , and • ( * ; ) is de ned analogously.

Example 2.1.21 (de Rham cohomology). The de Rham cohomology theory • dr (-) can be dened for di erentiable manifolds, for complex manifolds or for schemes as the hypercohomology of the complex of C ∞ , holomorphic or algebraic di erentials Ω • . In order to deal with singular schemes, one of the best choices available is to use the ℎ-topology de ned by Voevodsky (see [HM17, De nition 3.2.2]). More precisely, for every morphism of schemes : → one can de ne (see [HM17, § 3.2]) the relative cohomology group

• dR ( , ) := H • ((Sch / ) ℎ , ker(Ω • ℎ/ → * (Ω • ℎ/ ))) (2.7)
where (Sch / ) ℎ denotes the site of schemes of nite type over , endowed with the ℎ-topology, and Ω • ℎ/ denotes the ℎ-shea cation of Ω • / , which is usually not a sheaf in the ℎ-topology. In the case of a di erentiable or holomorphic manifold , the Poincaré lemma (see for example [HM17, Proposition 4.1.3] for the holomorphic case) gives an isomorphism between de Rham and singular cohomology. One can combine this with GAGA theorems to get the period isomorphism per :

• dR ( , ) ⊗ C -→ ∼ • sing ( (C), (C); Q) ⊗ Q C (2.8)
de ned in [HM17, De nition 5.4.1], where is a sub-eld of C, (C) denotes the complex analyti cation of , and (C) is de ned analogously.

Example 2.1.22 (Deligne-Beilinson cohomology). Deligne-Beilinson cohomology can be seen as a way to interpolate de Rham and singular cohomology. First of all, let us observe that we can make these two cohomology theories into bi-graded cohomology theories by setting , sing ( ; Λ) := ( ; Λ( )) and , dR ( ) := ( dR ( )). Here Λ ⊆ R is any subring, Λ( ) ⊆ C denotes the subgroup Λ( ) := (2 √ -1) • Λ and • denotes the Hodge ltration on de Rham cohomology, which comes from the "stupid" ltration (or " ltration bête") obtained by truncating the complex of di erentials Ω • (see for instance [Del71, § 1.4.7]). Then the Deligne-Beilinson cohomology groups •,• D ( ; Λ) t into a long exact sequence

• • • → , D ( ; Λ) → , sing ( ; Λ) → dR ( )/ , dR ( ) → +1, D ( ; Λ) → . . .
which shows how Deligne-Beilinson cohomology interpolates between singular and de Rham cohomology.

As with almost any other cohomology theory, there is a plethora of ways in which Deligne-Beilinson cohomology can be de ned. First of all, let be a smooth variety over C, and let : ↩→ be a good compacti cation, by which we mean an open embedding into a smooth, proper variety → Spec(C), such that the complement := \ ( ) is a divisor with normal crossings. Such a compacti cation always exists, which can be seen, as it is done in [BZ20, § A.3], by combining Nagata's compacti cation theorem (see [START_REF] Conrad | Deligne's notes on Nagata compacti cations[END_REF]) together with Hironaka's embedded resolution of singularities (see [START_REF] Bierstone | Canonical desingularization in characteristic zero by blowing up the maximum strata of a local invariant[END_REF]Theorem 1.6] and [BEV05, Theorem 2.4]).

Then one de nes a complex Ω • (log( )) of holomorphic forms with logarithmic singularities along , which is the sub-algebra of the O -algebra * (Ω • ) generated by Ω • and by the forms ( )/ ∈ * (Ω 1 ), where runs over the local equations of the irreducible components of the normal crossings divisor . Now, the natural inclusion of the constant sheaf Λ( ) ↩→ O induces a map 1 : * (Λ( )) → * (Ω • ) = * (Ω • ) in the derived category of quasi-coherent O -modules, where the last equality holds because is a ne (see [START_REF]The Stacks project authors[END_REF]Section 0AVV]). Moreover, we denote by 2 : Ω • (log( )) → * (Ω • ) the natural inclusion. Using this notation, we de ne the Deligne-Beilinson complex of ( , ) to be

Λ( ) D := Cone * (Λ( )) ⊕ Ω ≤ (log( )) -------→ 1 ⊕ (-2 ) * (Ω • ) [-1]
where Ω ≤ (log( )) denotes again the "stupid" ltration obtained by truncation. The Deligne-Beilinson cohomology of is then de ned as the hypercohomology , D ( ; Λ) := H ( ; Λ( ) D ). Of course, for this de nition to make sense, one needs to show that it does not depend on the good compacti cation that we have chosen. This is done in [EV88, Lemma 2.8] as follows: rst of all, one uses the fact that every two good compacti cations : ↩→ and : ↩→ are linked by a morphism : → such that = • , and then one uses the distinguished triangle

H ( ; Λ( ) D ) → H ( ; * (Λ( ))) ⊕ H ( ; (Ω • (log( )))) → H ( ; * (Ω • ))
coming from the de nition of Λ( ) D , to show that , D ( ; Λ) does not depend on the chosen good compacti cation, because the other two factors do not. This de nition shows that the Deligne-Beilinson cohomology groups carry two pieces of information: the Λ-structure on singular cohomology and the Hodge ltration • on de Rham cohomology. Hence for a general ring Λ ⊆ R, the de nition of Deligne-Beilinson cohomology cannot be substantially simpli ed, and one has to deal with the hypercohomology of a sheaf. However, if Λ = R there exists a complex of R-vector spaces D • log ( , ) such that , D ( ; R) (D • log ( , )). This complex was de ned by Burgos Gil in [START_REF] Burgos Gil | A ∞ logarithmic Dolbeault complex[END_REF] (see also [START_REF] Burgos Gil | Arithmetic Chow rings and Deligne-Beilinson cohomology[END_REF]): in particular, its de nition uses the fact that the category of good compacti cations of a variety is directed (see [START_REF] Deligne | Théorie de Hodge : II[END_REF]§ 3.2.11]) to get rid of the indeterminacy concerning the choice of good compacti cation at the level of complexes, by taking a direct limit over all of them. Since we do not need this complex in this thesis, we do not give the precise de nition. Let us only remark that the association ↦ → D • log ( , ) gives rise to a Nisnevich sheaf on the site Sm /C of smooth complex varieties, which is also A 1 -invariant.

Let us mention that Deligne-Beilinson cohomology (with general coe cients Λ ⊆ R) can be computed using the formalism outlined in Example 2.1.17, because it can be computed as an extension in the category MHS Λ of mixed Hodge structures over Λ (see [START_REF] Beilinson | Notes on absolute Hodge cohomology[END_REF] and [START_REF] Burgos Gil | Hodge Cohomology II . Notes for the Summer School "Regulators and Di erential Algebraic -theory[END_REF]). Moreover, Deligne-Beilinson cohomology can be de ned for varieties de ned over R, using a combination of the action of complex conjugation on the complex points of the variety and on the coe cients (see [START_REF] Esnault | Deligne-Beilinson cohomology[END_REF]§ 2.1] and [BKK07, § 5.7], as well as Section 2.5 for the case of curves). Finally, each of these constructions admits a generalisation to the relative setting (see [START_REF] Esnault | Deligne-Beilinson cohomology[END_REF]§ 4] and [BF12, De nition 1.28]), and to singular varieties by means of simplicial resolutions (see [START_REF] Beilinson | Notes on absolute Hodge cohomology[END_REF]§ 4.1] and [HM17, § 3.3.1]). This generalisation, together with the de nition of Deligne-Beilinson homology (see [START_REF] Jannsen | Deligne homology, Hodge--conjecture, and motives[END_REF]), allows one to see that Deligne-Beilinson cohomology is part of a twisted Poincaré duality theory in the sense of De nition 2.1.10.

We continue by mentioning another fundamental example, which is needed in the construction of -functions.

Example 2.1.23 (ℓ-adic cohomology). Let be a scheme of nite type over a eld , and x an algebraic closure ⊇ , and a rational prime ℓ ∈ N. Then the ℓ-adic cohomology groups of are de ned to be

, ℓ ( ) := lim ← -- (( ) ét , Z/ℓ Z) ⊗ Z ℓ Q ℓ ( ) (2.9)
which gives rise to a Q ℓ -linear representation of the absolute Galois group Gal( / ) endowed with a Z ℓ -linear stable lattice. Here Q ℓ ( ) denotes the vector space Q ℓ endowed with the action of Gal( / ) given by the -th power of the cyclotomic character. One would be tempted to study analogously the groups

• ( ét , Z ℓ ) → lim ← -- • ( ét , Z/ℓ Z)
associated to a general scheme . The rst ones are in general very ill-behaved (see [FK88, Chapter I, § 12]), which leads to the de nition given in (2.9), whereas the second ones are illbehaved as soon as the cohomology groups • ( ét , Z/ℓ Z) are not nite. This second problem can be overcome using Jannsen's continuous étale cohomology groups (see [START_REF] Jannsen | Continuous étale cohomology[END_REF]), and both these problems have been resolved by Bhatt and Scholze by changing the site ét to a bigger site pro-ét (see [START_REF] Bhatt | The pro-étale topology for schemes[END_REF]). Their construction generalises also work of Ekedahl (see [START_REF] Ekedahl | The Grothendieck Festschrift: A Collection of Articles Written in Honor of the 60th Birthday of Alexander Grothendieck[END_REF]), and allows one to see the construction of continuous ℓ-adic cohomology as an example of the construction outlined in Remark 2.1.18. One can then de ne a relative version of étale cohomology (or, equivalently, a version of étale cohomology with supports) using either the recipe explained in [SP, Section 09XP] or a de nition similar to (2.7).

Remark 2.1.24. There are many more cohomology theories relevant for the non-Archimedean world, among which we mention:

• the ltered Ogus cohomology of Chiarellotto, Lazda and Mazzari (see [START_REF] Chiarellotto | The ltered Ogus realisation of motives[END_REF]), constructed using crystalline cohomology (compare with [START_REF] Andreatta | Crystalline realizations of 1-motives[END_REF] and [START_REF] Andreatta | Ogus realization of 1-motives[END_REF]);

• the syntomic cohomology of Besser (see [START_REF] Besser | Syntomic regulators and -adic integration I: Rigid syntomic regulators[END_REF]) , which can be constructed using the formalism of Example 2.1.17 (see [START_REF] Bannai | Syntomic cohomology as a -adic absolute Hodge cohomology[END_REF]) or of Remark 2.1.18 (see [START_REF] Chiarellotto | Cycle classes and the syntomic regulator[END_REF]) in favorable cases. This cohomology theory has been extended beyond the smooth case by Nekovář and Nizioł ([NN16]), generalising work of Kato (see [START_REF] Kato | Semi-stable reduction and -adic etale cohomology[END_REF]). Even this new cohomology theory ts in the picture outlined in Example 2.1.17 and Remark 2.1.18, as explained in [START_REF] Déglise | The rigid syntomic ring spectrum[END_REF], [START_REF] Déglise | On -adic absolute Hodge cohomology and syntomic coe cients. I[END_REF] and [START_REF] Nizioł | Geometric syntomic cohomology and vector bundles on the Fargues-Fontaine curve[END_REF];

• the prismatic cohomology of Bhatt and Scholze (see [START_REF] Bhatt | Prisms and Prismatic Cohomology[END_REF]), which is related to many of the cohomology theories mentioned above by comparison isomorphisms. This cohomology theory is still not proved to be an example of the constructions outlined in Example 2.1.17 and Remark 2.1.18. See nevertheless [START_REF] Drinfeld | Prismatization[END_REF] for a construction of the category which should play the role of the category of coe cients for prismatic cohomology.

Various categories of motives

The aim of this section is to give a brief review of the various approaches to construct a category of pure and mixed motives. First of all, we recall the notion of pure motives over a eld , which goes back to Grohtendieck, following [START_REF] André | Une introduction aux motifs (motifs purs, motifs mixtes, périodes). Vol. 17. Panoramas et Synthèses [Panoramas and Syntheses[END_REF]Chapitre 4]. Then we present the conjectural framework for the category of mixed motives, following Levine's survey [START_REF] Levine | Mixed motives[END_REF]. Finally, we present the examples of constructions of candidates for the category of mixed motives, and of its triangulated counterpart.

Pure motives

Let be a eld, and let P ( ) denote the category of smooth and projective schemes (in the sense of [SP, De nition 01W8]) de ned over . In particular such schemes are quasi-projective, hence of nite type, over . For every commutative ring with unity , we denote by Z • (-) : P ( ) op → Mod the contravariant functor sending a smooth and projective scheme to the -module of algebraic cycles on , which can be equivalently described as the free -module generated by closed, integral subschemes ↩→ , or as the free -module generated by the points ∈ (via the correspondence sending a closed, integral sub-scheme to its generic point, and a point to its closure, considered with the reduced sub-scheme structure). This module Z • ( ) admits a natural grading, which can be described as the grading by co-dimension of closed, integral sub-schemes or as the grading by the Krull dimension dim(O , ) of the stalks of the structure sheaf (see [START_REF]The Stacks project authors[END_REF]Lemma 02IZ]). However, the maps Z • ( ) : Z • ( ) → Z • ( ) associated to a morphism : → , which are induced by the association ↦ → -1 ( ) for every ⊆ , do not respect the grading. On the -module Z • ( ) there is also an -bilinear intersection product, which is de ned only on the sub-set of Z • ( ) × Z • ( ) consisting of pairs of cycles ( , ) which intersect properly, which means that codim ( ) ≥ codim ( ) + codim ( ) for every irreducible component ⊆ ∩ inside each intersection of two closed and integral subschemes , ⊆ such that ≠ 0 and ≠ 0, where , ∈ are the multiplicities with which and appear in the cycles = In order to extend this partially de ned product, which we denote by • , to the whole group Z • ( ) we would like to be able to "move" any pair of cycles ( , ) so that it becomes a pair intersecting properly. The types of movement that we allow are captured by the following de nition.

De nition 2.2.1 -Adequate equivalence relation (see [And04, De nition 3.1.1.1])

Let be a eld, and be a commutative ring with unity. Then an -linear adequate equivalence relation for is given by a family of equivalence relations ∼ on the -modules Z • ( ) for every ∈ P ( ), such that:

• ∼ is -linear and respects the grading;

• for every ∈ P ( ) and every pair of cycles , ∈ Z • ( ) , there exists another cycle ∈ Z • ( ) such that ∼ and intersects properly;

• for every , ∈ P ( ) and every pair of cycles ∈ Z • ( ) and ∈ Z • ( × ) such that intersects properly -1 ( ), one has that ( • -1 ( )) ∼ 0 inside Z • ( ) . Here : × → and : × → denote the corresponding projection maps. This shows that for every -linear adequate equivalence relation ∼ one gets a functor Z • ∼ (-) : P ( ) op → Alg((Mod ) Z ) sending a scheme ∈ P ( ) to the graded -module 2.2 Various categories of motives Z • ∼ ( ) := Z • ( ) /∼, endowed with the structure of a graded algebra given by the intersection product. This allows one to extend Z • ∼ (-) to a functor by setting Z • ∼ ( ) ( ) := (Γ • -1 ( )) for every : → and ∈ Z • ∼ ( ) , where Γ := {( ( ), ) : ∈ } ⊆ × . Usually one writes * := Z • ∼ ( ) . Using the graph of instead of its transpose Γ , one can show that there exists a graded map * :

Z • ∼ ( ) → Z dim( )+• ∼ ( )
, where dim( ) denotes the generic dimension of the bres of .

This way of de ning the morphism Z • ∼ ( ) can be generalised to any correspondence between and , not necessarily given by a map : → (see [MVW06, Lecture 1]). More precisely, for every , ∈ P ( ) one de nes the graded -module of correspondences from to as

Cor • ∼ ( , ) := ⊆ Z dim( )+• ∼ ( × )
where ⊆ ranges over the connected components of . Then for every , , ∈ P ( ) one has a composition law

Cor • ∼ ( , ) ⊗ Cor • ∼ ( , ) → Cor • ∼ ( , ) ( , ) ↦ → • := ( , ) * ( * , ( ) • * , ( )) 
(2.10)

where , : × × → × , , : × × → × and , : × × → × are the projection maps. In particular, for every map : → one has a correspondence Γ ∈ Cor • ∼ ( , ) obtained by summing over all the graphs of the restrictions of to the connected components of , and one has that Γ • Γ = Γ • for every : → and : → . Moreover, the composition law makes Cor • ∼ ( , ) into a graded -algebra, which in general is not commutative, whose unit is given by the diagonal Δ ⊆ × . Moreover, this algebra is endowed with the involution * , where : × → × is the map ( 1 , 2 ) := ( 2 , 1 ).

We are now ready to de ne the category of pure motives. Let be a eld, and be a commutative ring with unit. Then a pure motive for the equivalence ∼, de ned over with coe cients in , is de ned to be a triple ( , , ) where ∈ P ( ), ∈ Cor 0 ∼ ( , ) is an idempotent (i.e. • = ) and ∈ Z is an integer. The category of pure motives M ∼ ( ; ) is then de ned by setting Hom M ∼ ( ; ) (( , , ), ( , ,

)) := • Cor - ∼ ( , ) • ⊆ Cor • ( , )
with the composition law induced by (2.10).

We denote by ∼ (-; ) : P ( ) op → M ∼ ( ; ) the functor de ned as ∼ ( ; ) := ( , Δ , 0) on objects, and as on objects, and by

⊗ := ( 2 ⊗ 2 )•( ⊗ )•( 1 ⊗ 1 ) on morphisms : ( 1 , 1 , 1 ) → ( 2 , 2 , 2 ) and : ( 1 , 1 , 1 ) → ( 2 , 2 , 2 ), written as = 2 • • 1 and = 2 • • 1 .
Here we have used the tensor product of correspondences

⊗ : Cor • ∼ ( , ) ⊗ Cor • ∼ ( , ) → Cor • ∼ ( × , × )
which is induced by the product of closed sub-schemes. The identity for this tensor product is the pure motive 1 ∼, := ∼ (Spec( ); ).

The category M ∼ ( ; ) is also endowed with a direct sum, which is de ned as follows. First of all, for every pure motive = ( , , ) ∈ M ∼ ( ; ) and every ∈ Z we write ( ) := ( , , + ).

Then one can check that 1 ∼, (-1) (P 1 , P 1 × { }, 0) for every rational point ∈ P 1 ( ). Hence for every pure motive = ( , , ) ∈ M ∼ ( ; ) and every ≥ one can write

( -) ⊗ 1 ∼, (-1) ⊗ -( × (P 1 ) -, ⊗ , )
for some idempotent ∈ Cor 0 ∼ ((P 1 ) -, (P 1 ) -). Then for every pair of motives , ∈ M ∼ ( ; ) given by = ( , , ) and = ( , , ) one de nes

⊕ ( × (P 1 ) -, ⊗ , ) ⊕ ( , , ) := ( × (P 1 ) -) , ( ⊗ ) ⊕ ,
if ≥ , and ( , , ) ⊕ ( , , ) := ( , , ) ⊕ ( , , ) otherwise. Here the direct sum of correspondences

⊕ : Cor • ∼ ( , ) ⊕ Cor • ∼ ( , ) → Cor • ∼ ( , )
is induced from the disjoint union of closed sub-schemes. Using the direct sum, we can de ne the dual of a pure motive = ( , , ) ∈ M ∼ ( ; ) as

∨ := ⊆ ( , * ( ), dim( ) -)
where the direct sum runs over all the irreducible components ⊆ , and : × → × denotes, as before, the transposition map ( 1 , 2 ) := ( 2 , 1 ). This shows in particular that ∼ ( ; ) ∨ ∼ ( ; ) ( ) if ∈ P ( ) is equidimensional of dimension , which gives rise to a map Tr ∼, : ∼ ( ; ) → 1 ∼, (-).

The cateogry M ∼ ( ; ) endowed with the operations ⊗ and ⊕ is thus an -linear, additive, rigid symmetric tensor category which is pseudo-abelian, i.e. such that every : → with • = admits a kernel (see [And04, p. 1.1. 

∩ ( × { 0 })] -[ ∩ ( × { ∞ })],
for ⊆ × a closed integral sub-scheme which dominates a connected scheme ∈ P ( )

Various categories of motives

with two rational points 0 , ∞ ∈ ( ). Note that is allowed to vary, but we can assume (using theorems of Bertini type) that is a smooth, projective, connected curve;

• the ⊗-nilpotence relation ∼ ⊗-nil , which says that ∼ ⊗-nil 0 for a cycle ∈ Z Let us now recall that the category of pure motives M ∼ ( ; ) has been constructed to be universal with respect to all the Weil cohomology theories, in the sense of the following de nition.

De nition 2.2.4 -Weil cohomology (see [And04, § 4.2.4])

Let be a eld and be a commutative ring with unity. Fix an additive, -linear, pseudoabelian, rigid tensor category T , with identity object 1 T ∈ T . Let also ∼ be an -linear adequate congruence relation which is at least as ne as the numerical equivalence. Then a T -valued Weil cohomology theory for ∼ is a triple ( , tr , c) such that:

• : P ( ) op → T is a ⊗-functor (in the sense of [DM82, De nition 1.8]), with respect to the tensor structure on P ( ) given by the product. In particular the diagonal map Δ : → × induces a product structure ⌣ : ( ) ⊗2 → ( ) for every ∈ P ( );

• the structural map P 1 → Spec( ) and the rational point {∞} : Spec( ) → P 1 induce a decomposition • (P 1 ) 1 T ⊕ L for some ⊗-invertible object L ∈ T ;

• tr is a family of morphisms tr : ( ) → L ⊕ dim( ) de ned for every equidimensional ∈ P ( ), such that tr × is related to tr ⊗ tr by the coherence maps pertinent to . Moreover, we demand that the natural transformation

Hom T (-, ( ) ⊗ L ⊗-) → Hom T ((-) ⊗ ( ), 1 T ) ↦ → • ( ⊗ Id ( ) )
is an isomorphism, for every equidimensional ∈ P ( ). Here is the morphism

: ( ( ) ⊗ L ⊗-) ⊗ ( ) -→ ∼ ( ) ⊗2 ⊗ L ⊗-(tr •⌣) ⊗Id ----------→ L ⊗ ⊗ L ⊗--→ ∼ 1 T
where := dim( ). In particular, we have an isomorphism

( ) ⊗ L ⊗- ( ) ∨ ;
• is a collection of natural transformations

: Z ∼ (-) → Hom T (1 T , (-) ⊗ L ⊗-)
such that × is identi ed with + = ⊗ by the various coherence maps. Moreover, we normalise in such a way that the map

Z dim( ) ∼ ( ) → End T (1 T ) ↦ → • dim( ) ( )
coincides with the degree map deg :

Z dim( ) ∼ ( ) → -→ ∼ End T (1 T )
for every equidimensional ∈ P ( ). Here is de ned as

: ( ) ⊗ L ⊗-------→ tr ⊗ Id L ⊗ ⊗ L ⊗--→ ∼ 1 T
where := dim( ). Note also that the degree map is well de ned because we demanded that ∼ num is coarser than ∼.

We omit the equivalence relation ∼ from the notation if ∼=∼ rat .

It is now clear from the de nition and the construction of the category of pure motives M ∼ ( ; ) that every T -valued Weil cohomology theory for ∼ factors as

: P ( ) op ------→ ∼ (-; ) M ∼ ( ; ) --→ T
in such a way that L = (1 ∼, (-1)). Moreover, tr • = • tr ∼, and is induced by , using the fact that Z ∼ ( ) Hom M ∼ ( ; ) (1 ∼, , ∼ ( ; ) ( )) for every ∈ P ( ).

Remark 

Abelian categories of mixed motives

We have seen in the previous section that, under the standard conjecture ∼ num =∼ , the functor num (-; ) : P ( ) op → NM( ; ) provides a universal Weil cohomology theory, with the virtue that NM( ; ) is abelian and semi-simple. The aim of this section is to survey brie y the attempts that have been made to generalise this to mixed Weil cohomology theories (in the sense of De nition 2.1.4), which are de ned also for varieties which are not smooth and projective.

The rst attempt which can be made to generalise the construction of pure motives to varieties which are not necessarily smooth or projective is to use resolution of singularities, at least in characteristic zero. To do so, let us x a eld of characteristic zero. Then for every Cartesian square in P ( ) 

(
] = [ ] + [ ].
Hence the inclusion P ( ) ↩→ V ( ) induces a map 0 (P ( )) → 0 (V ( )), where P ( ) is the category of smooth and projective schemes over Spec( ), and V ( ) is the category of reduced and separated schemes of nite type over Spec( ). Then Bittner's work [START_REF] Bittner | The universal Euler characteristic for varieties of characteristic zero[END_REF] uses resolution of singularities to show that the map 0 (P ( )) → 0 (V ( )) is surjective, and its kernel is the subgroup generated by the elements [ ] -[ ] -( [ ] -[ ]) for every Cartesian square (2.11). Therefore what we have seen implies that the functor ∼ (-; ) : P ( ) op → M ∼ ( ; ) induces a map of groups 0 (V ( )) → 0 (M ∼ ( ; )), showing that we can interpret the Grothendieck group 0 (M ∼ ( ; )) as a rst approximation of the category of mixed motives. The existence of this group homomorphism was also proved by Gillet and Soulé [START_REF] Gillet | Descent, motives and -theory[END_REF] and by Guillén and Navarro Aznar [START_REF] Guillén | Un critère d'extension des foncteurs dé nis sur les schémas lisses[END_REF], who construct also a contravariant functor V ( ) op → ℎ + (M ∼ ( ; )) to the homotopy category of the category of M ∼ ( ; )-valued complexes which are bounded below (see in particular [GN02, Théorème 5.10]).

The ideas outlined in the previous paragraph, and namely the usage of resolution of singularities, can also be employed to give a rst de nition of the abelian category of mixed motives in terms of realisations. This was done by Jannsen, for a eld which is nitely generated over Q. First of all, he de nes a category of mixed realisations as follows.

De nition 2.2.6 -The category of mixed realisations (see [Jan90, § 2])

Let be a eld nitely generated over Q. Then the category of mixed realisations MR consists of tuples = ( ,

{ ℓ } ℓ , { } , { ∞, } , { ℓ, } ℓ,
) such that: • ℓ ∈ N ranges over the rational primes;

• and range over the embeddings : ↩→ C and : ↩→ C;

• ∈ (Vec f.g. ) bi-l is a nite dimensional bi-ltered vector space over . This means that is endowed with an exhaustive decreasing ltration • ( ) and an exhaustive increasing ltration • ( );

• ℓ ∈ G ℓ ( ) l is a nite dimensional representation ℓ : Gal( / ) → GL( ℓ ) endowed with an exhaustive, increasing, Galois stable ltration • ( ℓ );

• ∈ MHS Q is a mixed Hodge structure de ned over Q, in the sense of [START_REF] Deligne | Théorie de Hodge : II[END_REF]§ 2.3]. In other words, is a nite dimensional Q-vector space endowed with an exhaustive, increasing ltration • ( ) and such that ⊗ Q C is endowed with an exhaustive decreasing ltration • ( ⊗ Q C), having the property that the ltrations induced by • and by its complex conjugate • on each graded quotient

gr ( ⊗ C) := ( ⊗ C)/ -1 ( ⊗ C)
are -opposed, i.e. gr (gr (gr

( ⊗ C))) = 0 if + ≠ ; • ∞, : ⊗ Q C -→ ∼ dR ⊗ , C
is an isomorphism, which respects the ltrations • and • de ned on both sides;

• ℓ, :

⊗ Q Q ℓ -→ ∼
ℓ is an isomorphism respecting the ltrations • de ned on both sides, such that for every ∈ Gal( / ) we have that ℓ, = ℓ ( ) • ℓ, • . Here we are assuming that : ↩→ C is obtained from the restriction of : ↩→ C.

Jannsen proves that MR is a neutral Tannakian category over Q (in the sense of [DM82, De nition 2.19]), i.e. it is a Q-linear, abelian, rigid tensor category endowed with a Q-linear ⊗-functor MR → Vec f.g. Q which is exact and faithful. In fact, there are as many of these functors as the embeddings : ↩→ C, given by sending ∈ MR to the vector space ∈ Vec f.g.

Q .

Now, let QP ( ) denote the category of smooth, quasi-projective schemes of nite type over Spec( ) (see [SP, De nition 01VW]). Then for every ∈ N there is a functor

: QP ( ) op → MR ↦ → ( ), { ,0 ℓ ( )} ℓ , { sing ( (C); Q)} , { ∞, ( )} , { ℓ, ( )} ℓ,
where := × , Spec(C), and all the cohomology theories have been de ned in Section 2.1.3. Moreover, ∞, ( ) denotes inverse of the period isomorphism (2.8) and ℓ, ( )

: sing ( (C); Q) ⊗ Q Q ℓ -→ ∼ sing ( (C); Q ℓ ) --→ ( †) ,0 ℓ ( )
is given by the change of coe cients sing ( (C);

Q) ⊗ Q Q ℓ -→ ∼ sing ( (C); Q ℓ ) and by ( †) : sing ( (C); Q ℓ ) -→ ∼ lim ← --ét ( ; Z/ℓ Z) ⊗ Z ℓ Q ℓ -→ ∼ ℓ ( )
which is the composition of the Artin comparison isomorphism, that depends on (see [START_REF] Freitag | Étale cohomology and the Weil conjecture[END_REF]Theorem 11.6]), followed by the smooth base change isomorphism, that depends on (see [START_REF] Milne | Étale cohomology[END_REF]Chapter VI,Corollary 4.3]). We note as well that the ltrations appearing on the various cohomology groups can be de ned using the fact that admits a "good compacti cation" consisting of a smooth and projective variety ∈ P ( ) and an open immersion ↩→ , whose complement is a divisor with normal crossings and smooth components (see [Jan90, § 3] for details). We are now ready to give the rst de nition of a candidate for the abelian category of mixed motives.

De nition 2.2.7 -Mixed motives for absolute Hodge cycles (according to Jannsen)

The category of mixed motives for absolute Hodge cycles according to Jannsen MM ( ) over a eld which is nitely generated over Q is de ned as the Tannakian sub-category of MR generated by the union of the images of the functors : QP ( ) op → MR for every ∈ Z. We denote by : QP ( ) op → MM ( ) the functor induced by .

By de nition the category MM ( ) is a Q-linear Tannakian category. The de nition also shows that every object ∈ MM ( ) admits a weight ltration, and the full sub-category M ⊆ MM ( ) of semi-simple objects can be identi ed with the sub-category of pure objects, i.e. objects which are direct sums of ones with only one non-trivial piece in the weight ltration. Moreover, [Jan90, Theorem 4.4] shows that M is equivalent to the category of absolute Hodge motives de ned in [START_REF] Deligne | Tannakian Categories[END_REF]§ 6]. Hence under the standard, Hodge and Tate conjectures, the category M should be equivalent to the category of pure numerical motives NM( ; Q).

Let us mention also an alternative construction of the category of mixed motives, which is due to Huber (see [START_REF] Huber | Mixed motives and their realization in derived categories[END_REF]). The key point here is to consider realisations of complexes of varieties instead of single varieties, in order to be able to de ne mixed motives associated to non-smooth varieties. More precisely, Huber proves in [START_REF] Huber | Mixed motives and their realization in derived categories[END_REF]§ 11] and [Hub00, Theorem 2.3.1] that there exists a realisation functor : S( ) op → M R , where S( ) denotes the category of all smooth, reduced, separated schemes of nite type over Spec( ), and M R is a category whose objects are triples of complexes in the categories (Vec f.g. ) bi-l , G ℓ ( ) l and MHS Q mentioned in De nition 2.2.6, together with ltered quasi-isomorphisms between them (generalising ∞, and ℓ, ), such that the cohomology of these complexes lies in MR and the di erentials in these complexes are strict, in the sense of [START_REF]The Stacks project authors[END_REF]De nition 0123]. This functor has the property that ( ( )) = ( ) for every ∈ QP ( ) ⊆ S( ), which ensures some compatibility between Jannsen's and Huber's constructions. Using the fact that M R is closed under total complexes (see [Hub00, Lemma 2.2.5]), extends to a functor :

-(Q[S( )]) op → M R , where -(Q[S( )]
) denotes the category of bounded-above cochain complexes valued in the category Q[S( )] whose objects are the same as those of S( ) and whose morphisms are de ned as the free Q-vector spaces Hom Q[S ( ) ] ( , ) := Q[Hom S ( ) ( , )] generated by morphisms in S( ). We are now ready to recall Huber's de nition of the category of mixed motives for absolute Hodge cycles (see [HM17, De nition 6.3.11]).

De nition 2.2.8 -Mixed motives for absolute Hodge cycles (according to Huber)

The category of mixed motives for absolute Hodge cycles according to Huber MM ( ) over a eld which is nitely generated over Q is de ned as the full abelian, tensor sub-category of MR generated by the images of the functors { • } ∈Z and by the dual of Q(-1) = 2 ( (P 1 )).

It is known that MM ( ) ⊆ MM ( ) , and that the category of semi-simple objects in MM ( ) coincides with the category M of absolute Hodge motives in the sense of [START_REF] Deligne | Tannakian Categories[END_REF]§ 6]. One advantage of Huber's construction is that one can apply [START_REF] Huber | Corrigendum to "Realization of Voevodsky's motives[END_REF]Lemma B.5.3] to get a family of functors : V ( ) op → MM ( ) , which extends the notion of motive to every variety (i.e. separated, reduced scheme of nite type) over Spec( ). There should be a commutative square

P ( ) op V ( ) op NM( ; Q) MM ( ) ? num (-;Q) • (-) ?
(2.12) where • ( ) := ∈Z ( ) and the bottom arrow should be given by the conjectural natural equivalence NM( ; Q) -→ ∼ M , followed by the inclusion M ↩→ MM . The existence and the commutativity of (2.12) follow of course from a combination of the standard conjectures, together with conjectures of Hodge and Tate type.

Let us nally mention the existence of an entirely new kind of construction, due to Nori, which is still based on realisations. Its de nition goes as follows (see [START_REF] Huber | Periods and Nori motives[END_REF]§ 9.1]).

De nition 2.2.9 -Nori motives

Let ⊆ C be a sub-eld, and let be a Noetherian ring. Then:

• de ne Pairs e to be the directed graph whose nodes are triples ( , , ) where ∈ V ( ) is a variety, ↩→ a closed immersion in V ( ) and ∈ N. The edges of Pairs e are given by maps * : ( , , ) → ( , , ) for every morphism : → in V ( ), such that ( ) ⊆ , and maps : ( , , ) → ( , , + 1) for every chain of closed immersions ↩→ ↩→ ;

• de ne a category MM ( ),e , of e ective mixed Nori motives as a suitable colimit of modules over the rings End( D ) where D ⊆ Pairs e runs over the nite subgraphs and : Pairs e → Mod denotes the map of directed graphs which sends ( , , ) to the relative cohomology sing ( (C), (C); ). For a de nition of the endomorphism ring of a morphism of directed graphs, see [HM17, De nition 7.1.8];

• de ne the category MM ( ) , of mixed Nori motives by formally inverting the object 1(-1) := (G , ∅, 1), where

: Pairs e → MM ( ),e , is the functor coming out of the construction brie y described above (see [HM17, Theorem 7.1.13]).

The striking feature of the category of Nori motives is that of providing a cohomology theory de ned on V ( ) * := Pairs e which is universal amongst all the cohomology theories comparable with singular cohomology (see [HM17, Theorem 9.1.10]). Moreover, if is a Dedekind domain then MM ( ) , is a neutral Tannakian category over Mod (see [HM17, Theorem 9.3.10]), and there exists a triangulated functor (see [HM17, Theorem 9.1.9]) where MM ( ) := MM ( ) ,Q , such that every object of MM ( ) is a sub-quotient of an object in the image of (2.13). Moreover, each object in MM ( ) is endowed with a weight ltration (see [HM17, Theorem 10.2.5]), which is respected by (2.13), and the category of pure objects with respect to this weight ltration is equivalent (see [HM17, Theorem 10.2.7]) to the category of motives constructed by André using motivated cycles (see [START_REF] André | Une introduction aux motifs (motifs purs, motifs mixtes, périodes). Vol. 17. Panoramas et Synthèses [Panoramas and Syntheses[END_REF]§ 9.2]). This last category is in turn equivalent to the category of numerical motives NM( ; Q) assuming the Hodge conjecture, and the functor (2.13) should induce an equivalence between this category and the category M of pure motives for absolute Hodge cycles described above.

: ℎ ( [V ( )]) op → (MM ( ) , ) 2 

Triangulated categories of mixed motives

The constructions of the abelian category of mixed motives MM outlined in Section 2.2.2 might give mixed feelings to the reader. On the one hand, they are abelian, and even Tannakian categories, which allows one to talk about motivic Galois groups. On the other hand, their construction only partially ful ls the program laid down by Beilinson in [Bei87, § 5.10], for multiple reasons. First of all, Beilinson's program should work for every scheme , whereas the categories MM have been constructed only over a eld . Secondly, the categories MM are constructed using realisations, which makes it di cult to relate them to algebraic geometry. More precisely, any hope to construct a fully faithful embedding NM( ; Q) ↩→ MM rests on some of the most di cult conjectures in algebraic geometry, and there is no hope to have a fully faithful embedding CHM( ; Q) ↩→ MM , at least if is algebraically closed. Indeed, in this case Mumford has shown in [START_REF] Mumford | Rational equivalence of 0-cycles on surfaces[END_REF] that Chow groups are "enormous", usually in nitely generated, hence it would be impossible to gain a fully faithful embedding in a category given by realisations (see also [START_REF] Bloch | Remarks on Correspondences and Algebraic Cycles[END_REF] for a generalisation of Mumford's result).

The aim of this section is to describe how one could hope to overcome these di culties, using triangulated categories. More precisely, Deligne noted in a letter to Soulé that it might be easier to construct the conjectural abelian category MM ( , Λ) envisioned by Beilinson (with coe cients in any ring Λ) similarly to how one constructs categories of perverse sheaves (see [START_REF] Beilinson | Faisceaux pervers[END_REF]). First, one should de ne a triangulated category T ( ; Λ) endowed with a functor : V ( ) op → T ( ; Λ), where V ( ) denotes the category of schemes of nite type over . Then one should de ne a -structure on T ( ; Λ) whose heart would give MM ( ; Λ). Using thisstructure one would be able to de ne cohomology functors : T ( ; Λ) → MM ( ; Λ) given by ( ) := ≤0 ( ≥0 ( [ ])), where ≤0 and ≥0 denote the truncation functors. This would give rise to a functor • : T ( ; Λ) → MM ( ; Λ) de ned as the direct sum • ( ) := ∈Z ( ). Moreover, one should have an equivalence of categories : MM (Spec( ); Q) -→ ∼ MM , where MM is one of the categories constructed in Section 2.2.2. This equivalence should also t into a commutative diagram

P ( ) op V ( ) op CHM( ; Q) T (Spec( ); Q) NM( ; Q) MM rat (-;Q) num (-;Q) • ? • • ? (2.14)
where the horizontal maps are fully faithful embeddings.

The construction of the triangulated category T ( ; Λ) has been essentially achieved in successive steps by Hanamura, Levine, Voevodsky, Morel, Cisinski and Déglise and many others. In particular, we argue in this section that one should take T ( ; Λ) := DM( ; Λ) op to be the opposite of the triangulated category of (homological) mixed motives constructed by Cisinski and Déglise in [START_REF] Cisinski | Triangulated Categories of Mixed Motives[END_REF], following the work of Morel and Voevodsky (see [START_REF] Morel | A 1 -homotopy theory of schemes[END_REF]). Let us start with the notion of geometric motives, which over an arbitrary base is due to Ivorra (see [CD19, De nition 11.1.10]).

To do so, we need to recall the notion of nite correspondence. Let be a scheme, ∈ Sch a scheme endowed with a morphism → and Λ be a ring. Then the Λ-module of relative cycles Z • ( / ) Λ is the sub-module of Z • ( ) Λ consisting of those cycles ∈ Z • ( ) Λ such that the structural morphism : → sends Supp( ) to generic points of . In other words, these are cycles dominant over . Then one can de ne C • 0 ( / ) Λ to be the sub-module of Z • ( / ) Λ consisting of those cycles which are nite and Λ-universal over , where the second condition means roughly that the pull-back of these cycles along every point : Spec( ) → whose image is in the support of has coe cients in Λ (see [START_REF] Cisinski | Triangulated Categories of Mixed Motives[END_REF]p. 8.1.47] for the precise de nition). Finally, given two schemes , ∈ Sch one de nes the Λ-module of nite correspondences over to be C ( , ) Λ := C • 0 ( × / ) Λ . These correspondences admit a composition (see [CD19, De nition 9.1.5]), similar to the one that we outlined in Section 2.2.1 when = Spec( ) for some eld . This allows one to de ne the category cor ,Λ as the category whose objects are smooth schemes of nite type over and whose morphisms are given by the Λ-modules of nite correspondences, with composition given by the product just mentioned. This category admits a functor : → cor ,Λ which is the identity on objects and sends each morphism : → to its graph Γ ∈ C ( , ) Λ . Moreover, cor ,Λ is a Λ-linear, symmetric tensor category, with tensor product induced by the bre product of schemes (see [CD19, § 9.2]).

De nition 2.2.10 -Triangulated category of mixed geometric motives

Let be a scheme and let Λ be a commutative ring with unity. We de ne the Λ-linear triangulated category of e ective mixed geometric motives DM e gm ( ; Λ) as the pseudo-abelian envelope (see [And04, § 1.1.3.1]) of the quotient of the homotopy category K ( cor ,Λ ) of bounded chain complexes valued in cor ,Λ , by the triangulated sub-category generated by complexes of the form:

• [A 1 ] -----→ ( )
[ ] for every scheme ∈ Sch which is smooth and of nite type over , where : A 1 → denotes the structural morphism;

2.2 Various categories of motives • [ ] ----------→ ( ( ),-( )) [ ] ⊕ [ ] --------→ ( )+ ( )
[ ] for every Nisnevich distinguished square (2.1).

Moreover, the Λ-linear triangulated category of mixed geometric motives DM gm ( ; Λ) is de ned to be the category obtained from DM e gm ( ; Λ) by formally inverting the motive 1(1) given by the class of the complex

[P 1 ] → [ ].
Observe that we use chain complexes instead of the usual cochain complexes used so far, because Voevodsky's motives are homological. In particular, there is a covariant functor gm (-/ ; Λ) : → DM gm ( ; Λ). To describe this functor, let us unravel the de nition of DM gm ( ; Λ). The objects of DM gm ( ; Λ) are of the form ( , ) with

∈ DM e gm ( ; Λ) and ∈ Z. Morphisms between these objects are de ned by the formula Hom DM gm ( ;Λ) (( , ), ( ,

)) := lim --→ ≥-min( , )
Hom DM e gm ( ;Λ) ( ( + ), ( + ))

where ( ) := ⊗ 1(1) ⊗ for every ∈ N and every ∈ DM e gm ( ; Λ). It is worth noting that the direct limit stabilises. Furthermore, the objects of DM e gm ( ; Λ) are pairs of the form = ( , ) where ∈ K ( cor ,Λ ) and ∈ Hom K ( cor ,Λ )/ ( , ) is an idempotent (i.e. • = ) in the quotient category K ( cor ,Λ )/ . We recall that this quotient category K ( cor ,Λ )/ has the same objects as K ( cor ,Λ ), but the morphisms are given by

Hom K ( cor ,Λ )/ ( , ) := lim --→ → Hom K ( cor ,Λ ) ( , )
where the direct limit runs over all the morphisms → whose cone lies in (see [ Let us recall some properties of the triangulated category of mixed geometric motives DM gm ( ; Λ). First of all, it is a triangulated category, which agrees with its name. Indeed, the quotient category K ( cor ,Λ )/ is easily seen to be triangulated, which implies that DM e gm ( ; Λ) is triangulated (and pseudo-abelian) by a general result of Balmer and Schlichting (see [START_REF] Balmer | Idempotent Completion of Triangulated Categories[END_REF]) on pseudo-abelian envelopes. The fact that DM gm ( ; Λ) is triangulated and pseudo-
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Chapter 2 Cohomology theories, motives and regulators abelian follows from the fact that it can be written as a 2-colimit of pseudo-abelian, triangulated categories (see [START_REF] Ivorra | Réalisation ℓ-adique des motifs triangulés géométriques. I[END_REF] ( ,Λ) is called a sheaf with transfers, with respect to some Grothendieck topology on , if the composition • is a sheaf with respect to this topology, where : → cor ,Λ is the functor sending each object to itself and each morphism : → to its graph Γ . We denote the category of Λ-linear sheaves with transfers by Sh tr ( , Λ). Under some technical hypotheses on the Grothendieck topology (see [CD19, De nition 10.3.5]), which are satis ed if is the étale or the Nisnevich topology (see [START_REF] Cisinski | Triangulated Categories of Mixed Motives[END_REF]Proposition 10.3.3]), the forgetful functor Sh tr ( , Λ) → PSh tr ( , Λ) admits a left-adjoint (the -shea cation) PSh tr ( , Λ) → Sh tr ( , Λ), and for every ∈ one denotes by Λ tr ( ) the -shea cation of the representable presheaf Λ tr ( ) ∈ PSh tr ( , Λ) de ned by Λ tr ( ) ( ) := C ( , ) Λ . This de nes a functor Λ (-) tr : → Shv tr ( ; Λ). We note moreover that the category Shv tr ( ; Λ) is an abelian symmetric tensor category (if we have a -shea cation functor), where the tensor structure is induced by the one present on Mod Λ . Moreover, the identity for the tensor product is given by 1 , := Λ tr ( ) , and we denote by 1 , {1} the cokernel of the map Λ tr ( ) → Λ tr (G 1 , ) induced by the unit → G 1 , . This object allows us to de ne the category of symmetric Tate spectra Sp tr ( ; Λ) as follows. First of all, one de nes the category of symmetric sequences Shv tr ( ; Λ) whose objects are sequences = ( , ) ∈N of pairs ( , ) where ∈ Shv tr ( ; Λ) and :

→ Aut( ) is an action of the symmetric group on -letters , and whose morphisms are equivariant morphisms. For every symmetric sequence = ( , ) ∈ Shv tr ( ; Λ) and every ∈ N, one can de ne a twist {-}, by considering suitable " bre products" of the form × - -for every ≥ (see [CD19, Equation 5.3.5.2] for the precise de nition).

Moreover, one de nes the object 1 , { * } ∈ Shv tr ( ; Λ) to be the sequence of pairs (1 , { }, ) where 1 , { } := 1 , {1} ⊗ and :

→ Aut(1 , { }) denotes the permutation action. This object is a monoid (in the sense of [KS06, Remark 4.3.2]) inside the monoidal category Shv tr ( ; Λ) , where the tensor product is de ned by setting ( ) ⊗ ( ) := = + ( ⊗ ) for every , ∈ Shv tr ( ; Λ) . Then the category of symmetric Tate spectra Sp tr ( ; Λ) is nally de ned as the full subcategory of Shv tr ( ; Λ) given by all the objects which are modules over the monoid 1 , { * }, in the sense of [START_REF] Kashiwara | Categories and sheaves[END_REF] , generated by the complexes of the form

Λ tr (A 1 ) -----→ Λ tr ( ) Λ tr ( )
for every ∈ , where : A 1 → denotes the canonical projection. Moreover, the Λ-linear triangulated category of mixed motives for the topology is de ned to be the quotient DM ( ;

Λ) := (Sp tr ( ; Λ))/ A 1 ,Ω , where A 1 ,Ω ,
is the triangulated sub-category generated by the union of Σ ∞ ( A 1 , ) together with the complexes of the form [Σ ∞ (Λ tr ( ) )]{-} ⊗ 1 , {1} for every ∈ and every ∈ N. Here 1 , {1} denotes the complex

1 , {1} : [Σ ∞ (1 , {1})]{-1} → Σ ∞ (1 , )
induced by the fact that Σ ∞ is a left adjoint. Finally, we write DM e ( ; Λ) and DM( ; Λ) for the categories associated to the Nisnevich topology.

The main advantage of using sheaves with transfers instead of complexes valued in the category cor ,Λ , as we did in De nition 2.2.10, is that now it becomes easy to de ne a functor (-/ ; Λ) : V ( ) → DM e ( ; Λ) which associates to any scheme of nite type ∈ V ( ) its motive ( / ; Λ). To do so, one extends the functor Λ (-) tr : → Shv tr ( ; Λ) to singular schemes, de ning Λ ( ) tr to be the -shea cation of the presheaf with transfers Λ tr ( ) ∈ PSh tr ( ; Λ) which associates to each ∈ cor ,Λ the Λ-module of nite correspondences Λ tr ( ) ( ) := C ( , ) Λ . Then one gets a functor , where is certainly a eld of characteristic zero, by replacing S( ) op with V ( ) op . However, it is expected that Huber's or Nori's constructions of MM could generalise to de ne a category MM over a general base , and then (until a suitable form of resolution of singularities is proved for ) it might be better to stick with our decision of taking DM( ; Λ) op to be our candidate for the triangulated category of mixed motives, rather than DM gm ( ; Λ) op . Let us mention that other candidates for the triangulated category of mixed motives can be obtained by applying the same techniques seen in this section to the category V ( ) cor Λ where the objects are schemes of nite type over and the morphisms are given by nite correspondences. Doing so, one gets two triangulated categories DM e ( ; Λ) and DM ( ; Λ) which t in a commutative diagram DM e ( ; Λ) DM ( ; Λ) We conclude this brief review of the various existing candidates for the triangulated category of mixed motives by mentioning the A 1 -homotopy categories DA e ( ; Λ) and DA ( ; Λ) constructed by Ayoub (see [START_REF] Ayoub | Les six opérations de Grothendieck et le formalisme des cycles évanescents dans le monde motivique (II)[END_REF]), which are denoted by D shows that one has an equivalence of categories DM( ; Q) DA ét ( ; Q). This is crucially used in the Section 2.4, since the construction of regulator maps is easier if one works in the A 1 -homotopy category. Finally, let us mention that one can work with simplicial sheaves instead of sheaves of Λ-modules, to obtain the category SH ( ; Λ) constructed by Morel and Voevodsky (see [START_REF] Morel | A 1 -homotopy theory of schemes[END_REF]). There is an adjuction SH ( ; Λ) DA ( ; Λ), which becomes an equivalence if Λ is a Q-algebra (see [START_REF] Cisinski | Triangulated Categories of Mixed Motives[END_REF]p. 5.3.35]). This category admits also an ∞-categorical enhancement (see [Rob15, De nition 2.38]), which can be particularly useful to overcome the non-functoriality of cones.

(-/ ; Λ) : V ( ) → DM e ( ,
DM e ( ; Λ) DM ( ; Λ) Σ ∞ e ! Ω ∞ ! Σ ∞ * e Ω ∞ * where Σ ∞ Ω ∞ , Σ ∞ Ω ∞ ,
( ; Λ) Σ ∞ A 1 * e Ω ∞ A 1 * Σ ∞ e * Ω ∞ * where Σ ∞ Ω ∞ , Σ ∞ A 1 Ω ∞ A 1 ,

Motivic cohomology

In the previous section we have de ned various categories of motives, and in particular we have seen that the Beilinson-Deligne program for constructing an abelian category of mixed motives over any base and with any ring of coe cients Λ would entail the construction of a triangulated category T ( ; Λ) together with a functor T (-/ ; Λ) : V ( ) op → T ( ; Λ) which sends a scheme of nite type → to its motive T ( / ; Λ). This category should also be equipped with a tensor product and with a family of objects 1 T, ( ) ∈ T ( ; Λ) such that 1 T, := 1 T, (0) = T ( / ) is the unit of the tensor product and 1 T ( ) ⊗ 1 T ( ) = 1 T ( + ) for every , ∈ Z. Then, to conclude the program, one should de ne a -structure on T ( ; Λ) whose heart MM would be the abelian category of mixed motives. Now, if we only have the triangulated category T ( ; Λ) mentioned above, we can still make sense of the following de nition.

De nition 2.3.1 -Motivic cohomology

Let be a scheme, and let ∈ V ( ) be an -scheme of nite type. Then we de ne the Λ-linear motivic cohomology of with respect to T as the modules , T ( ; Λ) := Hom T ( ;Λ) (1 T ( ) [ ], T ( ; Λ))

where [ ] : T ( ; Λ) → T ( ; Λ) denote the shift functors.

In principle, the previous de nition of motivic cohomology would depend on the base . However, the categories T ( ; Λ) should satisfy a version of Grothendieck's six-functor formalism (see [CD19, § A.5] for a review), which would in particular imply that for every : → which is separated and of nite type there should be a functor * : T ( ; Λ) → T ( ; Λ) such that * (1 T, ) = 1 T, , and this functor should admit a left adjoint L # : T ( ; Λ) → T ( ; Λ) which ts in the commutative square

V ( ) op T ( ; Λ) V ( ) op T ( ; Λ) T (-/ ;Λ) L # T (-/ ;Λ)
where the map V ( ) op → V ( ) op is the natural one, which considers a scheme : → as an -scheme via the composition • : → . Using the adjunction property # * one can see that this formalism would imply that De nition 2.3.1 does not depend on the choice of a base scheme (compare with [CD19, § 11.2.4]).

We have seen in the previous section that the insights of Voevodsky, Morel, Ayoub, Cisinski-Déglise and others have lead to the construction of many candidates for the category T ( ; Λ): the category DM gm ( ; Λ) op of mixed geometric motives, the category DM( ; Λ) op of Voevodsky motives and the A 1 -homotopy category DA( ; Λ) op , which are constructed starting from smooth schemes of nite type over , and their enlarged versions DM( ; Λ) op and DA( ; Λ) op , constructed using separated schemes of nite type over . To get the formalism described above, and in particular to obtain a functor L # for every morphism : → which is separated of nite type, the best choice is to take T ( ; Λ) := DM( ; Λ) op . However, since we have the fully faithful embedding ! : DM( ; Λ) ↩→ DM( ; Λ), we can de ne motivic cohomology to be ,

M ( ; Λ) := Hom DM( ;Λ) (1 , 1 ( ) [ ]) = Hom DM( ;Λ) (1 , 1 ( ) [ ]) (2.18)
which is well de ned for every scheme . This de nition agrees with [CD19, De nition 11.2.1] and for every separated morphism of nite type : → one has that which shows that this de nition agrees with De nition 2.3.1 if we take T ( ; Λ) = DM( ; Λ) op . We recall that the de nition of motivic cohomology can be extended to diagrams of -schemes. More precisely, one can de ne a category DM( ; Λ) associated to every diagram = (I, ), where I is a small category and : I → Sch / is a functor (see [START_REF] Cisinski | Triangulated Categories of Mixed Motives[END_REF]§ 3 where : → denotes the structural morphism. Similarly to what we have seen in the case of a single scheme , one can show that this de nition of motivic cohomology does not depend on the base scheme, hence one might take = Spec(Z). Moreover, every open immersion : ↩→ can be considered as a diagram, and one denotes its motivic cohomology by , M ( , ; Λ) := , M ( ; Λ). One clearly has that , M ( , ∅; Λ) = , M ( ; Λ), and one can check that the motivic cohomology groups ,0 M ( , ; Λ) satisfy all the hypotheses of a mixed
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Weil cohomology theory (see De nition 2.1.4) except from the Künneth formula. In particular, for every Nisnevich distinguished square (2.1) one gets a Mayer-Vietoris long exact sequence

• • • → , M ( ; Λ) -------→ ( ) * ⊕ * , M ( ; Λ) ⊕ , M ( ; Λ) ------→ ( ) * + * , M ( ; Λ) - → +1, M ( ; Λ) → . . .
coming from an exact triangle ( / ; Λ) → ( / ; Λ) ⊕ ( / ; Λ) → ( / ; Λ) in DM( ; Λ) (see [START_REF] Cisinski | Triangulated Categories of Mixed Motives[END_REF]Remark 3.3.6]).

Let us mention that these de nitions of motivic cohomology can be generalised by replacing DM( ; Λ) with some other triangulated category of mixed motives. One possible choice is given by taking the category DM cdh ( ; Λ) of Voevodsky motives relative to the cdh-topology, which is obtained as a re nement of the Nisnevich topology by including among the distinguished squares the abstract blow-ups, which are Cartesian squares of the form

(2.19)
where is a closed immersion, is proper and the induced map -1 ( \ ( )) → \ ( ) is an isomorphism (see [START_REF] Cisinski | Triangulated Categories of Mixed Motives[END_REF]Example 2.1.11]). Other options include the A 1 -homotopy category DA( ; Λ) and the category of Beilinson motives DM B ( ; Λ), which is de ned only when Λ is a Q-algebra (see [START_REF] Cisinski | Triangulated Categories of Mixed Motives[END_REF]§ 14.2] for the precise de nition). The three categories mentioned in this paragraph have the advantage that, under some suitable hypotheses, they satisfy all the axioms of the six functors formalism laid down in [CD19, § A.5], and in particular the localisation property.

This property asserts that, if : ↩→ is an open immersion with complementary closed immersion : ↩→ , one should have a distinguished triangle ! ( ! ( )) → → * ( * ( )) → ! ( ! ( )) [1] for every ∈ T ( ; Λ), where T (-; Λ) is a triangulated category of mixed homological motives. For T ( ; Λ) = DM( ; Λ) the validity of this property is equivalent to a deep conjecture of Voevodsky (see [START_REF] Cisinski | Triangulated Categories of Mixed Motives[END_REF]Proposition 11.4.7]). Moreover, the triangulated categories DA( ; Λ) and DM B ( ; Λ Q ) for a Q-algebra Λ Q always satisfy the localisation property (see [Ayo07, § 4.5.3] and [CD19, Corollary 14.2.11]), and the category DM cdh ( ; Λ) satis es this property if is a Noetherian scheme of nite dimension over Spec( ), where is either a eld of characteristic zero or a eld of characteristic > 0 such that ∈ Λ × (see [START_REF] Cisinski | Integral mixed motives in equal characteristic[END_REF]Theorem 5.11]). In particular, if T is one of the three last-mentioned categories and , T denotes motivic cohomology with respect to this category (see De nition 2.3.1), which can be extended to diagrams as we did above, one has an identi cation between the relative cohomology , T ( , ; Λ), where : ↩→ is an open immersion, and the cohomology groups for the Borel-Moore motivic homology groups (relative to our choice of T ) de ned in [DM15, § 2.2.1]. Let us mention as well the existence of Mayer-Vietoris long exact sequences

• • • → , T ( ; Λ) ----→ * ⊕ * , T ( ; Λ) ⊕ , T ( ; Λ) --------→ ( ) * +( ) * , T ( ; Λ) - → +1, T ( ; Λ) → . . . (2.20) associated to each abstract blow-up (2.19) (see [CD19, Proposition 3.3.10]).

Relations with algebraic -theory

The aim of the next three sections is to recall some of the conjectural and known ways of computing motivic cohomology. The rst one comes from its relation to higher algebraictheory. This is an incredibly rich invariant, which can be associated to objects of a very di erent nature: rings, schemes, topological spaces, adic spaces, * -algebras and so on. The general idea is that the -theory of an object should capture equivalence classes of objects which live over . For example, when is a ring one looks at the category Mod of modules over that ring, and the equivalence relation is given by exact sequences in this category. For topological spaces, and schemes, the role of Mod( ) is played by the category Vec( ) of vector bundles over , or the category Perf ( ) of perfect complexes on with globally nite Tor-amplitude (see [TT90, De nition 3.1]). These categories can be treated as Waldhausen categories, i.e. categories with a collection of co brations and weak equivalences. Using co brations, one can build a simplicial Waldhausen category * (C) out of any Waldhausen category C, and then one de nes the -theory space (C) := Ω| ( * (C))| to be the loop space of the geometric realisation of the simplicial sub-category of * (C) whose morphisms are weak equivalences. We refer the interested reader to [Wei13, Chapter IV, § 8] for an exposition of Waldhausen's work, and to [BGT13, § 7.1] for a general construction in the context of ∞-categories, which allows one to prove a suitable universal property of algebraic -theory. Then, one de nes the algebraic -theory groups of C as (C) := ( (C)), and one de nes in this way the -theory groups of a ring or a scheme by taking C = Mod( ) to be the category of modules or C = Perf ( ) to be the category of perfect complexes on having globally nite Tor-amplitude.

Computing these algebraic -theory groups of schemes or rings has been notoriously di cult. We mention, among the very few cases in which these -groups are completely known, the -theory of a nite eld F with elements, given by 0 (F ) = Z, 2 (F ) = 0 and

2 -1 (F ) Z/( -1)
for every ∈ Z ≥1 (see [Wei13, Chapter IV, Corollary 1.13]), and the relative -theory groups • ( , ), where is a nilpotent ideal (see [START_REF] Hesselholt | Cyclic polytopes and the -theory of truncated polynomial algebras[END_REF], [START_REF] Angeltveit | On the -theory of truncated polynomial algebras over the integers[END_REF], [START_REF] Hesselholt | Algebraic -theory of planar cuspidal curves[END_REF] and [START_REF] Speirs | On the -theory of coordinate axes in a ne space[END_REF] among others). The situation becomes much better if we consider the rational -groups • (-

) Q := • (-) ⊗ Z Q.
The main computations which are known concern the -theory of elds, in particular of a number eld . In this case Borel proved that 0 ( [START_REF] Burgos Gil | The regulators of Beilinson and Borel[END_REF]Theorem 9.9]), where 1 denotes the number of real embeddings of and 2 denotes the number of conjugate pairs of complex embeddings of which are not real. As we see in next chapter, further work of Borel shows that these -groups are also related to the special values of the Dedekind -function ( ).

) Q Q, 2 ( ) Q = 0, 4 -1 ( ) Q Q 2 and 4 -3 ( ) Q Q 1 + 2 for every ∈ Z ≥1 (see
In order to see this result of Borel as a con rmation of Beilinson's conjectures on special values of -functions in the case of number elds, one needs to relate the -theory groups to motivic cohomology. To this end, let us recall that the direct sum • ( ) := ( ) of the -theory groups ( ) associated to a scheme has the structure of a graded ring (with respect to the derived ⊗-product of perfect complexes, as explained in [TT90, § 3.15]) and also
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the structure of a graded -ring. This means that there exist operations : • ( ) → • ( ) for ∈ N, which are compatible with the grading, such that 0 ( ) = 1, 1 ( ) = and

( + ) = + = ( ) ( )
for every , ∈ • ( ). Moreover, the map :

• ( ) → W( • ( )) to the ring of Witt vectors W( • ( )) := 1 + • ( ) sending ∈ • ( ) to (
) is a homomorphism of -rings. We refer the reader to [Wei13, Chapter II, § 4] for a detailed exposition of -rings and Witt vectors (see also [START_REF] Borger | The basic geometry of Witt vectors, I: The a ne case[END_REF] § 1] for a modern account), and to [Lev97, § 5] for the proof of the existence of a -ring structure on the -theory of a scheme, which essentially comes from the existence of exterior powers of vector bundles (at least in the case when admits an ample family). We note also that these operations can be easily de ned on 0 ( ) (which is also a -ring) using its explicit presentation, and then they can be extended to ( ) if is regular using [Rio10, Theorem 1.1.1]. In particular, the projection map • ( ) → 0 ( ) is a morphism of -rings, and composing it with the map 0 ( ) → 0 ( ; Z) induced by taking the rank of a vector bundle one gets a map of -rings : • ( ) → 0 ( ; Z) which is a section of the inclusion 0 ( ; Z) ⊆ 0 ( ) ⊆ • ( ) and is an augmentation in the sense of [Wei13, De nition 4.2.1]. In any case, the -ring structure allows one to de ne the -operations : • ( ) → • ( ), by the formula ( ) = ( + -1), and the Adams operations

Ψ : • ( ) → • ( ) by the equality +∞ =0 Ψ ( ) = ( ) -• log( -( ))
which amounts to the inductive formulas

Ψ ( ) = -1 =1 (-1) +1 ( )Ψ -( ) -(-1) ( ) normalised by the initial conditions Ψ 0 ( ) = ( ), Ψ 1 ( ) = and Ψ 2 ( ) = 2 -2 2 ( ).
The -operations allow one to de ne a decreasing ltration F • of ideals on • ( ), by setting F 0 ( • ( )) := • ( ), F 1 ( ) := ker( ) and

F ( • ( )) := 1 ( 1 ) • • • ( ) 1 , . . . , ∈ F 1 ( ), =1 ≥
for every ≥ 2. Essentially by de nition of the category of Beilinson motives DM B ( ; Λ), one has a decomposition of the form

, B ( ; Λ) gr 2 -( ) ⊗ Z Λ (2.21)
which holds for every regular scheme and every Q-algebra Λ. Moreover, for every ∈ Z ≥1 one has also the decompositions

( ) Q +∞ =1 gr ( ( ) Q ) +∞ =1 2 -, B ( ; Q) (2.22)
and the various graded pieces gr ( ( ) Q ) can be identi ed with the -th eigenspace for the Adams operation Ψ : ( ) → ( ) for any (or all) > 1. We refer the reader to [CD19, Corollary 14.2.14] for a proof of the identi cation (2.21), and to [Lev94, Lemma 2.1] for a proof of the decomposition (2.22).

Computing motivic cohomology: higher Chow groups

As we have seen in the previous section, the relations between motivic cohomology andtheory groups allow one to use computations of the latter to understand more about the former. Nevertheless, this is arguably a very minor improvement in computability, since the de nition of algebraic -theory is also very abstract (as is the de nition of motivic cohomology) and di cult to compute with. Moreover, any relation between -theory and motivic cohomology holds only rationally, even in the case of regular schemes. The aim of this section is to brie y recall the theory of higher Chow groups, introduced by Bloch (see [START_REF] Bloch | Algebraic cycles and higher -theory[END_REF]) and developed by Totaro (see [START_REF] Totaro | Milnor -theory is the simplest part of algebraic -theory[END_REF]) and Levine (see [START_REF] Levine | Bloch's higher Chow groups revisited[END_REF]). We present here the cubical theory for smooth schemes over an a ne base = Spec( ), where is a eld or more generally a Dedekind domain (see [START_REF] Geisser | Motivic cohomology over Dedekind rings[END_REF]), following [START_REF] Totaro | Milnor -theory is the simplest part of algebraic -theory[END_REF]. This theory be extended to schemes of nite type (not necessarily smooth) over any base by considering a complex of sheaves instead of a single complex of modules (see [Lev05, Chapter II, § 2.5]). Let = Spec( ) be the spectrum of a eld or a Dedekind domain, and let → be a smooth -scheme of nite type. Let := P 1 \ {1} and let t = ( 1 , . . . , ) denote the coordinates on . Then the faces of are the closed sub-schemes given by = 0 or by = ∞ for some ∈ {1, . . . , }, and one denotes by ⊆ the divisor given by the sum of the faces. Fixing a commutative ring with unity Λ, one de nes , ( / ; Λ) to be the free Λ-module generated by closed sub-schemes of × having codimension which meet × properly. Moreover, one de nes , ( / ; Λ) ⊆ , ( / ; Λ) to be the sub-module generated by the inverse images * 1 ( ), . . . , * ( ), where ⊆ × -1 runs over all the closed subschemes of codimension meeting × -1 properly, and for every ∈ {1, . . . , } we let : × → × -1 denote the map ( , t) = ( , ( 1 , . . . , ˆ , . . . , )). Finally, one can put all the Λ-modules , ( / ; Λ) := , ( / ; Λ)/ , ( / ; Λ) into a homological complex ,• ( / ; Λ), whose di erentials are induced by the maps , : , ( / ; Λ) → , -1 ( / ; Λ)

↦ → =1 (-1) • ( ∞ , ) * ( ) -( 0 , ) * ( ) (2.23)
where , : × -1 → × is de ned as , ( , t) := ( , ( 1 , . . . , -1 , , , . . . , -1 )) for every ∈ . Then the higher Chow groups of over are de ned to be the homology groups CH , ( / ; Λ) := ( ,• ( / ; Λ)). As we said in the previous paragraph, one can check that ,• (-; Λ) is a complex of sheaves for the étale topology (see [Gei04, Lemma 3.1] for a proof using the simplicial version of this complex), and one can de ne higher Chow groups for any scheme as the hypercohomology groups of this complex of sheaves (see [Lev05, Chapter II, § 2.5] for details). Now, it is evident that higher Chow groups give rise to a theory which is much more suitable for explicit computations than motivic cohomology (de ned as groups of morphisms in a derived category) or algebraic -theory. Nevertheless, one of the main results of Voevodsky is that, for every scheme which is smooth, separated and of nite type over = Spec( ) where is a perfect eld, one has that (see [START_REF] Cisinski | Triangulated Categories of Mixed Motives[END_REF]Example 11
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which holds for any commutative ring with unity Λ (because it holds for Λ = Z). Moreover, [Lev97, Corollary 8.2] shows that if is also quasi-projective of dimension then CH , ( ; Λ) gr ( ( )) ⊗ Z Λ

for every Λ such that ( + -1)! ∈ Λ × . Finally, there is another version of motivic cohomology

, ( ; Λ) := Hom SH( ) (1 , Σ , (MΛ ))
de ned using the spectra MΛ := * (MΛ Spec(Z) ) obtained by pulling back along the structural morphism : → Spec(Z) the spectrum MΛ Spec(Z) ∈ SH(Spec(Z)) introduced by Spitzweck (see [START_REF] Spitzweck | A commutative P 1 -spectrum representing motivic cohomology over Dedekind domains[END_REF]). This new version of motivic cohomology, which should coincide with , cdh under Voevodsky's conjecture (see [START_REF] Cisinski | Triangulated Categories of Mixed Motives[END_REF]Remark 11.4.8]) has the property that

, ( ; Λ) CH ,2 -( ; Λ)
for every which is smooth over = Spec( ), where is a Dedekind domain. This should be particularly promising for arithmetic applications: indeed every smooth and proper variety over a number eld can be "spread out" to a smooth and proper X over the Dedekind domain

O [1/ ] for some ∈ Z ≥1 (see [Poo17, Theorem 3.2.1]).
We conclude this section by recalling that the Λ-modules , ( ; Λ) can be replaced with suitable complexes of equidimensional cycles, introduced by Suslin (see [START_REF] Suslin | Higher Chow Groups and Etale Cohomology[END_REF]).

Computing motivic cohomology: polylogarithmic motivic complexes

As we have seen in the previous section, higher Chow groups provide an explicit family of cochain complexes Z •, ( ; Λ) := ,2 -• ( ; Λ) of Λ-modules, whose -th cohomology group should compute Λ-linear motivic cohomology , M ( ; Λ). The aim of this section is to introduce another family of cochain complexes B •, ( ; Λ), which are called Bloch group complexes or polylogarithmic motivic complexes, which should also compute the motivic cohomology of a scheme , at least under suitable regularity assumptions. These complexes were introduced by Goncharov in [START_REF] Goncharov | Geometry of Con gurations, Polylogarithms, and Motivic Cohomology[END_REF] and their relation with the complexes Z •, ( ; Λ) should be thought of as analogous to the relation that elapses between Beilinson's and Zagier's conjectures on special values of -functions. Let us say right from the start that, while the de nition of these complexes is only conjectural and they exist only for regular schemes , they are still a very interesting and completely explicit candidate for motivic cohomology. Moreover, as Goncharov claims in the introduction of [START_REF] Goncharov | Polylogarithms, regulators, and Arakelov motivic complexes[END_REF], these complexes are the smallest ones which can compute motivic cohomology. In particular, their cohomology , B ( ; Λ) := (B •, ( ; Λ)) vanishes by de nition for > + dim( ) for every smooth variety over a eld. The analogous statement for motivic cohomology is true, but not at all obvious (see [MVW06, Theorem 3.6]).

To de ne the complex B •, ( ; Λ) one starts by de ning the Bloch groups B ( ; Λ) associated to a eld and to an integer ∈ Z. These are de ned as B ( ; Λ) := 0 if ≤ 0 and as

B ( ; Λ) := Λ[P 1 ( )]/R ( ; Λ) if ≥ 1. The sub-modules R ( ; Λ) ⊆ Λ[P 1 ( )] are de ned as R 1 ( ; Λ) := {0}, {∞}, { • } -{ } -{ } , ∈ × Λ R ( ; Λ) := {0}, {∞}, { (1)} -{ (0)} ∈ P 1 ( ( )), 1, ({ }) = 0 Λ (2.25)
where { } ∈ Λ[P 1 ( )] denotes the generator of the free Λ-module Λ[P 1 ( )] corresponding to ∈ P 1 ( ). Moreover, for every > ≥ 1 and any eld , we denote by , the maps

Λ[P 1 ( )] ⊗ Λ -1 × Λ , --→ × Λ , if = -1 B -( ; Λ) ⊗ Λ × Λ , if < -1 { } ⊗ ↦ →          (1 -) ∧ ∧ , if = -1 and ∈ P 1 ( ) \ {0, 1, ∞} { } -⊗ ( ∧ ), if < -1 and ∈ P 1 ( ) \ {0, 1, ∞} 0, if ∈ {0, 1, ∞} where × Λ := × ⊗ Z Λ and { } -∈ B -( ; Λ) denotes the class of { } ∈ Λ[P 1 ( )]
inside the quotient B -( ; Λ). Note that the maps 1, appearing in (2.25) are well de ned because the module B -1 ( ; Λ) has been constructed in the previous inductive steps. Taking = ( ) allows one to de ne the modules R ( ; Λ) and B ( ; Λ), as we have seen above.

We are now ready to de ne the complexes B •, ( ; Λ) for = Spec( ). First of all, one sets

B , ( ; Λ) := B -( -1) ( ; Λ) ⊗ Λ -1 × Λ , if ≠ × Λ , if =
which implies in particular that B , ( ; Λ) ≠ 0 only if 1 ≤ ≤ . This agrees with the conventions B ( ; Λ) = = 0 for every ≤ 0 and ≤ -1. The complex B •, ( ; Λ) is then de ned as

• • • → 0 → B 1, ( ; Λ) --→ 1, . . . ----→ -1, B , ( ; Λ) --→ , . . . ----→ -1, B , ( ; Λ) → 0 → . . . which makes sense because , (R -( -1) ( ; Λ) ⊗ -1 × Λ ) = 0 for every eld (see [Gon95b, Lemma 1.16]).
Now, in order to be able to give the (conjectural) de nition of B •, ( ; Λ) one needs to introduce the residue maps •, : B •, ( ; Λ) → B •, -1 ( ; Λ) [-1] associated to every discretely valued eld ( , ) with residue eld . These maps are de ned as , := -( -1) ⊗ -1 when 1 ≤ < , and , := . Here, for any ∈ N the map : B ( ; Λ) → B ( ; Λ) is simply de ned as ({ } ) := { } for every ∈ P 1 ( ), where ∈ P 1 ( ) denotes the reduction of ∈ P 1 ( ). In particular = ∞ if and only if = ∞ or ∈ and ( ) < 0. Moreover, is de ned as

× Λ --→ -1 ( × ) Λ 1 ∧ • • • ∧ ↦ → =1 (-1) -1 • ( ) • res ( 1 ) ∧ • • • ∧ res ( ) ∧ • • • ∧ res ( )
where ∈ × is any uniformiser (i.e. ( ) = 1) and for any ∈ × we write res ( ) ∈ × for the reduction of the unit / ( ) . It is now easy to see that, for every eld , there is a map

B •, ( ( ); Λ) B •, ( ; Λ) •, ------→ B •, [ ] ; Λ [-1] (2.26)
where the sum runs over all the non-zero prime ideals ⊆ [ ]. Then Goncharov makes the following conjecture, which is inspired by Milnor's theorem for algebraic -theory (see [START_REF] Weibel | Graduate studies in mathematics[END_REF] Chapter III, Theorem 7.4]).
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Conjecture 2.3.2 -Goncharov's homotopy invariance conjecture

For every eld the map (2.26) is a quasi-isomorphism of cochain complexes. In particular, for every nite extension ⊆ of elds, there exists a norm map

N •, / : B •, ( ; Λ) B •, ( ; Λ)
in the derived category (Mod Λ ), uniquely determined by the property that

•, ∞ = - N •, • •,
where for any non-zero prime ideal ⊆ [ ] the symbol N •, denotes the norm relative to the nite extension ⊆ [ ]/ .

Let us now move on to give the de nition of B •, ( ; Λ) for any regular scheme , assuming Conjecture 2.3.2. First of all, one de nes the Λ-modules

B , , ( ; Λ) := ∈ ( ) B , -( ( ); Λ) [-] = ∈ ( ) B -( -1) ( ( ); Λ) ⊗ Λ -( +1) ( ) × Λ
where ( ) denotes the residue eld of a point ∈ and ( ) ⊆ denotes the set of points having codimension . These modules should give rise to a family double complexes B •,•, ( ; Λ). The vertical di erentials , , : B , , ( ; Λ) → B , +1, ( ; Λ) in this family of double complexes are de ned unconditionally as , , :=

∈ ( )
-, -, where •, -are the di erentials of the complex B •, -( ( ); Λ). Then Goncharov assumes Conjecture 2.3.2 to de ne the horizontal di erentials , , : B , , ( ; Λ) → B +1, , ( ; Λ) by setting

,•, = ∈ ( ) ∈Cl( ) •, - , [-]
where Cl( ) denotes the closure of inside . Here, •, , denotes, for every ∈ Z ≥2 , a map of complexes •, , : B •, ( ( ); Λ) B •, -1 ( ( ); Λ) [-1] which is de ned for every pair of points , ∈ such that ∈ Cl( ) as

B •, ( ( ); Λ) =1 •, --------→ =1 B •, -1 ( ( ) ; Λ) [-1] =1 N •, -1 ( ) / ( ) --------→ B •, -1 ( ( )) [-1]
where 1 , . . . , are the discrete valuations of ( ) which are trivial on ( ) ⊆ ( ), and ( ) 1 , . . . , ( ) are their residue elds. Finally, having the double complex B •,•, ( ; Λ) at our disposal, we de ne B •, ( ; Λ) to be its total complex, and we write , B ( ; Λ) := (B •, ( ; Λ)) for the cohomology of this cochain complex.

Remark 2.3.3. A brutal way to make unconditional the de nition of the horizontal di erentials in the double complex B •,•, ( ; Λ) would be to set •, , = 0 unless there is exactly one valuation of ( ) which is trivial on ( ), and ( ) = ( ). This happens when ∈ Cl( ) reg is a regular point of Cl( ). Hence one could try to use embedded resolution of singularities and theorems of Bertini type to relate this new (well de ned) complex to the conjecturally de ned complex B •, ( ; Λ), when is regular, separated and of nite type over a eld of characteristic zero.

Remark 2.3.4. The de nition of B •, ( ; Λ) gives in general only a complex which is well-de ned in the derived category D(Mod Λ ). However, one could hope for the norm maps N •, / to be de ned as maps of complexes, even if the equality •, ∞ = -N •, • •, probably does not hold on the nose, but only up to quasi-isomorphism.

Remark 2.3.5. We note that the complexes B •, ( ; Λ) are de ned unconditionally if has dimension at most one over a eld, or if ≤ 3, because in both cases the norm maps do not appear in the horizontal di erentials of B •,•, ( ; Λ).

To conclude we remark that de Jeu has constructed in [START_REF] Jeu | Zagier's conjecture and wedge complexes in algebraic -theory[END_REF] another family of cochain complexes, the so called wedge complexes W •, ( ; Λ), which should compute motivic cohomology. These complexes are slightly more complicated to de ne than B •, ( ; Λ), but have the advantage of being directly related to the graded pieces of algebraic -theory (see [DeJ95, Theorem 3.15]).

Computing motivic cohomology: low degrees

The aim of this section is to use some of the comparison isomorphisms and of the ideas introduced in the previous sections to compute some motivic cohomology groups in low degrees. First of all, let us recall the following computation, which deals with the groups ,0 and ,1 , computed in the category of e ective motives DM e ( ; Λ). Proposition 2.3.6 -Motivic cohomology with twists 0 and 1 For every scheme and every commutative ring with unity Λ one has that ,0 DM e ( ; Λ) := Hom DM e ( ;Λ) ( ( ; ), ( ; Λ) [ ]) Λ 0 ( ) , if = 0 0, otherwise where ( ; Λ) := Λ tr ( ) Nis , as we de ned in (2.16). Moreover, if is regular we have

,1 DM e ( ; Λ) := Hom DM e ( ;Λ) ( ( ; ), ( ; Λ) (1) [ ])          O × ( ) ⊗ Z Λ, if = 1 Pic( ) ⊗ Z Λ, if = 2 0, otherwise
and nally, if is smooth over a eld, the same computations hold true for the motivic cohomology groups , M ( ) and not only for their e ective versions.

We refer the reader to [CD19, Theorem 11.2.14] and [MVW06, Corollary 4.2] for the proofs of these statements, and we remark that, for a smooth variety over a eld, Proposition 2.3.6 can be deduced from the isomorphisms (2.24). For instance, the isomorphism CH 1,1 ( ; Λ) O × ( ) ⊗ Z Λ is easily induced by the map which sends a function ∈ O × ( ) to 0 if ≡ 1 and to its graph

Γ := {( , ) ∈ × | ( ) = } otherwise. Note in particular that 1,1 (Γ ) = 0 precisely because ∈ O × ( ), i.e.
has no zeros nor poles.

Motivic cohomology

Let us now recall what happens in the rst range of indices not covered by Proposition 2.3.6, namely for the groups 2,2 M ( ; Λ). In this case we can be completely explicit when is a regular curve over a number eld, and Λ = Q (or, more generally, a Q-algebra).

Proposition 2.3.7 -Motivic cohomology for curves over number elds Let be a regular and connected curve over a number eld . Then we have the isomorphism 2,2

M ( ; Q) ker ( ( ) × ⊗ Z Q) ⊗2 ℎ ⊗ (1 -ℎ) : ℎ ∈ ( ) × \ {1} - → ∈ | | ( ) × ⊗ Z Q { , } ↦ → ∈ | | ({ , }) (2.27)
where { , } denotes the class of ⊗ in the quotient of ( ( ) × ⊗ Z Q) ⊗2 appearing in (2.27), and

({ , }) := (-1) ord ( ) ord ( ) ord ( ) ord ( ) (2.28) for every closed point ∈ | |
Proof. The previous proposition can be proved in di erent ways, using the di erent techniques to compute motivic cohomology that we have recalled in the previous sections. For instance, let us start by saying that 2,2 M ( ; Q)

2,2

B ( ; Q), since = Spec( ), or even = , are excellent and geometrically unibranch (see [START_REF] Cisinski | Triangulated Categories of Mixed Motives[END_REF]Theorem 16.1.4]). Hence in particular we can use the isomorphism (2.21), together with Matsumoto's theorem on 2 of a eld (see [Wei13, Chapter II, Theorem 6.1]) and the localisation sequence for -theory (see [Wei13, Chapter V, § 6.12]) to conclude.

However, a more intrinsic way to prove (2.3.7) is to use directly the localisation sequence for motivic cohomology, coming from the fact that motivic cohomology with rational coe cients is part of a twisted Poincaré duality theory in the sense of De nition 2.1.10. In particular, for every nite set of closed points ⊆ | | we get an exact sequence

0 → 2,2 M ( ) → 2,2 M ( \ ) - → 1,1 M ( ) → 3,2 M ( ) → 3,2 M ( \ ) → 0 (2.29)
where •,• M (-) denotes motivic cohomology with rational coe cients. This comes from the localisation sequence relative to the closed immersion ↩→ together with the fact that , M ( )

∈ | | , M (Spec( ( ))) (2.30)
for every , ∈ Z because motivic cohomology commutes with disjoint unions (as a very particular case of Nisnevich descent), which shows that , M ( ) = 0 if 2 | , as a consequence of Borel's theorem on the -theory of number elds (see Section 2.3.1). Now, we can let grow in the exact sequence (2.30). Combining this with the identi cation

1,1 M ( ) (2.30) ∈ | | 1,1 M (Spec( ( ))) ∈ | | ( ) × ⊗ Z Q (2.31)
provided by Proposition 2.3.6, we get an exact sequence

0 → 2,2 M ( ) → 2,2 M ( ) - → ∈ | | ( ) × ⊗ Z Q → . . .
where ∈ denotes the generic point. We can now get the isomorphism (2.27) using the identi cation

2,2 M ( ) 2,2 M (Spec( ( ))) ( ( ) × ⊗ Z Q) ⊗2 ⊗ (1 -) : ∉ {0, 1}
provided by Matsumoto's theorem.

Remark 2.3.8. Proposition 2.3.7 is extensively used in Chapter 9, to explicitly construct elements in the motivic cohomology group 2,2 M ( ) associated to a CM elliptic curve de ned over Q. Proposition 2.3.7 is also used in Section 4.4.1, to prove that Boyd's conjectures for a given two-variable polynomial families follow from Beilinson's ones.

From now until the end of this section, we use the notation •,• M to denote motivic cohomology with rational coe cients, as we did in the proof of Proposition 2.3.7.

Remark 2.3.9. We note that for every nite extension of elds ⊆ there exists a norm map

N / : •, M ( ) → •, M ( ) where •, M ( ) := •, M (Spec( )) and •, M ( ) := •, M (Spec( ))
. This norm map is given by the push-forward along the morphism Spec( ) → Spec( ) induced by the inclusion ⊆ .

Before moving on, we record one interesting feature of the localisation sequence (2.29).

Lemma 2.3.10 -Weil's reciprocity law

Let be a regular, connected, projective curve de ned over a number eld , and let ↩→ be a closed nite sub-scheme. Then for every ∈ N we have that

∈ N 1, -1 ( )/ • 2, = 0 (2.32)
where 2, : 2, M ( \ ) → 1, -1 M ( ( )) is the map appearing in the localisation sequence

• • • → 2, M ( ) → 2, M ( \ ) ------→ 2, 1, -1 M ( ( )) -------→ ( ) * 3, M ( ) → . . . (2.33) 2.3 Motivic cohomology Proof. Observe that ( ) * : 1, -1 M ( ( )) → 3, M (
) is the push-forward map associated to the inclusion : Spec( ( )) → giving rise to the point ∈ . This fact gives us the equality * • ( ) * = N ( )/

(2.34) by the functoriality of push-forwards, where : → Spec( ) is the structural morphism. Finally (2.34) gives the equality (2.32) using the fact that the localisation sequence (2.33) is exact.

Remark 2.3.11. We note that the previous proof works only in the smooth projective case because the existence of * is not guaranteed otherwise (see [START_REF] Cisinski | Triangulated Categories of Mixed Motives[END_REF]§ 11.3.4]).

Remark 2.3.12. The usual Weil reciprocity law deals with the motivic cohomology (or thetheory) of the function eld of the curve (see for instance [Wei13, § 6.12.1]). One gets this version of the Weil reciprocity law by letting grow and taking the limit of the equality (2.32).

To conclude this section, we show how to use what we just recalled to construct elements in the motivic cohomology of a curve.

Proposition 2.3.13 -Constructing motivic cohomology classes on a curve

Let be a regular, connected, projective curve over a number eld and let ⊆ ( ) be a nite set of closed points. Assume that there exists 0 ∈ ( ) such that -0 ∈ ( ) ( ) tors for every ∈ , where denotes the Jacobian of . Then the natural restriction map 2,2

M ( ) → 2,2 M ( \ ) admits a natural retraction 2,2 M ( \ ) 2,2 M ( ).
Proof. Let ⊇ be a nite Galois extension, such that all the points of are -rational. Then the identi cation (2.31) gives the isomorphism

1,1 M ( ) ∈ | | ( ) × ⊗ Z Q Q[ ] ⊗ Z ( ) × (2.35)
where Q[ ] denotes the group of divisors with rational coe cients which are supported on . Now the exact sequence (2.29) induces a short exact sequence

0 → 2,2 M ( ) → 2,2 M (( \ ) ) -→ Im( ) → 0
and using Lemma 2.3.10 we can see that, under the isomorphism (2.35), we have that

Im( ) ⊆ Q[ ] 0 ⊗ Z ( ) ×
where Q[ ] 0 ⊆ Q[ ] denotes the Q-vector space of divisors of degree zero. Moreover, we also have that Im(

) = Q[ ] 0 ⊗ Z ( ) × , because ts into the commutative diagram 2,2 M (( \ ) ) Q[ ] 0 ⊗ Z ( ) × 1,1 M (( \ ) ) ⊗ 1,1 M (Spec( )) (O × (( \ ) ) ⊗ Z Q) ⊗ Z ( ) × ∪ ∼ div ⊗ Id
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(O × (( \ ) ) ⊗ Z Q) ⊗ Z ( ) × div ⊗ Id -------→ Q[ ] 0 ⊗ Z ( ) ×
is surjective. This follows from the fact that we are taking rational coe cients, together with the assumption that there exists a point 0 ∈ such that -0 ∈ ( ( )) tors for every ∈ .

We have shown that

2,2 M (( \ ) ) 2,2 M ( ) ⊕ {O × (( \ ) ), ( ) × }
where {O × (( \ ) ), ( ) × } ⊆ 2,2 M (( \ ) ) denotes the subspace of symbols { , } = { }∪{ } where ∈ O × (( \ ) ) and ∈ ( ) × is a constant. To conclude we can use Galois descent for motivic cohomology (see [START_REF] Cisinski | Triangulated Categories of Mixed Motives[END_REF]Theorem 14.3.4]) to get an isomorphism 2,2

M ( \ ) 2,2 M ( ) ⊕ * ({O × (( \ ) ), ( ) × }) (2.36)
where : ( \ ) → \ denotes the Galois covering induced by base change. Then, the retraction 2,2 M ( \ )

2,2 M ( ) is simply given by the projection onto the rst factor in the decomposition (2.36).

We can now use the retraction 2,2 M ( \ )

2,2 M ( ) given by Proposition 2.3.13 to get a map

O × ( \ ) ⊗2 ⊗ Z Q 1,1 M ( \ ) 2,2 M ( \ ) 2,2 M ( ) ⊗ , ∼ ∪ (2.37)
which can be used to construct elements in motivic cohomology. In the case of elliptic curves, (2.37) can be made more explicit, as the following example, due to Bloch (see [Blo00, Proposition 10.1.1]), shows.

Example 2.3.14 (Bloch's trick). Let be an elliptic curve de ned over a number eld . Fix two functions , : → P 1 , and let , ⊆ ( ) denote the set of their zeros and poles. Suppose that , ⊆ tors , where tors := ( ) tors denotes the set of torsion points of de ned over the algebraic closure , and suppose as well that both and have the origin 0 ∈ as their unique pole. Then we have that

, := , { , } - ∈ , \{0} { ({ , }), ( ) , } (2.38) 
where , := |lcm{ord ( ), ord ( ) | ∈ , \ {0}}| ∈ Z ≥1 . Moreover, denotes the map de ned in Proposition 2.3.7, and for every ∈ , the notation ( ) , stands for any function ( )

, : → P 1 de ned over such that div( ( ) , ) = , • (( ) -(0)). It is now easy to see that is bilinear, alternating and invariant by scaling, i.e.

,ℎ = ,ℎ + ,ℎ , and , = -, and , = 0 for every , ∈ → P 1 and ∈ . This shows that we have an alternating, bilinear pairing

[ , ] M : 2 Q[ ( ) tors ] 0,Gal(Q/Q) → 2,2 M ( ) 1 ∧ 2 ↦ → 1 , 2
(2.39)
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where 1 , 2 : → P 1 are any two functions such that div( ) = ord( ) . Here, we de ne the order ord( ) ∈ N of a divisor ∈ Q[ ( ) tors ] 0 to be the smallest natural number ∈ N such that • is a principal divisor. Finally, we observe that

[ 1 , 2 ] M = ord( 1 ) ord( 2 ) [ 1 , 2 ] A for every 1 , 2 ∈ Q[ (Q) tors ] 0,Gal(Q/Q) , where [ , ] A is the pairing de ned in [DW88, Theo- rem 5.1].
Remark 2.3.15. The map (2.37) has a natural generalisation in the context of polylogarithmic motivic complexes, at least conjecturally. More precisely, every pair of functions , ∈ ( ) × de nes an element { } -1 ⊗ ∈ B 2, ( ; Q). For this element to de ne a cohomology class

{ , } ∈ 2, B ( ; Q) it is necessary and su cient to show that 2, ({ } -1 ⊗ ) = 2, ({ } -1 ⊗ ) = 0
as it is easily seen by specialising the construction of the complex B •, ( ; Q) to the case of smooth curves. Let now ⊆ ( ) be the set of zeros and poles of and , and assume that there exists 0 ∈ ( ) such that -0 ∈ ( ) tors for every ∈ . Then one can subtract from { } -1 ⊗ some elements of the form { } -1 ⊗ ℎ, where ∈ is a constant and ℎ ∈ ( ) × , to get a new element ( ) , ∈ B -1 ( ) ⊗ ( ) × such that 2, ( ( ) , ) = 0. The proof uses the same ideas appearing in the proof of Proposition 2.3.13 (which is recovered as the case = 2), together with the conjectural formula

∈ ( ) 2, ({ } ⊗ ) = 0 ∈ B -1 ( )
which is the equivalent of Weil's reciprocity formula for the polylogarithmic motivic complexes (see [START_REF] Rudenko | The Strong Suslin Reciprocity Law[END_REF] for partial results towards the validity of this formula).

Regulators

We have seen in the previous sections that the motivic cohomology •,• M ( ; Λ) of a scheme with coe cients in a ring Λ is an incredibly rich invariant, whose de nition requires a conspicuous amount of setup. Our lack of knowledge about motivic cohomology is also extremely tantalising: on the one hand it is quite di cult to construct motivic cohomology classes, with the notable exception of 1,1 M ( ; Λ) O × ( ) ⊗ Z Λ, and on the other hand it is completely out of reach (as of today) to prove that motivic cohomology groups are nitely generated, with the notable exception of the theorems of Borel. It is therefore natural to attempt to relate the motivic cohomology groups of a scheme to more computable invariants, given for instance by the cohomology theories described in Section 2.1. These relations have the form of regulator maps

? : •,• M (-; Λ) → •,• ? (-; Λ)
between Λ-linear motivic cohomology and some other Λ-linear bi-graded cohomology theory satisfying the axioms of Section 2.1. Regulators can be constructed in one of the following ways:

• from realisation functors ? : DM( ; Λ) → T ? , where T is a triangulated category with Tate twists, whose homomorphisms compute the cohomology theory • from unit maps of ring spectra, whenever •,• ? is represented by a spectrum E ? ∈ DA( ; Λ). More precisely, suppose that there exists a monoid object E ? ∈ DA( ; Λ) (usually called a ring spectrum) and a functorial family of isomorphisms

, ? ( ) Hom DA( ;Λ) ( A 1 ( / ; Λ), E ? ( ) [ ])
for every ∈

, where A 1 ( / , -) : → DA( ; Λ) denotes the functor which sends an -scheme to its motive in the A 1 -homotopy category DA( ; Λ) (see Section 2.2.3).

Then the unit map :

1 → E ? induces maps 1 ( ) [ ] → E ? ( ) [ ].
Applying the covariant functor Hom DA( ; ) ( A 1 ( / ; Λ), -) to these maps, one gets regulator maps

E ? : , M,A 1 ( ; Λ) → , ? ( ; Λ)
where , M,A 1 ( ; Λ) := Hom DA( ;Λ) ( A 1 ( / ; Λ), 1 ( ) [ ]) denotes motivic cohomology computed in the A 1 -homotopy category. We recall that this coincides with the motivic cohomology , M ( ; Λ) computed in DM( ; Λ) if is excellent and geometrically unibranch (e.g. = Spec( ) for a eld ) and Λ is a Q-algebra;

• as a Chern character, using the fact that motivic cohomology is related to -theory (see Section 2.3.1). More precisely, the Chern character is a family of natural transformations ch , : 2 -(-) → , ? (-), from which we get a regulator map using the isomorphism (2.21);

• as cycle class maps (sometimes called Abel-Jacobi maps), using the relation between motivic cohomology and higher Chow groups (see Section 2.3.2). More precisely, the regulator is induced by maps of complexes of sheaves Z •, → ? , where ? are complexes of sheaves on such that , ? ( ) ( ? ( )) for every ∈ ;

• as higher polylogarithms, using the conjectural relations between motivic cohomology and the cohomology of polylogarithmic motivic complexes (see Section 2.3.3). More precisely, the regulator is induced by a map of complexes of sheaves B •, → ? , where again ? are complexes of sheaves on such that , ? ( ) ( ( )) for every ∈ .

As it is probably evident to the reader, the rst three approaches are the most general, and they are the best to ensure the naturality properties of regulator maps, whereas the last two approaches are best for explicit computations. The rst approach, which constructs regulators from realisation functors, has been pursued by a great number of people. Let us mention the works of Huber (see [START_REF] Huber | Realization of Voevodsky's motives[END_REF] and [START_REF] Huber | Corrigendum to "Realization of Voevodsky's motives[END_REF]), Ayoub (see [START_REF] Ayoub | La réalisation étale et les opérations de Grothendieck[END_REF]), Lecomte and Wach (see [START_REF] Lecomte | Le complexe motivique de De Rham[END_REF] and [START_REF] Lecomte | Réalisation de Hodge des motifs de Voevodsky[END_REF]) and Ivorra (see [START_REF] Ivorra | Réalisation ℓ-adique des motifs triangulés géométriques. I[END_REF], [START_REF] Ivorra | Réalisation ℓ-adique des motifs triangulés géométriques II[END_REF] and [START_REF] Ivorra | Perverse, Hodge and motivic realizations of étale motives[END_REF]). We do not use this approach in this thesis, except from mentioning it in passing in Remark 2.4.7. Remark 2.4.1. Suppose that a bi-graded cohomology theory •,• ? is represented by a ring spectrum E ? ∈ DA( ; Λ), i.e. suppose that we can apply the second approach to the construction of a regulator map. Then we can de ne T ? to be the triangulated category of E ? -modules inside DA( ; Λ), and we can de ne a realisation functor ? : DA( ; Λ) → T ? by setting ? ( ) := ⊗E ? for every ∈ DA( ; Λ). This shows that each time a cohomology theory is represented by a motivic spectrum, it can also be obtained as homomorphisms in a category of realisations. Of course, the construction of the category T ? is of a non explicit nature, which is in stark contrast to the usual categories of coe cients, like the category of mixed Hodge structures (or mixed Hodge modules), Ekhedal's category for ℓ-adic sheaves and so on.

The previous remark shows that the rst approach to construct regulator maps is somehow a special case of the second. The following result, due to Déglise and Mazzari (see [DM15, Proposition 1.4.10]), allows one to represent a Λ-linear cohomology theory •,• ? by a motivic spectrum E ? ∈ DA( ; Λ), as long as this cohomology theory is de ned by a family ? of Λ-linear Nisnevich sheaves on , via the formula , ? ( ) := ( ? ( )).

Theorem 2.4.2 -Motivic spectra associated to cohomology theories

Let Λ be a Q-algebra, and let ( ) ∈N ⊆ (Sh Nis ( ; Λ)) be a family of complexes of Nisnevich sheaves : op → Mod Λ on the category of smooth schemes of nite type over a Noetherian, nite dimensional base . Suppose that:

• the cohomology of each complex is A 1 -homotopy invariant, i.e. for every scheme ∈ the canonical map A 1 → induces isomorphisms

( ( )) -→ ∼ ( (A 1 ))
for every , ∈ Z;

• there exists a unit map : Λ → 0 (where Λ ∈ (PSh( ; Λ)) denotes the constant presheaf concentrated in degree zero) and a family of product maps , : ⊗ → + for every , ∈ N, such that the diagrams appearing in Figure 2.2 commute;

• there exists a map :

Λ(G , ) → 1 [1],
where Λ(G , ) ∈ PSh( ; Λ) denotes the presheaf given by Λ(G , ) ( ) := Hom( , G , ) ⊗ Z Λ. Moreover, for every ∈ and every , ∈ N the map

( ( )) --→ •× +1 ( +1 ( × G , )) Coker( * )
is an isomorphism, where := (Id G , ) ∈ 1 ( 1 (G )), : × G , → is the canonical projection and × denotes the exterior product

( ( )) ⊗ ( ( )) -→ × + ( + ( × ))
induced by the maps , .

Then the collection ( ) ∈N gives rise to a spectrum E ∈ Sp Nis ( ; Λ), and we have isomorphisms

( ( )) Hom DA( ;Λ) ( A 1 ( / ; Λ), E( ) [ ])
for every , ∈ N and every ∈

, where E ∈ DA( ; Λ) denotes the motive corresponding to E. This isomorphism is compatible with products and functorial in , and the construction of E is functorial in the families {( ), , , } and in the choice of . Here

A 1 (-/ ; Λ) : → DA( ; Λ) denotes the functor A 1 ( ) := * ( ( / ; Λ)) = Σ ∞ (Λ( ))
sending a scheme to its motive (see Section 2.2.3).
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Chapter 2 Cohomology theories, motives and regulators Remark 2.4.3. The commutativity of the diagrams appearing in Figure 2.2 can be relaxed by asking that the diagrams "Unit" and "Associativity" are commutative up to homotopy, or that all three are commutative up to coherent homotopy (see [START_REF] Bunke | The Beilinson regulator is a map of ring spectra[END_REF]).

⊗ Λ ⊗ 0 Id ⊗ ∼ ,0 (a) Unit ⊗ + ⊗ , ∼ , (b) Commutativity ( ⊗ ) ⊗ + ⊗ + + ⊗ ( ⊗ ) ⊗ + ∼ , ⊗Id + , Id ⊗ , , + (c) Associativity 
One can apply Theorem 2.4.2 to essentially all the cohomology theories mentioned in Section 2.1.3. Let us mention a few examples explicitly.

Example 2.4.4 (Betti cohomology). Take = Spec( ) with ⊆ C and Λ ⊆ R, one can de ne B ( ;

Λ) := • ( (C); (2 ) • Λ) to be the singular cochain complex. Then Theorem 2.4.2 gives B ∈ DA( ; Λ) such that Hom DA( ;Λ) ( A 1 ( ), B( ) [ ]) sing ( (C); (2 ) Λ)
for every of nite type over C. This gives rise to a Betti regulator map

B : , M,A 1 ( ; Λ) → , B ( ; Λ)
for every of nite type over C.

Example 2.4.5 ( ltered de Rham cohomology). Take to be a scheme and Λ = 0 ( ; O ). Assume that, for every ∈ , the category of good compacti cations ↩→ (see Example 2.1.22) is directed and functorial, by which we mean that for every : → and every pair of good compacti cations : ↩→ and : ↩→ there exists : → such that • = • . As it is shown in [START_REF] Deligne | Théorie de Hodge : II[END_REF], these conditions are satis ed if has resolutions of singularities, for instance if = Spec( ) where is a eld of characteristic zero. We de ne

dR ( ) := lim --→ ↩→ 0 ( , Gdm(Ω ≤ / (log( \ ))))
where 

( ;Λ) ( A 1 ( ), DB C ( ) [ ]) , D ( C ; R)
for every which is smooth and of nite type over . This gives rise to regulator maps

DB C : , M,A 1 ( ; R) → , D ( C ; R)
for every which is smooth and of nite type over . A similar construction can be applied to real Deligne-Beilinson cohomology (by taking complex conjugation into account), and gives rise to a spectrum DB R ∈ DA( ; R) for every sub-eld ⊆ R. In this way we get regulator maps

DB R : , M,A 1 ( ; R) → , D ( R ; R)
for every which is smooth and of nite type over a eld ⊆ R. For more details, we refer the reader to [BZ20, § A.3].

Remark 2.4.7. Since Example 2.4.6 uses the complexes constructed by Burgos Gil, we get a regulator map only with real coe cients. One way to get regulator maps with general coe cients is to use the realisation approach. This is explained in [Hub00, Corollary 2.3.5], [START_REF] Lecomte | Réalisation de Hodge des motifs de Voevodsky[END_REF] and [START_REF] Ivorra | Perverse, Hodge and motivic realizations of étale motives[END_REF].

Example 2.4.8 (ℓ-adic cohomology). Take = Spec( ) for some eld with a xed algebraic closure , and x Λ = Q ℓ for some rational prime ℓ ∈ N. Then one can de ne

ÉT ℓ 0 ( ) := lim --→ X lim --→ lim ← -- lim --→ Ω • ( 0 ( ˇ (X tot / )), Z/ℓ Z) ⊗ Z ℓ Q ℓ (2.40)
where X runs over all the non-empty nite families of étale fundamental systems. In other words, X = {X (1) , . . . , X ( ) } and

X ( ) := • • • X ( ) +1 X ( ) • • • X ( ) 1 X ( ) 0 =
is a sequence of surjective étale coverings X ( ) such that every surjective étale covering factors through a surjective étale covering X ( ) for some ∈ N. Moreover, for every étale covering → one de nes the Čech simplicial scheme

ˇ ( / ) := × • • • ×
times and for every one de nes X tot to be the simplicial scheme whose -th component X tot is the bre product

X tot := X (1) × • • • × X ( )
where = {X (1) , . . . , X ( ) }. Finally, for every scheme and every ring one denotes by Ω • ( , ) the " { }-de Rham complex" de ned in [START_REF] Deligne | Représentations ℓ-adiques[END_REF]§ 5.1.4]. Here { } denotes the divided power polynomial algebra on (see [SP, Section 07H4]), and the injective limit lim --→ appearing in (2.40) is taken with respect to the -grading on Ω • ( , ) (see [START_REF] Deligne | La conjecture de Weil II[END_REF]Page 238]).

One now de nes ÉT ℓ ( ) := ÉT ℓ 0 ( ) ⊗ ÉT ℓ 0 (G ) [-] for every ∈ N, and Theorem 2.4.2 gives a spectrum ÉT ℓ ∈ DA( ; Q ℓ ) with the property that

Hom( A 1 ( ), ÉT ℓ ( ) [ ]) , ℓ ( )
for every which is smooth and of nite type over .

Example 2.4.9 (Syntomic cohomology). Take = Spec(O ) where is a nite extension of Q for some prime ∈ N, and take Λ = Q . Then Déglise and Mazzari start from Theorem 2.4.2 to construct a spectrum SYN ∈ DA(O ; Q ) which represents syntomic cohomology (see Remark 2.1.24). In particular, we get regulator maps

SYN : , M,A 1 ( ; Q ) → , syn ( ; Q )
for every which is smooth and of nite type over O .

Remark 2.4.10. Syntomic cohomology is generally believed to be the non-Archimedean analogue of Deligne-Beilinson cohomology, and this analogy can be made precise in multiple ways. For example, they both arise as "absolute Hodge cohomologies", i.e. as extensions in the categories of mixed Hodge structures over the given complete local eld . This is the usual category of mixed Hodge structures if ∈ {R, C}. On the other hand, [DN18, § 2.6] suggests that Fontaine's category of admissible, ltered ( , , Gal( / ))-modules can be regarded as a category of mixed Hodge structures if is a non-Archimedean local eld. Moreover, as Deligne-Beilinson cohomology is expected to be related to (Archimedean) -functions by the Beilinson conjecture (see Conjecture 3.3.18), syntomic cohomology is expected to be related to -adic -functions.

For these reasons, we believe that it is not unreasonable to introduce the following notation: for every number eld and every place ∈ we denote by

: , M,A 1 ( ; Q ) → , M,A 1 ( ; Q ) → , A H, ( ; Q ) (2.41)
the regulator map associated either to syntomic cohomology (when is non-Archimedean) or to Deligne-Beilinson cohomology (when is Archimedean). More precisely, the rst map appearing in (2.41) is induced by base-change to , and the absolute Hodge cohomology groups are de ned by

, A H, ( ; 
Q ) := , syn ( ; Q ), if < +∞ , D ( ; R), if = +∞ where
∈ Q denotes the place lying under . With this notation in mind, the second map in (2.41) is either the syntomic regulator introduced in Example 2.4.9 or the Deligne-Beilinson regulator introduced in Example 2.4.6.

Let us conclude this section with a brief review of the other three approaches to construct regulator maps:

• Gillet has proved in [START_REF] Gillet | Riemann-Roch theorems for higher algebraic -theory[END_REF] that one can construct a Chern character associated to each cohomology theory which can be de ned as the Zariski hypercohomology of a graded family of complexes of Zariski sheaves. This result may be regarded as a -theoretic analogue of Theorem 2.4.2, and has been generalised in [START_REF] Burgos Gil | Cohomological arithmetic Chow rings[END_REF].

Regulators

• explicit cycle class maps for Deligne-Beilinson cohomology have been constructed by Bloch (see [START_REF] Bloch | Algebraic cycles and the Beilinson conjectures[END_REF]§ 4]) at the level of cohomology groups, and by Goncharov (see [START_REF] Goncharov | Chow polylogarithms and regulators[END_REF]§ 5.3] and [Gon05, Theorem-Construction 2.3]) at the level of complexes. Goncharov's construction has been re ned by multiple authors: Kerr's thesis gave an integral version of Goncharov's construction (see [START_REF] Kerr | Geometric construction of regulator currents with applications to algebraic cycles[END_REF]§ 2.4.1] and [START_REF] Kerr | The Abel-Jacobi map for higher Chow groups[END_REF]), and the thesis of Fan re ned this construction to the étale hypercohomology of the sheaves given by Bloch's complexes (see [START_REF] Fan | On the Construction of Higher étale Regulators[END_REF]). Moreover, Burgos Gil and Feliu [START_REF] Burgos Gil | Higher arithmetic Chow groups[END_REF] have replaced the Deligne complex of currents used by Goncharov with the complexes D • log ( , ) (see Example 2.1.22) and Bloch's simplicial techniques with Totaro's/Levine's cubical ones, to give another construction of the cycle class map at the level of complexes, which was shown to be compatible with Beilinson's regulator in [START_REF] Burgos Gil | On Goncharov's Regulator and Higher Arithmetic Chow Groups[END_REF];

• nally, Goncharov has constructed a regulator map for the polylogarithmic motivic complexes B •, ( ; Z) in [START_REF] Goncharov | Explicit regulator maps on polylogarithmic motivic complexes[END_REF].

Deligne-Beilinson cohomology of curves over the reals

The aim of this section is to give a more explicit description of Deligne-Beilinson cohomology (with real coe cients) for a smooth algebraic curve de ned over R, which is used in Chapter 9. In particular, we only need the groups 1,1 D ( ; R) and 2,2 D ( ; R) for a smooth algebraic curve de ned over R. Hence it is su cient to recall how to compute the Deligne-Beilinson cohomology groups , D ( ; R) for a smooth variety de ned over R or C. In order to do so, we follow [Nek94, §7.3], which is a special case of [BKK07, De nition 5.50] (see also Example 2.1.22).

Let us start by introducing the following notation:

• an analytic space over R can be seen as a pair ( , ∞ ) where is a complex analytic space and ∞ : → is an anti-holomorphic involution (see [START_REF] Tognoli | Proprietà globali degli spazi analitici reali[END_REF]Teorema 14]). Moreover, a sheaf S on can also be seen as a pair (T , ) where T is a sheaf on and : * ∞ (T ) → T is an isomorphism whose inverse is * ∞ ( ); • for every algebraic variety over C we denote by (C) the usual complex analyti cation, given by the set of complex points endowed with the complex analytic topology. If is an algebraic variety over R we denote by an the real analytic space ( C (C), ∞ ) where ∞ is complex conjugation (on points); • for every subgroup ⊆ C and every ∈ Z we write ( ) := (2 )

⊆ C and we denote by : C → R( ) the projection map given by ( ) := ( + (-1) )/2. If is a complex analytic space we denote by ( ) the constant sheaf with value ( ), and if = ( , ∞ ) is a real analytic space we denote by ( ) the pair ( ( ), ( )), where

( ) : * ∞ ( ( )) = ( ) → ( )
denotes complex conjugation (on coe cients);

• for every smooth complex analytic space we denote by A •, ( ) the complex of smooth di erential forms with values in R( ). If is a smooth real analytic space given by the pair ( , ∞ ) we write A •, ( ) := A •, ( ) * ∞ where ( ) denotes again the action of complex conjugation on the coe cients of the di erential forms. If is an algebraic variety over C (respectively, over R) we write A •, ( ) := A •, ( (C)) (resp. A •, ( ) := A •, ( an ));

• a good compacti cation of a morphism : → of schemes (or analytic spaces) is a factorisation = • where : ↩→ is an open immersion, : → is proper and \ ( ) is a divisor with normal crossings. Moreover, if : → is smooth we assume that : → is also smooth. When = Spec( ) and is a eld of characteristic zero, we always have a good compacti cation, and any two good compacti cations are dominated by a third one (see [Del71, §3.2.II]). When is a smooth curve over a eld, then a good compacti cation is simply a smooth, proper curve with an open immersion : ↩→ such that \ ( ) is nite;

• if : ↩→ is a divisor with normal crossings on , and : \ ↩→ is the complementary open immersion, we denote by Ω • ⊆ * (Ω • \ ) the complex of sheaves of di erential forms with logarithmic singularities along (see [START_REF]The Stacks project authors[END_REF]De nition 0FUA]). This makes sense for schemes and also for analytic spaces. The global sections Ω • ( ) ⊆ Ω • \ ( \ ) can be interpreted as (algebraic, smooth or holomorphic) di erential forms on \ which have at worst logarithmic singularities "at in nity";

• for every smooth variety de ned over C and any good compacti cation ↩→ we de ne the complex

F • ( ↩→ ) := Ω • (C) ( \ ) (C) ( (C))
which, up to quasi-isomorphism, is independent from the choice of a good compacti cation (see [BKK07, Theorem 5.46]). For this reason, we usually abuse notation and write

F • ( ) := F • ( ↩→ );
• if is a smooth variety de ned over R and ↩→ is a good compacti cation we de ne the complex

F • ( ↩→ ) := F • C ↩→ C * ∞
and we abuse again notation, denoting it by F • ( ).

Using this notation, we can introduce the following explicit way of computing motivic cohomology in terms of di erential forms, following [Nek94, §7.3] (see also [START_REF] Cauchi | On Higher regulators of Siegel varieties[END_REF]§ 4.1]). 

{( , ) ∈ A -1, -1 ( ) ⊕ F ( ↩→ ) : ( ) = -1 ( )} (A -2, -1 ( ))
where ↩→ denotes any good compacti cation. In particular, we have that

+1, +1 D ( ; R) ( ; R( ))
for every -dimensional variety .

2.5 Deligne-Beilinson cohomology of curves over the reals Remark 2.5.2. We have an explicit description (see [EW99, § 3, 10]) of the cup product

, D ( ) ⊗ , D ( ) → + , + D ( ) [( 1 , 1 )] ⊗ [( 2 , 2 )] ↦ → [( 1 ∧ ( 2 ) + (-1) ( 1 ) ∧ 2 , 1 ∧ 2 )]
and of Beilinson's regulator map

∞ : O × ( ) ⊗ Z Q 1,1 M ( ) → 1,1 D ( ) ⊗ 1 ↦ → [(log| |, log( ))] which gives us the equality ∞ ({ , }) = [(log| | arg( ) -log| | arg( ), 0)] for every pair of functions , ∈ O ( ) × . Here { , } ∈ 2,2 M ( ) denotes the cup product of the two motivic cohomology classes { }, { } ∈ 1,1 M ( ) O ( ) × ⊗ Z Q. Remark 2.5.3.
For every -dimensional smooth algebraic variety over R or C we have an integration pairing , :

F ( ) ⊗ ( (C); R) → C ⊗ ↦ → , := ∫ (2.42)
between di erential forms and singular homology classes. If is proper then there is another integration pairing

A , ( ) ⊗ A , ( ) → R ⊗ ↦ → 1 ( ) ∫ C (C)
∧ between di erential forms, which is related to the rst one by Poincaré duality (see [Bos92, § A.2.5]).

Let now be a smooth curve over C, let ∈ C × and let ∈ O ( ) × . We can use the explicit descriptions provided by Remark 2.5.2 to compute the pairing of the regulator of the symbol { , } ∈ 2,2 M ( ) with a homology class ∈ 1 ( ; Z). To make this precise, let us recall some elements from the theory of Riemann surfaces, following [Bos92, Appendix A].

Remark 2.5.4. Let be a complex compact Riemann surface of genus . Then the rst singular homology group 1 ( ; Z) supports an intersection pairing # : 1 ( ; Z) ⊗2 → Z which is bilinear and anti-symmetric. Moreover, 1 ( ; Z) Z 2 , where ∈ N denotes the genus of , and there exists a Z-basis { , } , =1,..., ⊆ 1 ( ; Z) which is symplectic, i.e. for every , ∈ {1, . . . , } we have that # = # = 0 and # = , where , ∈ {0, 1} denotes Kronecker's symbol (i.e. , = 1 if = , and , = 0 otherwise). Now, let ⊆ be a nite set of points and let : \ ↩→ denote the canonical inclusion. Then for every symplectic basis { , } ⊆ 1 ( ; Z) and every point ∈ \ there exist smooth loops { , : [0, 1] → \ } , =1,..., such that: • the vectors { (0), (0), (1), (1)} , ∈1,..., ⊆ ( ) are pairwise non-collinear;

• (0) = (0) = (1) = (1) = for every , ∈ {1, . . . , }; • (]0, 1[) ∩ (]0, 1[) = ∅
• the loops • and • are representatives of the homology classes , ∈ 1 ( ; Z).

We commit a slight abuse of notation, and denote by , ∈ 1 ( (C) \ ; Z) the classes associated to the loops , : [0, 1] → \ . Now, observe that the loops , correspond to a canonical dissection (Δ, ) of with ⊆ (Δ • ). More precisely, for every choice of { , } as above there exists a polygon Δ ⊆ R 2 with 4 edges, an open ⊆ R 2 such that Δ ⊆ and a surjective smooth map : such that Δ • is a di eomorphism onto \ where

:= ( [0, 1]) ∪ ( [0, 1])
is the union of all the loops given by and . Each loop or corresponds to precisely two edges of Δ under , which are glued together with the same orientation (see [Bos92, Figure 23]).

To conclude, observe that for every ∈ we can de ne a loop : [0, 1] → Δ \ -1 ( ) → \ , where the map [0, 1] → Δ \ -1 ( ) is a small circle around -1 ( ) connected to one vertex of Δ by a straight line. Let ∈ 1 ( \ ; Z) be the singular cohomology class associated to , which does not depend on the choice of the small circle if all the circles { } ∈ are pairwise disjoint and oriented coherently. Then we have an exact sequence

0 → Z → Z → 1 ( (C) \ ; Z) → 1 ( (C); Z) → 0 { } ∈ ↦ → ∈ (2.43)
where the map Z → Z is the diagonal one. In particular, for every 0 ∈ the set

{ , , | , ∈ {1, . . . , }, ∈ \ { 0 }}
is a basis of 1 ( \ ; Z). This can be easily shown using the Mayer-Vietoris exact sequence (see [START_REF] Spanier | Algebraic topology[END_REF]§ 4.6]).

Let us now use Remark 2.5.4 to compute the pairing that we announced.

Proposition 2.5.5 -Regulator pairings on a punctured curve Let be a smooth, proper algebraic curve over C of genus , and let ⊆ (C) be a nite set of points. Let (Δ, ) be a canonical dissection of (C) such that ⊆ (Δ • ) and let , , be the homology classes associated to (Δ, ). Then we have that

∞ \ ({ , }), = ∞ \ ({ , }), = 0 (2.44) ∞ \ ({ , }), = log| ({ , })| = ord ( ) log| | (2.45)
for every ∈ C, every ∈ C( ) such that ⊆ , every , ∈ {1, . . . , } and every ∈ .

Proof. The computation (2.44) follows from the fact that ∫ (C) (log( )) ∧ = 0, whereas (2.45) is an application of Jensen's formula, as explained in [Rod99, Page 25].

Deligne-Beilinson cohomology of curves over the reals

To conclude this section let us introduce some notations concerning the cohomology of elliptic curves de ned over the reals. Notation 2.5.6. Let be an elliptic curve de ned over R. We introduce the following notation:

• (R) 0 ⊆ (R) denotes the connected component of the identity;

• ∈ F 1 ( ) the unique di erential form such that ∫ (R) 0 = 1. We clearly have that ∈ 1 ( an ; Q(1)), because 1 ( an ; Q) is generated by the homology class of (R) 0 ;

• 1 ( (C); Q) -⊆ 1 ( (C); Q) denotes the subspace of homology classes which are antiinvariant by complex conjugation;

• ∈ 1 ( (C); Q) -denotes the Poincaré dual of .
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Chapter 2 Cohomology theories, motives and regulators

L-functions and their special values

The function of freedom is to free someone else.

Toni Morrison, Commencement speech at Barnard College, 1979

As we have seen in the previous chapter, the category of algebraic varieties is a very chaotic one. It is in particular very di cult to describe the sub-objects of a product of two algebraic varieties, and we have seen how one can use the closed sub-varieties of × to form the graded module of correspondences C • ( , ) Λ , and from this a category of Λ-linear motives, which is an attempt to linearise the category of varieties.

In order to understand even better algebraic varieties, one could attempt to associate to their cohomology groups an invariant which is more computable. If we consider the ℓ-adic cohomology of algebraic varieties, then -functions provide such an invariant, which allows one to put together into an analytic object the data concerning the Galois action on the ℓ-adic cohomology groups. This idea rests on Chebotarëv's density theorem (see [Neu99, Chapter VII, Theorem 13.4]). More precisely, let : G → be a continuous group homomorphism from the absolute Galois group G := Gal( / ) to a topological group , and assume that (I ) = 1 for all non-Archimedean places ∈ 0 \ , where ⊆ 0 is nite and I ⊆ G ⊆ G denotes the inertia group of the absolute Galois group G := Gal( / ) of the -adic completion of . Then, for every ∈ 0 the group G /I Gal( / ) is generated by the geometric Frobenius

:= Φ -[ : F ] ,
where Φ : ( ) 0 → ( ) 0 is the automorphism of the maximal unrami ed extension ⊆ ( ) 0 which lifts the automorphism : → of the algebraic closure of the residue eld , de ned by setting ( ) := , where ∈ N is the characteristic of . Now, Chebotarëv's density theorem implies that our continuous group homomorphism : G → is determined by the values { ( ) : ∈ 0 \ }, which are well de ned because (I ) = 1 for all ∈ 0 \ . In the case when = GL( ) for some topological module , one can observe that the characteristic polynomials of ( ) determine up to semi-sempli cation. The -function associated to is a way of putting together all these characteristic polynomials.

-functions have been the cornerstone of numerous developments in number theory since the introduction of Riemann's -function. First of all, -functions conjecturally provide a factorisation of the Hasse-Weil -function associated to integral models X of algebraic varieties de ned over a number eld . Henceforth the study of the location of zeros of -functions allows one to obtain some information about the asymptotics of the number of points X(O / ) as → +∞, for any prime ideal ⊆ O .

Moreover, -functions are at the centre of two far-reaching sets of conjectures: the Langlands program, whose aim is to relate algebraic varieties (and motives) to automorphic representations, and the Deninger program, whose aim is to relate algebraic varieties (and motives) to dynamical systems. One expects to be able to attach -functions both to motives and to automorphic forms/dynamical systems, and the Langlands and Deninger programs may be considered as a "lift", at the level of the objects themselves, of the correspondences that are apparent at the level of -functions. We do not touch on these topics in this chapter, and we refer the interested reader to [START_REF] Clozel | Motifs et formes automorphes: applications du principe de fonctorialité[END_REF] and [START_REF] Deninger | Some analogies between number theory and dynamical systems on foliated spaces[END_REF] for further details.

Finally, the values and the derivatives of -functions of algebraic varieties at the integers play a pivotal role. On the one hand, they are conjectured to be related to the regulators which were introduced in Section 2.4, and on the other hand it is known by work of Deninger that one can recover an -function from its values at the integers (see Section 3.1). The study of these special values was initiated by the work of Euler on (2) = 2 /6, and continued by the work of Dirichlet on the evaluation of the special value * (1) for every imaginary quadratic eld , which was extended by Hecke to any number eld. Birch and Swinnerton-Dyer then investigated the special values * ( , 1) of -functions associated to elliptic curves, and their conjectures were extended by Tate to higher dimensional abelian varieties. The revolutionary work of Beilinson then introduced a framework for the study of the special values * ( , ) of any motive at any integer ∈ Z. The conjectural relations studied by Beilinson hold up to a non-zero rational number (or, more generally, up to an element of × , where is the number eld over which the motive is de ned), but the subsequent work of Bloch and Kato, further precised by Fontaine and Perrin-Riou, gives a conjecture which predicts the special values * ( , ) up to sign (or, more generally, up to an element of O × ). The work on these conjectures is still ongoing to this day: we mention among others the equivariant generalisation of the conjecture of Bloch and Kato carried out by Burns and Flach, the work of Flach and Morin on arithmetic schemes and the work of Braunling, which gives a more categorical formulation of the conjecture of Burns and Flach. We give precise statements and references for these conjectures in Section 3.3.2.

If these conjectures on special values were true, these values could be considered as a form of height, because they would be related to regulators. In particular, it is interesting to study Diophantine properties of special values of -functions, such as the Northcott, Bogomolov and Lehmer properties de ned in Section 1.1. We devote Section 3.4, which is based on joint work in progress with Fabien Pazuki, to show some initial examples of relations between heights and special values of -functions, and some Diophantine properties satis ed (at least conjecturally) by the latter.

Dirichlet series and their special values

The aim of this section is to describe a set of functions : C → C which can be recovered by their values at almost all positive integers. This set contains all the holomorphic functions that can be expressed as a Dirichlet series ( ) = -∞ / , and thus in particular all the -functions that are usually considered in number theory. This can be seen as a motivation for the conjectures on special values of -functions, which are outlined in Section 3.3.2. Indeed, a combination of the results in this section with the conjectures in question shows that one can think about the motivic -function ( , ) as a set of arithmetic invariants associated to , corresponding to the special values { * ( , ) : ∈ Z}.

Let us start by de ning the ambient space which contains the sequences of special values of our functions. This is a C-algebra A given by

A := {( 0 , a) | 0 ∈ Z, a = ( ) ≥ 0 ∈ C Z ≥ 0 }/∼ A (3.1)
where the equivalence relation ∼ A is de ned by setting a ∼ A b if and only if there exists 0 ∈ Z such that = for every ≥ 0 .
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By analogy, we de ne an ambient space of functions F which contains all the functions that can be recovered from their special values. This is the C-vector space

F := {( , ) | ∈ R, : ℜ → C is holomorphic}/∼ F
where ℜ := { ∈ C | ( ) > } and ∼ F is de ned by setting ( 1 , 1 ) ∼ F ( 2 , 2 ) if and only if there exists ∈ R such that ≥ max( 1 , 2 ) and ( ) = ( ) for every ∈ ℜ . Using the evident compatibility between ∼ A and ∼ F we get a map

: F → A [( , )] ↦ → 0 , ( ( )) ≥ 0 (3.2)
where 0 := min{ ∈ Z | > }. We should think about as the map sending a function to its sequence of "special" values ( ) ∈ C at the integers.

Remark 3.1.1. As we point out later in this chapter, for every meromorphic function : C → C and every 0 ∈ C one usually de nes the special value as * ( 0 ) := lim

→ 0 ( ) ( -0 ) ord = 0 ( ) ∈ C × where ord = 0 ( ) ∈ Z is the unique integer ∈ Z such that lim → 0 ( -0 ) -( ) ∈ C × .
The relation between this de nition and the map comes from the following observation. Let ( , ) ∈ F be a pair with the property that there exist > and a collection of holomorphic functions { : ℜ → C} ∈ indexed over some set ⊆ N such that can be expressed as an Euler product

( ) = ∈ ( ) -1 (3.3)
for every ∈ ℜ . Then * ( ) = ( ) for every ∈ Z such that > , because is holomorphic in ℜ ⊇ ℜ and (3.3) shows that if ( ) = 0 then ( ) ≤ .

Let us now see how to de ne a partial right inverse to . In order to do so, we de ne P to be the C-vector space

P :=          ( , , ) ⊆ C is open, R ≤0 ⊆ : \ {0} → C is holomorphic ∈ R and | ( )| = (| | ) as → -∞          /∼ P
where ∼ P is the equivalence relation de ned by saying that ( 1 , 1 , 1 ) ∼ P ( 2 , 2 , 2 ) if and only if there exists ⊆ C open such that 0 ∈ ⊆ 1 ∩ 2 and there exists a Laurent polynomial ∈ C[ ±1 ] such that 1 ( ) -2 ( ) = ( ) for every ∈ \ {0}. Now, we can restrict our set of admissible sequences of special values as follows.

Dirichlet series and their special values

De nition 3.1.2 -Admissible sequences of special values

Let A be the set de ned in (3.1). We de ne A ⊆ A to be the set of those a ∈ A such that:

• there exists a neighbourhood of the origin ⊆ C such that the Laurent series

+∞ =-∞
converges for every ∈ \ {0};

• there exist an open ⊆ C and a holomorphic function a :

\ {0} → C such that R ≤0 ∪ ⊆ and a ( ) = +∞ =-∞
for every ∈ \ {0};

• there exists ∈ R such that | ( )| = (| | ) as → -∞.
Moreover, we de ne F := -1 (A ).

Note that A is well de ned, because if a ∼ A b then +∞ =-∞ -+∞ =-∞ ∈ C[ ±1 ]
, hence one of the two Laurent series converges if and only if the other converges (away from zero) and one of them can be analytically continued if and only if the other can be analytically continued. Moroever, the compatibility between ∼ A and ∼ P gives us a well-de ned map

Ψ : A → P [a] ↦ → [( , a , )]
where ⊆ C and ∈ R are as in De nition 3.1.2. The next theorem (see [Den00, Theorem 2.1]) shows that the special value map : F → A admits an explicitly de ned, C-linear right inverse.

Theorem 3.1.3 -Recovering a function from its special values

Let A and F be the C-vector spaces de ned in De nition 3.1.2, and let : F → A be the special value map de ned in (3.2). Then the map

: P → F [( , , )] ↦ →        , ( ) : ℜ → C ↦ → 1 2 ∫ -( )        is well de ned. Moreover, (Ψ(A )) ⊆ F and • • Ψ = Id A .
Here ⊆ denotes any loop which starts from -∞, goes around the origin counterclockwise and returns to -∞ (see Figure 3.1). Thus, if we de ne F := (Ψ(A )) ⊆ F and A := A we have a C-linear isomorphism : F -→ ∼ A whose C-linear inverse is • Ψ. Proof. First of all, for every [( , , )] ∈ P there exists ∈ R such that

∫ -( ) ≤ ∫ ∩ℜ -( ) + ∫ \ℜ | | 1+ ( )-
and the residue theorem [SS03, Chapter 3, Theorem 2.1] shows that for every rational function ∈ C( ) which does not have any pole in R ≤0 we have the formula 1 2

∫ -( ) = - 0 ∈C\R ≤0 Res = 0 ( ( ) • 1-)
for every ∈ ℜ , where = deg( ) is the degree of the rational function ( ) and ⊆ C denotes any path which starts from -∞, goes around the origin counterclockwise, returns to +∞ and avoids the poles of in its interior. The combination of these two computations shows that ( ) : ℜ → C is well de ned (i.e. the de nition is compatible with ∼ P ) and holomorphic.

Another application of the residue theorem shows that (Ψ(a)) ( ) = for every a ∈ A and every > , where ∈ R is taken as in De nition 3.1.2. This shows immediately that (Ψ(A )) ⊆ F and in fact that

• • Ψ = Id A . Example 3.1.4

. Let us mention a few examples of the values of the function •

Ψ : A → F : • if ∈ C \ R ≤0 then a := [( -) ≥0 ] ∈ A and (Ψ(a)) = -:= exp(-(log| | + arg( ) • ) • )
where the argument is normalised by arg( ) ∈ (-, ];

• if a := (1/ !) ≥0 then a ∈ A and (Ψ(a)) ( ) = ( ) ( ) = 1 2 ∫ +1 = 1 Γ( + 1)
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where the last equality follows from [WW96, § 12.22];

• if we take a := (-+1 ( )/( + 1)!) ≥-1 where ∈ R, 0 < ≤ 1 and ( ) ∈ Q[ ] denotes the -th Bernoully polynomial, then a ∈ A and we have that

(Ψ(a)) ( ) = 1 - ( ) = (-, ) Γ( + 1)
where ( , ) := +∞ =0 ( + ) -denotes Hurwitz's zeta function (see [START_REF] Whittaker | Cambridge Mathematical Library[END_REF]§ 13.13]). This shows that our interpolation procedure explained in Theorem 3.1.3 recovers the most commonly known interpolation procedures: the function -de ned as a function which interpolates the well de ned values -, and the Γ-function as an interpolation of factorials. Theorem 3.1.3 shows that any holomorphic function : ℜ → C such that [( , )] ∈ F can be recovered from any subset of its special values having the form { * ( ) | ≥ 0 } for some 0 ∈ Z. However, the de nition of F is somehow implicit, and it is di cult in general to decide whether or not [( , )] ∈ F . The next theorem, which is also due to Deninger (see [Den00, Theorem 3.2]), shows that a certain interpolation formula of Hardy and Ramanujan allows one to provide an explicit class of functions F such that F ⊆ F . 

F :=                ( 0 , , , , ) 0 , , ∈ R, < : ℜ 0 → C is holomorphic : R → R >0 , ∈ 1 (R), lim →±∞ ( ) = 0 | ( )| ≤ ( ( )) • ( )+ | ( ) | , ∀ ∈ ℜ 0                /∼ F
where ( 0 , , , , ) ∼ F ( 0 , , , , ) if and only if there exists 1 ∈ R such that 1 ≥ max( 0 , 0 ) and ( ) = ( ) for every ∈ ℜ 1 . Then the map

: F → F [( 0 , , , , )] ↦ → [( 0 , )]
is well de ned and injective. Moreover, (F ) ⊆ F .

Proof. It is clear from the de nitions of ∼ F and ∼ F that is well de ned and injective, hence we only have to check that (F ) ⊆ F . To do this, x some element [( 0 , , , , )] ∈ F and let 0 := min{ ∈ Z | > }. Then the power series +∞ = 0 ( ) • converges absolutely in the punctured disc 0 < | | < -. Fix now , ∈ R such that 0 -1 < < 0 < , and for every ∈ R >0 consider the contour ( ,

) = 1 ( , ) + • • • + 4 ( , )
given by the boundary of the square [ , ] × [-, ] oriented counterclockwise (see Figure 3.2). Then the residue theorem shows that 1 2 for every ∈ R such that --< < 0. Indeed, one has that

∫ ( , ) sin( ) • ( ) (-) = 0 ≤ < ( ) (3 
∫ +∞ -∞ sin( ( + )) ( + ) (-) + ≤ 1 ∫ +∞ -∞ -| | ( ) + | | • log(-) = = 1 ( +log(-)) ∫ +∞ -∞ ( )
which allows one to show (3.6) because ∈ 1 (R) and lim →+∞ ( +log(-)) = 0 for every ∈ R such that --< < 0. Thus combining (3.4), (3.5) and (3.6) one gets that

+∞ = 0 ( ) = - 1 2 ∫ +∞ -∞ sin( ( + )) • ( + ) (-) + (3.7) 
for every ∈ R such that 0 -1 < < 0 , and every ∈ R such that --< < 0. Now, one can easily see that the integral on the right hand side of (3.7) converges for every The previous paragraph proves that (F ) ⊆ F . We show now that (F ) ⊆ F . To do so, we prove that ( ) ( ) = ( ) for every ∈ ℜ 0 and every [( 0 , , , , )] ∈ F . First of all, we observe that the function ( ) := -(-)/ 0 is given by the inverse Mellin transform

∈ C such that |arg(-)| < -. Indeed ∫ +∞ -∞ sin( ( + )) • ( + ) (-) + ≤ 1 • ∫ +∞ -∞ -| | + | | | | arg(-) | | = = 1 | | ∫ +∞ -∞ ( -+arg(-)) | | < +∞ (3.8)
( ) = 1 2 ∫ + ∞ -∞ ( ) -
with := 0 -> 0 and ( ) := /sin( ( -0 )) • ( 0 -). Hence, applying Mellin's inversion formula (see [Igu78, Chapter 1, Theorem 3.1]) we get that

( ) = - sin( ) ∫ +∞ 0 --1 (-)
for every ∈ C such that 0 < Re( ) < 0 . On the other hand, we have the holomorphic function ( ) : ℜ 0 → C, which can be expressed as

( ) ( ) = 1 2 lim →0 + ∫ +∞ ( -- ) --1 (-) + ∮ | |= --1 ( ) = = - sin( ) ∫ +∞ 0 --1 (-) = ( ) (3.9) 
for every ∈ C such that 0 < ( ) < 0 . The last equality follows from the equality --= -2 sin( ) and the inequality 1 2

∮ | |= --1 ( ) ≤ 2 • 0 -( ) which holds because | ( )| = | +∞ = 0 ( ) | = (| | 0 ) as | | → 0.
Hence we have proved in (3.9) that ( ) = ( ) ( ) for every ∈ C such that 0 < ( ) < 0 , and we can conclude by analytic continuation that ( ) = ( ) ( ) for every ∈ ℜ 0 , which is what we wanted to prove.

We conclude this section by showing that Dirichlet series (and thus -functions) belong to F . To do so we de ne F 0 ⊆ F to be the C-linear subspace generated by those [( 0 , , , , )] ∈ F with = 0. Fix now 0 ∈ Z and a sequence = ( ) ∈ (R >0 ) Z ≥ 0 such that lim →+∞ ( ) = +∞. Then if a generalised Dirichlet series
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Chapter 3 L-functions and their special values has a nite abscissa of absolute convergence 0 ∈ R, one has that [( 1 , 0, 0, , )] ∈ F 0 for every 1 > 0 , where

( ) ≡ +∞ = 0 | | 1 is a constant function.
This shows that a Dirichlet series can be reconstructed from its special values. Remark 3.1.6. Let us also mention that one can recover some completed Dirichlet series from their special special values. By this we mean functions of the form

( ) = -• ∈Z Γ R ( + ) • ∈Z Γ C ( + ) • +∞ =1
where ∈ R × and ( ), ( ) ∈ N Z are two sequences with nite support. Here the two Γ-factors

Γ C ( ) := (2 ) -Γ( ) and Γ R ( ) := ( -/2 / √ 2) • Γ( /2
) are normalised according to Deninger (see Remark 3.2.8). Now, in order to recover ( ) from its values at the integers one shows that 1/ ( ) ∈ F , by the following steps:

• the reciprocal of a (classical) non-zero Dirichlet series ( ) = +∞ =1 -with nite abscissa of absolute convergence is again a Dirichlet series with nite abscissa of absolute convergence. Hence 1/ ( ) ∈ F 0 ;

• Γ R ( + ) -1 , Γ C ( + ) -1 ∈ F for every ∈ Z. This is a consequence of Stirling's formula,
and we refer the reader to [Den00, Proposition 4.1] for further details;

• -, (2 ) , √ 2 /2 ∈ F 0 , as it is easy to see.

Constructing the motivic -functions

Fix two number elds and . The aim of this section is to recall the procedure which associates to a (mixed) motive ∈ MM ( ; ) an -function ( , ) ∈ ℜ → ( ⊗ Q C), which is conjectured to have a meromorphic continuation to the whole complex plane (see Conjecture 3.3.4), and to satisfy a functional equation (see Conjecture 3.3.6). The validity of these conjectures would imply, using what we have developed in the previous section, that ( , ) is determined either by the sequence { ( , ) : ∈ Z, ≥ 0 } for any 0 ∈ Z such that 0 > , or by the sequence { * ( , ) : ∈ Z, ≤ 0 } for any 0 ∈ Z. Here * ( , ) ∈ ( ⊗ C) × denotes the special value * ( ,

) := lim → ( , ) ( -) ord = ( ( , ))
which we de ned in Remark 3.1.1. Then we describe in Section 3.3.2 how these special values * ( , ) are supposed to be connected to regulators and to other arithmetic invariants associated to . Finally, Section 3.3.3 is dedicated to the study of some speci c examples of the validity of these conjectures concerning special values.

Preliminaries

If we want to de ne the -function associated to a mixed motive ∈ MM ( ; ) de ned over a number eld with coe cients in a number eld , we run immediately into a problem, because the abelian category MM ( ; ) is not unequivocally de ned. We content ourselves 3.2 Constructing the motivic -functions with using one of the tentative de nitions given by Jannsen, Huber and Nori, which we recalled in Section 2.2.2. To be more precise, the categories MM ( ) and MM ( ) de ned by Jannsen and Huber are Q-linear, but they can be turned into -linear categories MM ( ) ( ; ) and MM ( ) ( ; ) using the following general procedure. Proposition 3.2.1 -Additive categories with coe cients (see [Del79, § 2.1])

Let A be Q-linear category, i.e. an additive category such that for every , ∈ A the homomorphism group Hom A ( , ) is actually a Q-vector space. Suppose also that A is pseudo-abelian and x a number eld . Consider the following two categories:

• the category Mod (A) with objects ( , ) where ∈ A and : → End( ) is a map of Q-algebras with unity. The morphisms ( , ) → ( , ) are those maps

∈ Hom A ( , ) such that • ( ) = ( ) • for all ∈ ;
• the category (A ⊗ Q ) ♮ , which is the pseudo-abelian envelope (see [And04, § 1.1.3.1]) of the category A ⊗ Q whose objects are the same as A and whose morphisms are de ned by Hom A ⊗ ( , ) := Hom A ( , ) ⊗ Q .

For every ∈ A we denote by ( , ) ∈ Mod (A) the object characterised up to isomorphism by the fact that Hom Mod ( A) (( ), ( ,

)) = Hom Q ( , Hom A ( , ))
for every ( , ) ∈ Mod (A). Then the association ↦ → gives rise to an equivalence of categories

(A ⊗ Q ) ♮ -→ ∼ Mod (A). Moreover, if A is abelian then Mod (A) and (A ⊗ Q ) ♮ are abelian.
The categories MM ( ; ) that we consider in this section are obtained by applying Proposition 3.2.1 to Huber's category MM ( ) . They are expected to be equivalent to Nori's category MM ( ) , which was de ned in Section 2.2.2. Remark 3.2.2. The reason why one wants to consider categories MM ( ; ) of motives with coe cients is that certain -functions cannot be obtained with Q-coe cients, The most important example of this is given by Artin's -functions.

On the other hand, for every nite extension ⊆ we have an adjunction * : MM ( ; ) MM ( ; ) : * where : Spec( ) → Spec( ) denotes the structural morphism. More precisely, * is the motivic analogue of the schematic base-change ↦ → × Spec( ) and * is the motivic analogue of the schematic Weil restriction ↦ → N / ( ) (see [START_REF] Bosch | Néron models[END_REF]§ 7.6]). All the conjectures that we mention in this section are compatible with base-change and the Weil restriction, hence the reader might assume = Q in what follows.

As we have seen in Section 2.2.2 and Section 2.4, all the abelian categories of mixed motives are supposed to be endowed with realisation functions, and Jannsen's and Huber's categories are in fact constructed starting from the categories of mixed realisations. In particular, for every rational prime ℓ ∈ N the category MM ( ; ) is endowed with a realisation functor

ℓ : MM ( ; ) → Rep cont (Gal( / ); ⊗ Q Q ℓ )

76

Chapter 3 L-functions and their special values into the category of continuous Galois representations : Gal( / ) → GL( ), where is a nitely generated module over ⊗ Q Q ℓ . Note in particular that, using the isomorphism

⊗ Q Q ℓ |ℓ
, where the product runs over all the places of lying above ℓ, one can view as the collection of the -adic representations ⊗ : Gal( / ) → GL( ⊗ ). Notation 3.2.3. From now until the end of the chapter, we denote by G := Gal( / ) the absolute Galois group of a eld . Remark 3.2.4 (Weil-Deligne representations and independence of ℓ). The Galois representations { ℓ ( )} ℓ , or at least their semi-sempli cations, are supposed to be independent of ℓ. A good way to state this is to use the discrete representations of the Weil-Deligne group. More precisely, for every prime ℓ and every place of we have a commutative square

MM ( ; ) Rep cont (G ; ⊗ Q Q ℓ ) MM ( ; ) Rep cont (G ; ⊗ Q Q ℓ ) ℓ ℓ (3.10)
where denotes the -adic completion of , and MM ( ; ) denotes the abelian category of mixed motives over with coe cients in . This can be constructed by xing an embedding : ↩→ C and using Jannsen's, Huber's or Nori's formalism, although this construction should not depend on the choice of . Nevertheless, one expects to be able to attach at the bottom of the commutative square (3.10) the triangle 

MM ( ; ) Rep cont (G ; ⊗ Q Q ℓ ) Rep(WD ; ⊗ Q C) ℓ WD W D (3.
WD : Rep cont (G ; ⊗ Q Q ℓ ) → Rep(WD ; ⊗ Q C)
is the one described in [Fon94, § 2.3.7], composed with a suitable base-change to C. This functor depends in general on some choices, which is the reason why the triangle (3.11) is supposed to commute only up to natural isomorphism.

An interesting consequence of the expectations outlined in Remark 3.2.4 would be that, for every ∈ MM ( ; ) and every ∈ G the characteristic polynomial

det(1 -• | ℓ ( )) ∈ ( ⊗ Q Q ℓ ) [ ]
should be independent of ℓ. This can either be assumed in the construction of the -function ( , ), or the latter can be constructed using purely -adic methods, as we recount in the following sections.

3.2

Constructing the motivic -functions

non-Archimedean local -factors

Let us now turn to the construction of the motivic -function, following [Fon92, § 3] and [START_REF] Deninger | -functions of mixed motives[END_REF]. We start by recalling the construction of the -function associated to a continuous -adic Galois representation : G → GL( ), where is a nite extension of Q for some rational prime ∈ N and is a nite dimensional vector space over the -adic completion of a number eld , associated to some non-Archimedean place ∈ 0 .

To give the precise de nition of ( , ) we need to introduce a fair amount of notation. First of all, we let ℓ ∈ N be the rational prime lying below , and we write

( ) := I , if ℓ ≠ ( crys (O ) ⊗ Q ) G , if ℓ = (3.12)
where G denotes the absolute Galois group of and I ⊆ G denotes its inertia sub-group, given by all the elements which induce the trivial map on the residue eld . Hence if ℓ ≠ we see that ( ) is a nite dimensional vector space over , := , given by the elements of which are invariant under the action of the inertia group I . On the other hand, if ℓ = then ( ) is a free module over , := 0 ⊗ Q , where 0 ⊆ denotes the maximal sub-eld which is unrami ed over Q . Indeed, this follows from the fact that the crystalline period ring crys (O ) is an algebra over 0 ⊆ , which is again de ned as the maximal sub-eld of unrami ed over Q (and not as the algebraic closure of 0 ). Equivalently, 0 can be described as the eld of fractions of the ring of -typical Witt vectors ∞ ( ) of the algebraic closure of the residue eld of . Remark 3.2.5. Let us brie y recall the de nition of Fontaine's period ring functor crys , following [START_REF] Caruso | An excursion into -adic Hodge theory: from foundations to recent trends[END_REF]§ 3.2]. This functor depends on the choice of a prime , that we x.

First of all, we de ne the -adic tilt of a ring to be ♭ := lim ← --/ , where : / → / denotes the Frobenius map ( ) := . Then one de nes inf ( ) := ∞ ( ♭ ) to be the ring of -typical Witt vectors on ♭ . If is -adically complete then ♭ is a perfect F -algebra and we get a map : inf ( ) → , uniquely de ned by the commutative square inf ( )

♭ /
where / is the canonical projection, ♭ / is the projection onto the rst factor and inf ( ) ♭ is also the projection onto the rst factor of an inverse limit, namely inf ( )

:= ∞ ( ♭ ) := lim ← -- ( ♭ )
where ( ♭ ) = ♭ by de nition. Now, let us recall that a ring is called perfectoid (with respect to the prime ) if:

• is -adically complete;

• the Frobenius map : / → / is surjective;

• there exists ∈ such that • =

• ;

• ker( ) is principal.

If is perfectoid of characteristic zero, one can de ne the following period rings associated to :

• crys ( ), which is the -adic completion of the inf ( )-algebra generated by the elements / ! ∈ inf ( ) [1/ ], where ∈ inf ( ) is any generator of ker( );

• + crys ( ) := crys ( ) [1/ ] which is the ring obtained by inverting in crys ( );

• + dR ( ) := + crys ( ) ∧ which is the -adic completion of + crys ( ); • dR ( ) := + dR ( ) [1/ ]
which is the ring obtained by inverting in + dR ( ). One sees immediately that the previous de nitions do not depend on the choice of . Suppose nally that { ∈ | = 1} (Z/ Z) × for every ∈ N, i.e. that contains all the -power roots of unity. We can choose a compatible system of primitive roots = (. . . , 2 , 1 , 0 ), where ∈ is a primitive -th root of unity (hence 0 = 1) and = -1 . This induces an element ∈ ♭ , and we can consider its image [ ] ∈ inf ( ), where [•] : ♭ → inf ( ) denotes the Teichmüller map. Then it is easy to see that the formal power series

log( [ ]) := - +∞ =1 (1 -[ ])
converges in crys ( ). Ultimately, one de nes the last period ring:

• crys ( ) := + crys ( ) [1/log( [ ])],
which is the ring obtained by inverting the element log

( [ ]) ∈ crys ( ) ⊆ + crys ( ) in + crys ( ).
It is straightforward to check that this de nition does not depend on the choice of .

The main examples of perfectoid rings which contain all -power roots of unity are given by = O C and = O for any which is a nite extension of Q . Let us concentrate on this second case. Unravelling the de nitions we see that dR (O ) is a -algebra and that crys (O ) ⊆ dR (O ) is a 0 sub-algebra. Moreover, dR (O ) is endowed with a decreasing ltration and with an action of G , which induces an action on crys (O ) ⊆ dR (O ). Finally, crys (O ) is endowed with a map of abelian groups : crys (O ) → crys (O ) which commutes with the action of G and satis es the equality ( ) = Φ ( ) • ( ) for every ∈ crys (O ) and ∈ 0 . Here Φ : 0 → 0 is the unique eld automorphism which lifts the map : → de ned on the algebraic closure of the residue eld by setting ( ) := . Now, let us observe that ( ), which we de ned in (3.12) as a free, nitely generated module over , , is endowed with a , -linear endomorphism : ( ) → ( ). Indeed, if ℓ ≠ then we see that ( ) := I is endowed with an action of

G /I Gal( 0 / 0 ) Gal( / )
and this group is topologically generated by the geometric Frobenius

:= Φ -[ : F ] (3.13)
where Φ : 0 → 0 is the map de ned at the end of Remark 3.2.5. Thus in the case ℓ ≠ one simply de nes to be the map induced by the action of over ( ). On the other hand, if ℓ = the map :

( crys (O ) ⊗ Q ) G → ( crys (O ) ⊗ Q ) G is induced by the map [ : F ] ⊗ Id , where : crys (O ) → crys (O )
is the map mentioned in Remark 3.2.5. We can nally de ne the -function

( , ) := det(1 -| | -• | ( )) ∈ [| | -]
which is the characteristic polynomial of evaluated at | | -. The notation det(-| ( )) is used simply to stress the fact that we are taking the determinant of an endomorphism of ( ).

Observe moreover that if ℓ = then ( , ) has coe cients in

( ) 0 ⊆ (see [FP94, Chapitre I, Remarque 1.3.3, (ii)]).
Finally, let be an ℓ-adic Galois representation of with coe cients in , by which we mean a continuous group homomorphism : : G → GL( ) where is a nite extension of Q for some rational prime ∈ N and is a free, nitely generated module over ℓ := ⊗ Q Q ℓ . Then we can still de ne an -function

( , ) ℓ = ( ( , ) ) ∈ ℓ [| | -] using the isomorphism ℓ := ⊗ Q Q ℓ
, where runs over all the places lying over the rational prime ℓ ∈ N. Then we can make the following conjecture, which is related the questions of independence of ℓ that we explored in Remark 3.2.4.

Conjecture 3.2.6 -Coe cients of the non-Archimedean -factors

Let ∈ N be a rational prime and a nite extension of Q . Fix another rational prime ℓ ∈ N and a number eld , and let be a free, nitely generated module over ⊗ Q Q ℓ . Then for every continuous group homomorphism : : G → GL( ) we have that

( , ) ℓ ∈ [| | -]
where denotes the residue eld of .

Under the validity of Conjecture 3.2.6, one can associate a complex -function C ( , ) to every ℓ-adic Galois representation : G → GL( ) with coe cients in a number eld . Indeed, one simply sets ( ,

) C := ( ( ( , ) ℓ )) ∈ ( ⊗ Q C) [| | -] (3.14)
where runs over the embeddings : ↩→ C, using the isomorphism ⊗ Q C C Hom( ,C) .

Archimedean local -factors

Before going back to the de nition of the -function of a motive ∈ MM ( ; ) let us give a sort of Archimedean analogue of the previous paragraphs. More precisely, we are going to de ne the -function ( , ) associated to a mixed Hodge structure ∈ MHS( ; ) de ned over an Archimedean local eld and having coe cients in a number eld . First of all, we recall the de nition of the category MHS( ; ), which we implicitly used in De nition 2.2.7.

De nition 3.2.7 -Mixed Hodge structures

Let be an Archimedean local eld (i.e. ∈ {R, C}). Then the category MHS( ; Q) is de ned as follows:

• MHS(C; Q) is the category of triples /C = ( , • ( ), • ( C ))
where is a nite dimensional Q-vector space endowed with an increasing ltration (called weight ltration) • ( ) such that there exist 0 , 1 ∈ Z with ( ) = 0 for ≤ 0 and ( ) = for ≥ 1 , and • ( C ) is a decreasing ltration (called Hodge ltration) on C := ⊗ Q C such that the three ltrations { • , • ,

• } formed by the weight ltration, the Hodge ltration and its complex conjugate are opposed, which means that gr (gr (gr

( C ))) = 0 if + ≠ ; • MHS(R; Q) is the category of pairs /R = ( /C , ) where /C ∈ MHS(C; Q) and : Gal(C/R) → Aut( /C
) is an action of complex conjugation on /C . This amounts to a direct sum decomposition = + ⊕ -at the level of Q-vector spaces, which is compatible with the weight ltration and such that the Hodge ltration on C is induced from a ltration de ned over ( C ) Gal(C/R) := + ⊕ • -, considered as a real vector space.

Finally, let be a number eld, and ∈ {R, C} be an Archimedean local eld. Then the category MHS( ; ) of rational mixed Hodge structures over with coe cients in is de ned as MHS( ; 

) := Mod (MHS( ; Q)) (MHS( ; Q) ⊗ Q ) ♮ ,
( / , ) := ∈Z Γ R ( -+ ) + , ( /R ) • Γ R ( -+ (1 -)) - , ( /C ) , if = R ∈Z Γ C ( -) , ( /C ) , if = C
where, for every ∈ Z, the number ∈ {0, 1} is de ned by the congruence ≡ (2).

Remark 3.2.8 (Gamma factors). We remark that in this thesis we have decided to consider the Γ-factors Γ C ( ) := (2 ) -Γ( ) and Γ R ( ) := ( -/2 / √ 2) • Γ( /2) as normalised by Deninger (see [START_REF] Deninger | On the Γ-factors attached to motives[END_REF]). As explained in [FP94, Remarque 1.2.6], one may replace 

(Γ R ( ), Γ C ( )) by ( Γ R ( ), 2 Γ C ( )) for every ∈ C × ,

The global -function

Let us nally turn to the de nition of the -functions associated to a mixed motive de ned over a number eld with coe cients in another number eld .

De nition 3.2.9 -The -function of a mixed motive

Let and be two number elds, and let MM ( ; ) be the category of mixed motives de ned over with coe cients in (see Section 3.2.1). Fix a nite set of places ⊆ of , and a motive ∈ MM ( ; ). For every non-Archimedean place ∈ 0 \ lying above a rational prime ∈ N we let ( ) ∈ Rep cont (G , ⊗ Q Q ) denote the -adic realisation, and ( ) denote the restriction of ( ) to the absolute Galois group G ⊆ G . Moreover, for every Archimedean place ∈ ∞ \ we let ( ) ∈ MHS( ; ) denote the mixed Hodge structure coming from the rational Betti realisation of . Observe that ( ) has still coe cients in , despite the fact that we are taking the rational Betti realisation, because does. Now, assuming Conjecture 3.2.6 for the family { ( ) : ∈ 0 \ }, we de ne the -function ( , ) as a formal Euler product

( , ) := ∈ \ ( ( ), ) C (3.16)
where the local -factors appearing in the product are the ones de ned in (3.14) and (3.15). We introduce the notation ( , ) := ∞ ( , ) and ( , ) := ∅ ( , ).

Remark 3.2.10. Let us explain the relation between De nition 3.2.9 and the more common ℓ-adic de nition of motivic -functions. Let , be two number elds, and recall that for every non-Archimedean place ∈ 0 one can de ne the -adic realisation ( ) of a motive ∈ MM ( ; ), which is a -adic representation of the global Galois group G . Hence for every non-Archimedean place ∈ 0 one can consider the restriction ( ) of ( ) to the local Galois group G . Fix a nite set of places ⊆ , and assume that ( ( ) , ) ∈ [| | -] for every ∈ 0 \ , where denotes the residue eld of . where, for every non-Archimedean place ∈ 0 \ we de ne ( ( ) , ) C as in (3.14), and for every Archimedean ∈ ∞ \ we de ne ( ) := ( ) as in De nition 3.2.9. The various conjectures on the independence of ℓ imply that the Euler product (3.17) should coincide with ( , ) as de ned in De nition 3.2.9. In particular, the product (3.17) should not depend on the non-Archimedean place ∈ 0 . This is particularly useful because it would be possible to choose as a place of "good reduction" for the motive , which makes many computations easier. On the other hand, De nition 3.2.9 has the advantage of not depending on the choice of an auxiliary place ∈ 0 . Remark 3.2.11. If ∈ MM ( ; ) and ∈ Z then the -function of the Tate twist ( ) satis es ( ( ), ) = ( , + ).

Remark 3.2.12. Let and be two number elds. To every mixed motive ∈ MM ( ; ), endowed with its weight ltration • ( ), one can associate the semi-simpli cation ss := ∈Z gr ( ) ∈ MM ( ; ) ss which could be identi ed with a numerical motive under the conjectural equivalence of categories NM( ; ) MM ( ; ) ss . Then the various semi-simplicity conjectures for the ℓ-adic realisations of imply that there is a strong relation between ( , ) and ( ss , ). Hence it would be nice to have an alternative to De nition 3.2.9, which would re ect more the mixed nature of . Some attempts towards this program may be found in the recent work of Brown (in particular [START_REF] Brown | From the Deligne-Ihara conjecture to Multiple Modular Values[END_REF] and [START_REF] Brown | A multi-variable version of the completed Riemann zeta function and other -functions[END_REF]). Moreover, the recent "derived" approach to -functions of Campbell, Wolfson and Zakharevich (see [START_REF] Campbell | Derived ℓ-adic zeta functions[END_REF]) and Campbell, Lind, Malkiewich, Ponto and Zakharevich (see [START_REF] Campbell | -theory of endomorphisms, the TR-trace, and zeta functions[END_REF]) might shed some light on the "correct" de nition of ( , ) which captures the mixed nature of .

Conjectures on motivic -functions

The aim of this section is to state the main conjectures concerning motivic -functions. As we have seen already in Section 3.2, the very construction of these -functions is made possible only assuming a conjecture. namely Conjecture 3.2.6. This conjecture is known for the Galois representation ( ) associated to every mixed motive ∈ MM ( ; ) of the form = ( ), where is a smooth and proper variety de ned over with good reduction at the place ∈ 0 . Alternatively, one may neglect Conjecture 3.2.6 and choose instead a family of embeddings ( ) 0 ↩→ C for every place ∈ 0 . This allows one to de ne unconditionally an -function, and Conjecture 3.2.6 becomes more or less equivalent to the fact that this -function is independent from the choice of these embeddings.

Convergence, meromorphic continuation and functional equations

Up until now, we have de ned motivic -functions as formal Euler products (3.16). This implies in particular that the -function ( , ) associated to a mixed motive ∈ MM ( ; ) and a nite set of places ⊆ can be seen as a formal Dirichlet series 

( , ) = +∞ =1 ( , ) (3 
) :=              lim sup →+∞ log +∞ = +1 ( , ) log( + 1) , if +∞ =1 ( , ) converges lim sup →+∞ log| =1 ( , ) | log( ) , otherwise
and the series (3.18) is known to converge for every ∈ C such that ( ) > 0 ( , ), i.e. for every ∈ ℜ 0 ( , ) in the notation of Section 3.1. This shows that one may regard the formal Euler product (3.16) as a holomorphic function ( , ) : ℜ 0 ( , ) → ⊗ Q C, and makes appealing the following conjecture.

Conjecture 3.3.1 -Convergence of motivic -functions

Let and be two number elds, and let ⊆ be a nite set of places. Then for every mixed motive ∈ MM ( ; ) we have that ℜ 0 ( , ) ≠ ∅, i.e. 0 ( , ) < +∞.

Remark 3.3.2. The work of Deligne on the Weil conjectures implies that Conjecture 3.3.1 holds for all motives ∈ MM ( ; ) of the form = ( ) where is a smooth and proper variety de ned over , under the assumption that the nite set of places ⊆ contains the places of bad reduction of . Moreover, in this case one has that 0 ( ( ), ) = /2 + 1. In particular, if one takes MM ( ; ) to be Jannsen's abelian category of mixed motives (see De nition 2.2.7) then each ∈ MM ( ; ) is an iterated extension of motives of the form ( ) where is smooth and proper over . Hence Remark 3.3.2 shows that Conjecture 3.3.1 holds for every ∈ MM ( ; ), if contains the nite set of places where all the smooth and proper varieties appearing in the extensions may have bad reduction. In particular, contains 84 Chapter 3 L-functions and their special values the set (conjectured to be empty) of places where is not -admissible, in the sense of [FP94, Chapitre III, § 2.1.5]. Moreover, one has that 0 ( , ) = max ( )/2 + 1, where max ( ) := max{ ∈ Z | gr ( ) ≠ 0} denotes the maximum weight appearing in the weight ltration • ( ) of .

As we have seen, Conjecture 3.3.1 allows one to see the formal Euler product de ning a motivic -function as an actual holomorphic function ( , ) : ℜ 0 ( , ) → ( ⊗ Q C). The theory of the Riemann -function shows that a great amount of interesting information (e.g. the prime number theorem) can be derived from knowing that an -function admits a meromorphic continuation to the whole complex plane. Moreover, the theory of automorphic -functions (e.g.

-functions associated to modular forms) shows that often this meromorphic continuation is actually entire. This is summarised in the next conjecture.

Conjecture 3.3.4 -Meromorphic continuation of motivic -functions

Let and be two number elds, and let ⊆ be a nite set of places. Then for every motive ∈ MM ( ; ) we have that

( , ) = (1) ( , ) (2) 
( , ) for all ∈ ℜ 0 ( , )

where (1) ( , Essentially all the cases when Conjecture 3.3.4 is known are given by motivic -functions which can be related to automorphic ones. The two most notable examples of this are the -functions ( , ) associated to algebraic Hecke characters : A × → × (see Remark 7.1.18) and the -functions ( , ) associated to modular forms

) : C → ( ⊗ Q C) is
= +∞ =1 ∈ (Γ) (see [Sch90, § 1.2.4] for the construction of the motive ( ) ∈ MM (Q; Q({ } ≥1 )) corresponding to ).
In these two cases one can prove Conjecture 3.3.4 by appealing to harmonic analysis on two di erent kinds of objects: for Hecke characters one uses the Fourier transform on the locally compact abelian group A × (see [RV99, § 7]), and for modular forms one uses the Mellin transform for the locally compact abelian group R >0 (see [DS05, § 5.10]). Using the inversion theorems coming from harmonic analysis, one is able to prove that the completed -functions ( , ) and ( , ) satisfy a functional equation. This initial evidence leads to conjecture that a similar functional equation might hold in general.

Conjecture 3.3.6 -Functional equation of motivic -functions

Let and be two number elds. Then, for every motive ∈ MM ( ; ) there should exist two complex numbers ( ), ( ) ∈ ⊗ Q C such that ( ) ≠ 0 and

( , ) = ( , ) • ( ∨ , 1 -) (3.19)
where ( , ) := ( ) • ( ) and ∨ ∈ MM ( ; ) is the dual (with respect to the tensor product) of . This holds more generally for motives ∈ MM ( ; ) having a single non-zero weight in their weight ltration, which is in particular the case for the motive ( ) mentioned in the previous example. In this case the only non-zero weight of ( ) is given precisely by ( ( )) = -1, where ∈ Z is the weight of ∈ (Γ 1 ( )). } then they hold for the third.

Special values of motivic -functions

The aim of this section is to recall some of the conjectures which aim at describing the special values * ( , ) of the -function associated to a motive in terms of some arithmetic invariants associated to it. To de ne these invariants, one needs the notion of -cohomology, as introduced by Beilinson and Bloch and Kato. To do so, we follow the exposition of [Sch12, § 6.1], which in turn is inspired by [FP94, Chapitre II, § 1.3].

De nition 3.3.12 --cohomology

Let and be two number elds, and x a motive ∈ MM ( ; ). Then one de nes the -cohomology groups , ( / ) as the subgroups , ( / ) ⊆ , M ( / ) given by the Cartesian square , ( / )

, M ( / ) ℓ , ( , ℓ ) ℓ , ( , ℓ ) ℓ ℓ 
where the products run over all the rational primes ℓ ∈ N. Here , M ( / ) denotes motivic cohomology with rational coe cients, ℓ denotes the ℓ-adic realisation of and , ( , ℓ ) denotes the -th Galois cohomology group of ℓ ( ) with respect to the global Galois group G (see for instance [Ser02, Chapter II, § 1.1]). Moreover, the maps ℓ denote the ℓ-adic regulators, induced by the realisation functors ↦ → ℓ (see also Example 2.4.8), and the subgroups , ( , ℓ ) ⊆ , ( , ℓ ) are de ned by the Cartesian squares

, ( , ℓ ) , ( , ℓ ) ∈ 0 , ( , ℓ ) ∈ 0 , ( , ℓ ) (3.20) 
where the products run over all the non-Archimedean places ∈ 0 . The vertical maps appearing in (3.20) are induced by the restriction of the Galois representations ℓ to the sub-groups G ⊆ G , and again , ( , ℓ ) denotes the -th Galois cohomology group 3.3 Conjectures on motivic -functions of ℓ ( ) with respect to the local Galois group G . Finally, the groups , ( , ℓ ) are de ned by

, ( , ℓ ) :=          0, ( , ℓ ), if = 0 { ∈ 1 ( , ℓ ( )) | ( ) → ( ) is surjective}, if = 1 0, otherwise
where ℓ, denotes the trivial representation of G with coe cients in

ℓ := ⊗ Q Q ℓ . Here ∈ 1 ( , ℓ ( )) = Ext 1 ( ℓ , ℓ, ( )) is the class of an extension 0 → ℓ ( ) → → ℓ, → 0 
and ( ) → ( ) denotes the map obtained by applying the functor de ned in (3.12) to the surjection ℓ, .

Remark 3.3.13. The -cohomology groups , ( / ) can be de ned in another, more geometrical way, by extending to a motive over the ring of integers O . More precisely, if X → Spec(O ) is smooth, proper and at, with generic bre := X , one de nes

, ( ( / )) := Im( , M (X) → , M ( ))
where , M denotes motivic cohomology with rational coe cients. It can be shown that , ( ( / )) depends indeed only on the generic bre = X , and not on the model X.

Moreover, Scholl has extended the association ↦ → , ( ( / )) to a functor ↦ → , ( ) from the category of Chow motives (see [START_REF] Scholl | Integral elements in -theory and products of modular curves[END_REF]), and Scholbach proved in [START_REF] Scholbach | -cohomology and motives over number rings[END_REF] that this extension essentially coincides with the de nition that we have given in De nition 3.3.12 for the abelian category of mixed motives. Scholbach's result is proved assuming deep conjectures on motives, such as the existence of the motivic -structure, whose validity is necessary to give a new de nition of -cohomology, inspired by perverse sheaves, to which the other two de nitions are then compared. Finally, new unconditional de nitions for the -cohomology of a Chow motive over a general base have been given by Wildeshaus (see [Wil12, Remark 1.11]) and Bondarko (see [Bon14, Remark 3.8]) using the motivic weight structure introduced by the latter.

The -cohomology groups , ( / ) de ned in De nition 3.3.12 are global objects, and in particular -vector spaces. The following De nition 3.3.14 de nes a class of motives ∈ MM ( ; ) for which there is a strong relation between the global -cohomology groups , ( / ) and the local -cohomology groups of their realisations, which were used in De nition 3.3.12.

De nition 3.3.14 --admissibility

Let and be two number elds. Then a motive ∈ MM ( ; ) is called -admissible if:

• for every prime ℓ ∈ N and every , ∈ Z the natural map , ( / ) ⊗ ℓ → , ( , ℓ ) 88 Chapter 3 L-functions and their special values is an isomorphism, where ℓ := ⊗ Q Q ℓ ;

• whenever 0,1 ( ∨ / ) = 1,1 ( ∨ / ) = 0 the natural map

, ( / ) ⊗ ∞ → ∈ ∞ ( , ( ) ⊗ ∞ )
is an isomorphism, for every , ∈ Z. Here ∞ := ⊗ Q R.

Remark 3.3.15. The "natural maps" appearing in De nition 3.3.14 are induced from the realisation functors. Henceforth, they can be seen as analogous to the regulators for the ℓ-adic and Deligne-Beilinson cohomology that were de ned in Section 2.4.

The following conjecture predicts that the class of -admissible motives coincides with the whole category MM ( ; ).

Conjecture 3.3.16 -Every motive is -admissible

Let and be two number elds. Then every ∈ MM ( ; ) is -admissible, in the sense of De nition 3.3.14.

Remark 3.3.17. If our motive ∈ MM ( ; ) is the "mixed realisation" of a geometrically de ned motive ∈ DM( ; ), we can de ne , ( / ) starting from the motivic cohomology , M ( / ) computed in DM( ; ). If we do so, Conjecture 3.3.16 turns out to be incredibly di cult to prove. Indeed, Conjecture 3.3.16 is strongly related to the Hodge and Tate conjectures, and to the conservativity of the realisation functors, which all seem out of reach at the moment. Moreover, for every -admissible motive ∈ MM ( ; ) we have that dim ( , ( / )) < +∞. This is surely expected, but it is not known outside of Artin-Tate motives, where it follows from the work of Borel.

Let us nally move towards the conjectures relating special values of -functions to the arithmetic invariants of the motive . Using the -cohomology one can de ne the one-dimensional -vector space ( ) := det( 0,0 M ( / )) ⊗ (det( 1,0 ( / ))) ∨ associated to every motive ∈ MM ( ; ) de ned over a number eld with coe cients in another number eld . Here det denotes the determinant line det( ) := dim( ) for every nite dimensional vector space . Then one de nes the fundamental line associated to ∈ MM ( ; ) as

Δ ( ) := ( ) ⊗ ( ∨ (1)) ⊗ det( dR / 0 ( dR )) ⊗ det ∈ ∞ 0 ( , ) ∨
where dR denotes the de Rham realisation of ∈ MM, endowed with the Hodge ltration • ( dR ), and for every Archimedean place ∈ ∞ we denote by ∈ MHS( ; ) the -adic Betti realisation of . Thus is endowed with an action of the Galois group Gal(C/ ), and it makes sense to write 0 ( , ) for the corresponding group cohomology, given by the invariants 0 ( , ) := ( ) Gal(C/ ) .

Conjectures on motivic -functions

Now, supposing that is -admissible in the sense of De nition 3.3.14, we can construct a family of norms • : Δ ( ) ⊗ → associated to the places ∈ . More precisely, for every Archimedean place ∈ ∞ one has a map :

∈ ∞ 0 ( , ) ⊗ → ( dR / 0 ( dR )) ⊗
obtained by composing the change of coe cients

∈ ∞ 0 ( , ) ⊗ → ∈ ∞ 0 ( , ⊗ , C)
with the period map induced by (2.8) per :

∈ ∞ 0 ( , ⊗ , C) → dR ⊗
and then with the projection dR ⊗ ( dR / 0 ( dR )) ⊗ . The admissibility of implies that the sequence 0 → 0,0 ( ) → ker(

) → 1,1 ( ∨ ) ∨ → 1,0 ( ) → coker( ) → 0,1 ( ∨ ) → 0
is exact, where , ( ) := , ( / ) ⊗ for every ∈ MM ( ; ). This induces an isomorphism

( ( ) ⊗ ( ∨ (1))) ⊗ -→ ∼ det(ker( )) ⊗ det(coker( )) ∨ (3.21)
and analogously the tautological exact sequence which is de ned for every mixed motive ∈ MM ( ; ) that is -admissible, and for every Archimedean place ∈ ∞ . This allows us already to enounce Beilinson's conjecture on special values of -functions, using the isomorphism

0 → ker( ) → ∈ ∞ 0 ( , ) ⊗ ---→ ( dR / 0 ( dR )) ⊗ → coker( ) → 0 induces an isomorphism det( dR / 0 ( dR )) ⊗ det ∈ ∞ 0 ( , ) ∨ ⊗ -→ ∼ det(ker( )) ∨ ⊗ det(coker( )) (3 
• ∞ : Δ ( ) ⊗ ∞ -→ ∼ ∞ := ⊗ Q R ∈ ∞
obtained by gluing together the various isomorphisms • .

Conjecture 3.3.18 -Beilinson's conjecture on special values of -functions

Let and be two number elds. Then, for every -admissible motive ∈ MM ( ; ), there exists a (necessarily unique) element L * ( ,

0) ∈ Δ ( ) \ {0} such that * ( , 0) • L * ( , 0) ⊗ 1 ∞ = 1
where * ( , 0) ∈ × ∞ denotes the special value of the -function de ned in De nition 3.2.9.

Remark 3.3.19. Let us mention that Conjecture 3.3.18 can be expressed in another, perhaps cleaner form when = ( ) ( ) for some smooth and projective variety de ned over , and some pair of integers , ∈ N such that lies in the region of absolute convergence for the -function ( ( ), ), i.e. such that > /2 + 1. More precisely, we still have the -cohomology group , ( ) ⊆ , M ( ), which can be de ned geometrically (see Remark 3.3.13). Then we have Beilinson's regulator map

∞ : •,• M ( ) ⊗ Q R → •,• D ( ; R)
whose target is Deligne-Beilinson cohomology (see Example 2.4.6). Then Conjecture 3.3.18 for the motive = ( ) ( ) ∈ MM ( ; Q) is equivalent to the following two assertions:

• Beilinson's regulator ∞ induces an isomorphism ∞ : +1, ( ) ⊗ Q R -→ ∼ +1, D ( ; R); • we have that det( ∞ ) * ( ( ), ) ∈ Q ×
where det( ∞ ) is taken with respect to any two bases of the Q-vector spaces +1, ( ) and +1, D ( ; Q). Finally, the other norm maps • : Δ ( ) ⊗ → are de ned by using a suitable integral structure of Δ ( ). Since we do not need them in what follows, we content ourselves with using them to give the statement of the conjecture of Bloch and Kato, as stated by Fontaine and Perrin-Riou (see [FP94, Chapitre III, § 4.5]). We refer the interested reader to [START_REF] Fontaine | Autour des conjectures de Bloch et Kato: cohomologie galoisienne et valeurs de fonctions[END_REF] for the detailed de nition of the norms • associated to non-Archimedean places ∈ 0 .

Conjectures on motivic -functions

Conjecture 3.3.20 -Bloch-Kato's conjecture on special values of -functions Let and be two number elds. Then, for every -admissible motive ∈ MM ( ; ), Conjecture 3.3.18 holds and we have that L * ( , 0) ⊗ 1 = 1 for every non-Archimedean place ∈ 0 . Remark 3.3.21. We observe that Conjecture 3.3.18 determines * ( , 0) only up to an element of × . Indeed, even if we know that L * ( , 0) is necessarily unique, the only thing that is sure from Conjecture 3.3.18 is that L * ( , 0) ≠ 0. This determines * ( , 0) up to an element of × since Δ ( ) is a one dimensional vector space over . On the other hand, as we have said, Conjecture 3.3.20 says essentially that L * ( , 0) belongs to a suitable integral O -sub-module of Δ ( ). Hence this determines * ( , 0) up to an element of O × . Remark 3.3.23. In the case when = = Q the sign ambiguity in the determination of * ( , 0) ∈ R can be deduced by the orders of ( , ) at positive integers. More precisely, * ( , 0) > 0 if and only if >0 ord = ( ( , )) is even. In general, the determination of * ( , 0) on the nose remains a challenging problem. Remark 3.3.24. Using the fact that every mixed motive ∈ MM ( ; Q) should be given by nitely many successive extensions of motives of the form ( ) ( ) for a regular scheme , it should be able to compute the -cohomology groups , ( ) using the polylogarithmic motivic complexes described in Section 2.3.3. If one does so, Conjecture 3.3.20 becomes intimately related to Zagier's polylogarithmic conjecture (see [START_REF] Zagier | Hyperbolic manifolds and special values of Dedekind zeta-functions[END_REF], and the survey [ZG00]), which is still open even for Dedekind -functions. We refer the reader to [START_REF] Goncharov | Geometry of Con gurations, Polylogarithms, and Motivic Cohomology[END_REF] and [START_REF] Jeu | Zagier's conjecture and wedge complexes in algebraic -theory[END_REF] for the general picture, and to [START_REF] Goncharov | Motivic correlators, cluster varieties and Zagier's conjecture on zeta(F,4)[END_REF] for recent progress in the case of the special value * (4).

Let us mention perhaps the most challenging part of the conjectures of Bloch and Kato: the one concerning the order of vanishing of -functions.
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Conjecture 3.3.25 -Orders of vanishing of motivic -functions

Let and be two number elds, and let ∈ MM ( ; ) be an -admissible motive. Then we have that

ord = ( ( , )) = dim ( 1,1-( ∨ )) -dim ( 0, +1 ( ))
for every ∈ Z.

To conclude, we brie y survey some recent developments on the conjectures of Beilinson and Bloch-Kato:

• Burns and Flach have formulated a version of the conjecture of Bloch and Kato for motives endowed with the action of a semisimple Q-algebra , which might be non-commutative (see [START_REF] Burns | Tamagawa numbers for motives with (non-commutative) coe cients[END_REF]§ 4.3]). The main di culty in doing this lies in the de nition of a suitable analogue of the fundamental line for equivariant motives. This analogue is given by a suitable relative algebraic -group 0 ( , R), where ⊆ is an order. Then one constructs two elements inside 0 ( , R): one coming from the -value * ( , 0), and another coming from the -cohomology of the motive . The conjecture of Burns and Flach states then that these two elements should be equal. Observe that here is an equivariant motive, and the de nition of the -function ( , ) takes this into account;

• Braunling has given a new interpretation of the relative -group 0 ( , R) appearing in the conjecture of Burns and Flach (see [START_REF] Braunling | On the relative -group in the ETNC. III[END_REF]). More precisely, this group is proved to be isomorphic to the rst -group 1 (LCA * ) of a suitable sub-category LCA * ⊆ LCA of the category LCA of locally compacy topological right modules over . Moreover, Braunling has also proposed a new version of the conjecture of Burns and Flach (see [START_REF] Braunling | An alternative construction of equivariant Tamagawa numbers[END_REF]) which uses a group of non-commutative idèles associated to the algebra instead of the relative -group 0 ( , R);

• Flach and Morin have provided yet another interpretation of the conjecture of Bloch and Kato (see [START_REF] Flach | Weil-Étale Cohomology and Zeta-Values of Proper Regular Arithmetic Schemes[END_REF]). More precisely, their conjecture concerns the special values of the -function

(X, ) := ∈ | X | 1 1 -| ( )| -
associated to a scheme of nite type X → Spec(Z) which is proper and regular. Here the product runs over all the closed points of X and ( ) denotes the residue eld of a closed point ∈ |X|, which is a nite eld. This -function is known to factor, up to nitely many bad primes, into the product of the -functions of the motives ( ), where := X Q is the generic bre of X (see [START_REF] Deninger | -functions of mixed motives[END_REF]Equation 1.4]). This allows one to relate the conjecture of Flach and Morin to the conjecture of Bloch and Kato, which is done in [FM18, § 5.6].

Two special cases of the Bloch-Kato conjecture

The last section was heavily charged with far reaching conjectures, which might seem too unrealistic to believe. Nevertheless, the somehow abstract conjectures of Beilinson and Bloch-Kato have been inspired by more concrete questions and results. The rst one, in the long series of identities which appear to be related to the Beilinson and Bloch-Kato conjectures, is the analytic class number formula for the Dedekind -function ( ) associated to a number eld .

This can be easily seen to coincide with the -function of the motive 0 ( ) ∈ MM ( ; Q), and the following formula (3.23) can be shown to be equivalent to Conjecture 3.3.20 for the motive 0 ( ) (see [START_REF] Huber | Bloch-Kato conjecture and Main Conjecture of Iwasawa theory for Dirichlet characters[END_REF]§ 2.3]). We observe that, in the case studied in Theorem 3.3.26, the -cohomology groups , ( 0 ( )) involved are rather simple, and they amount essentially to considering the group of units O × and the class group Pic(O ) appearing in (3.23). On the other hand, motivic cohomology groups associated to higher dimensional objects are much more di cult to compute. In particular, they are not known to be nitely generated, even if this is predicted by Conjecture 3.3.16. Nevertheless, if = 0 ( ) ( ) for some ∈ Z the -cohomology groups , ( ) are known to be nitely generated from the work of Borel (see [START_REF] Soulé | Higher -theory of algebraic integers and the cohomology of arithmetic groups[END_REF] for a survey). Moreover, the conjecture of Bloch and Kato (and ever the equivariant analogue of Burns and Flach) are completely known for all the special values * ( ), as soon as is an abelian extension of Q. We refer the reader to [Ngu15, § 9.5] for a survey of the proof, a detailed account of which can be obtained by combining the three papers [START_REF] Benois | Les nombres de Tamagawa locaux et la conjecture de Bloch et Kato pour les motifs Q( ) sur un corps abélien[END_REF], [START_REF] Burns | On the Equivariant Tamagawa number conjecture for Tate motives[END_REF] and [START_REF] Flach | On the cyclotomic main conjecture for the prime 2[END_REF].

Let us now turn to higher dimensional motives. Similarly to what happened in the case of the analytic class number formula (3.23), one can often make explicit the Bloch-Kato conjecture in the case of a special value in the critical strip, because in this case the -cohomology groups are more explicitly computable. The most famous instance of this phenomenon is given by the special value at = 1 of the -function ( , ) associated to an abelian variety de ned over a number eld . In this case, the Bloch-Kato conjecture for the motive 1 ( ) (1) ∈ MM ( ; Q) can be shown to be equivalent to the following conjecture of Tate (see [START_REF] Tate | On the conjectures of Birch and Swinnerton-Dyer and a geometric analog[END_REF]), which generalises the famous Birch and Swinnerton-Dyer conjecture for elliptic curves. To state this conjecture, we need to introduce the following notation associated to an abelian variety de ned over a number eld : • we let X( / ) denote the Tate-Shavarevich group

• A → Spec(O )
X( / ) := ∈ 0 ker 1 ( , ) → 1 ( , )
where 1 ( , ) denotes Galois cohomology with respect to the global absolute Galois group G := Gal( / ) and 1 ( , ) denotes Galois cohomology with respect to the local absolute Galois group G := Gal( / ) relative to the -adic completion of ;

• ∨ is the dual of the abelian variety , which is another abelian variety whose points are in bijective correspondence with the equivalence classes of line bundles of degree zero over (see [HS00, Theorem A.7. 

where { } , =1 ⊆ ( ) and { ˇ } , =1 ⊆ ∨ ( ) denote any sets of points such that the set { ⊗ 1} , =1 ⊆ ( ) ⊗ Z Q is a basis of the Q-vector space ( ) ⊗ Z Q, which has dimension , := rk( ( )), and the set { ˇ ⊗ 1} , =1 ⊆ ∨ ( ) ⊗ Z Q is a dual basis. We are nally ready to give the statement of the conjecture of Tate (see [START_REF] Tate | On the conjectures of Birch and Swinnerton-Dyer and a geometric analog[END_REF]) which generalises to higher dimensional abelian varieties the conjecture of Birch and Swinnerton-Dyer. [START_REF] Edixhoven | Rational elliptic curves are modular[END_REF] for a survey), and Conjecture 3.3.25 is known by the work of Gross-Zagier (see [START_REF] Coates | The work of Gross and Zagier on Heegner points and the derivatives of -series[END_REF] for a survey), Kolyvagin and Rubin (see [START_REF] Perrin-Riou | Travaux de Kolyvagin et Rubin[END_REF] for a survey). Moreover, the -part of the group X( /Q) is known to be nite in a variety of cases, and when this is known the formula (3.25) can be proved by a numerical computation (see for example [START_REF] Cremona | Numerical evidence for the Birch-Swinnerton-Dyer conjecture[END_REF]). We refer the reader to [START_REF] Van Bommel | Explicit arithmetic intersection theory and computation of Néron-Tate heights[END_REF] and [START_REF] Van Bommel | E cient computation of BSD invariants in genus 2[END_REF] for some recent developments on the numerical veri cation of Conjecture 3.3.27 in the case when = Q and = Jac( ) is the Jacobian of a curve /Q having genus ( ) ≥ 2.

Evidence towards the conjecture of Bloch and Kato

We conclude this section with a brief survey of the known evidence towards the validity of Conjecture 3.3.20 for the special values of a motivic -function * ( , ) at integers ∈ Z that lie in the region of absolute convergence. On the one hand, these special values are easier to treat (especially numerically) than the special values which lie inside or at the boundaries of the critical strip. On the other hand, the -cohomology groups appearing in the fundamental line Δ ( ( )) are in general much harder to compute than the ones when lies in the region of absolute convergence.

First of all, as we mentioned already in the previous section, the Bloch-Kato conjecture is known for the special values * ( ) of Dedekind -functions associated to number elds which are abelian over Q. Moreover, the Bloch-Kato conjecture is also known for the -functions ( , ) associated to Dirichlet characters, which appear in the factorisations

Q( ) ( ) = | Z[ ] 1 1 -|N Q( )/Q ( )| - ( , 
)
where ⊆ Q denotes the group of -th roots of unity, and Z[ ] denotes the ring of integers of the -th cyclotomic eld Q( ). This follows again from the work of Burns and Greither [START_REF] Burns | On the Equivariant Tamagawa number conjecture for Tate motives[END_REF], Burns and Flach [START_REF] Burns | On the equivariant Tamagawa number conjecture for Tate motives. II[END_REF] and Flach [START_REF] Flach | On the cyclotomic main conjecture for the prime 2[END_REF]. We point out that a di erent proof of the Bloch-Kato conjecture for Dirichlet -functions can be obtained using the works [START_REF] Huber | Dirichlet motives via modular curves[END_REF] and [START_REF] Huber | Bloch-Kato conjecture and Main Conjecture of Iwasawa theory for Dirichlet characters[END_REF] of Huber and Kings, which provide a di erent approach to the construction of the required motivic cohomology classes (see also [START_REF] Huber | The Comparison Theorem for the Soulé-Deligne Classes[END_REF] and [START_REF] Kings | Eisenstein Classes, Elliptic Soulé Elements and the ℓ-Adic Elliptic Polylogarithm[END_REF] for a survey). In all these cases, one is also able to prove Conjecture 3.3.25 thanks to the work of Borel.

Moving away from the zero dimensional cases provided by Dirichlet characters and Dedekind -functions, we immediately face the tantalising problem posed by the computation of the rank of the -cohomology groups , ( ). These groups are conjectured to be nitely generated, but this is not known for any motive which is not an Artin-Tate motive, apart from some peculiar values of and . For instance, given an abelian variety de ned over a number eld we have that

1,1 ( 1 ( )) ( ) ⊗ Z Q, as explained in [Kin11, Example 1.21].
Nevertheless, it is often possible to prove a weak version of the Bloch-Kato conjecture, even without knowing the nite generation of the -cohomology groups. This is the content of the following conjecture. Let and be number elds. Then for every motive ∈ MM ( ; ) and every , ∈ Z there exists a nitely generated sub-space , ( ) ⊆ , ( ) such that

ord = ( ( , )) = dim ( 1,1-( ∨ )) -dim ( 0, +1 ( ))
for every ∈ Z. Moreover, for every motive ∈ MM ( ; ) and every integer ∈ Z there exists an element L * ( ,

) ∈ Δ ( ( )) such that * ( , ) • L * ( , ) ⊗ 1 ∞ = 1 and L * ( , ) ⊗ 1 = 1, ∀ ∈ 0
where Δ ( ( )) is the weak motivic fundamental line. This is de ned as

Δ ( ) := ( ) ⊗ ( ∨ (1)) ⊗ det( dR / 0 ( dR )) ⊗ det ∈ ∞ 0 ( , ) ∨
for every motive ∈ MM ( ; ), where ( ) := det ( 0,0 ( )) ⊗ det ( 1,0 ( )) ∨ . Finally, the norms

• ∞ : Δ ( ( )) ⊗ ∞ → ∞ := ⊗ Q R • : Δ ( ( )) ⊗ →
are induced by the inclusion Δ ( ( )) ⊆ Δ ( ( )), and for every non-Archimedean place ∈ 0 the non-Archimedean norm • is supposed to be an isomorphism.

Remark 3.3.29. If the motive is of the form = ( ) ( ) ∈ MM ( ; Q) for some smooth and projective variety de ned over a number eld , and for some pair of integers , ∈ N such that > /2 + 1, we can combine Conjecture 3.3.28 with Remark 3.3.19 to get a weak form of Beilinson's conjecture. More precisely, there should exist a sub-space +1, ( ) ⊆ +1, ( ) such that Beilinson's regulator induces an isomorphism

∞ : +1, ( ) ⊗ Q R -→ ∼ +1, D ( ; R)
and we should have that det( ∞ ) * ( ( ), ) ∈ Q ×

where the determinant is taken with respect to any Q-basis of +1, ( ) and +1, D ( ; Q).

Conjectures on motivic -functions

This weaker form of Conjecture 3.3.20 is known to hold in a number of cases. First of all, some results are known when is a motive which is automorphic in nature, i.e. a motive cut o from the motive of a Shimura variety (see [START_REF] Lemma | On higher regulators of Siegel threefolds II: the connection to the special value[END_REF] and [START_REF] Cauchi | On Higher regulators of Siegel varieties[END_REF]). Moreover, the work of Deninger (see [START_REF] Deninger | Higher regulators and Hecke L-series of imaginary quadratic elds I[END_REF] and [START_REF] Deninger | Higher Regulators and Hecke L-Series of Imaginary Quadratic Fields II[END_REF], as well as the surveys [START_REF] Deninger | Higher regulators of elliptic curves with complex multiplication[END_REF] and [START_REF] Deninger | Extensions of motives associated to symmetric powers of elliptic curves and to Hecke characters of imaginary quadratic elds[END_REF]) and Kings (see [START_REF] Kings | The Tamagawa number conjecture for CM elliptic curves[END_REF]) proves Conjecture 3.3.28 for all the special values of the form * ( , ), where ∈ Z is any integer and / is an elliptic curve with complex multiplication by the ring of integers O of an imaginary quadratic eld . We refer the reader to Chapter 7 for a survey of the theory of complex multiplication, and in particular to Section 7.4 for a more detailed survey of the proof of Conjecture 3.3.28 for the special value * ( , 2).

Diophantine properties of special values of -functions

The aim of this section, which is based on joint work in progress with Fabien Pazuki, is to show that special values of -functions can be interpreted as heights. To be more precise, let us

x an integer ∈ Z and two number elds and . Then, assuming Conjecture 3.3.4, we can consider the function

MM ( ; ) → R ↦ → | * ( , )| (3.26) 
sending a motive to the special value of its -function at = . We actually take the absolute value of * ( ,

) ∈ ∞ := ⊗ Q R ∈ ∞
, de ned as the product of all the absolute values of the components. As we outline in Section 3.4.1, there are numerous examples of relations between special values of -functions and heights of various sorts. Thus it is natural to ask whether the map (3.26), perhaps restricted to a subset ⊆ MM ( ; ), satis es any of the Diophantine properties outlined in Section 1.1. It is interesting, in particular, to see for which subsets ⊆ MM ( ; ) the restriction of the map (3.26) to satis es the Northcott property. We prove in Section 3.4.2 that, xing = 0, the rst example of such a subset ⊆ MM ( ; ) is given by taking = = Q and := { 0 (Spec( )) | [ : Q] < +∞} to be the set of motives whose -functions coincide with the Dedekind -functions ( ) associated to a number eld . Moreover, we discuss in Section 3.4.3 to what extent, assuming numerous conjectures and taking = 1, one can take to be the set of pure motives 1 ( ) associated to an abelian variety . Finally, Section 3.4.4 shows that one can take to be the set of all pure motives of a given weight ∈ Z, under the condition that < -/2 and under the assumption that our -functions satisfy the expected functional equation (see Conjecture 3.3.6).

Let us point out that properties similar to the ones we discuss here have already been studied in the case of automorphic -functions by Sarnak, Shin and Templier in [START_REF] Sarnak | Families of -functions and Their Symmetry[END_REF]. Moreover, we devote Section 3.4.5 to explore a possible connection between special values of motivic -functions and motivic heights, in the sense of Kato (see [START_REF] Kato | Height functions for motives[END_REF]).

Some relations between heights and special values

This section contains a few examples of relations between special values of -functions and heights of various sorts, which motivate the search for Diophantine properties of special values of -functions. ±1 ], for which it is conjectured that * ( -1 ( ), 0)

= dim Q (O × ⊗ Z Q) there exists a basis { 1 , . . . , } ⊆ O × ⊗ Z Q such that { 1 , . . . , } ⊆ O × and ℎ • • (2 )! 2 • • ( !) 4 =1 ℎ( ) ≤ | * (0)| ≤ ℎ • • =1 ℎ( ) (3 
( ) ∈ Q × (3.28)
where denotes the zero locus of inside G (see Question 4.2.9). Moreover, in most cases it seems that the ratio appearing in (3.28) is actually an integer. If this was the case, we see immediately that the Northcott property for the family of special values | * ( -1 ( ), 0)| would follow from the Northcott property of the Mahler measure, as the function ( ) is constant in (see Section 1.2.2). where ( , Φ) is the CM-type of and the sum runs over all the Artin characters

: Q → C whose value on complex conjugation ∈ Q := Gal(Q/Q) equals ( ) = -1.
This implies in particular that ( , 0) ∈ C × . Moreover, ∈ N denotes the Artin conductor of and the family of rational numbers { ( ,Φ) ( )} ⊆ Q is de ned by the equality

1 [ Q : Stab(Φ)] ∈ Q /Stab(Φ) |Φ ∩ • Φ| = ( ,Φ) ( ) • ( )
which holds for every ∈ Gal(Q/Q). In particular, ( ,Φ) ( ) = 0 for all but nitely many Artin characters.

We recall that Colmez's conjecture has recently been proved to hold on average. We refer the interested reader to the original work of Yuan and Zhang for an analytic proof (see [START_REF] Yuan | On the averaged Colmez conjecture[END_REF]), and of Andreatta, Goren, Howard and Madapusi Pera for a more geometric proof (see [START_REF] Andreatta | Faltings heights of abelian varieties with complex multiplication[END_REF]), as well as to Howard's survey [START_REF] Howard | On the averaged Colmez conjecture[END_REF].

Diophantine properties of special values of -functions

Example 3.4.4 (Conductors). We have seen in Section 1.2.5 and Section 1.2.6 that conductors of complex and ℓ-adic Galois representations can be seen as examples of heights. These conductors are related to special values of -functions by means of the functional equation associated to a given Galois representation, as we recall in Section 3.4.4.

Example 3.4.5 (Volumes of hyperbolic manifolds). The relations of hyperbolic volumes (see Section 1.2.7) with special values of -functions comes from the fact that for every number eld we have that * (-1)

∼ Q × vol 2 ( ) 3 
Γ
where Γ is a nite-index and torsion-free subgroup of the group O (1) ⊆ O of units having norm one in some order O ⊆ in a totally de nite quaternion algebra ≠ Mat 2×2 ( ) de ned over (see [START_REF] Vignéras | Arithmétique des algèbres de quaternions[END_REF] Example IV.1.5]).

Special values at the boundary of the critical strip: Dedekind -functions

The aim of this section is to provide the rst example of an in nite family of special values of -functions which satis es the Northcott property. This is given by the special values { * (0)} at = 0 of the Dedekind -functions associated to number elds . Proof. Let > 0 be a real number. Our aim is to prove that * (0) ≤ implies that Δ is bounded above, which allows us to conclude by Hermite's discriminant theorem (see [Neu99, Theorem III.2.16]).

By the class number formula (3.23), if * (0) ≤ , then we have ℎ ≤ .

(3.30)

The proof proceeds with two steps: rst we prove that inequality (3.30) implies an upper bound on . This leads to niteness, except possibly for CM elds. The second step is proving niteness of CM elds with * (0) bounded from above.

Step 1: Observe rst of all that for every number eld of degree := [ : Q] we have that ( ) ≤ , where is Euler's totient function. Indeed Q( ) ⊆ , where ⊆ Q denotes the group of -th roots of unity. Then one can use the easy estimate 2 • ( ) ≥ √ to get that ≤ 4 2 . Now we can use the fact that for every number eld we have that ≥ 1 • 2 where 1 = (11.5) -39 and 2 = 1.15, as it was proved by Zimmert in [Zim81, Satz 3] (see also [START_REF] Skoruppa | Quick lower bounds for regulators of number elds[END_REF] for a simpler proof and [START_REF] Friedman | Relative regulators of number elds[END_REF] for a more general statement). This surely implies the weaker inequality ≤ 3 √ for some absolute constant 3 ∈ R >0 . Going back to (3.30) and 100 Chapter 3 L-functions and their special values using ℎ ≥ 1, we see that * (0) ≤ implies that

≤ ( 3 • ) 2 . By [Paz14, Theorem 1.1] we obtain that the set {[ ] ∈ | * (0) ≤ } \ {CM elds}
is nite. We recall brie y the argument here for completeness. Observe that Zimmert's inequality ≥ 1 • 2 implies that number elds with regulator bounded from above have degree bounded from above. Then we can use [Fri89, Theorem C], providing us with the inequality

≥ 4 2 • log Δ 1 ( )+ 2 ( )-1-0 ( ) (3.31) 
where 4 ∈ R >0 is an absolute constant and 0 ( )

:= max { 1 ( ) + 2 ( ) -1 | }
is the biggest unit rank of proper sub-elds of . This gives a useful upper bound on the discriminant if and only if is not a CM eld. Indeed, we always have 0 ( ) ≤ 1 ( ) + 2 ( ) -1 and the equality 0 ( ) = 1 ( ) + 2 ( ) -1 is satis ed if and only if is a CM eld (see [Paz14, Proposition 3.7]). The nal step is Hermite's discriminant theorem, which shows that the discriminant has the Northcott property.

Step 2: Let now CM be the set of isomorphism classes of CM elds. We want to prove that

{[ ] ∈ CM | * (0) ≤ } (3.32)
is nite. To do so observe that for a CM eld of degree := [ : Q] and with maximal real sub eld denoted + , we have that ≥ 2 2 -1 + (see [Paz14, Proposition 3.7]), and thus any upper bound on * (0) entails an upper bound on + . This implies by [Paz14, Theorem 1.1] that if is an element of the set given in (3.32), then + belongs to a nite set of isomorphism classes of totally real elds. Hence to conclude we can assume that + is xed. Then any upper bound on * (0) implies an upper bound on ℎ , which in turn implies the niteness of the set given in (3.32) by results of Siegel and Stark. To be more precise, when + = Q (hence is an imaginary quadratic eld), Siegel proved the following: for any xed > 0 there exists a constant 5 ( ) > 0, such that for any imaginary quadratic eld

ℎ ≥ 5 ( ) • Δ 1 2 - .
This implies that the set of isomorphism classes of imaginary quadratic elds of class number bounded from above is nite by Hermite's theorem (see [START_REF] Goldfeld | A simple proof of Siegel's theorem[END_REF] for a short and elegant proof of Siegel's result). If + ≠ Q we can use a result of Stark, who proved the following: for any xed > 0 there exists a constant 6 ( ) > 0, such that for any CM eld of degree ≥ 4,

ℎ ≥ 6 ( ) ( + ) • |Δ | |Δ + | 2 1 2 -1 • |Δ | 1 2 -2 - (see [Sta74, Theorem 2])
where for every number eld we set ( ) = 1 if there is a tower CM elds with + ≠ Q xed and ℎ bounded, again by Hermite's theorem. Putting everything together, we have proved that the set given in (3.32) is nite and thus we can conclude.

Q = 0 ⊆ • • • ⊆ = such that ⊆ +1 is

Special values inside the critical strip: abelian varieties

In this section, let us look at the Northcott properties of the special values at the integer = 1 of the -functions ( , ) := ( 1 ( ), ) associated to abelian varieties de ned over a number eld . We note that these are much more di cult to prove than the Northcott properties for the special values * (0) which we considered in the previous section. First of all, if we want to follow the strategy that we used in the previous section, we should relate the special value * ( , 1) to some regulator determinant. This relation was given by the class number formula Theorem 3.3.26 in the case of the special value * (0) studied in the previous section, and was thus unconditional. On the other hand, * ( , 1) is related to a regulator determinant only by the conjectural equality (3.25), re-written here as * ( , 1)

? = ∈ 0 ( ) | ( ) tors | • | ∨ ( ) tors | • |X( / )| • / Ω -1 (3.33)
which is the subject of the celebrated conjecture by Birch and Swinnerton-Dyer (see Conjecture 3.3.27). Now, the rst step in the proof of Theorem 3.4.6 was observing that the quantity |(O × ) tors | appearing in the class number formula Theorem 3.3.26 is clearly bounded from above by a polynomial in the degree [ : Q] of the number eld . An analogous statement for abelian varieties is the content of the following, widely believed conjecture.

Conjecture 3.4.7 -Torsion conjecture

For every number eld and every ∈ N ≥1 there exists a natural number ( , ) ∈ N such that | ( ) tors | ≤ ( , ) for all -dimensional abelian varieties de ned over .

We recall that, in the case of elliptic curves, Conjecture 3.4.7 is proved to be true, thanks to work of Merel (see [START_REF] Merel | Bornes pour la torsion des courbes elliptiques sur les corps de nombres[END_REF]). Moreover, the prime number theorem shows easily that

| ( ) tors | • | ∨ ( ) tors | (log|N /Q ( )|) 4 dim( )
as explained in [Hin07, Lemma 3.6]. Now, observing that the Tamagawa numbers ( ) are integers, we see that any upper bound for the quantity | * ( , 1)| entails an upper bound for the quantity

|X( / )| • / Ω -1 (3.34)
if one assumes the validity of the formula (3.33), which is a version of the Birch and Swinnerton-Dyer conjecture. Since our goal is to study Northcott properties for the quantity | * |, it would be useful to compare the quantity (3.34) to other quantities for which a Northcott property is already known to hold. The best candidates for this are the stable Faltings height ℎ st ( ) and the norm of the conductor ideal of the abelian variety . This is exactly the same strategy which was achieved in the proof of Theorem 3.4.6, where the quantity ℎ • was compared to the quantity |Δ |, which satis es the Northcott property thanks to Hermite's theorem. However, there is one fundamental di erence between the proof of Theorem 3.4.6 and the current discussion: both the numerator and the denominator of the ratio (3.34) are comparable to something satisfying a Northcott property, at least conjecturally. First of all, one has that

( ) Ω -1 ( ) (log( ( ))) dim( )/2
as shown in [Hin07, Lemma 3.7]. Secondly, [Hin07, Conjecture 5.5] predicts that

( ) 1- |X( / )| • / ( ) 1+ (3.35)
which would be analogous to the Brauer-Siegel theorem that holds for the regulator of number elds, and was used in the proof of Theorem 3.4.6. Hindry proves in [Hin07, Proposition 5.6] that (3.35) holds if one assumes a suitable generalisation of Szpiro's conjecture (see [Hin07, Conjecture 3.4]) as well as the validity of the following inequalities

|N /Q ( )| -? | * ( , 1)| ? |N /Q ( )| (3.36)
for every ∈ R >0 .

The previous discussion shows that it is necessary to gain further evidence in order to be able to prove a Northcott property for the special value * ( , 1) associated to abelian varieties. In particular, the two quantities |X( / )| • / and Ω -1 appearing at the numerator and denominator of the ratio (3.34), appear to have the same order of magnitude, at least conjecturally. It is henceforth necessary to study better these quantities, to understand in which sorts of in nite families of abelian varieties one can expect that the quantity * ( , 1) satis es a Northcott property. Two nal remarks are in order:

• the validity of the inequalities (3.36) has been questioned by Watkins in [Wat08, § 4.5];

• in the case of elliptic curves, one knows from [AHP18] that the following inequality holds

/ | ( ) tors | • | ∨ ( ) tors | ℎ / -4 3 • (log(3 • ℎ)) 2• / +2 3 
where ℎ := max{1, ℎ( ( ))} is a quantity comparable with the stable Faltings height (see for instance [Paz18, Lemma 3.2]), and / := rk( ( )). This inequality shows that a part of the right hand side of (3.33) can indeed be related to some height, even if this relation is too weak to conclude that (under the Birch and Swinnerton-Dyer conjecture) the special value * ( , 1) satis es a Northcott property.

Special values outside the critical strip: Weil's conjectures and the functional equation

The aim of this section is to show how to get a Northcott property for special values of -functions at the left of the critical strip using the conjectural functional equation.

Diophantine properties of special values of -functions

Proposition 3.4.8 -Northcott properties at the left of the critical strip Let ≠ Q and be two number elds, and x ∈ Z. Then for every 1 , 2 ∈ R ≥0 and every ∈ Z such that < /2, the set

:= { ∈ MM ( ; ) | gr W ( ), | * ( , )| < 1 , ∞ ( ) < 2 }/∼ iso
is nite, under the assumption of Conjecture 3.3.4 and Conjecture 3.3.6. Here ∞ ( ) ∈ N is de ned as

∞ ( ) := max ∈Z ∈Hom( ,C) { , ( ( )) | ∈ C } ∪ { , ( ( )) | ∈ {±}, ∈ R } where C := { ∈ ∞ :
C} and R is de ned analogously. We recall that the various numbers , ( /C ) and ± , ( /R ) associated to a Hodge structure ∈ MHS( ; ) de ned over ∈ {R, C} were introduced in Section 3.2.3.

Proof. Applying the functional equation (3.19) we see that the inequality

| * ( , )| < is equivalent to | ( , )| ≤ • | * ( ∨ , 1 -)| -1 • | * ∞ ( , )| | * ∞ ( ∨ , 1 -)| (3.37) 
where ∞ := ∈ ∞ ( ( ), ) C denotes the Archimedean part of the completed -function ( , ). Since ∞ ( ) is bounded from above, we see from the de nition of the Archimedean component of the -function that there exists 3 ∈ R ≥0 (depending on 2 ) such that

∈ ⇒ | * ∞ ( , )| | * ∞ ( ∨ , 1 -)| ≤ 3
which can be combined with (3.37) to get that

| ( , )| ≤ ( • 3 ) • | * ( ∨ , 1 -)| -1 (3.38)
for every ∈ . Now, the assumption that gr W ( ), i.e. that is pure of weight , implies that for every non-Archimedean place ∈ 0 the absolute values of the roots of the polynomial ( ) attached to the local Galois representation ( ) (see Section 3.2.2) are bounded by a function depending only on , which is equal to |N /Q ( )| /2 for almost all places ∈ 0 . Moreover, Remark 3.3.10 shows that

| * ( ∨ , 1 -)| = | * ( , + 1 -)|
and if we combine this with the previous observation we see that To conclude, it is su cient to recall that for every ∈ we have

∈ ⇒ | * ( ∨ , 1 -)| ≥ 4 ( 3 
| ( , )| = |Δ | +1 2 dim( ℓ ( )) • |N /Q ( ℓ ( ) )| +1 2 -≤ 5
where ℓ ∈ N is any prime such that has good reduction at every place of lying above ℓ (see [START_REF] Rohrlich | Elliptic curves and the Weil-Deligne group[END_REF][START_REF] Borwein | Densities of Short Uniform Random Walks[END_REF]Corollary]). Thus we see that, since ≠ Q, both the dimension and the norm of the conductor of the Galois representations ℓ ( ) is bounded from above. Hence we can apply the Northcott property for the conductor that we have seen in Section 1.2.6 to see that there are only nitely many ℓ ( ), up to isomorphism. Since MM ( ; ) is one of the categories of mixed motives de ned in Section 2.2.2, we see that every motive is determined by its realisations, and therefore we have also nitely many elements in .

Remark 3.4.9. The proof of Proposition 3.4.8 shows that Proposition 3.4.8 can be extended to = Q, if we simply add the dimension of the ℓ-adic realisations of to the bounded functions. However, it is possible that in fact Proposition 3.4.8 would hold without changes even for = Q.

To show this, one would need to show that the set of isomorphism classes of pure ℓ-adic Galois representations de ned over Q which have their conductor bounded and their weight xed is nite, without bounding the dimension as we did in Section 1.2.6. Such a statement is even not known for weight one Galois representation. However, the fact that there are no abelian varieties of any dimension ≥ 1 which are unrami ed over Q, as was proved by Fontaine in [START_REF] Fontaine | Il n'y a pas de variété abélienne sur Z[END_REF], might be seen as evidence for these kinds of statements.

Connections with motivic heights

The aim of this short section is to brie y describe a possible connection between the Diophantine properties (and in particular the Northcott property) described in Section 3.4, and the motivic heights de ned by Kato in [START_REF] Kato | Height functions for motives[END_REF]. Our driving question is the following.

Question 3.4.10 -Special values of -functions and motivic heights

Let and be two number elds. Fix ℎ : MM ( ; ) → R to be one of the height functions de ned in [START_REF] Kato | Height functions for motives[END_REF], e.g. ℎ = ℎ * ,♦ (see Example 3.4.11). Let ∈ MM ( ; ) be a motive and ∈ Z be an integer, for which the special value * ( , ) is de ned. Does there exist another motive such that | * ( , )| = ℎ( ) or maybe a nite family of motives M , in the guise of a square matrix, such that

| * ( , )| = det(ℎ(M ))?
First of all, let us brie y review the de nition of Kato's heights, and then let us describe one possible strategy to answer Question 3.4.10. Kato's heights are de ned in [START_REF] Kato | Height functions for motives[END_REF] by the formula The idea is that the complexity measured by the heights ℎ increases with respect to ∈ N.

ℎ : M → R ↦ → ∈N ℎ Ψ ( ) (3 
In particular, ℎ 0 ( ) measures the complexity of the graded pieces gr W ( ) similarly to how Faltings's height measures the complexity of an abelian variety. On the other hand, the higher heights ℎ ( ) measure how distant the motive is from being isomorphic to ∈Z gr W ( ) by measuring the complexity of monodromy at the di erent primes. In particular, if ∈Z gr W ( ) then ℎ

, ( ) = 0 for every ≥ 1. Finally, the functions and are supposed to be "simple" functions that serve merely as coe cients in the linear combinations ( and one uses Hodge theory and -adic Hodge theory to de ne the di erent absolute values. We refer the interested reader to [Kat18, § 1.4] for further details. Now we can turn to the de nition of ℎ 1 1 , which is given by

ℎ 1 1 ( ) := ∈Z 1 ( ; ) • ∈Ω log ,1 ( ) , 1,
where ,1 ( ) ∈ Ext 1 M (gr W ( ), gr -1 W ( )) is the class of the extension

0 → gr -1 W ( ) → Fil W ( ) Fil -2 W ( ) → gr W ( ) → 0
and the absolute values • , ,1, : Ext 1 M (gr W ( ), gr -1 W ( )) → R ≥0 are de ned using Beilinson's height pairing. Indeed, we can identify

Ext 1 M (gr W ( ), gr -1 W ( )) = Ext 1 M (Q, ( ) )
where ( ) := (gr W ( )) ∨ ⊗ gr -1 W ( ). If we assume that for every ∈ Z the graded quotient gr W ( ) is polarized then we have a polarization : ( ) → ( ( ) ) ∨ (1) that we can use to de ne the absolute values

• , ,1, : Ext 1 M (Q, ( ) ) → R ≥0 ↦ → , ( ) ( ) B, ( ) ,
using the local components of Beilinson's height pairing for the motive . We refer the interested reader to [Kat18, § 1.7.1] for more details.

Finally, let us de ne ℎ for ≥ 2. We have again a local decomposition

ℎ ( ) := ∈Z ( ; ) • ∈Ω log , , ( ) , , ,
but now the elements of which we take the absolute value vary with the place ∈ Ω . These elements , , ( ) are de ned using the monodromy theorem of Grothendieck and the (conjectural) weight monodromy ltration that arises from the relation between the weight ltration and the monodromy operator. We refer the interested reader to [Kat18, § 1.7.3] for more details.

Example 3.4.11. Let us list some choices for , which allow us to recover all the examples of heights de ned in [START_REF] Kato | Height functions for motives[END_REF].

First of all, we can choose = 0 for ≥ 1. Moreover, we can choose -(-1) , if > /2, 0, otherwise where ( ; , ) := dim (gr H (gr W ( dR ))).

Diophantine properties of special values of -functions

Finally, we can of course consider many choices for the functions ( ; , ) for ≥ 1. In particular, if we set ≡ 1 for every ∈ N ≥1 then we get the height ℎ * ,♦ mentioned in Question 3.4.10.

As we have brie y seen, Kato's height functions may seem rather involved at the rst sight. However, the complexity of their de nitions sparks even more hope that they might be the right invariant to capture all the intrinsic complexity inherent to the category of mixed motives. In particular, one could ask whether Kato's heights are the right ones to answer Question 3.4.10.

Let us conclude this section by brie y mentioning our strategy to construct the motive (or the matrix of motives M ) appearing in Question 3.4.10, at least in the case = = Q. Moreover, let us assume that ∈ MM (Q/Z; Q), where MM (Q/Z; Q) denotes the category of "mixed motives over Z" de ned by Scholl in [Sch91, Page 376]. This is the full subcategory of MM (Q; Q), consisting of those motives such that the weight ltration on the ℓ-adic realisation ℓ ( ) splits over Q nr (the maximal unrami ed extension of Q ) for every pair of distinct primes ℓ, ∈ N. In particular, MM (Q/Z; Q) contains all the pure motives. Now, if ∈ MM (Q/Z; Q) and ∈ Z then we can use a construction of Scholl (see [START_REF] Scholl | Height pairings and special values of -functions[END_REF]) to get a new motive ( ) ∈ MM (Q; Q) such that

( ( ) , ) = ( , ) ( -) ( -+ 1) (3.42)
and is a critical value for the -function ( ( ) , ). This means that

Hom(1, ( ) ( )) = Ext 1 (1, ( ) ( )) = Hom( ( ) ( ), 1) = Ext 1 ( ( ) ( ), 1) = 0 (3.43)
where the homomorphism and extension groups are taken in the category MM (Q/Z; Q). Hence we have in particular that ( ( ) , ) ≠ 0, and the conjectures of Bloch and Kato imply that the special value * ( ( ) , ) = ( ( ) , ), which is related to * ( , ) by (3.42), can be computed using the determinant of a matrix whose entries are given by Beilinson's height pairing. Thus it is not unreasonable to expect that, for some choice of motivic height ℎ : MM (Q; Q) → R, one has that ℎ( ( ) ) is related (or even equal) to * ( , ). This will be the subject of future investigations.
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Chapter 3 L-functions and their special values

An introduction to the Mahler measure

Measure what is measurable, and make measurable what is not so.

Galileo Galilei, Dialogue Concerning the Two Chief World Systems

The present chapter contains a brief survey of the theory surrounding the Mahler measure of polynomials. This "measure" gives a number ( ) ∈ R ≥0 that can be associated to a vast class of complex-valued functions : T → C de ned on the real torus

T := {z = ( 1 , . . . , ) ∈ (C × ) | | 1 | = • • • = | | = 1}.
This class of functions comprises Laurent polynomials ∈ C[ ±1 1 , . . . , ±1 ], for which one knows that ( ) ≠ 0 as soon as ≠ 0. This allows one to de ne the logarithmic Mahler measure ( ) := log( ( )). Since in this thesis we are mainly interested in the logarithmic version, we deserve the term Mahler measure for ( ), and call ( ) by the name of exponential Mahler measure.

The exponential Mahler measure ( ) for one-variable monic polynomials ∈ Z[ ] was introduced by Lehmer (see [Leh33, Theorem 16]), using the formula

( ) := ∈C ( )=0 max(1, | |) (4.1)
which was used to show that ( ) computes the growth rate of the sequence of integers

Δ ( ) := ∈C ( )=0
-1 ∈ Z which were introduced by Pierce (see [START_REF] Pierce | The numerical factors of the arithmetic forms = 1 (1 ± )[END_REF]) as a generalisation of Mersenne's sequence 2 -1 = Δ ( -2). Note in particular that ( ) ≥ 1 for every ∈ Z[ ] \ {0}. Exactly like Mersenne's numbers, any integer of the form Δ ( ) is easier to factor than a randomly chosen one. In particular, Lehmer pointed out in [Leh33, § 13] that the smaller ( ) was, the more primes there seemed to be in the sequence {Δ ( )} ∈N . This lead him to ask whether the height function : 

Z[ ] \ {0} → R (4.
[ ] \ {0} → R.
One of the most interesting attempts towards the solution of Lehmer's problem has been given by Boyd (see [START_REF] Boyd | Speculations concerning the range of Mahler's measure[END_REF]). More precisely, studying Lehmer's question entails a deeper understanding of the numbers ∈ R that arise as limits of sequences of Mahler measures, i.e. of the derived set (1) 1 ⊆ R ≥1 . A result of Boyd and Lawton shows that ⊆ (1) 1 for every ∈ Z ≥1 , where := (Z[ 1 , . . . , ] \ {0}) ⊆ R ≥1 . This gives rise to a nested, increasing chain of sets

1 ⊆ . . . ⊆ +1 ⊆ • • • ⊆ (1) 1 ⊆ 1 ⊆ R ≥1
where 1 denotes the closure of 1 . Now, Boyd conjectures in [Boy81b, Conjecture 1] that the set The theorem of Boyd and Lawton, together Boyd's prediction that ∞ is closed, generated an increasing interest in the study of Mahler measures of polynomials in multiple variables. The pioneering work [START_REF] Smyth | On measures of polynomials in several variables[END_REF] by Smyth showed that these real numbers could be surprisingly related to special values of -functions. More precisely, Smyth computed the two formulas

∞ := lim --→ ⊆ R ≥1 is closed. Since ∞ is
( + + 1) = * ( -3 , -1) ( + + + 1) = -14 * (-2)
where -3 : (Z/3Z) × → {±1} is the unique non-trivial Dirichlet character modulo 3, associated to the imaginary quadratic eld Q( √ -3), and denotes Riemann's -function. These results, further enriched by the thesis of Ray [START_REF] Ray | Relations between Mahler's measure and values of -series[END_REF], prompted Boyd to start an intensive numerical investigation concerning the relations between Mahler measures of polynomials in multiple variables and special values of -functions. This led to the foundational paper [START_REF] Boyd | Mahler's measure and special values of -functions[END_REF], which contains an incredible amount of predictions and numerical computations relating special values of -functions arising from elliptic curves to polynomials in two variables. These conjectural identities are still largely unproved today, despite the fact that the modular methods of Rogers and Zudilin (see [START_REF] Rogers | From L-series of elliptic curves to Mahler measures[END_REF], [START_REF] Rogers | On the Mahler Measure of 1 + + 1/ + + 1[END_REF] and [START_REF] Zudilin | Regulator of modular units and Mahler measures[END_REF]) and Brunault (see [START_REF] Brunault | Regulators of Siegel units and applications[END_REF] and [BZ20, Chapter 10]) have almost reduced the task of proving some of these identities to a purely algorithmic one.

The last years of the twentieth century did not only see the publication of Boyd's numerical computations, but they also featured the appearance of two theoretical papers attempting at explaining them. First of all, we mention Rodriguez Villegas's paper [START_REF] Villegas | Modular Mahler measures. I[END_REF], which focuses on the fact that most identities conjectured by Boyd come in families of polynomials ∈ Z[ , ], where ( , ) ∈ Z[ ] [ , ]. Thus the Mahler measure ( ) can be studied as a function of , and for suitable families this function can be related to Eisenstein-Kronecker series, which are intimately linked to modular forms. Moreover, this approach of studying Mahler measures in families has also proved incredibly useful in proving relations of the form ( ) = ( ) for two families of polynomials , ∈ Z[ , ]. We do not deal with these kinds of problems in this thesis, despite their great interest, and we refer the interested reader to the papers by Bertin-Zudilin (see [START_REF] Bertin | On the Mahler measure of a family of genus 2 curves[END_REF][START_REF] Bertin | On the Mahler measure of hyperelliptic families[END_REF] and the survey [BZ20, Chapter 5]) and Lalín and Wu (see [START_REF] Lalín | Regulator proofs for Boyd's identities on genus 2 curves[END_REF] and [START_REF] Lalín | The Mahler measure of a genus 3 family[END_REF]) for two di erent methods that allow one to prove relations between the Mahler measures of di erent families of polynomials.

The second (or rather the rst, in chronological order) of the innovative works that appeared towards the end of the twentieth century consists in Deninger's paper [START_REF] Deninger | Deligne periods of mixed motives, -theory and the entropy of certain Z -actions[END_REF]. In this work, Deninger proves that the seemingly transcendental integral de ning the Mahler measure can be converted into an integral related to algebraic geometry. More precisely, for a suitable class of 110 Chapter 4 An introduction to the Mahler measure Laurent polynomials ∈ Q[ ±1 1 , . . . , ±1 ] there exists a mixed motive ∈ MM ( ; Q), where is the number eld generated by the coe cients of , such that the Mahler measure ( ) appears as a period of (see Section 4.3). This class of polynomials has been enlarged by numerous subsequent work, among which we cite the paper [BD99] by Besser and Deninger, and Bornhorn's thesis (see [START_REF] Bornhorn | Mahler-Maße und spezielle Werte von -Funktionen[END_REF][START_REF] Bornhorn | Mahler measures, -theory and values of -functions[END_REF]).

Deninger's work can also be used to relate Boyd's conjectural links between -values and Mahler measures to the conjectures of Beilinson and Bloch-Kato that we surveyed in Section 3.3.2. This has been fully done by Bornhorn in his PhD thesis for the family ( , ) := 1 + 1 1 + 2 + 1 2 + (see Theorem 4.4.1). We dedicate Section 4.4.1 to give a similar proof for the family

( , ) = 1 + 1 1 + 2 + 1 2 + 1 2 + 2 1 + .
Finally, Section 4.4.2 is devoted to the computation of the Mahler measure of two families providing a "canonical model" for elliptic curves: a certain Weierstraß family, and the Edwards family.

Definition and Diophantine properties

The aim of this section is to introduce the theory of the Mahler measure, by giving its de nition and explaining its relation to the height of algebraic number, by means of Jensen's formula. Moreover, we outline the main questions of Diophantine nature related to the Mahler measure.

First of all, let us de ne the Mahler measure and its exponential variant , which were introduced by Mahler in [START_REF] Mahler | On some inequalities for polynomials in several variables[END_REF].

De nition 4.1.1 -Mahler measure

Let ∈ N be an integer. Then the Mahler measure is the functional

: C[ ±1 1 , . . . , ±1 ] → R ∪ {-∞}
de ned on the ring C[ ±1 1 , . . . , ±1 ] of Laurent polynomials as

( ) := ∫ T log| | T (4.3)
where where log + : R ≥0 → R ≥0 is de ned by setting log + (0) := 0 and log + ( ) := max(0, log( )) for every > 0. Remark 4.1.3. It is easy to prove by induction on the number of variables ∈ Z ≥1 that for every xed non-zero Laurent polynomial ∈ C[ ±1 1 , . . . , ±1 ] \ {0} we have that T ( (C) ∩ T ) = 0, where ↩→ G ,C is the closed sub-variety given by the zero locus of . Actually, one can easily prove the estimate (see [EW99, Lemma 3.8])

T := {z = ( 1 , . . . , ) ∈ (C × ) | | 1 | = • • • = | | = 1}
T ({z ∈ T | | (z)| < }) ≤ • ( ) (4.4)
where ∈ R >0 depends on the coe cients of and ( ) ∈ R >0 depends on the degree of . This estimate (4.4) implies in particular that ( ) = -∞ if and only if = 0. 

(G ∞ ,C , O G ∞ ,C ) C[ ±1 1 , ±1 2 , . . . ] → R ∪ {-∞}
where G ∞ ,C denotes the inverse limit of the complex algebraic tori G ,C along the projections which forget the last coordinate.

Remark 4.1.5. The Mahler measure can be de ned in a far more general setting. More precisely, let ( , ) be a probability space and let 0 ( ) denote the complex vector space of measurable functions : → C, quotiented by the sub-space given by those functions which are zero almost everywhere. Then one can de ne the -spaces

( ) := ∈ 0 ( ) := ∫ | | 1/ < +∞
for every non-negative real number ∈ R ≥0 . These are complex vector spaces, endowed with a function

• : ( ) → R ≥0
for every > 0. This function is a norm if ≥ 1, but only a quasi-norm in general. Now, since is supposed to be a probability space we have that ( ) ⊆ ( ) for every ≥ ≥ 0. Using this, one can de ne the exponential Mahler measure (relative to ) as the functional

: >0 ( ) → R ≥0 ↦ → lim →0 (4.5)
on the complex vector space

>0 ( ) := lim --→ →0 + ( ) = >0 ( ) ⊆ 0 ( )
given by those measurable functions : → C such that < +∞ for some > 0. It is easy to see that

( ) = exp lim →0 + 1 log ∫ | | = exp ∫ log| |
where we set exp(-∞) := 0. This shows that the functional de ned in (4.5) coincides with the exponential Mahler measure de ned in De nition 4.1.1, if we take to be the probability space G ,C with the unique Haar probability measure T . Hence it makes sense to de ne the functional : >0 ( ) → R ∪ {-∞} by setting Remark 4.1.6. There are various other generalisations of the Mahler measure, which are not studied in this thesis. Some of them are in fact particular instances of the general framework developed in Remark 4.1.5, such as:

• the Mahler measure for arbitrari tori studied by Lalín and Mittal in [START_REF] Lalín | The Mahler measure for arbitrary tori[END_REF], which is obtained by taking = T a for some a = ( 1 , . . . , ) ∈ (R >0 ) , where

T a := {z ∈ (C × ) | | 1 | = 1 , . . . , | | = }
is the real analytic -torus associated to a;

• the Mahler measure for compact abelian groups studied by Lind in [START_REF] Lind | Lehmer's problem for compact Abelian groups[END_REF], who takes = to be a compact abelian group (with the unique probability Haar measure), and considers only functions ∈ Z[ ], where := Hom( , T 1 ) is the Pontryagin dual of ;

• the elliptic Mahler measure introduced by Everest and Fhlathúin in [START_REF] Everest | The elliptic Mahler measure[END_REF] (see also [START_REF] Everest | Heights of Polynomials and Entropy in Algebraic Dynamics[END_REF]§ 6.3] for the de nition in several variables). This elliptic Mahler measure is essentially de ned by taking = (C) for some elliptic curve , endowed with the unique probability Haar measure.

Let us mention also some other generalisations of the notion of Mahler measure, such as:

• the higher Mahler measure introduced by Kurokawa, Lalín and Ochiai in [START_REF] Kurokawa | Higher Mahler measures and zeta functions[END_REF]. Using the general framework outlined in Remark 4.1.5, this can be de ned for every probability space and every ∈ N as the functional

: >0 ( ) → R ∪ {-∞} ( 1 , . . . , ) ↦ → ∫ log| 1 | • • • log| |
where denotes the product probability measure;

• the metric Mahler measure of Dubickas and Smyth [START_REF] Dubickas | On the Metric Mahler Measure[END_REF] (see also [START_REF] Samuels | Metric heights on an Abelian group[END_REF] for a generalisation), which satis es the triangle inequality and hence is more amenable to topological considerations;

• the -Mahler measure and the crystal Mahler measure introduced by Kurokawa in [START_REF] Kurokawa | A -Mahler measure[END_REF].
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Remark 4.1.7. As it is mentioned in the preface of [START_REF] Brunault | Many Variations of Mahler Measures: A lasting symphony[END_REF], the Mahler measure has connections with "practically every other part of mathematics". Let us mention some of these connections, which do not otherwise appear in this thesis: 

(G ,Z , O ) ∧ := Hom( 0 (G ,Z , O ), T 1
) is a compact abelian group endowed with an action of Z . Then a theorem of Lind, Schmidt and Ward says that the entropy of this action is precisely given by the Mahler measure ( ) (see [START_REF] Schmidt | Dynamical systems of algebraic origin[END_REF]Theorem 18.1]);

• the previous connections between Mahler measures and entropies have been extensively explored by Deninger. In particular, Mahler measures and more general heights have been related to the entropy of certain actions of suitable amenable groups, and to Fuglede-Kadison determinants of certain operators on the algebras associated to the action (see [START_REF] Deninger | Regulators, entropy and in nite determinants[END_REF] for a survey). This work of Deninger is part of the bigger program which aims to relate arithmetic schemes X → Spec(Z) to dynamical systems, in a way which would respect the -functions de nable on both sides. Under such a program, the relations between regulators and entropies outlined in [START_REF] Deninger | Regulators, entropy and in nite determinants[END_REF] would become relations between the values of the corresponding -functions, assuming the validity of the conjectures described in Section 3.3.2;

• the work of Breuillard gives another relation between the Mahler measure and the theory of amenable groups, with particular emphasis on the problem of Lehmer (see Question 4.1.14).

We refer the interested reader to the survey [START_REF] Breuillard | Diophantine geometry and uniform growth of nite and in nite groups[END_REF];

• nally, the work of Borwein, Straub, Wan and Zudilin (see [START_REF] Borwein | Densities of Short Uniform Random Walks[END_REF] and [START_REF] Straub | From Analysis to Visualization[END_REF]) shows that the Mahler measures ( ) := ( 1 + • • • + ) can be computed as the derivative in = 0 of the moment function ( ) associated to a uniform random walk of steps. This allows one to compute explicit hypergeometric formulas for the values ( ), which are much more amenable to computation.

The rst remarkable property of the Mahler measure is a consequence of Jensen's formula (see [SS03, § 5.1] and [BZ20, Proposition 1.4]), which allows one to reduce the number of variables in the integral computing ( ). 

( ) = ( 0 ) + =1 ( -(x)) = ( 0 ) + =1 + ( ) (4.6)
which allows one to reduce the computation of the Mahler measure of a polynomial in + 1 variables to the computation of the plus-Mahler measures of algebraic functions in variables.

Example 4.1.9. Applying the factorisation (4.6) to a polynomial ∈ C[ ] in one variable, we get the formula

( ) = log| 0 | + ∈C ( )=0 log + | | (4.7)
where 0 ∈ C × denotes the leading coe cient of . We observe that (4.7) is the logarithmic analogue of Lehmer's formula (4.1). In particular, (4.7) shows that for every algebraic number ∈ Q × we have the following relation between the Mahler measure and the absolute logarithmic Weil height ℎ( ) ∈ R (see Section 1.2.1):

( ( )) = deg( ) • ℎ( ) where ( ) = + • • • + 0 ∈ Z[ ]
is the integral minimal polynomial of , de ned as the unique irreducible integral polynomial satisfying the two conditions gcd( 0 , . . . , ) = 1 and > 0, such that ( ) = 0.

Small values of the Mahler measure

Let ∈ C[ ] be a monic polynomial. The identity (4.1) shows immediately that lim

→+∞ Δ +1 ( ) Δ ( ) = ( ) (4.8)
where {Δ ( )} ∈N ⊆ C is the sequence of complex numbers de ned by the formula

Δ ( ) := ∈C ( )=0 -1 ∈ C.
When ∈ Z[ ] is a monic polynomial with integer coe cients, Galois theory shows that Δ ( ) ∈ Z for every ∈ N, and one has that

Δ ( ) Δ ( ) = ∈C ( )=0 -1 =0 ∈ Z
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for every , ∈ N. These numbers are sometimes called cyclotomic integers, because they have a factorisation which resembles the one of cyclotomic polynomials. Pierce and Lehmer used this sequence of integers to nd new large prime numbers of the form Δ ( )/Δ 1 ( ), where ∈ N is a small rational prime. Two famous examples of this include the prime numbers

Δ 113 ( 1 ) = 63088004325217 Δ 127 ( 1 ) = 3233514251032733
(4.9) associated to the polynomial 1 ( ) ∈ Z[ ] de ned as 1 ( ) := 3 --1. Note that these numbers can indeed be primes because Δ 1 ( 1 ) = 1. We also invite the reader to observe that, in the beginning of the twentieth century, the largest prime number known was the Mersenne prime

Δ 127 ( -2) = 170141183460469231731687303715884105727
discovered by Lucas in 1876 (see [START_REF] Lucas | Note sur l'application des séries récurrentes à la recherche de la loi de distribution des nombres premiers[END_REF]). Thus the number of digits of the primes discovered by Lehmer and Pierce was not incredibly distant from the world record at the time, and the two numbers Δ 113 ( 1 ) and Δ 127 ( 1 ) had the advantage of not being Mersenne primes. Lehmer observed in [START_REF] Lehmer | Factorization of certain cyclotomic functions[END_REF] that the prime counting function

( ; ) := |{ ≤ | Δ ( )/Δ 1 ( ) is prime}| (4.10)
seems to grow faster as soon as the Mahler measure ( ) is small. This has one notable exception, given by the following proposition (see [BZ20, Exercise 1.7]). Proof. It is clearly su cient to prove that |Δ 2 ( )/Δ 2 ( )| and |Δ 2 +1 ( )/Δ 1 ( )| are squares for every ∈ N. We can also assume that is irreducible, since clearly

Δ ( 1 • 2 ) = Δ ( 1 ) •Δ ( 2 ) for every pair of polynomials 1 , 2 ∈ Z[ ]. If is irreducible, it is not di cult to see that is even, because ( ) =
(1/ ). Moreover, we can order the roots 1 , . . . , of in such a way that 2 = -1 2 -1 for every ≥ 1. Doing so, we see that

Δ 2 ( ) Δ 2 ( ) = /2 =1 ( 2 2 -1 -1) • ( 2 2 -1) ( 2 2 -1 -1) • ( 2 2 -1) = /2 =1 -1 2 -1 -1 =0 2 2 2 (4.11) Δ 2 +1 ( ) Δ 1 ( ) = /2 =1 2 +1 2 -1 -1 2 -1 -1 • 2 +1 2 -1 2 -1 = /2 =1 1 + =1 2 -1 + 2 2 (4.12)
which allows us to conclude, because the expressions (4.11) and (4.12) are clearly rational integers thanks to Galois theory.

The class of polynomials appearing in Proposition 4.1.10 deserves a name of its own.
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De nition 4.1.11 -Reciprocal polynomial

Let ∈ N. We de ne two involutions ↦ → * and ↦ → † on the ring C[ ±1 1 , . . . , ±1 ] of Laurent polynomials, by setting * ( 1 , . . . , ) := ( -1 1 , . . . , -1 ) † ( 1 , . . . , ) := ( 1 -1 , . . . , -1 )

where ↦ → denotes complex conjugation. We say that a given Laurent polynomial

∈ C[ ±1 1 , . . . , ±1 ] is self-reciprocal (respectively conjugate self-reciprocal) if / * (resp. / † ) is a monomial.
Remark 4.1.12. Sometimes the polynomial * is called the reciprocal polynomial of . However, if ∈ C[ ] one usually calls by this name the polynomial • * ( ), where denotes the degree of .

Hence, going back to the counting function ( ; ) de ned in (4.10), we see that ( ; ) = 0 for every ∈ R as soon as is self-reciprocal. On the other hand, one can observe experimentally that ( 3 --1; ) seems to grow faster than ( -2; ), and this re ects Lehmer's prediction because

( 3 --1) = 0.281199 • • • < 0.693147 • • • = ( -2).
In fact, the choice of the polynomial 3 --1 is not a coincidence. This is shown by the following theorem, proved in the PhD thesis of Smyth (see [START_REF] Smyth | On the Product of the Conjugates outside the unit circle of an Algebraic Integer[END_REF] and [BZ20, Theorem 2.1]). 

( ) < ( 1 ) ⇒ ( ) = deg( ) (1/ )
where 1 ( ) := 3 --1.

Thus, combining Proposition 4.1.10 with Theorem 4.1.13 and Lehmer's prediction about the functions ( ; ) de ned in (4.8), one sees that the most e cient way to obtain primes of the form Δ ( )/Δ 1 ( ) is to consider the sequence Δ ( 1 ), which was already studied by Lehmer as we have seen in (4.9). However, Proposition 4.1.10 suggests that it might be interesting to consider the sequence of integers |Δ ( )/Δ which is known today as Lehmer's polynomial. We note, thanks to an observation of Burgos Gil, that the equality (4.13) cited by Lehmer appears to be wrong. Indeed, the correct value (which nowadays can be computed easily using any computer algebra system) is

|Δ 379 ( 0 )| = 37098890596487
which is also a prime number. It might look surprising that Poulet was able to compute the sequence Δ ( 0 ) up to the prime index = 379 (even if his computation turned out to be wrong). However, we notice that this sequence grows quite slowly, because

( 0 ) = 1.084564 • • • is far less than the Mahler measure ( 1 ) = 1.324717 • • • . In fact, we also have that ( 0 ) = 0.162357 • • • < 0.281199 • • • = ( 1 ),
and Lehmer pointed out that ( 0 ) was the smallest Mahler measure that he could nd, after extensive research. Hence, he proposed the following question (see [START_REF] Lehmer | Factorization of certain cyclotomic functions[END_REF][START_REF] Bertin | Mahler measure of some singular 3-surfaces[END_REF]).

Question 4.1.14 -Lehmer's problem

Weak Lehmer problem

Is it true that the Mahler measure function : Z[ ] \ {0} → R has the Bogomolov property, in the sense of De nition 1.1.7?

Lehmer's problem

Is it true that ( ) ≥ ( 0 ) = ( 10 + 9 -7 -6 -5 -4 -3 + + 1) for every ∈ Z[ ] \ {0} such that ( ) ≠ 0? It might not be clear immediately why a positive answer to the second question implies a positive answer to the rst question. This is indeed the case, because the function : Z[ ] \ {0} → R satis es a weak Bogomolov property, in the sense of De nition 1.1.7. Indeed, using (4.7) we see that ( ) ≥ 0 for every ∈ Z[ ]. In fact, this inequality extends to several variables by induction, because Jensen's formula (4.6) shows that ( ) ≥ ( 0 ) for every ∈ Z[ ±1 1 , . . . , ±1 ], where 0 ∈ Z[ ±1 1 , . . . , ±1 -1 ] is the leading coe cient of in the variable . The following theorem, which is due independently to Lawton (see [START_REF] Lawton | A generalization of a theorem of Kronecker[END_REF]), Boyd (see [START_REF] Boyd | Kronecker's theorem and Lehmer's problem for polynomials in several variables[END_REF]) and Smyth (see [START_REF] Smyth | On measures of polynomials in several variables[END_REF]), shows that we can completely characterise the set of polynomials with integer coe cients that achieve the minimal Mahler measure. Let us conclude this section by mentioning some partial steps towards a positive solution to Lehmer's problem, in addition to the aforementioned Theorem 4.1.13:

• it is known that every irreducible polynomial ∈ Z[ ] of degree := deg( ) ≥ 2 satis es 

(
D := =0 ∈ Z[ ] ≡ 1( ), ∀0 ≤ ≤
as was shown by Borwein, Dobrowolski and Mossingho in [START_REF] Borwein | Lehmer's problem for polynomials with odd coe cients[END_REF];

• the Schinzel-Zassenhaus conjecture, which can be regarded as a strengthening of Dobrowolski's bound, is now known thanks to the recent work of Dimitrov (see [START_REF] Dimitrov | A proof of the Schinzel-Zassenhaus conjecture on polynomials[END_REF]).

In particular, it is now known that for every monic, irreducible polynomial ∈ Z[ ] of degree := deg( ) > 1 we have that

max{| | : ∈ C, ( ) = 0} ≥ 2 1/4
which shows that also the single terms appearing in the formula (4.1) cannot be too small.

Limits of Mahler measures

As we have seen in the previous section, Lehmer's Question 4.1.14 remains tantalisingly unanswered to this day. However, the following conjecture of Boyd provides a very interesting strategy to attack the weak version of Lehmer's problem. is closed. Here the direct limit denotes a nested union, because ⊆ +1 for every ∈ N.
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which shows that the Mahler measure of any non-zero polynomial ∈ Z[ ±1 1 , . . . , ±1 ] can be approximated by the Mahler measures of univariate, integral polynomials.

We do not give the details of the proof of Theorem 4.1.18, which are already greatly exposed in [DH19, Appendix A]. Instead, let us use Theorem 4.1.18 to show that Conjecture 4.1.16 gives a positive answer to the weak Lehmer problem. Indeed, Theorem 4.1.18 shows that ∞ ⊆ 1 , and if Conjecture 4.1.16 was true we would have that 1 = ∞ . On the other hand, the following lemma shows that if the weak Lehmer problem has a negative answer we have that 1 = R ≥0 , which would lead to a contradiction because the set ∞ is countable. for every ∈ R. Now, by assumption there exists a sequence { } ∈N ⊆ such that → 0 as → +∞, because 0 ∈ (1) . Moreover, since • ⊆ for every integer ≥ 1, we have that / • ∈ for every ∈ R >0 . Hence (4.16) implies that ∈ (1) for every ∈ R ≥0 . This shows that (1) = R ≥0 , and we can conclude by recalling that (1) ⊆ 1 ⊆ R ≥0 .

To conclude this section, we remark that Conjecture 4.1.16 shows that, even to understand the Diophantine properties of the Mahler measure of polynomials in one variable, one is naturally led to study Mahler measures of polynomials in multiple variables.

Mahler measures and special values of -functions: an historical introduction

The aim of this section is to brie y recall the history of the conjectural links between the Mahler measure and special values of -functions. The rst example of this relation occurs already in one variable (see [BZ20, § 1.4]).

Example 4.2.1. Let ± ( ) := 2 + ± 1 ∈ Z[ ], for ∈ N such that ≥ 3. Then, using Lehmer's formula (4.7) we see that 

( ± ( )) = log + √ 2 ±
( ± ) (0) ( ± ( )) = - |Pic(Z[ ])| 2|Z[ ± ] × : ( ± ) Z | ∈ Q × where ± := ( + √ 2 ± 4)/2.
Remark 4.2.2. It would be interesting to generalise Example 4.2.1 to number elds of higher degree. The rst natural number elds to study are those for which rk(O × ) = 1. Apart from real quadratic elds, which are the subject of Example 4.2.1, these include cubic elds with one real and one complex place, and totally imaginary quartic elds. In the rst case one can use [SS73, Theorem 1.1] (see also [START_REF] Brunault | Many Variations of Mahler Measures: A lasting symphony[END_REF]Page 11]) to prove that for every ∈ Z ≥1 one has * (0)

( 3 -2 -1) = - |Pic(O )| 2|O × : ( ) Z | ∈ Q ×
where ∈ R >1 is the unique real root of the polynomial ( ) := 3 -2 -1 ∈ Z[ ], and := Q[ ]/( ). For quartic elds, one can use for example the explicit family provided by [BW19, Theorem 1.1] to prove similar kinds of identities.

Remark 4.2.3. Let us mention that it would be very appealing to prove relations of the form * (0)

(P) ∈ Q × (4.17)
for number elds having unit rank := rk(O × ) > 1. Here P = ( , ) ∈ Mat × (Z[ ]) would be a matrix of polynomials , ∈ Z[ ] such that Q[ ]/( , ) for every , ∈ {1, . . . , }, and (P) := |det( ( , ))| ∈ R >0 would denote the absolute value of the determinant of the matrix whose entries are given by the Mahler measures of the polynomials appearing in P. We believe that proving a formula like (4.17) should be possible using Minkowski's theorem on units (see [START_REF] Akhtari | Minkowski's theorem on independent conjugate units[END_REF]), at least for number elds which are Galois over Q. Indeed, this theorem allows one to express the matrix computing the unit regulator of as a circulant matrix (see [START_REF] Davis | Circulant matrices[END_REF]), and this makes it easier to relate the regulator determinant to a determinant of Mahler measures. This will be the subject of future investigations.

Historically speaking, the next two examples of identities between Mahler measures and special values of -functions were proved by Smyth in [START_REF] Smyth | On measures of polynomials in several variables[END_REF]. As it is stated in the introduction of that paper, Smyth was indeed inspired by Boyd's work [START_REF] Boyd | Kronecker's theorem and Lehmer's problem for polynomials in several variables[END_REF] (and in particular by Conjecture 4.1.16) to gain a better understanding of Mahler measures of polynomials in multiple variables.
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Chapter 4 An introduction to the Mahler measure Theorem 4.2.4 -Smyth's computations Let -3 : (Z/3Z) × → {±1} be the unique non-trivial Dirichlet character modulo 3, i.e. the Dirichlet character associated to the imaginary quadratic eld Q( √ -3). Then we have:

( 1 + 2 + 1) = 3 √ 3 4
( -3 , 2) = ( -3 , -1) (4.18)

( 1 + 2 + 3 + 1) = 7 2 2 (3) = -14 (-2) (4.19)
where ( ) denotes Riemann's -function.

Proof. We follow [Boy81a, Appendix 1] (see also [START_REF] Brunault | Many Variations of Mahler Measures: A lasting symphony[END_REF]§ 3.3]). First of all, Jensen's formula (4.6) shows that ( 1 + 2 + 1) = + (1 + ), and we can compute

+ (1 + ) = ∫ 1/3 -1/3 log(1 + 2 ) = ∫ 1/3 -1/3 +∞ =1 (-1) -1 2
which can be combined with the identity

∫ 1/3 -1/3 2 = 1 sin 2 3 = √ 3 2 -3 ( )
to conclude that

+ (1 + ) = √ 3 2 +∞ =1 (-1) -1 -3 ( ) 2 = √ 3 2 +∞ =1 -3 ( ) 2 -2 +∞ =1 -3 (2 ) (2 ) 2 = 3 √ 3 ( -3 , 2)
where the last equality follows from the fact that -3 (2 ) = -3 (2) -3 ( ) = --3 ( ).

To prove (4.19), observe that ( 1 + 2 + 3 + 1) = ( 1 + 2 (1 + 3 ) + 1), by the change of variables ( 1 , 2 , 3 ) = ( 1 , 2 , 2 / 3 ). Using again Jensen's formula (4.6) one sees that

( 1 + 2 (1 + 3 ) + 1) = (max(|1 + 1 |, |1 + 2 |))
, and we can compute where the last equality follows from Theorem 4.1.15. Now we can again use the power series for the logarithm to get 3 where the last equality follows from the computation

(max(|1 + 1 |, |1 + 2 |)) = 1 2 ∫ 0 ∫ 0 max(log|1 + 1 |, log|1 + 2 |) 1 2 = = 1 2 ∫ 0≤ 2 < 2 ≤ log|1 + 1 | 1 2 + ∫ 0≤ 1 < 2 ≤ log|1 + 2 | 1 2 = = 2 2 ∫ 0 ( -) log|1 + | = = 2 2 (1 + ) -
∫ 0 log|1 + | = +∞ =1 (-1) -1 ∫ 0 = -2 +∞ =0 1 (2 + 1)
∫ 0 = - ∫ 0 = ( -1) + 1 2
obtained integrating by parts. Hence we can see that

( 1 + 2 + 3 + 1) = 4 2 +∞ =0 1 (2 + 1) 3 = 4 2 +∞ =1 1 3 - +∞ =1 1 (2 ) 3 = 7 2 2 (3)
which concludes the proof.

Remark 4.2.5. The identity ( 1 + 2 + 1) = ( -3 , -1) is only the rst example of identities of the form

( , -1) ( ) ∈ Q × (4.20)
where denotes the quadratic character associated to the imaginary quadratic eld , and ∈ Z[ 1 , 2 ] is a polynomial with integer coe cients. Identities of this kind are known in a nite number of special cases (see Table A [START_REF] Huber | Dirichlet motives via modular curves[END_REF] and [START_REF] Huber | Bloch-Kato conjecture and Main Conjecture of Iwasawa theory for Dirichlet characters[END_REF]), which are related to modular curves, and the constructions appearing in Chapter 5, we think that it should be possible to tackle new cases of Chinburg's conjecture. This will be the subject of future work. Instead, Chapter 9 focuses on the special values * ( , 2) associated to elliptic curves with complex multiplication, for which a weak form of Beilinson's conjecture is also known to hold (see Section 7.4).

Remark 4.2.6. We observe that the polynomials 1 + 2 + 1 and 1 + 2 + 3 + 1 appearing in Theorem 4.2.4 are part of the family := 1 + • • • + + 1, whose Mahler measures ( ) are sometimes called linear Mahler measures. We recall that Rodriguez Villegas used the insight of Maillot, which is investigated in Chapter 5, to conjecture that ( 4 ) and ( 5 ) should be curve de ned over C such that C( ) Frac(C[ ±1 1 , ±1 2 ]/( )). Then [START_REF] Cooper | Plane curves associated to character varieties of 3-manifolds[END_REF]§ 3] shows that, supposing that 0 ( ) ≠ 0, one can associate to every side of Δ a point ∈ (C) and a power series ( ) ∈ C such that, if we set 1 ( ) := ( ) and 2 ( ) := ( ) ( ) we obtain a local parametrisation of around . Here ( ) ∈ Z and ( ) ∈ N are such that ( ( ) : ( )) ∈ P 1 (Z) is the slope of the side . Moreover, the same paper [START_REF] Cooper | Plane curves associated to character varieties of 3-manifolds[END_REF] shows that for every point ∈ (C) which is either a zero or a pole of the coordinate functions 1 and 2 , there exists a face of Δ such that = . Finally it is known that the tame symbol ({ , }) ∈ C × (see Equation (2.28)) satis es

({ , }) ∈ ±R ( ) Z (4.23)
where R ( ) ⊆ C × denotes the set of roots of the face polynomial ( ) :=

( ) =0 
( ) ( ) . Here (0), . . . , ( ( )) ∈ Z 2 denote the points of having integral coordinates, ordered by reading the faces of Δ counterclockwise. Now, combining Proposition 2.3.7 with (4.23) and the fact that each zero or pole of the coordinate functions on can be expressed as a point of the form , we see that our Laurent polynomial ∈ C[ ±1 1 , ±1 2 ] is tempered (with respect to any compacti cation of ) if and only if ( ) = 0 for every face of the Newton polygon Δ . This can be regarded already as an interesting example of the relationships intercurrent between Mahler measures and motives. More relations of this kind are investigated in the next section. Moreover, this gives us a practical way to compute whether a polynomial is tempered. We refer the reader to [Rod99, § 8] for a nice introduction to tempered polynomials, and to [DK11, Theorem 3.1] for a generalisation of (4.23) to several variables.

The extensive computations of Boyd lead naturally to wonder for which Laurent polynomials

∈ Z[ ±1 1 , ±1 2 
] one might expect a link between the Mahler measure ( ) and an -value. This is to this day a very open question. Even the condition of being tempered (see De nition 4.2.7), which appears like a natural one, does not seem to be necessary to get interesting links between Mahler measures and special values of -functions. This has been the subject of extensive investigation in recent years (see [START_REF] Lalín | Further explorations of Boyd's conjectures and a conductor 21 elliptic curve[END_REF], [START_REF] Lalín | The Mahler measure for arbitrary tori[END_REF], [START_REF] Meemark | Mahler measures of a family of non-tempered polynomials and Boyd's conjectures[END_REF], [START_REF] Giard | Mahler measure of a non-tempered Weierstrass form[END_REF]), and the results contained in Chapter 9 (see also [START_REF] Pengo | Mahler's measure and elliptic curves with potential complex multiplication[END_REF]) give another class of polynomials which are usually not tempered, whose Mahler measure is related to special values of -functions. Nevertheless, we can give a precise formulation of these types of questions, for polynomials in any number of variables. Question 4.2.9 -Relations of Boyd type

Let ∈ Q[ ±1 1 , . . . , ±1
] be a Laurent polynomial such that ( ) ≠ 0, and denote by ↩→ G ,Q the zero locus of . We ask the following two questions: • suppose that Conjecture 3.3.4 holds for the -function ( -1 ( ), ). Under which conditions on the polynomial is it true that the ratio * ( -1 ( ), 0)

( ) ∈ R × 126
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• x an open embedding : ↩→ of inside a proper Q-scheme , and a desingularisation :

. Under which conditions on the triple ( , , ) is it true that the ratio * ( -1 ( ), 0)

( ) ∈ R ×
is a rational number, or even an integer?

More generally, one can ask the same questions replacing the motives -1 ( ) and -1 ( ) with suitable sub-motives.

We remark that Question 4.2.9 starts from a polynomial and asks whether or not its Mahler measure is linked to the special value of some -function related to . The inverse approach leads to the following question.

Question 4.2.10 -Inverse problems of Boyd type

Let ∈ MM (Q; Q) be a mixed motive over Q. Under which conditions does there exist a polynomial ∈ Q[ 1 , . . . , ] such that ( ) ∈ R × and the quotient * ( , 0)

( ) ∈ R ×
is rational? Moreover, does there exist such a polynomial with the property that the motive can be identi ed with a sub-motive of -1 ( ) or -1 ( ), where ↩→ G is the zero locus of and is some desingularisation of some compacti cation of ?

Finally, one can ask if the identities appearing in Question 4.2.9 can be "deformed" in a suitable way. For example, one can ask whether these identities are sensitive to twists, i.e. isomorphisms up to a nite extension. This is made precise in the following question.

Question 4.2.11 -Twisting identities of Boyd type

Let ∈ Q[ ±1 1 
, . . . , ±1 ] be a Laurent polynomial which answers a rmatively Question 4.2.9. In particular, let us assume that ( ) ∈ R × and * ( -1 ( ), 0)

( ) ∈ Q ×
where denotes some desingularisation of some compacti cation of the zero locus ↩→ G . Let ∈ MM (Q; Q) be a motive which is a twist of -1 ( ), i.e. such that / -1 ( / ) for some number eld . Does there exist a Laurent polynomial ∈ Z[ ±1 1 , . . . , ±1 ] such that * ( , 0)/ ( ) ∈ Q × ? Is there an algorithmic way to construct starting from ?

We conclude this section with a series of remarks: A notable exception is provided by the families studied in [Boy98, § 3], which consist of polynomials de ning curves of genus two whose Jacobian splits into the product of two elliptic curves. We refer the interested reader to [START_REF] Liu | Mahler measure of polynomials de ning genus 2 and 3 curves[END_REF] for an extensive list of families of polynomials de ning curves of genus 2 and 3, whose Jacobian has a one-dimensional factor. Some of the results conjectured by Boyd and Liu and Qin have been proved in recent years, especially in the work of Bertin and Zudilin (see [START_REF] Bertin | On the Mahler measure of a family of genus 2 curves[END_REF][START_REF] Bertin | On the Mahler measure of hyperelliptic families[END_REF]) and Lalín and Wu (see [LW18; LW20]);

• Question 4.2.9 has been answered in the positive for some polynomials in three variables such that is (birationally equivalent to) a 3-surface. Moreover, variants of Question 4.2.9 have been proved for polynomials in three variables, by replacing 2 ( ) with a suitable one-dimensional sub-motive. We cite in particular the work of Bertin • we see in the next chapter that Question 4.2.9 has a negative answer for a certain class of polynomials, which satisfy suitable exactness conditions. In particular, the next chapter contains the outline of a framework which allows one to generalise Question 4.2.9 to these kinds of exact polynomials.

Mahler measures, motives and regulators

The aim of this section is to present the work of Deninger [START_REF] Deninger | Deligne periods of mixed motives, -theory and the entropy of certain Z -actions[END_REF], later re ned by the work of Besser and Deninger [START_REF] Besser | p-adic Mahler measures[END_REF] and Bornhorn (see [START_REF] Bornhorn | Mahler-Maße und spezielle Werte von -Funktionen[END_REF] and [START_REF] Bornhorn | Mahler measures, -theory and values of -functions[END_REF]), which relates the Mahler measure of a polynomial to regulators and periods of mixed motives. The main idea is the following: one can use Jensen's formula to change the domain of integration for the Mahler measure, in such a way that the resulting di erential form, albeit not closed, can be easily modi ed to a closed form without changing the value of the integral in question. The rst step towards this is provided by the following proposition (see [START_REF] Deninger | Deligne periods of mixed motives, -theory and the entropy of certain Z -actions[END_REF]Proposition 3.3]).

Proposition 4.3.1 -Deninger's integral

Let ∈ C[ ±1 1 , . . . , ±1 ] \ {0} be a non-zero Laurent polynomial, such that:

D.1 if we write ( 1 , . . . , ) = deg ( ) = 0 ( 1 , . . . , -1 ) with ∈ C[ ±1 1 , . . . , ±1 -1 ] and * := 0 ≠ 0 then 0 = 0 and {z ∈ T -1 | 0 (z) = 0} = ∅; D.2 if we let ↩→ G ,C
denote the zero locus of , and denote the sub-space

:= {z ∈ (C × ) | | 1 | = • • • = | -1 | = 1, | | ≤ 1} ∩ (C) (4.24)
then ∩ sing (C) = ∅. We orient using the canonical orientation coming from the real analytic torus T .
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Then we have that

( ) = ( * ) - 1 (2 ) -1
∫ where is the smooth di erential form on G ,C de ned by Proof. Jensen's formula, as stated in [SS03, Chapter 5, Theorem 1.1], implies that, for every z ∈ T -1 such that * (z ) ≠ 0 we have that

:= =1 (-1) + ! ∈ sgn( ) log| (1) | (2) (2) ∧ • • • ∧ ( ) ( ) ∧ ( +1) ( +1) ∧ • • • ∧ ( ) ( ) ( 
∫ T 1 log| (z , )| T 1 ( ) = log| * (z )| - ∈ (0;1) • \{0} (z , )=0 log| | (4.26)
where (0;

1) := { ∈ C | | | ≤ 1}. This implies that ( ) = ∫ T -1 ∫ T 1 log| (x , )| T 1 ( ) T -1 (x ) = = ∫ T -1 log| * (x )| - ∈ (0;1) • \{0} (x , )=0 log| | T -1 (x ) = = ( * ) - 1 (2 ) -1 ∫ log| | 1 1 ∧ • • • ∧ -1 -1 because T -1 ({z ∈ T -1 | * (z ) = 0}) = 0 (see Remark 4.1.
3). Now we can observe that

( ) = ( * ) - 1 (2 ) -1 ∫ log| | 1 1 ∧ • • • ∧ -1 -1 = ( * ) - 1 (2 ) -1 ∫ because the di erential form log| | 1 1 ∧ • • • ∧ -1 -1
coincides with on . Indeed, we have that

= =1 (-1) + ! ∈ (1)= sgn( ) log| | (2) (2) ∧ • • • ∧ ( ) ( ) ∧ ( +1) ( +1) ∧ • • • ∧ ( ) ( ) (4.27) = (-1) -1 ( -1)! ∈ (1)= sgn( ) log| | (2) (2) ∧ • • • ∧ ( ) ( ) (4.28)
4. 3 Mahler measures, motives and regulators

= log| | 1 1 ∧ • • • ∧ -1 -1 (4.29)
where (4.27) follows from the fact that log| | = 0 on for every ∈ {1, . . . , -1}, because

| 1 | = • • • = | -1 | = 1 on .
Moreover, (4.28) follows from the equality

T 1 = ( -1 ) -1 = -
and (4.29) follows from the alternating property of the wedge product, which gives

1 1 ∧ • • • ∧ -1 -1 = (-1) -1 sgn( ) (2) (2) ∧ • • • ∧ ( ) ( )
for every ∈ such that (1) = . Finally, we easily see that

( ) = ℜ ( log( 1 ) ∧ • • • ∧ log( ))
where ℜ 2 +1 ( ) := ( ) and ℜ 2 ( ) = ( ) for every ∈ N. This implies, using the Cauchy-Riemann equations for , that is closed when restricted to reg .

It is now worth re ecting upon the two conditions D.1 and D.2 which appear in Proposition 4.3.1. First of all, the following lemma shows that one can always modify a polynomial, without changing its Mahler measure, in such a way that it satis es D.1 (see [BD99, Fact 2.1]). 

(v ) * := ( 1 1 • • • ) • ( 1,1 1 • • • ,1 , . . . , 1, 1 • • • , ) (4.30)
for every vector v = ( 1 , . . . , ) ∈ Z and every matrix = ( , ) ∈ GL (Z). In particular, if ⊆ C then satis es the condition D.1 appearing in Proposition 4.3.1, and we have that ( ) = ( ).

Proof. We proceed by induction on ∈ N. If = 0 there is nothing to prove, and if = 1 there exists 1 ∈ Z such that 1 1 ( 1 ) = =0 1 with 0 ≠ 0. Hence we can take = 1 ∈ GL 1 (Z) and v = ( 1 ) ∈ Z. Now, assume that ≥ 2. Then there exists w ∈ Z such that 

( 1 1 • • • ) • = 1 ( 2 , . . . , ) + 1 1 ( 1 , . . . , ) ( 
:= 1 ( 2 , • • • , -1 ,
) and 2 := 1 1 ( 1 , . . . , -1 , ). Now, by induction we know that there exist ∈ Z -1 GL -1 (Z) and 0 ∈ \ {0} such that

( 2 ) -0 ∈ [ 2 , . . . , ]
which shows that -0 ∈ [ 1 , . . . , ] if we take := • ( ). Here denotes the embedding : 

Z -1 GL -1 (Z) ↩→ Z GL (Z) v ↦ → (0, v) 1 0 . . . 0 0 . . .
Let ∈ C[ ±1 1 , ±1 2 
] \ {0} and denote by ↩→ G 2 ,C the zero locus of . Suppose that (C) sing ∩ T 2 = ∅ and that there exists 0 ∈ C × such that -0 ∈ 2 C[ 1 , 2 ] (which can always be achieved by Lemma 4.3.2). Then there exists a matrix ∈ GL 2 (Z) such that, if we set := we have that

-0 ∈ 2 C[ 1 , 2 ] and ∩ sing (C) = ∅
where is the cycle de ned in (4.24).

Proof. Write = 0 + =1 ( 1 ) 2 and take ∈ N such that

+ 1 > max {deg( )} =1 ∪ log| 2 | log| 1 | : ( 1 , 2 ) ∈ (C) sing , | 1 | ≠ 1 (4.32)
4. 3 Mahler measures, motives and regulators which surely exists because the set (C) sing is nite. Then we can take ∈ GL 2 (Z) to be the matrix

:= -1 -1 + 1 which is surely invertible since det( ) = -1. Moreover, we have that -0 ∈ 2 C[ 1 , 2 ]
because we have chosen > deg( ) for every ∈ {1, . . . , }. Finally, let us show that

(C) sing ∩ = ∅. Indeed, if by contradiction ( 1 , 2 ) ∈ (C) sing ∩ then | 1 | = 1 and ( 1 , 2 ) := (( 1 2 ) -1 , 1 +1 2 ) ∈ (C) sing . This implies that log| 2 | log| 1 | = + 1 which contradicts (4.32) unless | 1 | = 1.
But in this case we would have that

( 1 , 2 ) ∈ (C) sing ∩ T 2
which contradicts the hypothesis (C) sing ∩ T 2 = ∅, and thus we conclude that it was absurd to suppose that (C) sing ∩ ≠ ∅.

Let us now use Proposition 4.3.1 to achieve the main result of this section, which relates Mahler measures and regulators. This result has been proved by Deninger in [Den97a, Theorem 3.4].

Theorem 4.3.4 -Mahler measures and regulators

Let ⊆ C be a eld, and ∈ [ ±1 1 , . . . , ±1 ] \ {0} be a non-zero Laurent polynomial. Suppose that at least one of the following holds:

• the condition D.2 of Proposition 4.3.1 is satis ed; • = 2, and T 2 ∩ (C) sing = ∅.

Then there exist a sub-set Δ ⊆ (C) reg , a relative homology class

∈ sing -1 ( (C) reg , Δ ; Z(1 -))
and a number 0 ∈ × such that 

( ) = log| 0 | + ∞ reg ({ 1 , . . . ,
{ 1 , . . . , } := { 1 } ∪ • • • ∪ { } ∈ , M ( reg ; Q) where { 1 }, . . . , { } ∈ 1,1 M ( reg ; Q) O ( reg ) × ⊗ Z Q.
( ) = ( ) = log| 0 | - 1 (2 ) -1
∫ where is de ned as in (4.24) and is the di erential form de ned in (4.25). Now, observe that , D ( reg ; R)

-1, -1 dR

( reg ; R) because dim( reg ) = -1. Moreover,
using the description of the cup-product provided by Remark 2.5.2 one easily sees (by induction on ∈ N) that the the cohomology class

∞ reg ({ 1 , . . . , }) ∈ -1, -1 dR ( reg ; R) is represented
by the restriction of to reg , which is a closed form as we pointed out in Proposition 4.3.1.

Hence we get that ∞ reg ({ 1 , . . . , }) de nes a relative cohomology class

∞ reg ({ 1 , . . . , }) ∈ -1, -1 dR ( reg , T ; R) ⊆ -1, -1 dR ( reg , ; R)
because vanishes (as a di erential form) on the real torus T ⊇ (C) ∩ T ⊇ . Finally, we observe that ⊆ (C × ) is a semi-algebraic set (see [HM17, § 2.6]). Hence we can use the triangulation theorem for semi-algebraic sets (see [START_REF] Hironaka | Triangulations of algebraic sets[END_REF]) to get a relative homology class

[ ] ∈ sing -1 ( (C) reg , ; Z) such that ∞ reg ({ 1 , . . . , }), [ ] ⊗ (2 ) 1- per = 1 (2 ) -1 ∫ .
We conclude by setting Δ := ( ) and := * (-[ ]), where : G ,C -→ ∼ G ,C is the isomorphism induced by which sends to .

Remark 4.3.5. Note that, in the statement and proof of Theorem 4.3.4, we are using implicitly the comparison between algebraic de Rham cohomology and analytic de Rham cohomology. Indeed, the subset Δ ⊆ (C) reg featured in the theorem cannot be obtained as the complex points of a sub-variety. However, there is a way around this, which is implicitly stated by Deninger in [Den97a, Page 274]. More precisely, Deninger writes:

"In general if one wishes to interpret the formula in Proposition 3.3 in terms of Deligne cohomology or even K-theory, it will be necessary to replace by an algebraic variety. Possibly some complexi cation will do... " Indeed, one can proceed as follows. Let S := N C/R (G ,C ) denote the -dimensional Deligne torus (see [START_REF] Milne | Shimura varieties and moduli[END_REF]§ 5]), where N C/R denotes Weil's restriction of scalars (see [START_REF] Bosch | Néron models[END_REF]§ 7.6]). We recall that S is a scheme over R, such that S (R) = G ,C (C) = (C × ) . Moreover, there exists a scheme-theoretic map : S → G ,R which on real points is given by → . Hence we have that ker( ) (R) = T , and in particular for every Laurent polynomial ∈ C[ ±1 1 , . . . , ±1 ] we can identify the set T ∩ (C) with the real points of the sub-scheme := ker( ) ∩N C/R ( ) ↩→ S . Proceeding similarly to what we have done in Theorem 4.3.4 one is able to write 3 Mahler measures, motives and regulators where ,R := N C/R ( ) ↩→ S and 1 , 1 , . . . , , ∈ O (S ) × are the coordinate functions. Now, the homology class ,R is relative to Δ ,R := (R), and hence we can view the di erential form ∞ reg ,R ({ 1 , 1 , . . . , , }) as an element of a relative algebraic de Rham cohomology group.

( ) = log| 0 | + ∞ reg ,R ({ 1 , 1 , . . . , , }), ,R per 4.

Thus if one believes in the injectivity of the Beilinson regulator map associated to (when

∈ Q[ ±1 1 , . . . , ±1 ]
) one is able to see { 1 , 1 , . . . , , } as a relative motivic cohomology class. The details of this construction, as well as applications of this point of view, will be the subject of future research.

Remark 4.3.6. Deninger uses Theorem 4.3.4 to prove that, under the same assumptions on the polynomial ∈ [ ±1 1 , . . . , ±1 ], the Mahler measure ( ) appears as the period of a mixed motive ∈ MM ( ; Q). Let us recall brie y its construction. First of all, recall that the general linear group GL (Z) acts on G ,C via the action * ( 1 , . . . ,

) := ( 1,1 1 • • • ,1 , . . . , 1, 1 • • • , )
which was already used in Lemma 4.3.2. Then for every nite subgroup Γ ⊆ GL (Z) one associates to each sub-scheme ↩→ G , the following two schemes

Γ := ∈Γ → G , ∪Γ := ∈Γ ↩→ G ,
which can both be thought of as a sort of "completion" of along the action of Γ. Using these schemes, one can de ne four motives over with coe cients in any ring Λ such that |Γ| ∈ Λ × . This can be done in any of the abelian categories MM ( ; Λ) de ned in Section 2.2.2, by setting:

,Γ := Γ , (G , , Γ ) ,reg ,Γ := Γ , (G , , ( reg ) Γ ) ∪ ,Γ := Γ , (G , , ∪Γ ) ∪,reg ,Γ := Γ , (G , , ( reg ) ∪Γ ) (4.34)
where Γ ∈ Λ[Γ] denotes the element of the group algebra Λ[Γ] de ned by:

Γ := 1 |Γ| ∈Γ det( ) [ -1 ] ∈ Λ[Γ]
which is an idempotent, and acts as a projector on any motive endowed with an action of Γ. Now, for every subgroup Γ ⊆ GL (Z) such that Γ ( -1, (G , )) = 0, Deninger observes that the relative cohomology exact sequence (see De nition 2.1.4):

• • • → -1, (G , ) → -1, ( Γ ) → , (G , , Γ ) → , (G , ) → , ( Γ ) → . . .

shows that

,Γ ∈ Ext 1 (Λ(0), -1, ( )). Indeed, , ( Γ ) = 0 because Γ is a ne and dim( Γ ) = -1. Moreover, Γ ( -1, (G , )) = 0 by assumption, and it is easy to see that , (G , ) Λ(0), with trivial Γ-action. Finally, there is a canonical isomorphism -1, ( ) Γ ( -1, ( Γ ))
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Chapter 4 An introduction to the Mahler measure which comes from the de nition of Γ . One can show similar results for the other three motives mentioned in (4.34). Moreover, Deninger shows that, under the assumptions of Theorem 4.3.4, the Mahler measure ( ) appears in the image of the period pairing

( ∨ ,Γ (1)) + B × 0 ( ,Γ ) dR → R
where ,Γ is any of the motives de ned in (4.34), and Γ ⊆ GL (Z) is any nite subgroup such that Γ ( -1, (G , )) = 0. In particular, one can use as Γ ⊆ GL (Z) any nite subgroup which contains the diagonal matrix -Id ∈ GL (Z). Indeed, Künneth's formula shows that

-1 (G ) =1 Λ(1 -) (4.35)
and any matrix ∈ GL (Z) acts on the -th component in the sum (4.35) as multiplication by det( ( ) ) ∈ {±1}, where ( ) ∈ GL -1 (Z) denotes the ( -1)-minor obtained by removing the -th row and column. Since det(-Id ) = (-1) = -(-1) -1 =det( ( ) ) for every ∈ {1, . . . , }, we see that the projector [Id ] + (-1) [-Id ] acts as the zero map on -1 (G ). We observe that Maillot's trick, which is the subject of the following chapter, is strongly related to the previous discussion, specialised to the choice of subgroup Γ ⊆ GL (Z) given by Γ := {Id , -Id }.

It would be very interesting to generalise Deninger's construction to every Laurent polynomial ∈ [ ±1 1 , . . . , ±1 ] de ned over a number eld ⊆ C. This would give us a more or less explicit way to construct a motive ∈ MM ( ; Q) such that ( ) appears as a period of , with the property that is "as small as possible". Approaching this question would undoubtedly require a generalisation of Theorem 4.3.4, of the kind discussed in Remark 4.3.5.

Some explicit computations

The aim of this nal section of the current chapter is to show two di erent kinds of examples of explicit computations related to the techniques outlined in Section 4.3. First of all, we show how Theorem 4.3.4 can be used to relate special values of -functions to Mahler measures, assuming Beilinson's conjecture (see Conjecture 3.3.18). Then, we use the methods developed by Rodriguez Villegas in [START_REF] Villegas | Modular Mahler measures. I[END_REF] to compute explicit expressions for the Mahler measure of polynomials in families.

Mahler measures and Beilinson's conjecture

We start by recalling the theorem which inspired this whole section, which is due to Deninger 

Let ( 1 , 2 ) := 1 + 1 1 + 2 + 1 2 + ∈ Z[ ] [ ±1 1 , ±1 2 
] be Deninger's family de ned in (4.21). Fix ∈ C such that 2 ∈ Z \ {0, ±4}. Then Beilinson's conjecture (see Conjecture 3.3.18) for the motive 1 ( ) implies that

( , 0) ( ) ∈ Q × 4.4 Some explicit computations
where denotes the elliptic curve de ned by the a ne Weierstraß equation

: 2 - = 3 -2 2 +
which is birationally equivalent to the zero locus of , and isomorphic over Q to the elliptic curve de ned in (4.22).

Let us review the strategy used in the proof of Theorem 4.4.1, before applying it to another example. The conjectural -admissibility of the motive 1 ( ) (see Conjecture 3.3.16) implies that dim( 2,2 ( )) = 1, and Beilinson's conjectures imply that for every ∈ because in this case we can take 0 = 1 in (4.33). Combining this with the prediction dim( 2,2 ( ))

? = 1
it is su cient to show that there exists a class ∈ 2,2 ( ) such that ( ) = { , }, where denotes the restriction map

: 2,2 ( ) → 2,2 M ( ) → 2,2 M ( reg )
induced by the inclusion reg ↩→ . Since we can view , ∈ Q( ), the existence of can be proved using the following result of Schappacher-Scholl [SS91, Proposition 3.2] (compare with Proposition 2.3.7 and [DJZ06, Remark 3.8]).

Theorem 4.4.2 -Computing -cohomology for elliptic curves

For every elliptic curve de ned over a number eld we have 2,2 ( ) ker( ), where :

( ( for every ∈ Z/ ( ), where ∈ N is any rational prime such that ≥ 3 and | ( -2). We can proceed in a similar way to analyse the other primes | Δ( ), dividing our discussion in the following cases:

) × ⊗ Z Q) ⊗2 ℎ ⊗ (1 -ℎ) : ℎ ∈ ( ) × \ {1} → ∈ | | ( ) × ⊗ Z Q ⊕ ∈ Q is a
• ≠ 3 and | ( -3). Then 4 ( ) because 4 ( ) = 9 + ( -3) ( 3 + 3 2 -15 + 3), which shows again that ∈ and the Weierstraß equation (4.38) is minimal. Then ( ) = 2 and we have that

ord Φ ( ) ( ) = 1, if ≡ 0, 2, 4(6) 2, if ≡ 1, 3, 5(6)
which can be used in combination with (4.44) to see that

, ( ) = ( 4 , ( ) -0, ( )) + ( 3 , ( ) -, ( )) = 0 , ( ) = ( 2 , ( ) -0, ( )) + ( 3 , ( ) -5 , ( )) = 0
for every ∈ Z/ ( );

• ≥ 5 and | ( +6). In this case 4 ( ) because 4 ( ) = 144+ ( +6) ( 3 -6 2 +12 -24), hence ∈ and the Weierstraß equation (4.38) is minimal. Thus ( ) = 1, which immediately shows that , ( ) = , ( ) = 0;

• = 2 and 2 | . Then has additive reduction at = 2, which implies that 2 , unless either 2 4 | ( -2) or 2 4 | + 6. If 2 4 | ( -2) then the Weierstraß equation (4.38) is not minimal at = 2. However, it is easy to see that a 2-minimal Weierstraß equation for is given by

: 2 + 2 + -2 8 = 3 (4.46)
and this new equation shows that 2 ∈ whenever 2 4 | ( -2). In this case we see that 2 ( ) = 3, and (4.46) reduces modulo 2 to the curve 2 + = 3 , which is singular at the point (0, 0). This implies that

ord Φ 2 ( ) ( ) = 1, if ≡ 0, 3(6) 3, if ≡ 1, 2, 4, 5 (6) 
which shows once again that ,2 ( ) = ,2 ( ) = 0 for every ∈ Z/ 2 ( ). On the other hand, if 2 4 | ( + 6) then the 2-minimal Weierstraß equation for is given by

2 + 2 - 3 8 ( + 6) = 3 -3 2 + + 6 2 - 3 8 ( + 6)
which shows that 2 ( ) = 1 whenever 2 4 | ( + 6). Therefore ,2 ( ) = ,2 ( ) = 0 for every ∈ Z/ 2 ( );

• if = 3 and 3 | , then 9 | 3 + 3 2 -15 = ( 4 ( ) -9)/( -3), which shows that ord 3 ( 4 ( )) = 2. Thus the original Weierstraß equation (4.38) is minimal at = 3, and the reduction is additive.

We have shown, as we anticipated, that for every ∈ Z \ {-6, 2, 3} and every prime ∈ at which the elliptic curve has split multiplicative reduction, we have that , ( ) = , ( ) for all ∈ Z/ ( ). Hence using the explicit formula (4.37) we see that ({ , }) = 0 for every ∈ . Since the polynomial is tempered we also have that ({ , }) = 0 for every ∈ (Q).

Hence combining these two things together with Theorem 4.4.2 we see that { , } ∈ 

( , 0) ( ) = ∞ ( ), ( ) * ( ) per ∞ reg ({ 1 , 2 }), per = ∞ ( ), ( ) * ( ) per ∞ ( ), ( ) * ( ) per
which allows us to conclude that (4.39) holds, using the conjectural admissibility of the motive 1 ( ).

Remark 4.4.4. Methods similar to the ones outlined in this section have been used to construct speci c planar models of elliptic curves, which would give rise to -cohomology classes in the group 2,2 ( ). One particular example of this is given by the polynomial family 

( , ) := 3 -(3 + 3 ) 2 + (3 2 + 6 -1) -( 3 -2 -+ 1)

Weierstraß and Edwards models of elliptic curves

The aim of this section is to show that the Mahler measures of naturally occurring families of polynomials can be completely unrelated to special values of -functions. The rst example of this is given by the following observation, which is due to Smyth (see [Smy81, Theorem 1]). Proof. It is su cient to apply the change of variables ( , ) ↦ → ( , 1/ ) and the formula (4.6), which imply that

( 2 -3 -) = log| | + + ( + ( )) + + ( -( ))
where ± ( )

:= ±( 3 + ) -1/2 . Since | | ≥ 2 we have that | ± ( )| ≤ 1 whenever | | = 1.
Thus, the de nition of + shows that + ( ± ) = 0, and we can conclude. Let be an elliptic curve de ned over a eld such that char( ) ≠ 2. Then there exists a nite extension ⊇ and a parameter ∈ P 1 ( ) \ {0, 1, ∞} such that is birationally equialent to the zero locus of the polynomial

( , ) := 2 + 2 -2 2 -1 (4.48)
which is commonly known as Edwards polynomial.

Proof. The zero locus of is birational to the curve de ned by the Weierstraß equation

1 1 - 2 = 3 + 2 1 + 1 - 2 +
by the substitution = 2 / and = ( -1)/( + 1) (which is invertible if and only if char( ) ≠ 2). Hence if := ( √ 1 -) we see that the Edwards curve = 0 is birational over to a Weierstraß curve of the form 2 = 3 + 2 + + . Vice-versa, if char( ) ≠ 2 then every general Weierstraß form can be reduced to

2 = 3 + 2 + +
for some , , ∈ (see [START_REF] Silverman | The arithmetic of elliptic curves[END_REF]Page 42]) and then to 2 = 3 + 2 + for some ∈ . To see this we can write 3 + 2 + + = ( -1 ) ( -2 ) ( -3 ) for some 1 , 2 , 3 ∈ and then use the substitution

= ( 1 -2 ) ( 1 -3 ) + 1 and = (( 1 -2 ) ( 1 -3 )) 3/4 to get an equation of the form ( ) 2 = ( ) 3 + ( ) 2 + where = ( 1 -2 ) ( 1 -3 ) (2 1 -2 -3 ).
Now, if we start already from an equation of the form 2 = 3 + 2 + for some ∈ and we apply the substitution = (1 + )/(1 -) and = (2 + 2 )/( -), which is the inverse to = 2 / and = ( -1)/( + 1), we get the curve

1 + 2 2 + 1 - 2 2 2 = 2(1 -2 )
and thus if we set := ( 1 , ,

√ + 2, 4 ( 1 -2 ) ( 1 -3 ))
we get that our Weierstraß curve is birational over to the Edwards curve given by = 0 with = 2- 2+ . Now, we would like to compute the Mahler measure of the Edwards forms given by (4.48). To do this, we use the following result of Rodriguez Villegas (see [START_REF] Villegas | Modular Mahler measures. I[END_REF]§ 11]), which allows one to express Mahler measures of families of polynomials depending on a parameter as a power series in with rational coe cients. where [ ] 0 ∈ C denotes the constant coe cient of the polynomial . If we write the polynomial as ( 1 , . . . , ) = =1 x a for some coe cients ∈ C × and some exponents a ∈ Z , then the constant terms [ ] 0 can be computed explicitly as:

[ ] 0 = w∈N (w)= w∈ker(Ξ ) ! 1 ! • • • ! • 1 1 • • • (4.50)
where

Ξ := (a 1 | a 2 | • • • | a ) ∈ Mat × (Z) and (w) := 1 + • • • + .
Proof. First of all, we observe that We can nally use Theorem 4.4.9 to see that the Mahler measure of almost all Edwards polynomials with integer coe cients is very easy to compute.

∫ T x a T = 1, if a = 0 0,

Proposition 4.4.10 -Mahler measures of Edwards polynomials

For every ∈ C such that | | ≥ 3 we have that ( 2 + 2 -2 2 -1) = log| |.

Some explicit computations

Mahler measures of exact polynomials

The nest of all the devil's tricks was persuading you that he doesn't exist.

Charles Baudelaire, Paris Spleen

This aim of this chapter, which is based on joint work in progress with François Brunault, is to give an outline of some possible ways to explain geometrically the identities between Mahler measures and special values of -functions which escape the framework of Question 4.2.9. Many of these di erent identities, as we discuss in this chapter, can be explained using a remarkable idea due to Maillot (who in fact dates this idea back to Darboux), concerning the intersection between the zero locus of a Laurent polynomial ( 1 , . . . , ) ∈ C[ ±1 1 , . . . , ±1 ] and the zero locus of its conjugate reciprocal † (see De nition 4.1.11). Unfortunately, Maillot's own work never appeared in print, but was only exposed in a talk on the 30th of April, 2003, at the Ban International Research Station, a short report of which is fortunately available online (see [START_REF] Boyd | The many aspects of Mahler's measure. Final report of a Workshop at the Ban International Research Station[END_REF]§ 8]). Nevertheless, Maillot's ideas were pursued in the theses of Condon (see [START_REF] Condon | Mahler measure evaluations in terms of polylogarithms[END_REF]Chapter 5]) and Lalín (see [START_REF] Lalín | Some relations of Mahler measure with hyperbolic volumes and special values of -functions[END_REF]Chapter 5] and [START_REF] Lalín | An algebraic integration for Mahler measure[END_REF]), where it was shown how to obtain identities relating the Mahler measure of polynomials in three or more variables, and zero-dimensional -functions (such as the Riemann -function and Dirichlet -functions). Later on, Lalín investigated as well the problem of nding a three-variable polynomial whose Mahler measure is related to the special value * ( , -1) for some elliptic curve . This question was raised by Rodriguez-Villegas after Maillot's talk, and the candidate polynomial

:= -(1 -) (1 -) ∈ Z[ , , ]
(5.1) was proposed. Boyd then checked numerically that

( -(1 -) (1 -)) ? = -2 * ( 1 (15), -1) (5.2)
where 1 (15) is the modular curve relative to the congruence subgroup Γ 1 (15) ⊆ SL 2 (Z). This modular curve is an elliptic curve, which can be de ned for example by the Weierstraß equation 2 + + = 3 + 2 (see [START_REF]The L-functions and Modular Forms Database[END_REF]Elliptic Curve 15.a7]). More importantly, 1 (15) is also birationally equivalent to the curve de ned by the equation

(1 -) (1 -) = 1 - 1 1 - 1 - 1 1 -
which is precisely the Maillot variety = * = 0 associated to the polynomial appearing in (5.1). Lalín then went on to prove that, if Beilinson's conjecture (see Conjecture 3.3.18) holds for the motive 1 ( 1 (15)) (-1), and in particular if this motive is -admissible in the shows that there exists a relative cohomology class ∈ , D ( , ) which maps to the cohomology class ∞ ({ 1 , . . . , }) ∈ , D ( ). We note that here all the various varieties may be singular, and the Deligne-Beilinson cohomology groups are de ned using the spectrum DB constructed in Example 2.4.6. Thus we see in particular that , D ( ) = -1, -1 dR ( ) = 0, as follows from the fact that is a ne, together with resolution of singularities. We also observe that the class is not unique. Indeed, each cohomology class

∈ , D ( , ) = -1, -1 dR ( , )
is represented, at least in the case when both and are smooth, by a pair ( , ) consisting of an ( -1)-form on and a ( -2)-form on having the property that = . Hence we see that can be represented by the pair ( , ), where is any primitive of the restriction of to . In any case, we can see from Theorem 4.3.4 that

( ) = log| 0 | + , per
where now •, • per denotes the period pairing

•, • per : , D ( , ) × sing -1,1-( (C), (C)) → R
given on cohomology and homology groups relative to . Therefore, if the polynomial is exact, we can use again the relative cohomology long exact sequence (5.3) to see that there exists a cohomology class ∈ -1, D ( ) such that ( ) = . Thus, one can use again Stokes's theorem, as we did in the previous paragraph for the two-variable polynomial 2 ( , ) = + + 1, to obtain the equality ( ) = log| 0 | + , per which shows that the Mahler measure ( ) is now related to an integral over the variety , which is ( -2)-dimensional. To be more precise, we observe that could be singular, in which case the pairing •, • per is not given by a single integral.

Going back to Smyth's three-variable polynomial 3 ( , , ) := + + + 1, we see that Proposition 5.1.1 allows one to relate ( 3 ) to a speci c pairing over the "Maillot variety" 3 := { 3 = * 3 = 0}. We observe that the variety 3 corresponds to the curve given by the equation

( + + 1) 1 + 1 + 1 = 1
which turns out to be equivalent to the equation ( + ) ( + 1) ( + 1) = 0. Thus the variety 3 ⊆ G 3 is the union of three lines, disposed in a triangle whose vertices are the points sing 3 := {(-1, 1, -1), (1, -1, -1), (-1, -1, 1)}, which form the singular locus of 3 . Since 3 is singular, we can consider its desingularisation 3 , which consists of three disjoint rational lines, de ned over Q. Now, we see that 2,3

M ( 3 ) = 2,3 M ( sing 3
) = 0 because these motivic cohomology groups are related to the -theory group 2•3-2 (Q) = 4 (Q), which is a torsion group (see Section 2.3.1). Analogously, and every more easily, one can show that the Deligne-Beilinson cohomology groups 2,3 D ( 3 ) and 2,3 D (

sing 3
) also vanish. Hence we can use the Mayer-Vietoris long exact sequence (see (2.20) for the motivic analogue): to see that there exists 3 ∈ 1,3 D ( 3 ) which maps to 3 via the map 1,3 D ( 3 ) → 2,3 D ( 3 ). This fact leads one to say that the polynomial 3 is 2-exact. Indeed, the fact that 3 was exact in the rst place allowed us to choose a primitive of the restriction of 3 to 3 , and this lead to the cohomology class ∈ 2,3 D ( 3 ). Now analogously, we see that the geometry of 3 (and in particular the fact that it is the union of three lines) allows us to take a primitive of when "restricted" to the desingularisation and to the singular locus sing . Taking a suitable di erence of these primitives, and restricting it to the exceptional locus 3 leads to the cohomology class 3 ∈ 1,3 D ( 3 ). To conclude, one can see that Stokes's theorem gives a compatibility between the period pairing •, • per and Mayer-Vietoris long exact sequences, which can be used to show that ( ) is related to a suitable "integral" of 3 . As in the case of 2 , this integral is just given by the evaluation of a suitable function on the six points which make up 3 . One can show that this function is given by the trilogarithm L 3 (see [Lal06, Equation 8]), and thus one gets the link between the -value * (-2) and the Mahler measure ( 3 ), which was proved in Theorem 4.2.4 using di erent, more analytic methods. We refer the interested reader to [Lal06, Theorem 8] for the detailed computation which shows that it is indeed L 3 the right function to evaluate on the points forming 3 , and to [Lal05, § 5.4.1] for a complete proof of Smyth's theorem using these techniques. Finally, we remark that cohomological considerations similar to the ones appearing in this section appeared in the PhD thesis of Standfest (see [START_REF] Standfest | Mahler-Maße linearer Polynome[END_REF]).

• • • → 1,3 D ( 3 ) → 2,3 D ( 3 ) → 2,3 D ( 3 ) ⊕ 2,3 D ( sing 

Two approaches towards successive exactness

We have seen in the previous section how one can give a cohomological proof of Smyth's identities (see Theorem 4.2.4). This proof involves the notion of exactness of a polynomial, and we have seen that the polynomial + + + 1 is 2-exact. This concept of successive exactness was rstly studied by Lalín in her PhD thesis. Her work initially focused on 2-exact polynomials in three variables (see [START_REF] Lalín | Some relations of Mahler measure with hyperbolic volumes and special values of -functions[END_REF]§ 5.2] and [Lal06, § 4]), and then laid down the bases for studying ( -1)-exact polynomials in -variables, for ≥ 4 (see [Lal05, § 5.5, 5.8] and [START_REF] Lalín | Mahler measure of some -variable polynomial families[END_REF]§ 5,6]).

The aim of this section is to introduce two conjectural geometric ways of saying when a polynomial ∈ Q[ ±1 1 , . . . , ±1 ] is -exact, for some natural number ∈ N. In particular, one would always have that 0 ≤ ≤ , and it is reasonable to expect that = if and only if ( ) = 0. Moreover, usually one expects ( ) to be related to the special value of some -function at = , and this -function should be associated to the cohomology of an ( --1)-dimensional variety. We see however in Section 5.4 that there are examples of proved identities which fail to meet this expectation.

The first approach: successive desingularisations

Fix throughout this section a Laurent polynomial ∈ [ ±1 1 , . . . , ±1 ] with coe cients in a number eld ⊆ C. Suppose that there exists 0 ∈ × such that -0 ∈ [ 1 , . . . , ],

5.2 Two approaches towards successive exactness hence in particular that has no denominators. This can be always achieved without changing the Mahler measure of , as was shown in Lemma 4.3.2. Finally, we x a triangulated category of mixed motives T , in the sense of Section 2.2.3, which satis es cdh-descent. For example we could take T to be the category of Beilinson motives DM B ( ; Q), or T to be Ayoub's A 1 -homotopy category DA( ; Λ) for some ring Λ.

The rst idea to de ne successive exactness for is to take successive desingularisations of the complex a ne variety 1 := ∪ † , where † denotes the conjugate reciprocal of (see De nition 4.1.11) and , † ↩→ 0 denote the corresponding (reduced) zero sub-schemes of (5.4)

where +1 := sing and is always smooth. Moreover, we can demand that each square is an abstract blow-up, by which we mean that each square is Cartesian, is proper and induces an isomorphism -1 ( reg ) → reg . If we demand this, then there is a preferred way of constructing such a diagram, where the only ambiguity lies in the choice of 1 . More precisely, we can take 1 to be an embedded resolution of singularities of 1 , in such a way that 2 ↩→ 1 is a divisor with simple normal crossings. Then 2 = =1 and 3 = sing 2 = ≠ ( ∩ ). We can hence take 2 := =1 , which implies that 3 = =1 ≠ ( ∩ ). We go on by taking where for every subset ⊆ {1, . . . , } we de ne :=

:= a∈ {1,..., } -2 # (a)= -2 ⊆ {1,..., }\ (a) # =1 ( 

∈

. Here, we use the notation (a) ⊆ {1, . . . , } for the set of elements of a tuple a. In particular, the conditions on the cardinality # (a) simply mean that we allow only tuples without repetitions. We observe that this explicit way of de ning the diagram (5.4) shows that ≤ , because 2 ↩→ 1 is a divisor with normal crossings.

We are now ready to construct suitable cohomology classes which allow us to give a tentative de nition of the notion of successive exactness. To do so, x a motivic ring spectrum E ∈ T (i.e. a monoid object in the category T , in the sense of [START_REF] Kashiwara | Categories and sheaves[END_REF]Remark 4.3.2]). As we have seen in Section 2.4, examples of these kinds of objects are given by the motivic cohomology spectrum 1 T and (for suitable categories T ) by the Deligne-Beilinson cohomology spectrum DB. Since T satis es cdh-descent, we have one Mayer-Vietoris sequence

. . . -( +1 ; E) ⊕ -( ; E) -( +1 ; E) -( -1) ( ; E) -( -1) ( +1 ; E) ⊕ -( -1) ( ; E) . . . * +1 - * * ⊕ *
(5.5) associated to each abstract blow-up appearing in the diagram (5.4). Here the E-cohomologies are de ned as ( ; E) := Hom T ( , E[ ]), so that , M ( ) ( ; 1 T ( )) and analogously for Deligne-Beilinson cohomology. Now, we have a class 0 ∈ ( 0 ; E( )) given by the regulator of { 1 , . . . , } ∈ , M (G ) with respect to E (see Section 2.4). We can then say that a polynomial is 1-exact (with respect to the cohomology theory given by E) if *

1 ( 1 ) = * 1 ( 1 ) = 0
where 1 := 0 ( 0 ). Then the Mayer-Vietoris long exact sequence (5.5) can be used to construct a class 2 ∈ -1 ( 2 ; E( )) such that ( 2 ) = 1 , up to an ambiguity coming from the cohomology groups -1 ( 1 ; E( )) ⊕ ( -1) ( 2 ; E( )). Now, we have two possible de nitions of the notion of -exactness, for ≥ 2:

• we can say that the polynomial is 2-exact if * 2 ( 2 ) = * 2 ( 2 ) = 0, and this would allow us to construct a class 3 ∈ -2 ( 3 ; E) such that ( 3 ) = 2 . There are two problems with this approach:

1. a priori, being 2-exact depends on the ambiguity in the de nition of 2 ; 2. there is again an ambiguity in the de nition of 3 . Nevertheless, we can move upwards in the diagram at each step, and de ne a notion of -exactness in this way. More precisely, we say that is -exact if it is ( -1)-exact and * ( ) = * ( ) = 0. This de nition is probably not well posed in general, since it depends on the ambiguities in the choice of the spectrum E, of the diagram (5.4) and of the cohomology classes 2 , . . . , . We note that ≤ ≤ ;

• we can use the Mayer-Vietoris spectral sequence for the simple normal crossings divisor 2 ↩→ 1 to get a descending ltration Fil • M.V. on the cohomology group -1 ( 2 ; E). Then we say that our polynomial is -exact (for ≥ 2) if it is 1-exact and we have that

1 ∈ Fil -1 M.V.
( -1 ( 2 ; E)). This de nition has the advantage of being canonical, and again we necessarily have that ≤ ≤ .

Let us turn to the original problem of relating the Mahler measure ( ) to special values of -functions. Our objective is to obtain a relation similar to (4.33), which allows one to compare ( ) with some regulator integrals. We x E = DB to be the Deligne-Beilinson spectrum, until the end of this section. Suppose rst of all that is 0-exact, which is in fact an empty 5.2 Two approaches towards successive exactness assumption. Then we have the cohomology class 1 ∈ , D ( 1 ), which is given by the regulator of { 1 , . . . , } ∈ , M ( 1 ). Now, we expect to be able to generalise Theorem 4.3.4 and get an identity of the form ( )

? = log| 0 | + 1 2 1 , 1 per (5.6)
where 1 := 0 * ( 0 ) ∈ , D ( 1 ) and

1 := (2 ) 1-⊗ [{( 1 , . . . , ) ∈ (C × ) | | 1 | = • • • = | -1 | = 1} ∩ 1 (C)] ∈ sing -1,1-( 1 (C))
denotes a "symmetrised" version of Deninger's cycle de ned in (4.24), which can be equivalently de ned as 1 = ∪ † = ∪ * . The pairing appearing in (5.6) is given by the period isomorphism

•, • per : , D ( 1 ) ⊗ sing -1,1-( 1 (C)) → C using the identi cation , D ( 1 ) = -1, -1 dR ( 1 )
provided by the fact that 1 is -dimensional. We note in particular that 1 is generally singular, but this is not a problem as we are taking all the cohomology theories to be de ned by applying the motivic formalism (see [HM17, § 5.4, 5.5] for a related discussion). We expect that the cohomological methods employed in the proof of [BD99, Proposition 2.2] should be a key tool to prove the equality (5.6).

Suppose now that the polynomial is 1-exact, so that we can nd 2 ∈ -1, D

( 2 ) such that 1 = ( 2 ). Then Stokes's theorem shows that (5.6) becomes ( )

? = log| 0 | + 1 2 2 , 2 per (5.7) 
where 2 ∈ sing -2,1-( 2 ) is de ned as 2 := ( 1 ), using the boundary map in the sequence

. . . sing -( -1),1-( +1 ) ⊕ sing -( -1),1-( ) sing -( -1),1-( ) sing -,1-( +1 ) sing -,1-( +1 ) ⊕ sing -,1-( ) . . . ( ) * -( ) * ( +1 ) * ⊕ ( ) *
which is the Mayer-Vietoris long exact sequence for singular homology. The period pairing appearing in (5.7) is given by

• per : -1, D ( 2 ) ⊗ sing -2,1-( 2 (C)) → C
which is again well de ned due to the identi cation -1, D

-2, -1 dR

( 2 ), which holds because 2 is ( -1)-dimensional. We observe that the number 2 , 2 per does not depend on the ambiguities in the de nition of 2 .

It is now clear how the pattern should continue for -exact polynomials. More precisely, if is -exact, an iterated application of Stokes's theorem, together with the initial formula (5.6), shows that ( ) We conclude this section with an intriguing observation about the relations between the exactness of a polynomial and the geometry of the complex points of . Let us say that a polynomial ∈ [ 1 , . . . , ], satisfying the hypotheses mentioned at the beginning of this section, has exactness index ( ) ∈ N if is ( )-exact and not ( ( ) + 1)-exact. On the other hand, let us say that has closedness number ( ) ∈ N if ( ) ≠ 0 and ( )+1 = 0. Then, if ( ) ≠ log| 0 |, and we believe that (5.8) should hold, it is natural to ask the following question.

? = log| 0 | + 1 2 +1 , +1
Question 5.2.1 -Are polynomials more closed than exact?

Let ∈ [ 1 , . . . , ] be a polynomial, de ned over a number eld ⊆ C, such that ( ) ∉ log| × |. Is it true that ( ) < ( )?

We observe that ( ) ≤ ≤ , where is the number of components of 2 as a simple normal crossings divisor inside 1 . Moreover, Question 5.2.1 has a positive answer for = 2 and ( ) = 1, as was shown by Guilloux and Marché in [GM18, Theorem 2.10].

The second approach: relative cohomology

The aim of this section is to describe brie y a second possible approach to the de nition of successive exactness, which has the advantage of being completely canonical. We x the same notation that we used in Section 5.2.1: ∈ 0 + [ 1 , . . . , ] is a polynomial with coe cients in a number eld ⊆ C, and E is a motivic spectrum, i.e. an object in a xed triangulated category of mixed motives T which has cdh descent. In addition to the hypotheses made in Section 5.2.1, we assume as well that E is constructed applying Theorem 2.4.2 to a family of complexes of Nisnevich sheaves { • : ∈ N} which are pseudo-asque, in the sense of [BKK07, De nition 5.26]. The key property of pseudo-asque complexes of sheaves is that, for any scheme , one can compute the hypercohomology of the complex as the cohomology of its global sections (see [BKK07, Proposition 5.27]). The key example for us is once again the Deligne-Beilinson cohomology spectrum E = DB. Indeed, Deligne-Beilinson cohomology can be de ned from the complexes of sheaves Let us now go back to the notion of exactness. First of all, we take again

1 := ∪ † ↩→ 0 := G
to be the sub-variety of G de ned by the equation = † = 0, where † denotes the conjugate reciprocal of (see De nition 4.1.11). As before, we x a desingularisation 1 1 , which ts in an abstract blow-up square (5.9)

where 2 := sing 1 and 2 ↩→ 1 is a divisor with simple normal crossings. Once again, we let 0 ∈ ( 0 ; E( )) denote the E-regulator of { 1 , . . . , } ∈ , M ( 0 ), and we denote by 1 ∈

( 1 ; E( )) the restriction of 0 along 0 .

Two approaches towards successive exactness

From now on, the new approach di ers from the old one. First of all, one notices that 2 is an a ne, ( -2)-dimensional variety, and as such it is plausible to expect that ( 2 ; E( )) = 0 (compare with [Mil80, Theorem 7.2] and [SP, Proposition 0F0V]). This is certainly true for Deligne-Beilinson cohomology, by comparing it with de Rham cohomology. In any case, if indeed we assume that ( 2 ; E( )) = 0, then we can use the long exact sequence in relative cohomology

• • • → -1 ( 2 ; E( )) → ( 1 , 2 ; E( )) → ( 1 ; E( )) → ( 2 ; E( )) = 0 → . . .
to lift the cohomology class 1 ∈ ( 1 ; E( )) to a relative class rel ∈ ( 1 , 2 ; E( )). Let us point out that this lifting is not unique, with the ambiguity coming from -1 ( 2 ; E( )). We can also observe now that since the square (5.9) is an abstract blow-up, the corresponding restriction map

( 1 , 2 ; E( )) → ( 1 , 2 ; E( ))
is an isomorphism. Hence rel can be restricted to become a class rel ∈ ( 1 , 2 ; E( )), without losing any information. Now, we can use our assumption that E comes from a family of pseudo-asque complexes of sheaves • . Indeed, this assumption allows one to compute the relative cohomology group

( 1 , 2 ; E( )) as the cohomology of an explicit complex. More precisely, let us write

2 = 1 ∪ • • • ∪
as a union of its components, and let us set 0 := 1 and

:= ⊂ {1,..., } | |= ∈
for every integer ∈ Z ≥1 . Then the cohomology groups ( ) can be arranged in a double complex • ( • ), whose di erentials are induced by the ones of in the vertical direction, and by an alternating sum of restriction maps in the horizontal one. Then the -th cohomology of the total complex Tot( • ( • )) computes indeed the relative cohomology group ( 1 , 2 ; E). We refer the reader interested in the details, and in particular in the explicit shape of the di erentials of the double complex • ( • ), to [BF, Construction 2.72], which focuses on algebraic de Rham cohomology.

The use of computing the relative cohomology group ( 1 , 2 ; E ) as the cohomology of the total complex of a double complex is that one can use the spectral sequence of the double complex (see [SP, Section 012X]) to obtain a decreasing ltration Fil • rel on the cohomology group ( 1 , 2 ; E( )). In particular, Fil 0 rel ( ( 1 , 2 ; E( ))) = ( 1 , 2 ; E( )). Using the explicit representation of the relative cohomology group

( 1 , 2 ; E( )) that comes out of this approach, one sees that it makes a lot of sense to say that the polynomial is -exact (with respect to E) for some ∈ N, if the cohomology class rel ∈ ( 1 , 2 ; E( )) lies in the subspace Fil rel ( ( 1 , 2 ; E( ))). This de nition, as we said in the introduction, is almost canonical: the only ambiguity comes from the de nition of , i.e. from the cohomology group -1 ( 2 ; E( )).

To conclude, let us observe that using this framework it is also much easier to describe the connection to the Mahler measure. To do this, we x once again E = DB to be the Deligne-Beilinson cohomology spectrum. Then, the Deninger cycle de ned in (4.24) can be seen as a relative homology class inside 

, D ( 1 , 2 ) ⊗ sing -1,1-( 1 (C), 2 (C)) → C denotes
a relative version of the period pairing. Let us note that, using the explicit description of the relative cohomology group , D ( 1 (C), 2 (C)), one should be able to express the number rel , rel per as an alternating sum of integrals de ned over the smooth varieties . Finally, we observe that Question 5.2.1 has clearly an analogue in this setting. Indeed, we can say that has exactness index

( ) ∈ N if rel ∈ Fil ( ) rel \ Fil ( )+1
rel , and we can say that the polynomial has closedness number

( ) ∈ N if rel ∈ Fil rel -( ) \ Fil rel -( ( )+1)
, where Fil rel • denotes the increasing ltration induced on the homology group -1,1-( 1 (C), 2 (C)).

An explicit computation for 1 (15)

The aim of this section is to review an explicit application of the ideas outlined in Section 5.2. More precisely, we are concerned with the identity (5.2), which was shown to hold up to a rational number in [START_REF] Lalín | Mahler measure and elliptic curve -functions at = 3[END_REF]. The key point here is that this identity involves the -function associated to 1 (15), which is both an elliptic curve and a modular curve. Thus one could use modular techniques to construct elements in the motivic cohomology group 2,3

M ( 1 (15)), whose regulators should be related to the -value * ( 1 (15), -1). This was done by Beilinson in [START_REF] Beilinson | Higher regulators of modular curves[END_REF], although his construction is somehow implicit. Beilinson's construction has then been made more explicit in the work of Brunault (see [START_REF] Brunault | Valeur en 2 de fonctions de formes modulaires de poids 2: théorème de Beilinson explicite[END_REF] and [START_REF] Brunault | Régulateurs modulaires explicites via la méthode de Rogers-Zudilin[END_REF]) for the special values at = 2, using pairs of Siegel units. Suitably chosen triplets of modular units can be used to explicitly construct elements inside 2,3

M ( 1 (15)) using the polylogarithmic motivic complexes that we introduced in Section 2.3.3, which have been proved to be related to 2,3 M ( 1 (15)) by the work of Goncharov (see [START_REF] Goncharov | Deninger's conjecture on -functions of elliptic curves at = 3[END_REF]).

Suppose now that we have indeed constructed an explicit element ∈ 2,3 M ( 1 (15)) and an explicit homology class ∈ sing 1,2 ( 1 (15) (C)) such that , per = * ( 1 (15), -1). Then, in order to prove (5.2), one can try to apply the techniques outlined in Section 5.2 to construct another explicit motivic cohomology element whose regulator is related to the Mahler measure. Since both elements are explicitly de ned, it is then not unreasonable to look for an explicit comparison between the two at the level of motivic cohomology. More precisely, following the approach outlined in Section 5.2.1, we would like to construct a motivic cohomology class 2 ∈ 2,3

M ( 1 (15)) whose regulator is related to the Mahler measure ( ). Let us see how to construct such a class explicitly and unconditionally. To do so, we use the comparison between motivic cohomology and higher Chow groups that was outlined in Section 2.3.2. This gives us an explicit sheaf of cochain complexes of Q-vector spaces Z •,3 , whose cohomology computes the motivic cohomology groups •,3 M . In particular, the motivic cohomology class { , , } ∈ 3,3 M (G 3 ) given by the cup product of the three classes

{ }, { }, { } ∈ 1,1 M (G 3 ) O × (G 3 ) ⊗ Z Q is represented in the group Z 3,3 (G 3
) by the class of the graph Γ , , ⊆ G 3 × 3 of these three functions, where := P 1 \ {1}. In general, the elements of Z ,3 ( ) are represented by sub-varieties of codimension three inside × 6-. Now, let us recall that 1 ↩→ G 3 is given by the union of the two smooth varieties and * (notice that † = * because has real coe cients), which intersect transversely. Hence 5.3 An explicit computation for 1 (15)

The proof of the second equality appearing in (5.12) is essentially analogous, but we give it for the sake of completeness. First of all, we see that

( 4 -5 -6 ) = ( 4 =0 -4 =∞ ) + ( 4 =∞ -4 =0 ) + ( 4 =0 -4 =∞ ) + ( 4 =∞ -4 =0 ) + ( 5 =∞ -5 =0 ) + ( 5 -1 =0 -5 -1 =∞ ) + ( 5 (1-) -1 =∞ -5 (1-) -1 =0 ) + ( 5 ℎ=0 -5 ℎ=∞ ) + ( 6 -1 =∞ -6 -1 =0 ) + ( 6 =0 -6 =∞ ) + ( 6 (1-) -1 =∞ -6 (1-) -1 =0 ) + ( 6 =0 -6 =∞ ) = (♥)
where the function :

× → P 1 is given by the expression

( , , , ) := (1 -(1 -) -1 ) -(1 -(1 -) -1 ) (1 -(1 -) -1 ) -(1 -(1 -) -1 ) (1 -(1 -) -1 )
and the functions ℎ, : × → P 1 are de ned as ℎ( , , , ) := 1 -1 and ( , , ,

) := 1 - 1 .
Note that all these expressions already appear in the de nition of the varieties 4 , 5 and 6 (see Equation (5.11)). As before, we can apply (5.13) and (5.14) to simplify enormously the expression (♥), and we get

(♥) = -4 =∞ + 4 =∞ -4 =0 + 5 ℎ=0 + 6 =0 = = -{( , , 1 -(1 -) -1 )} -{( , , 1 -(1 -) -1 )} + {( , , (1 - 
(1 -) -1 ) (1 -(1 -) -1 ))} + {( , , (1 - 
-1 ) -1 )} + {( , , (1 - 
-1 )) -1 } = = {( , , (1 - 
(1 -) -1 ) (1 -(1 -) -1 ))} = {( , , (1 - 
) (1 -))} = {( , , )} using (5.13) together the fact that 1 -(1 -) -1 = (1 --1 ) -1 and 1 -(1 -) -1 = (1 --1 ) -1 . This concludes the proof.

Remark 5.3.2. Explicit computations similar to the ones carried out in Proposition 5.3.1 can be found in the works of Zhao [START_REF] Zhao | Goncharov's relations in Bloch's higher Chow group CH 3 ( , 5)[END_REF] and Petras [START_REF] Petras | Functional equations of the dilogarithm in motivic cohomology[END_REF]. Now, the next step is to show that the class [ ] ∈ 2,3 M ( 2 ) constructed in Proposition 5.3.1 is actually the restriction of a motivic cohomology class 2 ∈ 2,3

M ( 1 (15)) de ned on the modular curve 1 (15). This follows from the fact that the motivic cohomology class 1 ∈ 3,3 M ( ) has the same property, since is tempered. However, the details remain to be fully worked out.

Finally, one has to relate 2 ∈ 2,3 M ( 1 (15)) to the class ∈ 2,3 M ( 1 (15)) mentioned in the introduction. One possible approach is to use strongly the explicit nature of the two classes, and try to relate them for instance in the polylogarithmic motivic group B 2, 3 ( 1 (15)), using some computationally expensive linear algebra. This will be the subject of future investigations.

A catalogue of identity types

We conclude this chapter by mentioning a possible expansion of the ideas described so far. More precisely, we have already seen that Maillot's trick (see Proposition 5.1.1) can be crucially used to explain relations between Mahler measures and special values of -functions which go beyond the framework of Question 4.2.9. It is therefore useful to take a step back, and analyse the plethora of relations between Mahler measures and special values of -functions that have been proved or conjectured to hold. We are particularly interested in a qualitative study, which highlights the common features unifying di erent identities. Let us mention a few of these types, which we were able to encounter in the literature:

• we have relations of the form * ( -1 ( ), 0)

( ) ∈ Q × or * ( -1 ( ), 0) ( ) ∈ Q × (5.15)
for some Laurent polynomials ∈ Q[ ±1 1 , . . . , ±1 ] (see Question 4.2.9). Here is the zero locus of inside G , and is a desingularisation of a good compacti cation of . Usually, when relations like (5.15) hold one has that is a Calabi-Yau variety (e.g. an elliptic curve, or a 3 surface), and the polynomial is tempered (see De nition 4.2.7). We refer the interested reader to Section 4.2 for a history of the subject, focusing on polynomials in two variables;

• sometimes, relations of the form (5.15) hold after replacing -1 ( ) with a suitable sub-motive. This can be the case, for example, when ∈ Q[ ±1 , ±1 ] is a two-variable polynomial giving a (possibly singular) plane model of a smooth and proper curve of genus ( ) ≥ 2, whose Jacobian Jac( ) has a one-dimensional factor in its Poincaré decomposition (see Theorem 7.1.1). We refer the reader to the work of Bertin and Zudilin [BZ16; BZ17] and Lalín and Wu [START_REF] Lalín | Regulator proofs for Boyd's identities on genus 2 curves[END_REF][START_REF] Lalín | The Mahler measure of a genus 3 family[END_REF] for proved examples of these identities, and to the work of Liu and Qin [START_REF] Liu | Mahler measure of polynomials de ning genus 2 and 3 curves[END_REF] for in nite families of conjectural ones;

• the Mahler measure of a polynomial is sometimes related to zero-dimensional -functions.

Examples of this type of relations include Smyth's results (see Theorem 4.2.4), as well as the in nite families of results proved by Lalín in [START_REF] Lalín | Mahler measure of some -variable polynomial families[END_REF], and some results proved in Condon's thesis (see [Con04, Chapter 2]) and in work of Rogers (see [START_REF] Rogers | A study of inverse trigonometric integrals associated with threevariable Mahler measures, and some related identities[END_REF]);

• more generally, the Mahler measure of a polynomial in variables is sometimes numerically related to an -function associated to an object whose dimension is strictly less than -1. Typical examples of this include the three-variable relations numerically discovered by Boyd in the talk [START_REF] Boyd | Mahler's measure and -functions of elliptic curves evaluated at s=3[END_REF], which were investigated further in the work of Lalín [START_REF] Lalín | Mahler measure and elliptic curve -functions at = 3[END_REF], as well as the relations involving the family of linear polynomials ( 1 , . . . , ) := 1 + • • • + + 1, which were examined by Rodriguez-Villegas following Maillot's talk in Ban (see [START_REF] Boyd | The many aspects of Mahler's measure. Final report of a Workshop at the Ban International Research Station[END_REF]§ 8] and [BZ20, § 6.2]);

• some Mahler measures simply evaluate to be logarithms of algebraic numbers, as we have seen for example in Section 4.4.2.

• nally, sometimes one sees linear combinations of the previous types appearing. Identities of this kind have been investigated already in Boyd's seminal paper (see for instance [Boy98, Page 76]), and then in the thesis of Bornhorn (see [START_REF] Bornhorn | Mahler-Maße und spezielle Werte von -Funktionen[END_REF]§ 5.6] and [Bor15, § 4]).

A catalogue of identity types

Remark 5.4.1. We observe that often one expects the Mahler measure of a polynomial in variables to be related to -values at = . However, the equality

((1 -1 ) (1 -2 ) -(1 -3 )(1 -4 )) = 9 2 2 (3) = -18 (-2)
computed by D'Andrea and Lalín (see [START_REF] Lalín | On the Mahler measure of resultants in small dimensions[END_REF]Theorem 7]), shows that this expectation fails to be true in general. Now, it would be extremely interesting (in the author's opinion) to nd a complete list of these types, i.e. a complete classi cation of the types of identities that may occur between Mahler measures and special values of -functions. We imagine that such a type would be given in the form of a natural number ∈ N and triple (n, w, d) ∈ (Z ) 2 × N , where represents the number of special values appearing in the relation, n represents the set of integers at which these special values are taken, and the two vectors w and d represent respectively the weights and the dimensions of the motives involved.

The next step would be to device an algorithm which takes as input a Laurent polynomial ∈ Q[ ±1 1 , . . . , ±1 ] and outputs the type ( , n, w, d) associated to this polynomial . We note in passing that such a type might not be unique, and that in order to have only a nite list of types associated to each polynomial one should not count di erent identities which are "trivially equal", such as the trivial relation

( ) = * ( , 0) = * ( , 0) + * ( , -1) - * ( , -1)
or identities coming from functional equations. How to make this precise still remains a challenging open question.

Finally, we remark that this problem is fundamentally related to the problem of associating to each polynomial ∈ Q[ ±1 1 , . . . , ±1 ] a motive which has ( ) as a period (see Remark 4.3.6). More precisely, a possible approach to understand the combinatorics of identity types would be to nd suitable ways to decompose the motive , according to the "motivic Meccano" brie y described by Serre in [Ser91, Page 339].

Ray class fields for orders

The moon swam back, its rays all silvered, and time and again the darkness would be broken.

Pablo Neruda, It is born

The aim of this chapter is to introduce the notion of ray class eld associated to data relative to an order O ⊆ inside a number eld . More precisely, we describe how to construct ray class elds associated to a generalised module := (O, , ∞ ), where O ⊆ O is an order, ⊆ O is a non-zero ideal and ∞ ⊆ ∞ is a collection of Archimedean places. This generalises the usual notion of ray class eld, as we point out in Remark 6.2.13. We de ne using the idelic approach to class eld theory (see De nition 6.2.11). This de nition is then related to the classical language of class eld theory in Theorem 6.2.17 and Remark 6.2.18.

This chapter is based on joint work in progress with Francesco Campagna, part of which appeared in [CP20, Appendix A]. The current aim of this project is to develop the theory of ray class eld for orders, which is outlined in this chapter, and to generalise to this context some results already present in the literature for the usual notion of ray class eld. Examples of this include the analysis of the rami cation behaviour in these ray class elds (including a computation of the di erent and discriminant), and the computational results appearing in [START_REF] Cohen | Computational class eld theory[END_REF]. These results are in all likelihood known to the experts, but to the authors' knowledge their proofs have never been collected in a single place. Our work, of which this chapter represents the rst version, aims at lling this gap.

We point out that the original interest of the authors in ray class elds for orders arose from the aim of giving an adelic proof of Theorem 7.2.5. This result, which is well known for elliptic curves having complex multiplication by the maximal order O of an imaginary quadratic eld (see for example [Sil94, Chapter II, Theorem 5.6]), was originally proved by Söhngen in his PhD thesis (see [START_REF] Söhngen | Zur komplexen Multiplikation[END_REF] and [Sch10, Theorem 6.2.3]), using the classical language of class eld theory.

Despite the fact that our original interest was only con ned to orders in imaginary quadratic elds, there are at least two reasons to engage with the development of a general theory of ray class elds for orders:

• Theorem 7.2.5 has been generalised to abelian varieties of each dimension by Shimura and Taniyama (see [ST61, Main Theorem 3]), still using the classical language of class eld theory employed by Söhngen. We point out that in this more general case it is not true anymore that the division elds associated to an abelian variety with complex multiplication by an order O inside a CM eld contain some ray class elds (relative to this order O), because one has to take into account the re ex norm associated to the CM type induced on by . Nevertheless, developing a general, adelic theory of ray class elds for orders is a key step towards providing a completely adelic proof of the aforementioned result of Shimura and Taniyama;

• the ring class eld of an order O, which is a generalisation of the Hilbert class eld associated to a number eld , has been studying recently in two works by Lv and Deng (see [START_REF] Lv | On orders in number elds: Picard groups, ring class elds and applications[END_REF]) and by Yi and Lv (see [START_REF] Yi | On Ring Class Fields of Number Rings[END_REF]). They show how to apply this study to nd criteria for the solubility of equations of the form N /Q,B (x) = , where x = ( 1 , . . . , ) is a vector of indeterminates having length equal to the degree = [ : Q] of a number eld , and N /Q,B (x) ∈ Z[x] denotes the polynomial corresponding to the eld norm N /Q : × → Q × , computed with respect to a given integral basis B. As we point out in Remark 6.2.14, our ray class elds for orders generalise the ring class elds de ned by Lv and Deng, and may provide further insight to the study of di erent kinds of Diophantine equations.

Let us conclude this introduction by outlining the contents of this chapter: Section 6.1.1 provides the necessary background on the set of lattices contained in a given number eld , which is endowed with a natural action of the idèle group A × (see Section 6.1.2). This group is also the source of the global Artin map [•, ] : A × Gal( ab / ). This map, which is a surjective group homomorphism, allows one to describe the abelian extensions of in terms of subgroups of the group of idèles A × , as we recall in Section 6.1.3. Moreover, Section 6.2 contains the heart of this chapter, consisting of the idelic de nition of ray class elds for orders, which is related to the classical language of class eld theory in Theorem 6.2.17. Finally, Section 6.2 contains also various computations of the Galois group of the extension ⊆ and of suitable sub-extensions.

Lattices, idèles and class field theory

As we stated in the introduction, the aim of this section is to collect some background material on lattices in number elds and the group of idèles, together with the relations between them and the idelic version of class eld theory.

Lattices

This short section collects some de nitions and crucial properties of lattices in number elds. Let us start by giving the following general de nition.

De nition 6.1.1 -Lattices

Let be a eld of characteristic zero, endowed with a sub-ring ⊆ , and let be a vector space over . An -lattice is a free -module Λ ⊆ such that = Λ ⊗ . We denote by L ( ; ) the set of -lattices inside the vector space , and by L ( ) the set of Z-lattices. Remark 6.1.2. There are at least two other notions of lattices present in the literature, namely:

• an additive subgroup Λ ⊆ inside an R-vector space endowed with an inner product

•, • : × → R is called a lattice if the metric : × → R de ned as ( , ) := -, -
induces the discrete topology on Λ;

• a pair (Λ, ) consisting of an abelian group Λ endowed with a symmetric bilinear form : Λ ⊗ Λ → R.

These two notions coincide as soon as Λ has nite rank (see [START_REF] Lenstra | Lattices[END_REF]§ 2]). We note that a lattice Λ ⊆ inside an Euclidean space is not required to satisfy rk Z (Λ) = dim R ( ), whereas we have rk (Λ) = dim ( ) for every Λ ⊆ which is a lattice in the sense of De nition 6.1.1. Despite this di erence, the aforementioned two notions of lattice coincide otherwise with the one given in De nition 6.1.1, when is nite dimensional and we take = R and = Z.

Fix a eld of characteristic zero, a sub-ring ⊆ and two -vector spaces and . Let us introduce a few operations that can be performed on the -lattices contained in and :

Direct sum

There is a map ⊕ : L ( ; ) × L ( ; ) → L ( ⊕ ; ) which sends a pair of lattices Λ ⊆ and Λ ⊆ to their direct sum Λ ⊕ Λ ⊆ ⊕ (as a -module). This is again an -lattice, generated by the direct sum B ⊕ B := { ⊕ : ∈ B, ∈ B } of the bases B ⊆ and B ⊆ which generate Λ and Λ .

Tensor product There is a map ⊗ : L ( ; ) × L ( ; ) → L ( ⊗ ; ) taking a pair of lattices Λ ⊆ and Λ ⊆ to their tensor product Λ ⊗ Λ (as -modules), which coincides with the -lattice generated inside ⊗ by the tensor product B ⊗ B := { ⊗ : ∈ B, ∈ B } of the bases B ⊆ and B ⊆ which generate Λ and Λ .

Homomorphisms

There is a function Hom : L ( ; ) × L ( ; ) → L (Hom ( , ); ) mapping a pair of -lattices Λ ⊆ and Λ ⊆ to Hom (Λ, Λ ). Fix two bases B ⊆ and B ⊆ which generate Λ and Λ . Then the isomorphism

Hom (Λ, Λ ) { ∈ Hom ( , ) | (Λ) ⊆ Λ } ⊆ Hom ( , )
shows that the -module Hom (Λ, Λ ) can be identi ed with the lattice generated inside Hom ( , ) by the basis

Hom(B, B ) := { , : ∈ B, ∈ B }
where , : → is de ned by setting , ( ) := and , ( ) := 0 for every ∈ B \ { }.

Dual lattice

As a special case of the previous one, there is a map L ( ) → L ( ∨ ) sending a lattice Λ ⊆ to its dual Λ ∨ ⊆ ∨ .

Base-change

Consider a commutative square where and are two elds of characteristic zero, endowed with sub-rings ⊆ and ⊆ . For every -vector space we have a base-change map L ( ; ) → L ( ⊗ ; ) which sends a -lattice Λ ⊆ to the -lattice Λ := Λ ⊗ .

We now restrict our attention to nitely generated vector spaces , and to sub-rings ⊆ such that = Frac( ). This is due to the following easy result.

Lattices, idèles and class field theory

Proof. It is immediate to see that for every prime ⊆ we have that

Λ ( ) ⊆ Λ ( ) ⇔ Λ ⊆ Λ because Λ ( ) = Λ ∩ ⊆ and Λ = Λ ( ) ⊗ ( ) . Hence showing the implication Λ ( ) ⊆ Λ ( ) , ∀ ∈ Spec( ) ⇒ Λ ⊆ Λ (6.3)
is su cient to prove (6.1). Since Λ ⊆ Λ ( ) for every prime ⊆ , we see that for every ∈ Λ there exist two collections of elements { , : ∈ Spec( )} such that for every prime ⊆ we can write = / with ∈ Λ and ∈ \ . This last condition implies in particular that there exists a sequence of elements { } ⊆ , with = 0 for all but nitely many primes ⊆ , such that = 1. Thus we see immediately that

= • 1 = ( ) = ∈ Λ
which shows that ∈ Λ , and allows us to conclude the proof of (6.3). Take now ∈ such that ∈ Λ ( ) for every prime ideal ⊆ . Then we can choose again { , , : ⊆ Spec( )} such that we can write = / and 1 = , with ∈ Λ and , ∈ having the property that ∈ \ and = 0 for all but nitely many primes ⊆ . Thus once again we have that = ∈ Λ, which shows that

Λ = Λ ( ) (6.4) 
because Λ ⊆ Λ ( ) for every prime ⊆ . Finally, (6.4) shows that

Λ Λ ( )
and, since Λ ( ) = Λ ∩ ⊆ for every prime ⊆ , we have that

Λ ( ) Λ
which allows us to conclude.

Idelic multiplication on lattices

The aim of this section is to describe the action of the group of idèles A × on the set of lattices L ( ) contained in a number eld . First of all, let us recall the de nition of the adèle ring A , and of its group of units A × .
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Chapter 6 Ray class fields for orders De nition 6.1.6 -Adèles and idèles Let be a number eld. Then we de ne the adèle ring A as the restricted product

A := ∈ = = ( ) ∈ ∈ ∈ ∈ O for almost all ∈ 0 .
where denotes the set of places of , containing the set 0 ⊆ of non-Archimedean places. We endow A with the structure of a topological ring: the sum and product operations are de ned component-wise, and the topology is generated by the open sets of the form

∈
where ⊆ is open and = O for all but nitely many ∈ 0 . Finally, we de ne the idèle group A × as the group of units in the adèle ring A .

In order to describe the action of the idèle group A × on the set of lattices L ( ), we need to use the fact that adèles are compatible with base-change, as it is shown by the following proposition (see [Neu99, Page 371]). Proposition 6.1.7 -Adèles and base-change Let ⊆ be an extension of number elds. Then there is a natural isomorphism of topological rings

A ⊗ -→ ∼ A (6.5)
induced by the natural inclusion A ↩→ A and the diagonal embedding ↩→ A .

Proof. Use the fact that ⊗ -→ ∼ | which holds for every place ∈ (see [Neu99, Chapter II, Proposition 8.3]), together with the fact that tensor products distribute over restricted products.

We are nally ready to de ne the action of the idèle group A × on the set L ( ) (see [Lan87, Chapter 8, § 1]). Proposition 6.1.8 -The idelic action on lattices Let be a number eld. Then for every Z-lattice Λ ⊆ and every idèle ∈ A × there exists a unique lattice • Λ ⊆ such that for every prime ∈ N we have that

( • Λ) ⊗ Z Z = • Λ ⊆
where := ⊗ Q Q and ∈ × is the -adic component of , coming from the isomorphism (6.5) with = Q.

Lattices, idèles and class field theory

Proof. Fix an idèle ∈ A × and a lattice Λ ⊆ . To show the existence of the lattice • Λ, we observe that • Λ ∈ L ( ; Z ( ) ) for every prime ∈ N. This shows that

(( • Λ ) ∩ ) ⊗ Z Z = • Λ , if = , if ≠
for every pair of primes , ∈ N, which implies that

( • Λ ) ∩ ⊗ Z Z = ( • Λ ) ∩
for every pair of primes , ∈ N. Hence the lattice • Λ ⊆ can be taken to be

• Λ := ( • Λ ) ∩
and this de nes • Λ uniquely thanks to Lemma 6.1.5.

The map 

( , Λ) ↦ → • Λ de nes an action of A × on L ( ), such that ( • Λ 1 ) • Λ 2 = • (Λ 1 • Λ 2 ) for every idèle ∈ A × and every pair of lattices Λ 1 , Λ 2 ∈ L ( ).
Λ • Λ ∈ 0 Q Λ ∈ 0 Q Λ • ∼ ∼ ( • ) (6.6)
where the bottom map is given by ( ) ↦ → ( ) and the vertical maps are the isomorphisms given by (6.2).

The global Artin map

The aim of this short section is to brie y recall some of the main properties of the global Artin map. We give no proofs, referring the reader to [Neu99, Chapter VI] for a complete account of global class eld theory, and to [START_REF] Poonen | A brief summary of the statements of Class Field Theory[END_REF] for a summary of the statements.

First of all, let us recall that for every nite extension of number elds ⊆ and every place ∈ lying above a place ∈ there exists a commutative diagram

× A × × × A × × N / N / N / (6.7)
where : × ↩→ A × and : × ↩→ A × denote the diagonal embeddings. On the other hand, : × ↩→ A × denotes the inclusion obtained by the identi cation

× { ∈ A × | = 1, ∀ ∈ \ { }}
and : × ↩→ A × is de ned analogously. Finally, the homomorphism

N / : A × → A ×
is the so-called idelic norm map (see [Neu99, Chapter VI, § 2]).

Let us now state the main theorem of global class eld theory, which contains in itself the de nition of the global Artin map. In what follows, we assume that is embedded in an algebraically closed eld Ω, and we denote by ab ⊆ Ω the maximal sub-eld of Ω which is an abelian extension of . Of course, the isomorphism class of this eld does not depend on Ω nor on the embedding ↩→ Ω. Theorem 6.1.9 -Main theorem of global class eld theory For every number eld there exists a unique surjective, continuous group homomorphism [•, ] : A × Gal( ab / ) with the following properties:

• the kernel of [•, ] equals the topological closure of the subgroup × • + ∞ ⊆ A × , where + ∞ ⊆ × ∞ denotes the connected component of the identity in the group of units of the topological ring

∞ := ⊗ Q R ∈ ∞
. The kernel of [•, ] is also equal to the inverse image of the connected component of the identity of the topological group A × / × under the quotient map A × A × / × ; • for every nite abelian extension ⊆ , the following square

A × Gal( ab / ) A × Gal( ab / ) [ •, ] N / / [ •, ] (6.8) 
commutes, where / : Gal( ab / ) → Gal( ab / ) denotes the restriction map. In particular, the map [•, ] induces an isomorphism

[•, / ] : A × × • N / (A × ) -→ ∼ Gal( / ) (6.9)
for every nite abelian extension ⊆ ;

• for every non-Archimdean place ∈ 0 lying above a prime ∈ N we have that [ ( × ), ] ⊆ Gal( ab / ). Moreover, for every uniformiser ∈ × the homomorphism [ ( ), ] ∈ Gal( ab / ) acts on the maximal unrami ed extension ⊆ ( ) 0 (which is pro-cyclic, hence abelian) as the arithmetic Frobenius element -1 (see (3.13) for the de nition of the geometric Frobenius ). satisfying the properties stated in Theorem 6.1.9.

Remark 6.1.11. Our formulation of the main theorem of global class eld theory may appear a little di erent from the ordinary. It can be obtained by combining the main theorem of local class eld theory (see [Neu99, Chapter V, Theorem 1.3]) and the main theorem of global class eld theory (see [Neu99, Chapter VI, Theorem 6.1]). We refer in particular to [Mil20, Theorem 1.13] for a proof of the uniqueness of the local Artin map.

The notion of ray class fields for orders

The aim of this section, as we stated in the introduction of the chapter, is to study the notion of ray class eld for an order O inside a number eld . We introduce them using the idelic language of class eld theory, which we recalled in Theorem 6.1.9. We then show in Theorem 6.2.17 how to relate this to a de nition coming from the classical language of class eld theory.

The material present in this section is based on joint work in progress with Francesco Campagna. We think that much of this material is probably known to the experts, but we were unable to nd it explained in any suitable reference. In particular, our de nition De nition 6.2.11 has not appeared elsewhere in this generality. Nevertheless, it can be seen as a generalisation of the notions introduced by Söhngen and by Lv-Deng and Yi-Lv, as pointed out in Remark 6.2.14.

Number rings and orders

We start this section by recalling the notion of number ring and order, following [Ste08, § 2].

De nition 6.2.1 -Number rings and orders

A number ring is a domain whose eld of fractions Frac( ) is a number eld. A number ring O ⊆ inside a number eld is called an order in if = Frac(O) and O is nitely generated as an abelian group. Example 6.2.2. The basic example of order inside a number eld is given by the ring of integers O ⊆ , consisting of all the elements ∈ which are integral over Z, i.e. such that there exists a monic polynomial ( ) ∈ Z[ ] with ( ) = 0. We refer the reader to [Neu99, Chapter I, Theorem 3.1] for a proof of the fact that O ⊆ is indeed an order in .

Example 6.2.3. Further examples of number rings are given by the rings of the form

= Z[ 1 , . . . , ]
with 1 , . . . , ∈ Q. We note that the ring Z[ 1 , . . . , ] is an order inside the number eld Q( 1 , . . . , ) if and only if 1 , . . . , ∈ Z (see [Neu99, Chapter I, Proposition 2.2]).

One of the reasons why orders are more amenable to computations than general number rings is given by the fact that they are lattices in the corresponding number eld, as the following result shows (see [Ste08, Theorem 2.2]). Proposition 6.2.4 -Orders as lattices Let ⊆ be a number ring inside a number eld = Frac( ). Then is an order in if and only if ⊆ O and the index [O : ] is nite. Moreover, every ideal ⊆ O inside an order O ⊆ is nitely generated and every non-zero prime ideal ⊆ O is maximal, i.e. every order O is a one dimensional, Noetherian integral domain. Finally, for every Λ ⊆ which is a fractional ideal for an order O ⊆ (i.e. a non-zero nitely generated O sub-module of ) we have that Λ ∈ L ( ), i.e. Λ is a Z-lattice in (see De nition 6.1.1).

Proof. Since O ⊆ is an order in we have that any ring ⊆ O is nitely generated as an abelian group, and if the index [O : ] is nite we have that = Frac( ). For the converse, we observe that Example 6.2.3 implies that for any O ⊆ which is an order for we have that O ⊆ O . Since = Frac(O) we have that O and O are nitely generated abelian groups of the same rank. This shows as well that every ideal ⊆ O is a nitely generated abelian group, hence a nitely generated O-module, which implies that O is a Noetherian integral domain. Moroever, for every ideal ⊆ O we have that • O ⊆ ⊆ O for every ∈ ∩ Z. Hence if we take ≠ (0) we see that and O are nitely generated abelian groups of the same rank, which implies that for every non-zero ideal ⊆ O we have that is a lattice in and O/ is a nite ring. This applies in particular to every non-zero prime ideal ⊆ O, which implies that is maximal because the nite integral domain O/ is a eld, thanks to Wedderburn's little theorem (see for instance [Coh03, Theorem 7.8.6]). To conclude, it is su cient to observe that for every fractional O-ideal Λ ⊆ there exists ∈ Z such that ≠ 0 and Λ ⊆ O is an ideal. Thus Λ and Λ are both Z-lattices inside .

To conclude, let us recall the notion of conductor of an order O ⊆ .

De nition 6.2.5 -Conductor of an order

Let be a number eld and let O ⊆ be an order in . Then the conductor of O is: The conductor O of an order is important in view of the following result concerning the invertibility of ideals.

O := (O : O ) = { ∈ O | O ⊆ O} ⊆ O which is the biggest ideal of O to be contained in O.

6.2

The notion of ray class fields for orders Lemma 6.2.7 -The conductor and invertible ideals Let O be an order inside a number eld . Then an ideal ⊆ O is invertible if and only if • (O : ) = O. This happens if + O = O, i.e. every ideal which is coprime to the conductor O ⊆ O is invertible, and the converse holds if is a prime ideal. Moreover, the map 

{ ⊆ O | + O = O } → { ⊆ O | + O = O} ↦ → ∩ O is a

Definition of ray class fields for orders

We are now ready to de ne the ray class elds relative to an order O ⊆ O inside a number eld . First of all, we package the data needed to give the de nition of such a ray class eld in the following concept.

De nition 6.2.9 -Generalised modules Let be a number eld. Then a generalised module for is a triple

= (O, , ∞ )
where O ⊆ is an order, ⊆ O is a non-zero ideal and ∞ ⊆ ∞ is a collection of Archimedean places of such that R for every ∈ ∞ .

Remark 6.2.10. Usually one de nes a module for a number eld as a formal N-linear combination = ord ( ) [ ] ∈ N[ ] of places of , such that ord ( ) = 0 for all but nitely many ∈ and ord ( ) ∈ {0, 1} if ∈ ∞ (see for example [Neu99, Page 363]). Then the triple

= O , ∈ 0 ord ( ) , { ∈ ∞ | ord ( ) ≠ 0}
de nes a generalised module for , in the sense of De nition 6.2.9. Moreover, the map ↦ → induces a bijection between the set of modules (in the classical sense) and the set of generalised modules

= (O, , ∞ ) such that O = O .
Let us now introduce the ray class eld associated to a generalised module .

De nition 6.2.11 -Ray class elds for orders

Let be a number eld and = (O, , ∞ ) be a generalised module for . Then we de ne the ray class eld of modulo as := ( ab ) [ , ] ⊆ ab (6.11)

where [•, ] : A × → Gal( ab / ) is the global Artin map and ⊆ A × is the subgroup

:=        ∈ A × ∈ O × ∩ (1 + • O ) for all rational primes ∈ N ∈ R >0 , for all places ∈ ∞        (6.12)
where ∈ × := ( ⊗ Q Q ) × denotes the -adic component of an idèle ∈ A × , which is de ned using (6.5) with = Q, and Remark 6.2.12. De nition 6.2.11 is easily generalised to all number rings. More precisely, one can de ne a generalised module to be a triple = ( , , ∞ ) where is a number ring, ⊆ is an ideal and ∞ is a set of Archimedean places of := Frac( ), with the property that R for every ∈ ∞ . Then one can de ne

O := lim ← -- ∈N O O O ⊗ Z Z ⊆ := ⊗ Q Q (6.
:=        ∈ A × ∈ O × ∩ (1 + • O ) for all rational primes ∈ N ∈ R >0 , for all places ∈ ∞        6.2
The notion of ray class fields for orders where := ⊗ Z Z and again = Frac( ). Finally, the ray class eld for the generalised module is de ned to be := ( ab ) [ , ] , and use again the notation , , , and , de ned exactly as in the case of orders.

We decided to focus on the theory for orders in this chapter, because it is less technical to develop. For instance, already for the ring class eld associated to a number ring , showing that Gal( /Frac( )) Pic( ) takes up half of the proof of [YL18, Theorem 4.2]. Remark 6.2.13. When O = O is the ring of integers, the ray class elds coincide with the usual ray class elds of , which are de ned for example in [Neu99, Chapter VI, De nition 6.2]). This is evident from the de nitions, using the bijection ↦ → described in Remark 6.2.10, and the isomorphism

O ⊗ Z Z | O
which holds for every rational prime ∈ N (see also (6.18) for the analogous decomposition in the case of a general order). 

•O ,O ,O • O •O ,O O O O ,O ⊆ ⊆ ⊆ ⊆ ⊆ ⊆ ⊆ ⊆ ⊆
where O ⊆ O is the conductor of O (see De nition 6.2.5). This shows, applying [Neu99, Chapter VI, Corollary 6.6], that the extension ⊆ ,O is unrami ed outside the set of primes dividing • O • O .

Galois groups of ray class fields for orders

The aim of this nal section, which constitutes the technical part of this chapter, is to describe the Galois groups of the abelian extensions ⊆

. First of all, we have the following idelic description, which follows essentially from Theorem 6.1.9 and De nition 6.2.11. Lemma 6.2.16 -Galois groups of ray class elds, in terms of idèles Let = (O, , ∞ ) be a generalised module, relative to the number eld := Frac(O). Then × • ⊆ A × is a closed subgroup of nite index and one has

× • + ∞ ⊆ ker( [•, ]) ⊆ × • = × • N / (A × )
where N / : A × → A × denotes the idelic norm map, and + ∞ ⊆ × ∞ is the connected component of the identity in the group of units of the topological ring ∞ := ⊗ Q R. Moreover, there is an isomorphism

Gal( / ) A × × • (6.14) induced by the global Artin map [•, ] : A × Gal( ab / ). Proof. Let := (O , • O • O , ∞ )
, so that ⊇ . This implies that the subgroup × • ⊆ A × is closed and has nite index, thanks to [Neu99, Chapter VI, Proposition 1.8]. Moreover, we have by de nition that + ∞ ⊆ , so the inclusions

× • + ∞ ⊆ ker( [•, ]) ⊆ × • follow from the fact that × • ,O is closed in A × and ker( [•, ]) is the closure of × • + ∞ inside A × ,
as explained in Theorem 6.1.9. The isomorphism (6.9) now gives (6.14) and shows that × • N / (A × ) ⊆ A × is also a closed subgroup of nite index containing the kernel of the Artin map and xing precisely the eld . Then by Galois theory we must have × • = × • N / (A × ), and this concludes the proof.

The next step in our description of the Galois group Gal( / ) is to relate it to suitable sub-quotients of the group I O of invertible ideals ⊆ O. This is achieved by the following result, which extends [YL18, Theorem 4.2], where it is shown that Gal( / ) Pic( ) for every number ring , to general ray class elds for orders. Theorem 6.2.17 -Galois groups of ray class elds, in terms of ideals We can now proceed as in [YL18, Theorem 2.9] to show that for every ∈ I there exists ∈ O such that O ∈ P and O ( ) = O ( ) for every prime ⊆ O such that ⊇ O . Indeed, let 1 , . . . , ⊆ O be all the prime ideals containing O and let O ( ) be the localisation of O at . Observe that these ideals are all maximal, and in particular pairwise coprime, because O is one-dimensional (see Proposition 6. 

= (O , • O • O , ∞ ). Since it is easy to see that A × , ⊆ A × , we get that A × = A × ,
• × , as we wanted.

We can now observe that there is a well de ned group homomorphism • , as we wanted to prove. This shows that , and induce an isomorphism

A × × • × • A × , × • × • A × , / × × • / × A × , • J R J Q I P = ∼ ∼ ∼ -1
which allows us to conclude using the isomorphism (6.14).

Remark 6.2.18. The isomorphism Gal( / ) J /R can be used to de ne the ray class elds using the classical language of class eld theory. More precisely, we know from Remark 6. where ℜ / , is a subgroup containing the "ray" Q . This can be reversed, to show that for every classical module and every subgroup R ⊆ J such that Q ⊆ R there exists a nite abelian extension ⊆ such that R = ℜ / , . Hence we can de ne precisely in this way, by taking = and R := R . Example 6.2.19. If is an imaginary quadratic eld, we can use Remark 6.2.18 to retrieve the classical de nition of ray class elds for imaginary quadratic orders appearing in the PhD thesis of Söhngen [START_REF] Söhngen | Zur komplexen Multiplikation[END_REF] (see also [START_REF] Schertz | Complex multiplication[END_REF]§3.3]).

The previous results shows that we can split the abelian extension ⊆ into the subextension ⊆ O given by the ring class eld O , which depends only on the order O and has Galois group Gal( O / ) Pic(O), and the upper part O ⊆ . The following result, which concludes this chapter, computes the Galois group of this upper part. Theorem 6.2.20 -Galois groups of ray class elds over the ring class eld Let = (O, , ∞ ) be a generalised module, relative to the number eld := Frac(O). Then we have the isomorphism:

Gal( / O ) (O/ ) × × (O × ∞ )
where × : O × → (O/ ) × is the map induced by the projection : O O/ , and O × ∞ ⊆ O × denotes the subgroup given by those units ∈ O × such that ( ) > 0 for every ∈ ∞ .

Proof. First of all, we see that 

Gal( / O ) = ker (Gal( / ) Gal( O / )) ( ) ker A × × • A × × • O × • O × • × • O / × × • / × ( ) O /( × ∩ O ) ( • ( × ∩ O ))/( × ∩ O ) O • ( × ∩ O ) ( ) = O • O × where 
• O × • × ∞ )/ × ∞ ⊆ O / × ∞ O × is identi ed with ker( × ) • O × ∞ . Hence we get that Gal( / O ) O • O × O / × ∞ ( • O × • × ∞ )/ × ∞ O × ker( × ) • O × ∞ ( O/ O) × × (O × ∞ )
because × is surjective. This surjectivity is shown by the factorisation

O × O/ O × ⊇ O × ×
where the rst map O × ⊇ O × is surjective as follows from (6.17), and the second map

⊇ O × ⊇ O O × O O ×
is surjective by [Che20, Corollary 2.3], which can be applied since the ring ⊇ O has nitely many maximal ideals.

To nish our proof we need to show the isomorphism

( O/ O) × × (O × ∞ ) (O/ ) × × (O × ∞ )
.

The notion of ray class fields for orders

To do this recall that and are related by the commutative diagram

O O/ ⊇ O ( ) O ( ) O O/ O ⊇ O O ∼
where is the isomorphism coming from the decomposition (6.17), and and are the maps induced by the natural inclusions O ⊆ O ( ) ⊆ O . Moreover the products run over all the prime ideals ⊆ O such that ⊇ , and O ( ) denotes the localisation of O at the prime .

Hence to conclude it is su cient to observe that is an isomorphism by [Neu99 

The theory of complex multiplication

The more complex the mind, the greater the need for the simplicity of play.

James T. Kirk, Star Trek: The Original Series

The aim of this chapter is to introduce the main points of the theory of complex multiplication (often abbreviated by CM) which are needed in what follows. This theory is incredibly rich, and it has been understood for a long time that objects with complex multiplication form a fertile testing ground for numerous conjectures in arithmetic geometry. These include the Mumford-Tate conjecture (see for instance [FC20, Page 4] for a motivic version of this conjecture) and Beilinson's conjectures for the special values of -functions (see Conjecture 3.3.18). More precisely, the Mumford-Tate conjecture is known by work of Pohlmann (see [START_REF] Pohlmann | Algebraic Cycles on Abelian Varieties of Complex Multiplication Type[END_REF]) for every abelian variety with complex multiplication, and the weak form of Beilinson's conjecture (see Conjecture 3.3.28) is known in the following cases:

• for the special value * ( , 1) associated to any abelian variety with complex multiplication, thanks to work of Blasius and Harder (see [START_REF] Harder | Special values of Hecke -functions and abelian integrals[END_REF]), which was later revisited in Colmez's thesis (see [START_REF] Colmez | Algébricité de valeurs spéciales de fonctions[END_REF]);

• for the special values * ( , ) with ≠ 1, associated to any elliptic curve with complex multiplication that satis es Shimura's condition (see De nition 7.1.30), thanks to the work of Deninger (see [START_REF] Deninger | Higher regulators and Hecke L-series of imaginary quadratic elds I[END_REF] and [START_REF] Deninger | Higher Regulators and Hecke L-Series of Imaginary Quadratic Fields II[END_REF]).

All these proofs and conjectures use heavily the structure of torsion points on CM abelian varieties, and the fact that the Galois representation induced by these is far better understood in the CM case than in the general case. This is exempli ed by the main theorem of complex multiplication (see Theorem 7.1.25) which is part of to the groundbreaking work of Shimura and Taniyama [START_REF] Shimura | Complex multiplication of abelian varieties and its applications to number theory[END_REF], and describes the Galois action on torsion points in terms of class eld theory and the global Artin map. Let us review the contents of this chapter. First of all, we devote Section 7.1 to de ning abelian varieties with complex multiplication, and to giving the statement of the main theorem of complex multiplication, of which we present a partial proof in the case of elliptic curves. The two central sections of the chapter are then based on joint work with Francesco Campagna. First of all, the aim of Section 7.2 is to present a proof of the third main theorem of complex multiplication (see [ST61, Page 142]) for elliptic curves with complex multiplication by general orders. While the corresponding result for curves with CM by maximal orders is classical (see [Sil94, Chapter II, Theorem 5.6]), the corresponding result for elliptic curves having complex multiplication by non-maximal orders is not equally well documented. This result can of course be derived as a special case of the result of Shimura and Taniyama, but it is in fact due to Söhngen [START_REF] Söhngen | Zur komplexen Multiplikation[END_REF]. Both proofs, as well as the pedagogical account of Söhngen's proof given by Schertz in [Sch10, Theorem 6.2.3], use the classical language of class eld theory, whereas Stevenhagen's account [START_REF] Stevenhagen | Hilbert's 12th Problem, Complex Multiplication and Shimura Reciprocity[END_REF]§ 4] of Söhngen's proof uses an idelic language, but focuses only on the case of -torsion points, for some integer ∈ N, instead of the more general case of -torsion points for some ideal ⊆ O. Therefore we thought it meaningful to include a completely idelic proof of the general case, based on the notions of ray class elds for orders that we introduced in the previous chapter. Secondly, Section 7.3 contains the proof of an optimal bound for the index of the image of the Galois representation attached to the torsion points of an elliptic curve with complex multiplication. This partially generalises work of Lombardo (see [START_REF] Lombardo | Galois representations attached to abelian varieties of CM type[END_REF]) and Bourdon and Clark (see [START_REF] Bourdon | Torsion points and Galois representations on CM elliptic curves[END_REF]). Finally, Section 7.4 is dedicated to recalling the results of Deninger on Beilinson's conjecture for elliptic curves with complex multiplication at non-critical integers. We focus in particular on the integer = 2, which is the subject of a theorem of Rohrlich (see Theorem 7.4.5), which generalises earlier work of Bloch (see [START_REF] Bloch | Higher regulators, algebraic -theory, and zeta functions of elliptic curves[END_REF]Theorem 11.2.1]).

Abelian varieties with complex multiplication

It is a common, general theme of mathematics to study the symmetries of objects. Most notably, it was precisely to study symmetries of roots of polynomials that the notion of group was envisioned by Galois. Since then, it has become apparent that the theory underlying objects whose number of symmetries is di erent from the average one is both richer and easier to develop than the general one. Going back to the solutions of polynomial equations, it is no mystery (as we reviewed in Section 6.1.3), that class eld theory, which studies abelian extensions of number elds, results in a theory far more vivid than the general theory of Galois extensions of number elds.

The theory of abelian varieties is no exception to this rule, but here the situation is somehow reversed: the more symmetries an abelian variety possesses, the richer the theory. To be more precise, symmetries of an abelian variety are given by the elements of its endomorphism ring End( ). In order to study this ring, we can employ the following result, which allows us to split an abelian variety into its simple constituents (see [CCO14, Theorem 1.2.1.3]).

Theorem 7.1.1 -Poincaré reducibility theorem Let be a non-zero abelian variety de ned over a eld . Then there exists an isogeny

→ 1 1 × • • • × (7.1)
where 1 , . . . , ∈ N and { 1 , . . . , } are pairwise non-isogenous simple abelian varieties, i.e. abelian varieties which do not have any non-trivial abelian sub-varieties.

Using Theorem 7.1.1 we see that the endomorphism Q-algebra End 0 ( ) := End( ) ⊗ Z Q is semi-simple. More precisely, each algebra End 0 ( ) is a simple division Q-algebra, which means that End 0 ( ) does not have any non-trivial two-sided ideal and for every pair , ∈ End 0 ( ) there exists a unique pair , ∈ End 0 ( ) such that = = . Moreover, the endomorphism algebra End 0 ( ) decomposes as End 0 ( )

=1

Mat × (End 0 ( )) 182 Chapter 7 The theory of complex multiplication because End 0 is invariant under isogeny.

Since the algebra End 0 ( ) is semi-simple, we can measure how big it is by means of its reduced degree, which is de ned using the following lemma on simple algebras (see [START_REF] Cohn | Basic algebra[END_REF]Theorem 5.4.6]).

Lemma 7.1.2 -Centres of nite dimensional simple algebras Let be a eld and let be a nite dimensional simple algebra over . Then the centre ( ) ⊆ is a eld, which is a nite extension of . Moreover, the index [ : ( )] is nite, and is the square of an integer.

De nition 7.1.3 -Reduced degree

Let be a eld and be a nite dimensional semi-simple algebra over . Then its reduced degree is de ned as

[ : ] red := =1 [ : ] red := =1 [ : ( )] [ ( ) : ] ∈ N where = 1 × • • • ×
is the decomposition of as a product of simple algebras.

As we said, the reduced degree of the Q-algebra End 0 ( ) is a good way of measuring how many endomorphisms has. This is also expressed by the following result, which shows that the reduced degree is bounded in terms of the dimension of the abelian variety (see [CCO14, Theorem 1.3.1.1]).

Theorem 7.1.4 -Reduced degree and étale sub-algebras Let be an abelian variety over a eld . Then we have that

[End 0 ( ) : Q] red = max{[ : Q] | ⊆ End 0 ( ) is étale over Q} and [End 0 ( ) : Q] red ≤ 2 dim( ).
As we mentioned in the beginning, CM abelian varieties are those abelian varieties which have more symmetries than usual. Since we have seen that the reduced degree is a way of measuring how many endomorphisms an abelian variety has, it is not surprising to give the following de nition.

7.1 Abelian varieties with complex multiplication De nition 7.1.5 -Abelian varieties with complex multiplication Let be an abelian variety de ned over a eld . Then has complex multiplication if

[End 0 ( ) : Q] red = 2 dim( )
and has potential complex multiplication if there exists a nite extension of elds ⊆ such that the base-change / has complex multiplication. We call CM abelian varieties the abelian varieties with potential complex multiplication. De nition 7.1.5 has the virtue of being an intrinsic de nition, which does not depend on anything but the abelian variety . On the other hand, we may observe that every polarisation → ∨ induces a positive involution on End 0 ( ), and thus on the single factors End 0 ( ) coming from the decomposition (7.1). Hence one can use Albert's classi cation of division Q-algebras endowed with a positive involution, to describe the endomorphism algebra of an abelian variety with complex multiplication as follows (see [START_REF] Chai | Complex multiplication and lifting problems[END_REF]§ 1.3.6]).

Theorem 7.1.6 -Endomorphisms of abelian varieties with CM Let be an abelian variety with complex multiplication de ned over a eld . Fixing a decomposition of into its simple isogeny factors (see Equation (7.1)) we have that End 0 ( )

=1 Mat × ( ) (7.2)
where the Q-algebras are:

• non-split quaternion algebras if char( ) > 0;

• number elds, which are totally imaginary quadratic extensions of a totally real number eld + ⊆ , if char( ) = 0.

The class of number elds appearing in Theorem 7.1.6 deserves a special name.

De nition 7.1.7 -CM elds, CM algebras, CM types and CM pairs

A CM eld is a number eld such that there exists a sub-eld + ⊆ with the property that [ : + ] = 2 and [ : + ] = 2 for every Archimedean place ∈ ∞ lying above the place ∈ ∞ + . In other words, is a totally imaginary quadratic extension of a totally real number eld + .

A CM algebra is a product of CM elds = 1 × • • • × , and a CM type for is a collection Φ ⊆ Hom( , C) such that Φ ∩ Φ = ∅ and Φ ∪ Φ = Hom( , C), where the elements of Φ ⊆ Hom( , C) are obtained by composing the elements of Φ with complex conjugation.

Finally, a CM pair is a pair ( , Φ) where is a CM algebra and Φ is a CM type for .

Remark 7.1.8. CM elds can equivalently be de ned as number elds endowed with an automorphism : → such that Φ ∞ • = • for every embedding : ↩→ C, where Φ ∞ : C → C denotes complex conjugation.

Example 7.1.9. CM elds of degree [ : Q] = 2 are precisely the imaginary quadratic elds = Q( √ -) for some square-free ∈ N. Hence for every elliptic curve de ned over a eld of characteristic zero we have that either End 0 ( ) Q or End 0 ( ) for some imaginary quadratic eld .

Let us now consider the problem of determining when some CM abelian variety de ned over a eld of characteristic zero has all its complex multiplications de ned over . In order to give a complete answer to this question, we need to introduce the re ex of a CM pair ( , Φ), using the following result (see [START_REF] Shimura | Complex multiplication of abelian varieties and its applications to number theory[END_REF]§ 8.3]).

Proposition 7.1.10 -Fields generated by traces and norms Let be a CM eld, and Φ ⊆ Hom( , C) be a CM type for . Then we have that

Q(tr Φ ( )) = Q(N Φ ( × )), where tr Φ : → C ↦ → ∈Φ ( )
and

N Φ : × → C × ↦ → ∈Φ ( ) (7.3) 
are the trace and norm associated to the type Φ. Moreover, the number eld

* := Q(tr Φ ( )) = Q(N Φ ( × ))
is a CM eld, endowed with an embedding * : * ↩→ C coming from the maps tr Φ and N Φ . Finally, we have that

Aut(C/ * ( * )) = { ∈ Aut(C/Q) | • ∈ Φ, ∀ ∈ Φ} (7.4)
and that for any ∈ Φ, the set

Φ * := { -1 • * | ∈ Aut(C/Q), • 1 ∈ Φ} ⊆ Hom( * , C)
is a CM type of * , which does not depend on .

De nition 7.1.11 -Re ex of a CM pair Then the re ex pair ( * , Φ * ) is de ned as

Let ( , Φ) = ( 1 × • • • × , Φ 1 × • • • × Φ ) be a CM
( * , Φ * ) := ( * 1 × • • • × * , Φ * 1 × • • • × Φ * )
where * and Φ * are the elds and the types provided by Proposition 7.1.10.

Abelian varieties with complex multiplication

Let us observe that the type norm N Φ : × → C × induces a map N Φ : × → ( * ) × which is algebraic, in the sense of the following de nition.

De nition 7.1.12 -Algebraic maps of multiplicative groups Let : × → × be a group homomorphism between the multiplicative groups of two number elds and . Then we say that is algebraic if one of the following equivalent conditions holds:

• for every Q-basis B = { 1 , . . . , } of , there exists a rational function

B ( 1 , . . . , ) ∈ ( 1 , . . . , ) such that =1 = B ( 1 , . . . , )
for every a = ( 1 , . . . , ) ∈ Q \ {0};

• there exists a function : Hom( , ) → Z such that

( ) = : ↩→ ( ) ( ) (7.5) 
for every ∈ × ;

• there exists a morphism of Q-schemes

0 : N /Q (G , ) → N /Q (G , ) (7.6) 
which induces when evaluated at Q-points. Here N /Q and N /Q denote the Weil restriction functors.

Example 7.1.13. Let be a CM eld of degree 2 = [ : Q], and let Φ ⊆ Hom( , C) be a CM type for . Then the type norm N Φ : × → C × de ned in (7.3) induces an algebraic map N Φ : × → ( * ) × . To see this, x an element ∈ such that = Q( ), and consider the polynomial

Φ, ( ) := ∈Φ ( -( )) ∈ C[ ]
which has actually coe cients in * ↩→ C, in virtue of (7.4). Thus we see that there exists a unique injective map of Q-algebras Φ : ↩→ Mat × ( * ) such that Φ ( ) := Φ, , where Φ, is the companion matrix of Φ, . Clearly this map Φ does not depend on the choice of , and one can show that N Φ ( ) = det(Φ ( )) for every ∈ × . This shows in particular that N Φ is algebraic, using the rst of the equivalent conditions appearing in De nition 7.1.12.

Remark 7.1.14. Let us observe that every algebraic map : × → × induces maps for every Q-algebra , simply by evaluating the map (7.6) at -points. In particular, if we take = A Q and = N Φ we get the idelic type norm

N Φ : A × → A × * (7.7)
which is a continuous group homomorphism. Moreover, the re ex type Φ * induces a map N Φ * : A × * → A × (7.8) using the fact that ( * ) * ⊆ for every CM eld , which follows directly from De nition 7.1.7.

We can now see under which conditions an abelian variety with potential complex multiplication, de ned over a eld of characteristic zero, acquires all its complex multiplications after base-change to a given nite extension ⊇ (see [START_REF] Shimura | Abelian varieties with complex multiplication and modular functions[END_REF] Chapter II, Proposition 30]).

Proposition 7.1.15 -Field extensions and complex multiplications Let be an abelian variety de ned over a eld ⊆ C, and suppose that has complex multiplication (over ). Then the action of End 0 ( ) over the tangent space of at the origin induces a CM type Φ on the CM algebra := 1 × • • • × coming from the decomposition (7.2). Moreover, this action induces embeddings : * ↩→ for every ∈ {1, . . . , }.

Conversely, x an abelian variety de ned over a eld ⊆ C, and suppose that there exists a nite extension ⊇ such that End 0 ( / ) =1 Mat × ( ) for some CM elds 1 , . . . , , where

1 1 × • • • ×
is the isogeny decomposition given by Theorem 7.1.1. Then for every sub-extension ⊆ ⊆ we have that End 0 ( / ) = End 0 ( / ) ⇐⇒ ( ) ⊆ , ∀ ∈ {1, . . . , } where :

↩→ is the embedding de ned in the previous paragraph.

Example 7.1.16. If is an elliptic curve de ned over a number eld , which has potential complex multiplication by an imaginary quadratic eld , we see from Proposition 7.1.15 that End 0 ( ) End 0 ( / ) if and only if ⊆ .

The main theorem of complex multiplication

One of the reasons why the theory of CM abelian varieties is much richer than the general one, is due to the fact that the -function ( / , ) associated to the motive 1 ( / ) can be expressed in terms of -functions of Hecke characters, which are certain characters of the group of idèles associated to the number eld over which is de ned. In particular, the validity of Conjecture 3.3.4 and Conjecture 3.3.6 is established for -functions of CM abelian varieties, thanks to work of Hecke (see [START_REF] Neukirch | Algebraic Number Theory[END_REF]Chapter VII,§ 8]). We devote this section to explaining these claims, and to the presentation of the so-called main theorem of complex multiplication, the technical backbone upon which these results rely.

First of all, let us introduce the notion of Hecke character.

7.1 Abelian varieties with complex multiplication De nition 7.1.17 -Hecke character Let be a number eld and let Ω be a topological ring. A Ω-valued Hecke character is a continuous group homomorphism

: A × → Ω ×
such that ( × ) = 1, where × ↩→ A × via the diagonal embedding. A Hecke character is a C-valued Hecke character. For every sub-eld ⊆ and every place ∈ we denote by : × → Ω × the restriction of to × := ( ⊗ ) × | × .

Remark 7.1.18. Let us recall the related notion of algebraic Hecke character, which is not used in this thesis but is fundamentally related to the theory of complex multiplication. Fix a pair of number elds and , and consider the latter as a discrete topological eld. Then an -valued algebraic Hecke character for is an -valued Hecke character

: A × → ×
such that the restriction alg := • : × → × is algebraic, in the sense of De nition 7.1.12. Let us observe that any algebraic Hecke character : A × → × induces a family of Hecke characters ( ) : A × → × indexed over the set of places ∈

, where is endowed with the -adic topology. Indeed, it is su cient to take ( ) := • ( • 0 (A Q )) -1 where 0 (A Q ) : A × → A × is the map induced by evaluating (7.6) at A Q -points, and : A × × is the canonical projection.

Hecke characters can be thought of as one dimensional automorphic representations. Thus, as we mentioned in the introduction of Chapter 3, there is a way to associate certain -functions (de ned as a suitable Euler product) to these Hecke characters. Let us recall this de nition, following [START_REF] Ramakrishnan | Fourier Analysis on Number Fields[END_REF]§ 7.4].

De nition 7.1.19 -Local -factors

Let be a local eld of characteristic zero, and let : × → C × be a continuous group homomorphism. Suppose that is non-Archimedean, and let ∈ × be a uniformiser. Then we de ne the local -factor ( ) ∈ C as:

( ) := (1 -( )), if (O × ) = 1 1, otherwise
which does not depend on the choice of , because for any two uniformisers , ∈ × we have that / ∈ O × . Suppose now that C. In this case we de ne the local -factor as Let : A × → C × be a Hecke character. Then the Euler product (7.9) converges for every ∈ C such that ( ) > 1, and the -function ( , ) : ℜ 1 → C admits a meromorphic continuation to the whole complex plane. Furthermore, ( , ) satis es a functional equation of the form

( ) := Γ C ( ) + | ( )| 2 ∈ C where 
( , ) = ( , ) • (1 -, • -1 )
where ( , ) := ( ) • ( ) is the -factor de ned in [RV99, Theorem 7.2]. Here

• : A × → R >0 ↦ → ∈ | |
7.1 Abelian varieties with complex multiplication where ( ( ), ) denotes the -adic component of ( ( ), ), coming from the decomposition

⊗ Q C ↩→C C
and ( ) : A × → × ⊆ C × denotes the complex conjugate of the Hecke character ( ) : A × → × ⊆ C × induced by the Archimedean place (see Remark 7.1.18). Moreover, ( ) ∈ Z denotes the weight of the algebraic Hecke character , de ned to be the unique integer such that for every embedding : ↩→ C we have that

( ) + ( ) = ( )
for every : ↩→ , where ↦ → denotes the action of complex conjugation on Hom( , ) induced by the embedding , and : Hom( , ) → Z denotes the function appearing in (7.5).

The proof of Theorem 7.1.24 uses greatly the geometry of abelian varieties with complex multiplication, from which the motives ( ) are constructed. In particular, it uses the fact that one can associate to every abelian variety de ned over a number eld , which has complex multiplication by the CM algebra

× 1 × • • • × × ,
an algebraic Hecke character : A → × , i.e. a family of algebraic Hecke characters { ( ) : A → × } =1 . These Hecke characters arise by looking at the action of the absolute Galois group G := Gal( / ) on the group of torsion points tors := ( ) tors . This action, which exists for every abelian variety , gives rise to a Galois representation : G → Aut Z ( tors )

which induces an injection : Gal( ( tors )/ ) ↩→ Aut Z ( tors ), where ( tors ) denotes the division eld associated to the abelian variety , which is the compositum (in a xed algebraic closure ) of all the residue elds ( ) associated to torsion points ∈ tors . Now, if we x a prime ℓ ∈ N we can look at the action of G on the group [ℓ ∞ ] := lim --→ [ℓ ] of torsion points of ℓ-power order, which gives rise to the ℓ ∞ -division eld ( [ℓ ∞ ]) and to an embedding

,ℓ ∞ : Gal( ( [ℓ ∞ ])/ ) ↩→ Aut Z ( [ℓ ∞ ]
). These Galois representations are known, for a general abelian variety , to be related to the -function ( 1 ( ), ). More precisely, the group [ℓ ∞ ] is a Z ℓ -module, and one has the following identi cations (see [START_REF] Serre | Propriétés galoisiennes des points d'ordre ni des courbes elliptiques[END_REF]§ 4.1] and [Mil86, Theorem 15.1]):

Aut Z ( [ℓ ∞ ]) Aut Z ℓ ( ℓ ( )) ( ℓ ( ) ⊗ Z ℓ Q ℓ ) ∨ 1,0 ℓ ( ) = ℓ ( 1 ( )) (7.11)
where ℓ ( ) := lim ← --∈N [ℓ ] is the ℓ-adic Tate module associated to the abelian variety . Note that the transition maps appearing in the direct limit de ning [ℓ ∞ ] are simply the inclusions

[ℓ ] ↩→ [ℓ +1 ], whereas the transition maps appearing in the inverse limit de ning the Tate module ℓ ( ) are the multiplication-by-ℓ maps [ℓ +1 ] → [ℓ ]. Thus using (7.11) we nd that the relation

( 1 ( ), ) = ( ,ℓ ) (7.12) holds for every prime ℓ ∈ N and every abelian variety de ned over a number eld.

Let us go back to abelian varieties with complex multiplication, and to the problem of relating the -function ( 1 ( ), ) to the -function of some Hecke character. Using the relation (7.12) 7.1 Abelian varieties with complex multiplication we see that this problem can be reduced to the problem of relating the Galois representation to a Hecke character. This is precisely the content of the main theorem of complex multiplication, that we now recall.

Theorem 7.1.25 -The main theorem of complex multiplication Let be a number eld, endowed with an embedding : ↩→ C, and let be an abelian variety with complex multiplication (over ). Then:

• there exists a CM algebra = 1 × • • • × of degree

[ : Q] = =1 [ : Q] = 2 dim( )
which is endowed with an embedding : ↩→ End 0 ( ). The emebddings and induce a CM type Φ ⊆ Hom( , C), and if we denote by

( * = * 1 × • • • × * , Φ * )
the re ex of the CM pair ( , Φ), then for every ∈ {1, . . . , } we have an embedding * : * ↩→ . 

O := O × • × ∞ ⊆ A × := (A Q ⊗ Q ) × A × 1 × • • • × A ×
where the product runs over all the rational primes ∈ N. Moreover, O := O ⊗ Z Z and ∞ := ⊗ Q R C Φ (compare with De nition 6.2.11). Then:

• for every sub-eld ⊆ such that ( tors ) ⊆ ab • and * ( * ) ⊆ for each ∈ {1, . . . , }, there exists a unique group homomorphism

: × • N / (A × ) → ×
having the following properties: (a) the image of the homomorphism

: × • N / (A × ) → A × ↦ → ( ) • N Φ * (N / * ( -1 )) is contained in O .
Here N / * : A × → A × is the idelic norm map (see Equation (6.7)) induced by the inclusions 1 , . . . , , and N Φ * : A × * → A × is the idelic type norm associated to the re ex type Φ * . This is again induced by all the idelic re ex type norms N Φ * : A × ( ) * → A × associated to each CM eld appearing as a factor of (see Equation (7.8)); (b) the continuous group homomorphism 

: × • N / (A × ) → (C Φ ) × ↦ → Φ( ( )) • N Φ * (N / * ( -1 )) ∞ (7.
O : O × ∞ -→ ∼ ∈N O × -→ ∼ ∈N lim ← -- ∈N O O × -→ ∼ lim ← -- ∈Z ≥1 O O × -→ ∼ O ×
is the natural isomorphism (compare with Equation (6.16)). Finally, ab • / ( tors ) : Gal( ab • / ) Gal( ( tors )/ )

7.1 Abelian varieties with complex multiplication denotes the restriction map, and the homomorphism A / is de ned by

A / : × • N / (A × ) ----→ [ •, ]
Gal( ab / ab ∩ ) -→ ∼ Gal( ab • / )

where [•, ] denotes the global Artin map (see De nition 6.1.10).

Proof. Theorem 7.1.25 is one of the main results of the theory developed by Shimura and Taniyama, which is exposed in the books [ST61; Shi94; Shi98]. Let us point at speci c references for the general case, and then provide some more details for elliptic curves. The existence of a CM algebra having the desired properties follows from Theorem 7.1.1 and Theorem 7.1.6. Indeed, suppose that End 0 ( )

=1 Mat × ( )
for some CM elds 1 , . . . , and some 1 , . . . , ∈ N. Then we can choose, for every index ∈ {1, . . . , }, a totally real number eld of degree [ : Q] = which is disjoint from , as follows easily from rami cation theory. Then the compositum := • is again a CM eld, of degree 2 dim( ). Moreover, any choice of a -basis for induces an embedding ↩→ Mat × ( ). Thus, the CM algebra := 1 × • • • × has degree 2 dim( ) and admits an embedding ↩→ End 0 ( ). The other properties which are required from this CM algebra follow from Proposition 7.1.15. Now, it is immediate to see that Im( ) ⊆ Aut Z ( tors ) commutes with every ∈ Aut ( ), precisely because the automorphism : → is de ned over , and is thus insensitive to the action of Gal( ( tors )/ ). Thus in particular Im( ) centralises O × ⊆ Aut ( ). Now, it is only slightly more di cult to see that the centraliser of O × inside Aut Z ( tors ) is indeed O × , and we refer the reader to [ST68, § 4, Corollary 1] for a proof. In the case of elliptic curves, this follows easily from the fact that [ ] is a free module over O/ O for every ∈ Z ≥1 (see Lemma 7.2.4).

The really challenging part of Theorem 7.1.25 is the last one, i.e. the existence and uniqueness of the group homomorphism : × • N / (A × ) → × . The reader can obtain a complete proof of all the properties stated in Theorem 7.1.25 by combining [Shi94, Proposition 7.40] and [START_REF] Shimura | Introduction to the arithmetic theory of automorphic functions[END_REF]Proposition 7.41] when = , and using [Shi94, Theorem 7.44] for the general case.

Let us dive a little more in the details of the proofs for elliptic curves . In this case is an imaginary quadratic eld and O ⊆ is an order, in the sense of De nition 6.2.1. Moreover, the type Φ ⊆ Hom( , C) consists of a single embedding Φ :

↩→ C, which is exactly the composition of : ↩→ and of the xed embedding ↩→ C. Hence ( * , Φ * ) = ( , Φ) and the idelic re ex type norm N Φ * : A × → A × is simply the identity map.

Fix a eld ⊆ as in the statement of the theorem, i.e. such that ⊆ and ( tors ) ⊆ ab • . The rst step in the construction of the group homomorphism : × • N / (A × ) → × consists in applying the rst main theorem of complex multiplication (see [START_REF] Lang | Elliptic functions[END_REF]Chapter 10,Theorem 3]). This says that for every eld automorphism : C → C such that ab = [ , ] for some idèle ∈ A × , and every complex analytic uniformisation : C (C) such that ker( ) ⊆ , there exists a unique complex analytic uniformisation : C is the one de ned in (6.6).

Let us now see how to use the rst main theorem of complex multiplication, that we just recalled, to de ne the continuous group homomorphism : × • N / (A × ) → × . This follows the same strategy of the proof of [Sil94, Chapter II, Theorem 9.1] First of all, x ∈ × •N / (A × ), and take : C → C to be a eld automorphism lifting A / ( ) ∈ Gal( ab • / ). Then we see that ab = [N / ( ), ], thanks to the commutative diagram (6.8). Hence, xing a complex uniformisation : C (C) we get, from the rst main theorem of complex multiplication, another complex uniformisation : C

(C) such that the following diagram

Λ N / ( )Λ (C) (C) (N / ( ) -1 ) •
commutes, where Λ := ker( ). Now, observe that = because is de ned over , and xes because A / ( ) does. Hence the two lattices Λ and N / ( ) • Λ are homothetic, and there exists a unique ( ) ∈ × and a new, unique complex uniformisation : C (C) such that ker( ) = Λ and the following square

Λ Λ (C) (C) ( ( ) N / ( ) -1 ) •
commutes. This shows that • -1 : (C) → (C) is an automorphism, which implies that there exists a unique ( ) ∈ O × such that the following square

Λ Λ (C) (C) ( ( ) N / ( ) -1 ) • (7.15)
commutes, where ( ) := ( ) • ( ). It is now immediate to see that the map

: × • N / (A × ) → ×
which we just de ned is a group homomorphism, using the compatibility between the multiplication of lattices and the action of A × on the set of lattices L ( ). Moreover, the fact that Im( ) ⊆ O follows from the fact that ( ) • Λ = Λ, as we see from (7.15), and from the fact that the complex uniformisation : C (C) can be chosen in such a way that Λ := ker( ) is an invertible ideal of O (see Proposition 7.1.33). Moreover, the commutativity of (7.15) is 7.1 Abelian varieties with complex multiplication clearly equivalent to the commutativity of (7.14), and the unique homomorphism with these properties by construction. It remains now to be shown that is continuous, and that the map

: × • N / (A × ) → C × ↦ → ( ) N / ( -1 ) ∞
de ned in (7.13) can be extended to exactly [ ab ∩ : ] Hecke characters :

A × → C × .
First of all, the fact that is continuous is equivalent to say that ker( ) is open inside the topological group × • N / (A × ). To show this, one can use the fact that every division eld ( [ ]) ⊆ ab • associated to an invertible ideal ⊆ O contains the ray class eld ,O , as we show in Theorem 7.2.5. This can be combined with (7.15) to show that N / ( ,O ) -1 ∩ × • N / (A × ) ⊆ ker( ) for every invertible ideal ⊆ O, and this is enough to prove that ker( ) is open. We refer the reader to the proof of [Sil94, Theorem 9.2] for more details.

Let us now observe that ( × ) = 1 because for every ∈ × we have R / ( ) = Id ab • , which implies that ( ) = N / ( ) = N / ( -1 ) -1 ∞ , where the last equality uses the compatibility between the idelic norm and the norm on number elds provided by (6.7).

To conclude, one needs to observe that admits exactly [ ab ∩ : ] extensions to A × . To do so one may apply a general result about topological groups, which says that for every abelian topological group endowed with a subgroup of nite index ⊆ , there are exactly [ : ] ways to extend any given continuous group homomorphism : → C × to the whole . The proof is straightforward (see [START_REF] Shimura | Introduction to the arithmetic theory of automorphic functions[END_REF]Lemma 7.45]): x a decomposition of the nite abelian group / as a product of cyclic groups / = 1 × • • • × , and choose 1 , . . . , ∈ to be -elements which reduce to generators of the cyclic groups 1 , . . . , modulo . Then we see that any element ∈ can be uniquely written as = ℎ 1 1 • • • where ∈ Z and ℎ ∈ , hence any continuous group homomorphism : → C × which extends is of the form

( ) = (ℎ 1 1 • • • ) = (ℎ) 1 1 • • •
where 1 , . . . , ∈ C × are | |-th roots of ( | | ). Thus we see that can be easily extended to the whole (just take = ( ) for every ∈ {1, . . . , }), and this extension can be achieved in

[ : ] = | 1 | • • • | | possible
ways. Now, applying this general fact to = we see that the number of homomorphisms : A × → C × which extend is exactly

[A × : × • N / (A × )] = [ ab ∩ : ] (7.16)
where the equality (7.16) follows immediately from (6.9). This concludes the proof.

Remark 7.1.26. The CM algebra , whose existence is guaranteed by Theorem 7.1.25, need not be unique. More precisely, we see that this algebra is unique if and only if the abelian variety is isogenous to a product of distinct simple abelian varieties, i.e. ] = [ : ] Hecke characters : A × → (C Φ ) × . We can observe that

[ ab ∩ : ] [( ) ab ∩ : ] = [ : ] [ : ] = [ : ] ∈ N
does not depend on the prime ℓ, at least as long as has good reduction at all the primes of O lying above ℓ. This conductor is thus denoted by ⊆ O , and one knows that a prime ideal ⊆ O divides the conductor if and only if has bad reduction at (see [START_REF] Grothendieck | Modeles de Néron et monodromie (Avec un appendice par M. Raynaud)[END_REF]§ 4]). The aim of this section is to recall how the ideal is related to the conductor ⊆ O of the Hecke character : A × → (C Φ ) × de ned by Theorem 7.1.25 (see also Remark 7.1.27). The main result in this direction has been proved by Milne in [START_REF] Milne | On the arithmetic of abelian varieties[END_REF].

Theorem 7.1.31 -Conductors of CM abelian varieties and Hecke characters Let be an abelian variety de ned over a number eld , let ⊇ be a nite Galois extension and suppose that has complex multiplication. Fix an embedding ↩→ C, and let Φ ⊆ Hom( , C) be the CM type associated to and to this embedding. Fix moreover a CM algebra ↩→ End 0 ( ) of degree There are two extreme cases in which Theorem 7.1.31 holds. First of all, we can clearly take = if has already complex multiplication over , in which case we get the formula = 2 dim( ) proved by Serre and Tate in [ST68, Theorem 12]. On the other hand, we can take to be the so-called eld of moduli of our abelian variety , i.e. the smallest number eld over which there exists an abelian variety which is isomorphic to over . In the case of elliptic curves , this boils down to taking = Q( ( )). Then, in virtue of Proposition 7.1.15, the smallest that can be taken is given by the compositum of the eld of moduli with all the re ex elds * 1 , . . . , * . Doing so in the case of elliptic curves, for which the hypotheses of Theorem 7.1.31 are clearly satis ed, we get the following formula, which is originally due to Deuring (see [START_REF] Deuring | Die Zetafunktion einer algebraischen Kurve vom Geschlechte Eins. III[END_REF]).

[ : Q] = 2 dim( ),

Proposition 7.1.32 -Conductors of CM elliptic curves

Let O ⊆ be an order inside an imaginary quadratic eld . Let be an elliptic curve de ned over Q( ( )) with complex multiplication by O. Denote by : A × O → C × the unique Hecke character associated by Theorem 7.1.25 to the base change of over ( ( )). Then, letting = ( ), one can write the conductor ⊆ O Q( ) of as

= N ( )/Q( ) ( ) • disc( ( )/Q( ))
where N ( )/Q( ) ( ) ⊆ O Q( ) denotes the relative norm of the conductor ⊆ O ( ) of the Hecke character and disc( ( )/Q( )) denotes the relative discriminant ideal associated to the quadratic extension Q( ) ⊆ ( ).

Finally, let us recall that the smallest eld over which an elliptic curve with complex multiplication by the order O inside the imaginary quadratic eld can be de ned together with all its complex multiplications, i.e. the eld ( ( )), coincides with the ring class eld O , as stated in the following result. Proof. The fact that ( ) is an algebraic integer can be proved analytically (see [Shi94, Theorem 4.14]) or algebraically, using the properties of good reduction of CM abelian varieties. We refer the interested reader to [Sil94, Chapter II, § 6] for a survey of these di erent approaches, in the case when O = O is the maximal order of an imaginary quadratic eld . To see that the eld Q( ( )) is isomorphic to O we refer the reader to [Cox13, Theorem 11.1]. Finally, the last properties concerning the complex analytic uniformisation of the elliptic curve are proved in [Shi94, § 4.4].

Division fields of CM elliptic curves and ray class fields for imaginary quadratic orders

From now on, the rest of this chapter focuses on CM elliptic curves rather than higher dimensional abelian varieties. First of all, let us recall that in the case of elliptic curves one does not need to talk about CM types, because they are already hidden in the choice (usually tacitly assumed) of a complex embedding of the number eld over which the elliptic curve is de ned. More precisely, let be a number eld, and let / be an elliptic curve with complex multiplication. This means, in the language introduced in De nition 7.1.5, that we have an isomorphism End 0 ( ) between the Q-algebra of endomorphisms End 0 ( ) := End( / ) ⊗ Z Q Let us now introduce the notion of division elds of CM elliptic curves, which was used but not properly de ned in the previous section.

De nition 7.2.3 -Division elds

Let ⊆ C be a number eld, and / be an elliptic curve with complex multiplication by the order O in the imaginary quadratic eld .. Then for every non-zero ideal ⊆ O we denote by [ ] ↩→ the sub-scheme whose points are given by The next result summarises the main properties of the extension ⊆ ( [ ]) when is an invertible O-ideal, as we de ned in Lemma 6.2.7. We conclude this short section by showing that the division elds ( [ ]) cannot be too small. More precisely, we know already that ⊆ for every elliptic curve which has complex multiplication (over ) by an order O in an imaginary quadratic eld . Moreover, Proposition 7.1.33 shows that O ⊆ , where O denotes the ring class eld of O (see De nition 6.2.11). Finally, the next result shows that ,O ⊆ ( [ ]), where ,O denotes the ray class eld de ned again in De nition 6.2.11. In particular, we prove that the ray class eld ,O is always generated over the imaginary quadratic eld by the values of the Weber function :

/Aut( ) P 1 associated to any elliptic curve /C which has complex multiplication by O.

Theorem 7.2.5 -Ray class elds and Weber's function

Let O be an order inside an imaginary quadratic eld ⊆ C, and let ⊆ O be an invertible ideal. Then we have that

,O = O ( ( [ ])) = ( ( ), ( [ ]))
for any elliptic curve /C such that End( ) O. In particular, if is an elliptic curve de ned over a number eld such that End ( ) O then ,O ⊆ ( [ ]).

Proof. We can assume that ( ) ∉ {0, 1728}, because in this case we have that O = O , and an idelic proof of Theorem 7. Let now : C/ -→ ∼ (C) be a complex parametrisation, where ⊆ O is an invertible ideal (see Proposition 7.1.33). Fix moreover ∈ ( : ) ⊆ ⊆ C such that ( ) = , where := / denotes the image of in the quotient / ⊆ C/ . Then [Shi94, Theorem 5.5] shows that O ( ( )) = ( ab ) [ , ] where ⊆ A × is the subgroup de ned by := ∈ A × • = , • = . In particular, we recall that for any ∈ A × such that • = , the notation • stands for the image of ∈ / under the map / -→ • / . This map is de ned by the commutative diagram 

• ∈ 0 Q ∈ 0 Q ∈ 0 Q • ∼ ∼ = ∼ ( 
where ,O ⊆ A × is the subgroup de ned in (6.12). Let us prove the claim (7.17 Remark 7.2.6. Theorem 7.2.5 was already proved by Söhngen [START_REF] Söhngen | Zur komplexen Multiplikation[END_REF], using the classical languange of class eld theory (see also [Sch10, Theorem 6.2.3]) for a modern account. To claim indeed that Theorem 7.2.5 gives an idelic proof of Söhngen's result we need to appeal to Theorem 6.2.17, which shows that our idelic description of the ray class elds ,O coincides with the classical de nition given by Söhngen. We also refer the interested reader to [Ste01, § 4] for a 202 Chapter 7 The theory of complex multiplication presentation whose language is closer to ours, which focuses on the case = • O for some ∈ Z.

Bounding the index of the image of Galois for elliptic curves with complex multiplication

We have seen that, for every number eld , the Galois representation : Gal( ( tors )/ ) ↩→ Aut Z ( tors ) (7.18) associated to an elliptic curve / which has complex multiplication by an imaginary quadratic order O, is related to Hecke characters by Theorem 7.1.25, and this allows to describe explicitly the ray class elds for the order O in terms of the values of the Weber function associated to the elliptic curve . The Galois representation (7.18) can in fact be associated to any elliptic curve de ned over the number eld . If does not have complex multiplication, Serre's Open Image Theorem [Ser71, Théorème 3] shows that the subgroup Im( ) has nite index in Aut Z ( tors ). Giving an explicit bound on the index |Aut Z ( tors ) : Im( )| is still an area of active research, related to Serre's "uniformity conjecture" (see [Lom15, Theorem 9.1]).

Let us now return to elliptic curves with complex multiplication. In this case, if is a number eld and / is an elliptic curve with complex multiplication by an order O, the image of the Galois representation is contained in Aut O ( tors ) O × , which is the centraliser of O × = Aut ( ) inside Aut Z ( tors ). This shows in particular that Im( ) cannot have nite index inside Aut Z ( tors ). However, a theorem of Deuring shows that the index |Aut O ( tors ) : Im( )| is nite. The main result of this section, which is based on joint work in progress with Francesco Campagna, is the following theorem, which gives an explicit upper bound for this index. Observe that, for every CM elliptic curve de ned over a number eld which contains the CM eld , we have that ≤ ≤ , where := To this end, let 0 be an elliptic curve de ned over the ring class eld O such that ( ) = ( 0 ), which exists thanks to Proposition 7.1.33. In particular, there exists ∈ × such that 0 = ( ) is the twist of by (see [Sil09, Chapter X, Proposition 5.4]). Setting := |Aut( )| and writing and 0 in short Weierstraß forms, one has an isomorphism

[ : Q], if ( ) ∉ {0, 1728} 3 
: -→ ∼ 0 ( , ) ↦ → 2/ • , 3/ • (7.19) de ned over the nite extension ( √ ). Then induces an isomorphism * : Aut O ( tors ) -→ ∼ Aut O (( 0 ) tors ) ↦ → • • -1
such that * (Aut( )) = Aut( 0 ). Moreover, for every ∈ Gal( / ) the two automorphisms * ( ( )), 0 ( 0 ) ∈ Aut O (( 0 ) tors ) di er by an element of Aut( 0 ), where := ( tors ) and 0 := O ( ( 0 ) tors ) . Indeed, for every 0 ∈ ( 0 ) tors , if we write 0 = ( , ) in the short Weierstraß model for 0 chosen above, we have: * ( ( )) ( 0 ) = ( , ( ) -2 ( ), , ( ) -3 ( )) = ( , ( ) -2 0 ( ), , ( ) -3 0 ( ))

0 ( 0 ) ( 0 ) = ( 0 ( ), 0 ( ))
where , : Gal( / ) → ⊆ ⊆ O (( 0 ) tors ) is the Kummer character, de ned as 

( tors ) -→ ∼ lim ← -- Aut O ( [ ]) -→ ∼ lim ← -- Aut O (O/ O) -→ ∼ O ×
be the natural isomorphism induced by the various projection maps, and by the decomposition

tors = lim --→ [ ] of the torsion subgroup tors ⊆ (C). Moreover, let O : O × ∞ -→ ∼ O ×
be the isomorphism de ned by (6.16). Then we de ne to be the map

: Aut O ( tors ) O × O / × ∞ Gal( ab / O ) ∼ -1 O ∼ O
where O ( ) := [ -1 , ] is the reciprocal of the Artin map. In particular ker( O ) = × ∞ • O × / × ∞ , which shows that ker( ) = Aut( ). Hence to conclude we only have to prove that the diagram (7.21) commutes.

To show this, let := -1 O • , so that = O • . Let moreover : C (C) be any complex uniformisation such that Λ := ker( ) ⊆ , and let : /Λ -→ ∼ tors be the induced isomorphism of O-modules. Then we have that 

• = [•, ] • N /
and the functoriality of class eld theory (see Theorem 6.1.9) allows us to conclude that (7.23) commutes.

Remark 7.3.2. The previous proof, when applied to an elliptic curve de ned over a number eld such that ∩ ab = O shows that is an isomorphism. In particular, this shows that the map 0 in the diagram (7.20) is an isomorphism.

We conclude this section by pointing the interested reader to Corollary 8. which may be seen as a sign that there is still room for improving Theorem 7.3.1.

Beilinson's conjecture for elliptic curves with complex multiplication

The aim of this section is to present the sketch of a proof of the main result of [START_REF] Rohrlich | Elliptic curves and values of -functions[END_REF], which proves in an explicit way that the weak form of Beilinson's conjecture (see Conjecture 3.3.28) holds for the special value * ( , 0) associated to a CM elliptic curve de ned over Q. This is a very special case of a general theorem due to Deninger, proved in [Den89; Den90] and surveyed in [Den88; DW88; Den94], which shows Beilinson's conjecture for elliptic curves with complex multiplication that satisfy Shimura's condition (see De nition 7.1.30). The main di erence between the results of Deninger and Rohrlich is that the rst one constructs, for every ≥ 0, a speci c element ∈ 2, +2 M ( ) whose regulator, paired with a suitable homology class, is an explicit rational multiple of the special value * ( , -), whereas the second one shows that in fact * ( , 0) is a rational multiple of a multitude of regulators of elements in 2,2 M ( ), paired with a suitable homology class. We note that one can combine the Galois descent property of motivic cohomology with the fact that a CM elliptic curve has potential good reduction everywhere to see that , M ( ) = , ( ) for every , ∈ Z. Hence, if Beilinson's predictions on the ranks of motivic cohomology groups are true (see Conjecture 3.3.25) then an implicit form of Rohrlich's result would of course follow from Deninger's theorem.

Let us now state Rohrlich's result, collecting rst a certain amount of notation. First of all, we need to introduce the diamond operator, which operates on divisors de ned over a curve.

De nition 7.4.1 -Diamond operator

Let be a smooth, proper curve over a number eld , whose absolute Galois group is denoted by G := Gal( / ). Then, for every ring Λ, the diamond operator ♦ is a map

♦ : Λ[ ( )] G ⊗ Λ[ ( )] G → Λ[G \ ( )]
where := Jac( ) denotes the Jacobian of . This map is de ned by

∈ ( ) ( ) ♦ ∈ ( ) ( ) := [ , ] ∈ \ ( ) 2 [ ] [ ] | [ , ] | | [ -] | ( [ -] )
where [ ] ∈ G \ ( ) denotes the Galois orbit of a point ( ), and analogously the notation [ , ] ∈ G \ ( ) 2 stands for the orbit of a pair ( , ) ∈ ( ) 2 under the diagonal action of the Galois group G . Moreover, -∈ ( ) denotes the di erence of the images of and under any embedding ↩→ , and it does not depend on this embedding.

Fix now an elliptic curve de ned over Q such that End( ) O for some imaginary quadratic eld . In particular, is a twist of one of the elliptic curves appearing in Table A .11 7. 4 Beilinson's conjecture for elliptic curves with complex multiplication which have complex multiplication by a maximal order. Besides the diamond operator de ned in De nition 7.4.1, Rohrlich's theorem involves also a function R : tors → Q whose de nition requires in turn the existence of a complex uniformisation : C (C) having certain peculiar properties (see [Roh87, Page 377]).

Proposition 7.4.2 -Uniformising CM elliptic curves over Q Let be an elliptic curve de ned over Q which has complex multiplication by the ring of integers O of an imaginary quadratic eld . Then, for every embedding : ↩→ C and every orientation of (R) 0 , there exists a unique complex analytic uniformisation : C (C) such that:

• (R) ⊆ (R);
• the induced isomorphism R/Z -→ ∼ (R) 0 preserves the orientations;

• ker( ) = ( ), where ⊆ is a fractional ideal de ned as

:= O , if (Δ = -3 ∧ > 0) ∨ (Δ = -4 ∧ Δ > 0) ∨ (Δ < -4 ∧ > 0) -1 /Q , otherwise
for any short Weierstraß equation 2 = 4 3 -de ning , with , ∈ R and Δ := 3 -27 2 . Here /Q ⊆ O denotes the di erent of the extension Q ⊆ , as de ned in [Neu99, Chapter III, § 2].

Proof. Consider an invariant di erential ∈ Ω 1 R , which is de ned over R, and consider the Abel-Jacobi isomorphism :

(C) -→ ∼ C/Λ ↦ → ∫ (7.24)
where Λ ⊆ C denotes the period lattice of , obtained by pairing it with singular homology classes sing 1 ( (C); Z). Observe that the lattice Λ is invariant by complex conjugation, hence Λ ∩ R = Z for some ∈ R × . Thus, after scaling and Λ by -1 we may assume that Λ ∩ R = Z. Using this in combination with the fact that is de ned over R, we see that induces an isomorphism (R) R/Z. We can assume that this isomorphism preserves the orientations, after composing it, if needed, with the inversion ↦ →on C/Λ. We now de ne as:

: C C/Λ --→ -1 (C)
and observe that satis es the rst two conditions appearing in the statement.

To prove that ker( ) = ( ), we claim rst of all that Λ = ker( ) is of the form Λ = • (O ) or Λ = • ( -1 /Q ) for some ∈ Q. For ease of notation, we suppose xed the inclusion ⊆ C coming from . Now, observe that

Λ = • O for some ∈ × , because Pic(O ) = 1. Then, / ∈ O × , since Λ is invariant under complex conjugation. If = then ∈ ∩ R = Q, hence 208 
Chapter 7 The theory of complex multiplication Λ is of the form • O for some ∈ Q. On the other hand, if Δ < -4 then the only other option is = -, which implies that ∈

∩ R = √ Δ • Q. This allows us to conclude that Λ = • -1 /Q for some ∈ Q, because -1 /Q = Δ -1/2 • O = Δ • ( √ Δ • O). Moreover, if Δ = -4 then = Q( ),
and we have two more cases to consider, namely = • and = -• . In these cases we have respectively that

∈ (1 + ) • Q and ∈ (1 -) • Q, which implies that Λ = • -1 /Q for some ∈ Q since /Q = (1 + ) • Z[ ].
Finally, we observe that / ∉ 6 \ {±1} for every ∈ C × , where 6 ⊆ C × denotes the group of sixth roots of unity. This shows our claim for = Q( √ -3), i.e. for Δ = -3. Now, we point out that O ∩ Q = -1 /Q ∩ Q = Z, which implies that Λ ∈ {O, -1 /Q } using our previous claim. To conclude that Λ = we proceed as follows. First of all, since is a complex uniformisation, we see that admits a short Weierstraß model of the form 2 = 4 3 -2 (Λ) -3 (Λ), where are the usual Eisenstein series computed on the lattice Λ. Now, if Δ < -4 we see that

(O ) = -( -1 /Q ) > 0 (7.25)
for every ∈ {2, 3}, which shows that Λ = as we wanted. The rst equality in (7.25) follows from the fact that

/Q = √ Δ • O if Δ ≠ -4.
Moreover, the fact that (O ) > 0 can be proved by the following steps:

• (Z + Z) ∈ R × for every ∈ C of the form = with > 1 or = 1 2 + with > √ 3 
/2. Indeed, the fact that (Z + Z) ∈ R follows easily from the de nition, whereas the fact that (Z + Z) ≠ 0 is a special case of a result of Rankin and Swinnerton-Dyer (see [START_REF] Rankin | On the Zeros of Eisenstein Series[END_REF]);

• observe that lim →+∞ (Z + Z) = lim →+∞ Z + 1 2 + Z = 120 • (4), if = 2 280 • (6), if = 3
as follows again from the de nition. This allows us to conclude that

(Z + Z) > 0, ∀ > 1, Z + 1 2 + Z > 0, ∀ > √ 3 2 . (7.26) • use the fact that O = Z + √ 2Z if Δ = -8 and O = Z + 1 2 + √ |Δ | 2 Z if 2 Δ < -4.
Finally, if Δ = -3 one can prove similarly that 2 (O ) = -2 ( /Q ) > 0, whereas if Δ = -4 we know that 3 (Z[ ]) = 0. This implies that 2 (Z[ ]) ≠ 0, which can be combined with (7.26) to see that Δ = 2 (Z[ ]) 3 > 0.

To conclude the proof, we need to show that is unique. Indeed, any two complex uniformisations , : C (C) satisfy ( ) = ( ) for some ∈ C. If both and are de ned over R then ∈ R. Moreover, if ker( ), ker( ) ⊆ then ∈ ∩ R = Q, and if ker( ) ∩ R = ker( ) ∩ R = Z then necessarily ∈ {±1}. Finally, if and induce isomorphisms 7. 4 Beilinson's conjecture for elliptic curves with complex multiplication running over all the primes ⊆ O which divide the annihilator ideal Ann (O ) ⊆ O and do not divide the conductor ⊆ O . This indeed allows one to conclude, combining the fact that ( , 0) = 0 with (7.27), (7.28), (7.31) and (7.32). Now, to prove Beilinson's conjectures for the special value * ( , 0) = ( , 0) one has to show that for every CM elliptic curve de ned over Q we can nd a pair of functions , : → P 1 such that R (div( )♦ div( )) ≠ 0. This happens in fact for many pairs of functions. Since these pairs of functions are crucially used in Chapter 9 to construct suitable polynomials ∈ Z[ , ] whose Mahler measure ( ) is related to * ( , 0), we defer this last bit of the proof of Beilinson's conjectures for * ( , 0) to Section 9.1. More precisely, we use Section 9.1.1 to recall the construction of the pairs of functions , : → P 1 de ned by Deninger The aim of this chapter, which is based on the preprint [CP20] written jointly with Francesco Campagna, is to study the rami cation and entanglement of division elds associated to CM elliptic curves. These division elds were introduced in De nition 7.2.3, and we saw in Theorem 7.2.5 that they contain the ray class elds associated to the order by which the elliptic curve in question has complex multiplication.

Let us step back for a moment, and consider any elliptic curve (not necessarily with complex multiplication) de ned over a number eld . Fix also an algebraic closure ⊇ . Then the absolute Galois group Gal( / ) acts on the group tors := ( ) tors of all torsion points of . This action gives rise to a Galois representation : Gal( ( tors )/ ) ↩→ Aut Z ( tors ) GL 2 ( Z) where ( tors ) is the compositum of the family of elds { ( [ ∞ ])} for ∈ N prime. Each extension ⊆ ( [ ∞ ]) is in turn de ned as the compositum of the family { ( [ ])} ∈N , where, for every ∈ N, we denote by ( [ ]) the division eld obtained by adjoining to the coordinates of all the points belonging to the -torsion subgroup [ ] := [ ] ( ).

For an elliptic curve without complex multiplication (CM), Serre's Open Image Theorem [Ser71, Théorème 3] In the nal section, we use Theorem B and Theorem 8.3.1 to prove Theorem 8.4.4, which provides a complete description of the image of (8.1) when = is an imaginary quadratic eld and / is the base-change of an elliptic curve de ned over Q. In particular, as we note in Remark 8.4.5, Theorem 8.4.4 shows that the nite set of primes appearing in Theorem B cannot be made smaller in general. However, see Remark 8.2.8 for a broader discussion around this topic.

We nally remark that the work presented in this chapter, despite having di erent objectives, bears a connection with Lozano-Robledo's recent work [START_REF] Lozano-Robledo | Galois representations attached to elliptic curves with complex multiplication[END_REF], which provides an explicit list of subgroups of GL 2 (Z ) that can occur as the image of the -adic Galois representations associated to a CM elliptic curve. We comment more punctually on this relation in Remark 8.2.5, Remark 8.3.5 and Remark 8.4.2.

Formal groups and elliptic curves 8.1.1 Formal groups

The aim of this subsection is to recall, following [Sil09, Chapter IV], some of the main points of the theory of one dimensional, commutative formal group laws de ned over a ring , which we call formal groups for short. Roughly speaking, these are power series F ∈ 1 , 2 for which the association + F := F ( , ) behaves like an abelian group law. More precisely, they are de ned as follows.

De nition 8.1.1 -Formal groups

Let be a commutative ring with unity. A power series F ∈ 1 , 2 is a one dimensional, commutative formal group law, which we call formal group for short, if:

• F ( 1 , 2 ) -1 -2 ∈ { 2 1 , 1 2 , 2 2 } . In particular, F (0, 0) = 0; • F ( 1 , F ( 2 , 3 )) = F (F ( 1 , 2 ), 3
), which represents the associativity of the formal group law 1 + F 2 := F ( 1 , 2 );

• F ( 1 , 2 ) = F ( 2 , 1 ), which represents the commutativity of + F ;

• there exists a unique power series in one variable F ( ) ∈ • such that F ( , F ( )) = 0.

Given a formal group F ∈

1 , 2 we denote the set of endomorphisms of F by

End (F ) := { ∈ | ( + F ) = ( ) + F ( )}
which is a ring under the operations ( + F ) ( ) := F ( ( ), ( )) and ( • ) ( ) := ( ( )).

We write Aut (F ) for the unit group End (F ) × and we denote by endowing the set with the structure of an abelian group, which is denoted by F ( ). We sometimes refer to F ( ) as the group of -points of F . Every ∈ End (F ) induces an endomorphism : F ( ) → F ( ), and for every ideal Φ ⊆ End (F ) we de ne the Φ-torsion subgroup F ( ) [Φ] ⊆ F ( ) as Let ⊆ be a nite extension of complete discrete valuation rings of characteristic zero with maximal ideals ⊆ and residue elds ⊆ . Let := char( ) > 0 be the residue characteristic of and , and suppose that = . Then for every formal group F ∈ 1 , 2 and every ∈ F ( ) [ ] \ F ( ) [ -1 ] with ∈ Z ≥1 we have that

( ) ≤ ( ) ℎ ( -1) • ( ℎ -1)
where denotes the normalised valuation on , and

ℎ = ht(F ) := max ∈ N [ ] F ∈
is the height of the reduced formal group F ∈ 1 , 2 .

Proof. Using that ℎ = ht(F ) and that = • we see that there exist , ∈ such that [ ] F = ( ℎ ) + ( ). We can assume that , ∈ and

0) = 1 because [ ] F ∈ and [ ] F (0) = . Now, x ∈ F ( ) [ ] \ F ( ) [ -1 ] and proceed by induction on ∈ Z ≥1 . If = 1 then ( ℎ ) + ( ) = [ ] F ( ) = 0, hence ( ) + ( ( )) = ( ( ℎ )). Now ( ( )) = ( ) because (0) = 0 and (0) = 1, and ( ( ℎ )) ≥ ( ℎ ) = ℎ ( ) because (0) = 0. Hence ( ) ≥ ( ℎ -1) • ( ), ( 
which is what we wanted to prove.

If ≥ 2 we know by induction that

( ) ℎ ( -2) • ( ℎ -1) ≥ ( [ ] F ( )) = ( ( ℎ ) + ( )) ≥ min( ( ℎ ), ( )) because [ ] F ( ) ∈ F ( ) [ -1 ] \ F ( ) [ -2 ]
by assumption. This implies that min( ( ℎ ), ( )) = ( ℎ )

as otherwise we would get the contradiction

( ) ≥ ℎ ( -2) • ( ℎ -1) • ( ) > ( )
because ≥ 2, ( ) > 0 and ℎ ≥ 1. Hence we have that

( ) = ( ℎ ) ℎ ≤ ( ) ℎ • ( ℎ ( -2) • ( ℎ -1)) = ( ) ℎ ( -1) • ( ℎ -1)
which is what we wanted to prove.

Formal groups and elliptic curves

Given an elliptic curve de ned over a number eld by an integral Weierstraß equation, one can construct, following for example [Sil09, Chapter IV], a formal group ∈ O 1 , 2 , which can be thought of as the formal counterpart of the addition law on . The association ↦ → is functorial and in particular induces a map End ( ) → End ( ) ↦ → (8.4) between the endomorphism rings of and . The power series lying in the image of (8.4) have integral coe cients, as proved in the following theorem, which is due to Streng (see [Str08, Theorem 2.9]). 

Division fields of CM elliptic curves: ramification and entanglement

The goal of this section is to prove Theorem B by studying the rami cation properties of primes in division eld extensions associated to CM elliptic curves, which are described in Proposition 8.2.1 and Proposition 8.2.2. The proof of these results is an application to the CM case of the theory of formal groups outlined in Section 8.1. We often tacitly assume that all our number elds are embedded into C. This xes in particular a unique, normalised isomorphism ) [ ] = 0. Combining this with (8.7), we see that = for every ∈ [ ] and ∈ ( / ). Since is generated over by the elements of [ ], we deduce that the inertia group ( / ) is trivial. In particular, ⊆ is unrami ed at every prime not dividing ( • O ) , as wanted.

We now turn to the study of the primes which ramify in ⊆ ( [ ]). To do this, it su ces to restrict our attention to the case = for some prime ⊆ O and some ∈ N, as we do in the following proposition. Proof. The statement is trivially true if = 0, hence we assume that ≥ 1. Fix ∈ O 1 , 2 to be the formal group associated to an integral Weierstraß model of , and let ⊆ O be as in the statement. The hypothesis of coprimality with O implies that is invertible in O and that it lies above a rational prime ∈ N which is unrami ed in . We divide the proof according to the splitting behaviour of in O, which is the same as the splitting behaviour in , since O . First, assume that is inert in , so that = O. In this case, := ( [ ]) coincides with the -division eld ( [ ]). The injectivity of the Galois representation

, : Gal( / ) ↩→ (O/ O) × (O / O ) ×
shows that the degree of the extension ⊆ is bounded as

[ : ] ≤ |(O / O ) × | = 2( -1) ( 2 -1).
Let ⊆ O be a prime of lying above and denote by the -adic completion of , with ring of integers O , maximal ideal and residue eld . We want to determine the rami cation index ( /( ∩ O )).

Since is inert in , the reduced elliptic curve is supersingular by [Lan87, § 14, Theorem 12], hence ( ) [ ] = 0. Taking Φ = [ ] in (8.6), we see that the group ( ) contains a non-zero point of exact order . We can now use Lemma 8.1.2 and the hypothesis Δ to get 

ℎ ( -1) ( ℎ -1) ≤ ( ) = ( / ) = ( /( ∩ O )) ≤ [ : ] ≤ 2( -1) ( 2 -
( ) ∩ [ ] | = | [ ] | | ( ) [ ] | = 2 = = | [ ] |.
We conclude that ker( ) ∩ [ ] = [ ], as we wanted to prove.

Step ), and the study of the split case goes through a detailed investigation of Borel subgroups of GL 2 (Z/ Z) (see [Loz18, Section 4]). Our proof of Proposition 8.2.2, which concerns only CM elliptic curves and prime ideals not dividing O, appears to be shorter because it uses the same techniques to deal with the split and inert case. Notice as well that our discussion is explicitly written for general imaginary quadratic orders, whereas [Loz18, Theorem 6.10] is stated and proved only for maximal orders. We observe however that Lozano-Robledo uses [Loz18, Remark 6.12] to point out that the proof of [Loz18, Theorem 6.10] carries over to the general case.

We also remark that, if O = O is a maximal order of class number 1 and = , Proposition 8.2.2 is proved by Coates and Wiles in [CW77, Lemma 5] (see also [Art78, Lemma 3] and [Coa13, Proposition 47]). The main tool used in their proof is Lubin-Tate theory. Remark 8.2.4. Let / be any elliptic curve (not necessarily with complex multiplication) which has good supersingular reduction at a prime ⊆ O lying above a prime ∈ N which does not ramify in the extension Q ⊆ . Then one can use the same argument provided in the rst part of the proof of Proposition 8.2.2 to show that the rami cation index ( / ) is bounded from below by 2( -1) ( 2 -1), where ⊆ ( [ ]) is any prime lying above . This result has already been proved by Lozano-Robledo in [Loz16, Proposition 5.6] and by Smith in [Smi18, Theorem 2.1]. Remark 8.2.5. Let be an elliptic curve having complex multiplication by an imaginary quadratic order O, and suppose that is de ned over the ring class eld O . Then, using the recent work [START_REF] Lozano-Robledo | Galois representations attached to elliptic curves with complex multiplication[END_REF] of Lozano-Robledo, and in particular [Loz19, Theorem 1.2.(4)] and [Loz19, Theorem 7.11], one can show that the Galois representation , is an isomorphism for every ∈ N and every rational prime ∈ N such that 2 O Δ . This strengthens, for elliptic curves de ned over O , the nal assertion of Proposition 8.2.2.

We are now ready to prove Theorem B, whose statement we recall for convenience. is an isomorphism, where denotes the compositum of the elds . Otherwise the family is called entangled over .

Proof of Theorem 8.2.6. The family { ( [ ∞ ])} ∉ ∪ { ( [ ∞ ])} appearing in the statement of Theorem 8.2.6 is linearly disjoint over if and only if ( [ ]) ∩ ( [ ]) = for every prime ∉ , every ∈ N and every ∈ Z coprime with . To prove this latter statement, we rst show that every non-trivial subextension of := ( [ ]) is rami ed at some prime dividing .

When is inert in , this follows immediately from Proposition 8.2.2. Suppose then that is split in , with O = . The division eld is the compositum over of the extensions := ( [ ]) and := ( [ ]). By Proposition 8.2.2 the extension ⊆ (respectively ⊆ ) is totally rami ed at every prime of lying over (resp. ). Let be a prime of lying above , and denote by ( ) ⊆ Gal( / ) its inertia group and by ( ) its rami cation index in the extension ⊆ . If is a subextension of ⊆ in which does not ramify, then must be contained in the inertia eld = ( ) ( ) relative to . Notice that the latter also contains , since by Proposition 8.2.1 the extension ⊆ is unrami ed at . On the other hand, the fact that ⊆ is totally rami ed at gives the chain of inequalities which shows that = . Hence Proposition 8.2.2 implies that any extension ⊆ which is unrami ed at every prime lying above is totally rami ed at every prime lying above . for every prime Δ • N /Q ( ). If moreover ≥ 3, i.e. ∉ , this isomorphism follows also from Proposition 8.2.2 by taking inverse limits. The methods used in [START_REF] Lombardo | Galois representations attached to abelian varieties of CM type[END_REF] are di erent from ours, and generalise also to higher dimensional abelian varieties.

Minimality of division fields

We have seen in Proposition 8.2.2 that, for every CM elliptic curve de ned over a number eld with End ( ) O for some order O in an imaginary quadratic eld ⊆ , the division elds ( [ ]) are maximal for all integers coprime with a xed integer ∈ N. This is to say that the associated Galois representation , given by Lemma 7. ,O . Theorem 8.3.1, which is the main result of this section, provides an explicit set of integers ∈ N for which such an equality occurs. In fact, Theorem 8.3.1 is formulated in a wider setting, with the integer replaced by a general invertible ideal ⊆ O. This minimality result is used in Section 8.4 to detect entanglement in families of division elds.

Before stating Theorem 8.3.1, we point out that the its proof uses crucially the main theorem of complex multiplication, which we stated as Theorem 7.1.25. Hence the entire Section 8.3 makes wide use of the concepts of lattices, idèles and Hecke characters that we introduced in Section 6.1. Finally, we recall that, for every order O contained in an imaginary quadratic eld and every ideal ⊆ O, we denote by ,O the ray class eld of modulo relative to the order O, which was de ned in De nition 6.2.11. which follows from applying Theorem 7.1.25 with = . This result can be applied because

Minimality of division fields

∈ ,O ⊆ O ⊆ × • O = × • N / (A × )
where the last equality is given by Lemma 6.2.16. To conclude, it su ces to show that -1 • = and ( ) = 1. Notice that -1 • = , because ⊆ O is invertible and ∈ O × for every rational prime ∈ N. The equality -1 • = then follows from the fact that, for every prime ∈ N, we have -1 -∈ , because ∈ ( : ) and -1 ∈ 1 + O . To prove the equality ( ) = 1, notice that for every prime ∈ N we have Let O be an order in an imaginary quadratic eld and ⊇ be an abelian extension. Let / be an elliptic curve with complex multiplication by the order O. Suppose that there exists an invertible ideal ⊆ O such that ( [ ]) = • ,O , and that ∩ Z = Z, with > 2 if ( ) ≠ 0 and > 3 if ( ) = 0. Then ( tors ) = ab .

1 + O ⊆ | ∈ 0 (1 + O )
Proof. It is su cient to prove that ( tors ) ⊆ ab , since the other inclusion follows from Theorem 7.2.5 and the fact that ⊆ is abelian.

Fix an embedding ↩→ C and let : C/Λ -→ ∼ (C) be a complex parametrization for , where Λ ⊆ is a lattice. Take ∈ Aut(C/ ab ). By [Shi94, Theorem 5.4] with = 1, there exists a complex parametrization : C/Λ -→ ∼ (C) such that the following diagram [3], respectively. Our assumptions on allow then to conclude that must be the identity on .

We have shown that every complex automorphism which xes the maximal abelian extension of xes also the torsion points of . We conclude that ( tors ) ⊆ ab , which nishes the proof.

As a consequence of Proposition 8.3.3 we deduce that, for any order O in an imaginary quadratic eld , and any elliptic curve with complex multiplication by O which is de ned over the ring class eld O , the whole family of division elds { O ( [ ∞ ])} is linearly disjoint over O as soon as the extension ⊆ O ( tors ) is not abelian. There are in nitely many such primes. Indeed, it clearly su ces to show that there are in nitely many primes satisfying conditions 1 and 3 , which are equivalent to -4 = -1 and Δ = 1 (8.12)

respectively. Here Δ ∈ Z denotes the absolute discriminant of the imaginary quadratic eld , and • denotes Legendre's symbol (see [START_REF] Neukirch | Algebraic Number Theory[END_REF]Page 50]). The existence of an in nitude of primes such that (8.12) then follows from Dirichlet's theorem on primes in arithmetic progression (see [Neu99, Chapter VII, Theorem 5.14]), noticing that Δ ≠ -4, -8 by the assumption Pic(O) ≠ {1}.

Let ⊆ O be a prime ideal lying over and note that is invertible by condition 2 . We de ne a new elliptic curve over O as follows: consider the division eld O ( 0 [ ]). By Proposition 8.2.2, there is an isomorphism

Gal( O ( 0 [ ])/ O ) (O/ O) × F ×
where the last isomorphism follows from the fact that splits in . In particular, the group Gal( O ( 0 [ ])/ O ) is cyclic of order -1, so O ⊆ O ( 0 [ ]) contains unique sub-extensions of degree ( -1)/2 and of degree 2 over O . The rst one is necessarily the ray class eld ,O (see Theorem 7.2.5), the second one is of the form O ( √ ) for some element = ∈ × O . By condition 1 , the integer -1 is not divisible by 4, hence these two extensions must be linearly disjoint over O . We deduce that O ( 0 [ ]) = ,O ( √ ). We set := ( ) 0 , where We conclude this section by remarking that, under the assumption that Pic(O) ≠ {1}, not all CM elliptic curves / O with ( ) = as in Theorem 8.3.6 satisfy Shimura's condition, i.e. have the property that O ( tors ) = ab . We prove this by generalising and providing more detail to a remark of Shimura (see [START_REF] Shimura | Introduction to the arithmetic theory of automorphic functions[END_REF]).

Theorem 8.3.7 -In nitely many curves do not satisfy Shimura's condition

Let O be an order in an imaginary quadratic eld such that Pic(O) ≠ {1}, and x ∈ O to be the -invariant of any elliptic curve with complex multiplication by O. Then there exist in nitely many elliptic curves / O with ( ) = but non-isomorphic over O , and such that O ( tors ) ≠ ab .

Proof. Fix an elliptic curve 0 de ned over O such that ( 0 ) = and O (( 0 ) tors ) = ab . We know that in nitely many such elliptic curves 0 exist by Theorem 8. ,O for some ∈ N, and this, combined with Proposition 8.4.1 (which is proved in the next section), implies that O ( ( ) 0 [ ]) = ,O ( √ ) ab . In order to conclude the proof it is thus su cient to show that there exist in nitely many ∈ × O such that √ ∉ ab and the elliptic curves ( ) 0 are pairwise not isomorphic over O . This is equivalent to say that there exist in nitely many distinct quadratic extensions of O which are not abelian over . This can be shown, for instance, as follows.

Since Pic(O) ≠ {1} we have that ≠ O . Hence Chebotarëv's density theorem (see [Neu99, Chapter VII, Theorem 13.4]) shows that there exists ∈ Z ≥2 and an in nite set of prime ideals Λ 0 = { ⊆ O } ∈N such that for every index ∈ N we have that 2 ∉ and

• O O = 1, • • • ,
where 1, , . . . , , ⊆ O O are distinct prime ideals. Fix now an index 0 ∈ N (e.g. 0 = 0), and take any 0 ∈ O O such that 0 ∈ 1, 0 and 0 ∉ 2 1, 0 ∪ 2, 0 . Now, elementary rami cation theory of quadratic extensions (see for instance [Gra03, Chapter I, Theorem 6.3]) shows that the extension O ⊆ O ( √ 0 ) rami es at 1, 0 but not at 2, 0 . This implies that the extension ⊆ O ( √ 0 ) is not Galois, hence in particular not abelian. Now, let Γ 0 be the nite set of prime ideals of O dividing N O / ( 0 ), and put Λ 1 := Λ 0 \ Γ 0 , which is still an in nite set. Fix an index 1 ∈ N such that 1 ∈ Λ 1 , and take any element 1 ∈ 1, 1 \ ( 8.4 Entanglement in the family of division fields of CM elliptic curves over Q Let /Q be an elliptic curve with potential complex multiplication by some order in an imaginary quadratic eld . The aim of this section is to explicitly determine the image of the natural map Gal( ( tors )/ ) ↩→ Gal( ( [ ∞ ])/ ) (8.13)

where the product runs over all rational primes ∈ N, and ( [ ∞ ]) denotes the compositum of the -power division elds of / . In other words, we want to analyse the entanglement in the family of Galois extensions { ( [ ∞ ])} over . The conclusion of this study is Theorem 8.4.4, which provides a complete description of the image of (8.13) for all CM elliptic curves /Q such that ( ) ∉ {0, 1728}.

Observe that there is essentially no di erence in considering the division elds of the elliptic curve /Q and of its base change / , because Q( [ ]) = ( [ ]) for every > 2, as explained in Remark 8.2.9. In particular, the family of division elds {Q( [ ∞ ])} is always entangled over Q, but there are elliptic curves for which it is linearly disjoint over , as we show in Theorem 8.4.4.

We brie y outline the strategy of our proof. Since is de ned over Q, we have that For each of these orders O, we rst nd an elliptic curve 0/Q with complex multiplication by O such that 0 ∈ N is minimal among all the conductors of elliptic curves de ned over Q which have complex multiplication by O. Let us point out that, for every elliptic curve /Q , the natural number ∈ N is de ned as the unique positive generator of the conductor ideal ⊆ Z. Having xed 0 , we proceed to compute the full entanglement in the family of division elds of 0/ , using Theorem 8.2.6, Theorem 8.3.1, and Proposition 7.1.32. Since O is an order of class number 1 and ( ) ∉ {0, 1728}, we have that is a quadratic twist of 0 . We then use Proposition 8.4.1, which describes how Galois representations attached to CM elliptic curves behave under quadratic twisting, to determine the complete entanglement in the family of division elds of / .

In order to state Proposition 8.4.1, we introduce the following notation: given an elliptic curve de ned over a number eld and an element ∈ × , we denote by ( ) the twist of by , as described in [Sil09, Chapter X, § 5]. We recall that two twists ( ) where 3 := (-1 + √ -3)/2 and := √ -1, then all the elliptic curves 0 appearing in Table A.11 which have complex multiplication by O share the property that 0 is a power of the unique rational prime ∈ N which rami es in the quadratic extension Q ⊆ . Hence Theorem 8.2.6 shows that Gal( (( 0 ) tors )/ ) Gal( ( 0 [ ∞ ])/ )

where the product runs over all rational primes ∈ N, because in this case the nite set 0 ⊆ N appearing in Theorem 8.2.6 consists of the single prime . This implies that the division elds of In each case, it is not di cult to see that 1 ∈ N is a power of 2, which shows that the division elds of 1 behave similarly to the division elds of 0 . More precisely, Theorem 8.2.6 gives Gal( (( 1 ) tors )/ )

Gal( ( 1 [ ∞ ])/ )
where the product runs over all the rational primes ∈ N. This shows that the division elds of for every rational prime ≥ 3 and every ∈ N, and a combination of (8.16) and Theorem 8.3.1 gives Gal( ( 1 [2 ])/ ) (O/2 O) × /{±1} for every ∈ N such that ≥ 3. This concludes the analysis of the division elds of = 1 if Δ = 1. On the other hand, if Δ ≠ 1 then = 1 (Δ ) 2 , where 1 is a power of 2. Therefore, Theorem 8. where is the compositum of all the division elds ( [ ]) for ∈ .

We are left with the analysis of the entanglement between the division elds of an elliptic curve de ned over Q which has complex multiplication by O = Z[ √ -3]. As usual = (Δ) 0 for some fundamental discriminant Δ ∈ Z, where 0 is one of the two elliptic curves with complex multiplication by Z[ √ -3] appearing in Table A.11. In contrast to what we have seen before, here 0 = 2 2 3 2 is not a prime power. This forces us to study separately the division elds ( 0 [2 ∞ ]) and ( 0 [3 ∞ ]). First of all, one can compute that, for any of the two possibilities for 0 , given by the Weierstraß equations 2 = 3 -15 + 22 and 2 = 3 -135 -594, the representation 0 ,3 is not surjective, i.e. ( 0 [3]

) = 3,O = ( 3 √ 
2). This clearly shows that 0 ,3 is not surjective for every ∈ Z ≥1 . Moreover, 0 ,2 is surjective for every ∈ Z ≥1 . Indeed, Theorem 6.2.20 and Theorem 7. We observe that, for every > , the set appearing in Theorem 8.4.4 coincides with the set of primes = { : | } appearing in Theorem 8.2.6. This shows that, even xing the eld of de nition, the number of entangled division elds of an elliptic curve with complex multiplication can be arbitrarily large, as we already pointed out in Remark 8.2.8. Remark 8.4.6. We exclude the two orders Z[ ] and Z[ 3 ] in the statement of Theorem 8.4.4, because elliptic curves having complex multiplication by these orders admit quartic (respectively sextic) twists (as explained in [Sil09, Chapter X, Proposition 5.4]). To study these we would need a generalisation of Proposition 8.4.1, which will be subject of future investigations.

Models of CM elliptic curves (according to Deninger and Wingberg)

The aim of this section is to construct the rst pair of functions , ∈ Q( ) of the kind described in the introduction of Section 9.1. This construction is due to Deninger and Wingberg (see [START_REF] Deninger | On the Beilinson conjectures for elliptic curves with complex multiplication[END_REF]Theorem 4.10]), and is expressed in the following result. 

246

Chapter 9 Mahler measures and elliptic curves with complex multiplication is not constant (hence it has some zero ∈ ) and de ned over (hence all the points ∈ = are zeros of ). Moreover, ℎ(∞) = ℎ( (0)) = (0) = ∞, which implies that 0 is the unique pole of (since 0 is the unique pole of ). This implies that div( ) = ∈Gal( / ) (( ) -(0)) for some ∈ Z ≥1 . But then | (since is the order of ∈ ∈ ( ) tors ) and thus = (because = ℎ • ). Hence = for some ∈ × , which implies that = ( ).

• there is an isogeny : , which induces an embedding * : ( ) ↩→ ( ), and we have that = * ( ( )). This implies that = • for some function ∈ ( ), which in turn implies that ( ) = ∞ for every ∈ ker( ). Hence is an isomorphism (because 0 is the unique pole of ), and thus = ( ).

This shows that ( ) ⊂ ( ) contains no proper sub-extensions. Now, suppose that ( ) = ( ) for some points , ∈ ( ) tors . Then we have that Since Rohrlich's construction produces in nitely many pairs of functions , : → P 1 (see Lemma 9.1.7), it could be possible that at least for one of these pairs the resulting polynomial ∈ Z[ , ] de ned in Theorem 9.1.9 is weakly tempered. Secondly, it is interesting to ask whether there exists an algorithm for computing the polynomial ∈ Z[ , ] associated to a CM elliptic curve . This can easily be done if , ⊆ (Q) tors , where , denotes the set of zeros and poles of the functions , : → P 1 used to construct the polynomial . This is unfortunately not the case in general, and actually the degree of the number eld where the set , is de ned can be quite large. Nevertheless, it should be possible to device an algorithm which computes without having to compute all the points in , , simply using for example the expressions which are known for the divisors of the functions represented by division polynomials (see [Sil09, Chapter III, Exercise 3.7]).

Thirdly, it is interesting to ask whether the techniques explained in this chapter can help to relate some other special value * ( , -), associated to a CM elliptic curve /Q , to the Mahler measure of some polynomial ∈ Z[ 1 , . . . , +2 ]. In fact, the work of Deninger (see [START_REF] Deninger | Higher regulators and Hecke L-series of imaginary quadratic elds I[END_REF] and [START_REF] Deninger | Higher Regulators and Hecke L-Series of Imaginary Quadratic Fields II[END_REF]) shows that the weak form of Beilinson's conjectures (see Conjecture 3.3.28) is true for the special values * ( , -), for every ∈ N, by constructing explicitly a motivic cohomology class ∈ 2, +2 M ( ) whose regulator (paired with the homology class de ned in Notation 2.5.6) is a non-zero rational multiple of * ( , -). The cohomology class is even de ned starting from an ( + 2)-tuple of functions 1 , . . . , +2 ∈ Q( ), using Beilinson's Eisenstein symbol (see [START_REF] Beilinson | Higher regulators of modular curves[END_REF]). In particular, we have that 0 = , , where , : → P 1 are the two functions de ned in Lemma 9.1.1. Now, it remains the problem to show how to de ne a polynomial from this tuple of ( + 2)-functions. The natural guess is of course to take a polynomial such that ( 1 , . . . , +2 ) = 0. Moreover, such a polynomial would probably need to be -exact, in the sense of Section 5.2, in order to have a relation between ( ) and * ( , -). How to precisely construct the polynomial, as well as a precise relation between the Mahler measure and the special value, remain open questions which will be the subject of future research. question analogous to Question 4.2.9 where -1 ( ) is replaced by a convenient sub-motive. Typical examples of these identities arise when is a polynomial de ning a curve of genus ≥ 2, whose Jacobian has a one-dimensional factor in its Poincaré decomposition (see Theorem 7.1.1). Such identities have been investigated in the works [Boy98; Bor99; Bor15; BZ16; BZ17; LW18; LQ19; LW20]. Finally, there are many known examples of identities between Mahler measures and special values of -functions which involve polynomials that are conjectured or proved to be successively exact (see Chapter 5). All rigorously proved identities of this kind involve Laurent polynomials ∈ Q[ ±1 1 , . . . , ±1 ] which are conjectured to be ( -1)-exact, although we refer the reader to [START_REF] Lalín | Mahler measure and elliptic curve -functions at = 3[END_REF] and to Section 5.3 for a conjectural identity involving the three-variable polynomial ( 1 , 2 , 3 ) := 3 -(1 -1 ) (1 -2 ), which is only 1-exact. On the other hand, we refer the interested reader to [Smy81; Ray87; BR02; BRD03; Lal03; Lal06; DL07; Tou08b; Lal16; LQ19] for a plethora of results which relate Mahler measures to special values -functions arising from zero-dimensional objects. A particular example of these is given by the special values * ( , -1) = ( , -1) arising from the Dirichlet character associated to an imaginary quadratic eld . This is the subject of Chinburg's conjecture (see Remark 4.2.5), which can be seen as a specialisation of Question 4.2.10 to the motives = 0 ( ) arising from these Dirichlet characters. We have collected in Table A.4 all the imaginary quadratic elds = Q( √ Δ ) for which, to our knowledge, Chinburg's conjecture is known to hold. As a last remark, we recall that there exist examples of identities between Mahler measures and special values of -functions which involve a linear combination of the previous types. We refer the interested reader to [Bor99; Sam13; Bor15; Sam15; ZGQ20] for examples of these kinds of identities.

A.2 Tempered reflexive polynomials

The aim of this section is to describe explicitly the set of tempered polynomials ∈ Z[ , ] whose Newton polygon Δ ⊆ R 2 is re exive. First of all, we recall that Δ ⊆ R 2 is de ned as the convex hull of the set {j ∈ R 2 | j ( ) ≠ 0}, where j ( ) ∈ Z denotes the j-th coe cient of , when is written in multi-index notation ( , ) = j j ( ) j . Then Δ is a convex polygon, whose vertices lie on the lattice Z 2 ⊆ R 2 . As such, we can talk about the faces < Δ of Δ . Any such face consists of a list of points = {j 1 , . . . , j ( ) } ⊆ Δ ∩ Z 2 , which are ordered by reading them counter-clockwise on the polygon Δ . To each face < Δ , one can therefore associate a face polynomial Now, we recall that a convex lattice polygon Δ ⊆ R 2 is called re exive if |Δ • ∩ Z 2 | = 1, i.e. if there is only one point with integral coordinates lying inside the polygon Δ . It turns out that there are exactly 16 orbits of convex, re exive lattice polygons, with respect to the natural action of Z 2 GL 2 (Z 2 ) (see [START_REF] Rabinowitz | A census of convex lattice polygons with at most one interior lattice point[END_REF]). This action is obtained as the combination of the translation action of Z 2 , and the multiplication action of GL 2 (Z) on the lattice Z 2 . We refer the reader to Table A.5 for a list of representatives of the sixteen orbits of convex, re exive lattice polygons, and to [BZ20, Page 47] for a picture. In particular, all our representatives have the origin (0, 0) as their unique interior lattice point. Let us nally remark that the action of Z 2 GL 2 (Z 2 ) on the set of convex, lattice polygons corresponds to the action of the same group on the ring of Laurent polynomials Z[ ±1 , ±1 ], given by (4.30).

Δ

Number

( ) ( ) ( ) Δ (1) 0 1 0 0 

Δ (9) 8 2 + 1 2 + + 1 -2 + 1 2 + + 1 2 + 1 2 -1 -2 + 1 2 -1 Δ (10) 8 + 1 2 + 2 2 + 3 Δ (11) 20 2 + 1 3 + ( 2 + ) + 1 - 1 3 + ( 2 + ) + 1 Δ (12) 16 2 + 1 2 + 1 2 + 2 + 1 -2 + 1 2 + + 1 2 + 1 -2 + 1 2 + 2 + 1 2 -1 Δ (13) 220 2 1 3 + 2 4 + 1 ( 3 + ) + 2 2 + 1 2 -4 + ( -1) ( 3 -) + 1 2 3 4 + ( -1) ( 3 -) -1 -2 0 4 + 1 ( 3 + ) + 2 2 + 1 Δ (14) 80 
+ 1 1 2 + 2 3 + ( 2 + ) + 1 + 1 -3 + ( 2 -) + 1 + 1 2 3 + ( -2 ) -1 + 1 0 -3 + ( -2 ) -1 Δ (15) 136 2 + 1 + 1 2 2 + 3 2 + 4 + 1 2 -1 1 2 2 + 2 + 1 2 + 1 + 1 2 -2 + 1 -2 + 1 1 2 + 2 + 1 -2 -1 -1 0 2 + 2 + 1 -2 + 1 -1 2 + 2 -2 + 1 2 + 1 + 1 2 2 2 -1 2 -1 0 -2 + 1 Δ ( 
Δ (2) - 0 1 0 0 0 -1 0 
Δ (3) -1 -1 0 0 1 -1 0 0 Δ (4) -2 0 1 0 0 0 -1 0 0 0 -1 0 2 0 1 0 Δ (5) - -1 1 0 0 -1 -1 0 Δ (6) -2 -1 1 0 0 1 -1 0 0 -1 -1 0 2 -1 1 0 Δ (7) - - -1 0 1 Δ (8) -2 -1 -1 2 + 1 -1 -1 0 -1 1 -+ 1 0 -+ 1 1 1 -1 -1 Δ (9) --1 -2 + 1 -1 -+ 1 0 -+ 1 1 -1 0 -1 1 1 -2 -1 -1 Δ (10) -( 1 + 2 + 3 ) -( 3 1 + 2 ) 1 2 + 1 3 + 2 3 -1 2 3

Postface: conclusions and future research

Every phrase and every sentence is an end and a beginning.

T.S.Eliot, Little gidding

We hope that this thesis has given the reader a taste of the richness of the various theories involved, from the theory of heights to that of -functions, from Mahler measures to abelian varieties with complex multiplication. We have contributed our grain of sand to these mountains so di cult to climb, and yet so overwhelmingly beautiful when one stares at them from the valley down below, by exploring the relations between special values of -functions associated to CM elliptic curves and Mahler measures of polynomials in Chapter 9, and by studying various properties of the division elds attached to CM elliptic curves in Chapter 8. We have also dived into the depths of exact polynomials in Chapter 5, and we have explored the various de nitions of ray class elds for orders in Chapter 6.

This thesis in particular aims to prove, once again, how objects with extra symmetries, such as elliptic curves with complex multiplication, can be used as mathematical guinea pigs, on which testing broader conjectures is both easier and sometimes more enlightening than trying to attack immediately the general case. On the other hand, we have striven to present in every context the most general picture that our technical abilities managed to portray, as we do indeed believe that often the e ort of doing so is paid back by the insight one obtains after gaining an aerial view of the mathematical surroundings, allowed by the generality pursued.

This being said, the rest of this nal section is devoted to give an overview of the future perspectives opened by this thesis, and to provide a list of possible future research themes. The rst examples of these are clearly given by the ongoing projects joint with Fabien Pazuki (see Section 3.4), François Brunault (see Chapter 5) and Francesco Campagna (see Chapter 6 and Section 7.3). We won't spend more words on these, and we refer the reader to the ends of the aforementioned sections and chapters for an outline of the future, previewed steps of those projects. Other than this, here are some further questions which might be interesting to explore in future work:

Mahler determinants

As we have already pointed out in Remark 4.2.3, it would be interesting to prove at least one relation expressing the special value of an -function as the determinant of a matrix whose entries would be Mahler measures. For this to be a truly new result of course this matrix would need to have at least dimension two, and this determinant should not result in a Mahler measure itself, at least not for "obvious reasons", e.g. the determinant should not be equal to the sum of two entries. Vice-versa, it would be interesting to nd a Mahler measure which can be related to the determinant of a matrix whose entries are special values of -functions. Obvious candidates for the special values of -functions amenable to these kinds of computations would be the numbers * (1), associated to some number eld such that rk(O × ) ≥ 2, or the values * ( , 0) for some curve de ned over Q whose Jacobian is a simple CM abelian variety of dimension ≥ 2.

Exact polynomials and Hecke characters

We have seen already in Chapter 5 how we aim to use modular techniques in order to prove Lalín's conjecture. On the other hand, one could try to use the constructions of motivic cohomology elements coming from complex multiplication, in order to prove new types of identities going beyond Question 4.2.9. For example, one could use Beilinson/Neukirch's elements in the motivic cohomology of abelian number elds, and in particular their geometric counterparts constructed by Huber and Kings in [START_REF] Huber | Dirichlet motives via modular curves[END_REF], to nd new 1-exact polynomials ∈ Z[ , ] adapted to attack Chinburg's conjecture (see Remark 4.2.5). On the other hand, as we outlined in Section 9.3, one could use Deninger's results [START_REF] Deninger | Higher regulators and Hecke L-series of imaginary quadratic elds I[END_REF] to construct new -exact polynomials ∈ Z[ 1 , . . . , +2 ] whose Mahler measure is related to the -value * ( , -) associated to an elliptic curve with complex multiplication.

Motives for Mahler measures

Deninger's construction of mixed motives which have the Mahler measure of a polynomial as one of their periods (see Remark 4.3.6) should be generalised to encompass any kind of polynomial, and not only those satisfying the hypotheses of Theorem 4.3.4. To do so, one needs to pursue until the end Bornhorn's computations, which could be generalised to higher dimensional cases, as well as some of the relative cohomology techniques that were outlined in Chapter 5.

The Mahler measure and Deninger's dynamical system

It is already known that the Mahler measure ( ) of a polynomial can be computed as the entropy of a dynamical system. Recently, Deninger has introduced in [Den18] a way to attach a dynamical system to many arithmetic schemes, i.e. schemes of nite type over Spec(Z). Does the Mahler measure of a polynomial ∈ Z[ ±1 1 , . . . , ±1 ] with integer coecients appear as an entropy of one of these dynamical systems, for example the one associated to the zero locus ↩→ G ,Z ?

Division fields of CM abelian varieties

It would be interesting of course to extend the results of Chapter 8 to higher dimensional abelian varieties. While much of the theory carries over to the general context, like the main theorem of complex multiplication (see Theorem 7.1.25), many arguments featured in Chapter 8 must be changed, if they are to be adapted to the higher dimensional case. Most notably, formal groups need to be replaced by -divisible groups, or by formal group schemes.

  denotes the norm of the conductor ideal ⊆ O associated to (see for example [Ulm16]). Hence the set h = {dim, C 0 , } has the Northcott property; • ( , ) ≤ dim( ) • ( , ), where : G ℓ ( ) → R is the function de ned by ( , ) := min ∈T (max{| | : ∈ Sp( (Frob ))})

  Remark 2.1.3. The axioms for an ordinary cohomology theory (in our terminology) correspond to the axioms laid down by Eilenberg and Steenrod in [ES52, § I.3]. Let us now move to algebraic geometry. In this context the analogue of De nition 2.1.1 can be identi ed in the concept of a mixed Weil cohomology in the sense of [CD19, § 17.2] and [Dre13, § 2.1]. We give here an axiomatic treatment of this notion, following [Pan03, § 2], to emphasise the parallels with De nition 2.1.1.

  Figure 2.1.: Compatibility between cross product and boundary in De nition 2.1.4. Here : ( × , × ) → (( × ) ∪ ( × ), × ) is the obvious inclusion, which is Nisnevich distinguished.

  ned in [DM82, De nition 1.15]. Then a twisted Poincaré duality theory with values in A consists of two families of functors { •, : (V * ) op → A Z } ∈Z and { •, : V * → A Z } ∈Z with values in Z-graded objects in A, satisfying the following axioms: Exact Sequence in Cohomology if : ↩→ and : ↩→ are closed immersions, for every ∈ Z there exists a long exact sequence • • • → , ( • ) → , ( ) -----→ , ( ) , ( ) → +1, ( • ) → . . . where : \ ( ) ↩→ \ ( ( )) denotes the closed immersion induced by , and : → is the obvious Cartesian square. Moreover, for every commutative diagram (2.3)

,

  M ( ; Λ) = Hom DM( ;Λ) (1 , * ( * (1 ( ) [ ]))) = Hom DM( ;Λ) op (1 ( ) [ ], ( / ; Λ))

  .1]), in such a way that DM( ; Λ) = DM( ; Λ) where is the diagram given by the constant functor : { * } → Sch de ned as ( * ) := . For every morphism of diagrams : → , which consists of a functor : I → I and a natural transformation → • , one has a pair of adjoint functors * : DM( ; Λ) DM( ; Λ) : * . Hence one de nes the motivic cohomology of every diagram of -schemes as , M ( ; Λ) := Hom DM( ;Λ) (1 , * ( * (1 ( ) [ ])))

,

  T, ( ; Λ) := Hom DM( ;Λ) ( * (1 ), 1 ( ) [ ]) supported on the closed complement : ↩→ . Using these functors, [DM15, Corollary 2.2.10] shows that the pair ( •,• T , B.M.,T

Figure 2 .

 2 Figure 2.2.: Compatibility diagrams needed in Theorem 2.4.2 to construct a spectrum out of a family of sheaves. In these diagrams all the isomorphisms indicated with ∼ are the natural commutativity and associativity constraints of the category ( ℎ( ; Λ))

.

  \ )) denotes the truncation of the sheaf of di erentials with logarithmic singularities (see again Example 2.1.22), and Gdm(F ) denotes the Thom-Sullivan normalisation of the Godement resolution of a sheaf F , which is described in [DM15, § 3.1.3]. Then Theorem 2.4.2 gives a spectrum dR ∈ DA( ; Λ) such that Hom DA( ;Λ) ( A 1 ( ), dR( ) [ ]) ( dR ( / )) for every ∈ , where denotes the Hodge ltration. This gives rise to regulator maps dR : , M,A 1 ( ; Λ) → , dR ( ; Λ) Example 2.4.6 (Deligne-Beilinson cohomology). Take = Spec( ) with ⊆ C, and let Λ = R. Then one can take DB ( ) := D • log ( C , ) to be the complex de ned by Burgos Gil in [Bur94] (see Example 2.1.22), and Theorem 2.4.2 gives a spectrum DB C ∈ DA( ; R) such that Hom DA

  Proposition 2.5.1 -A simple description of Deligne-Beilinson cohomology Let be a smooth algebraic variety de ned over R or C. Then one can compute the Deligne-Beilinson cohomology groups , D ( ; R) as , D ( ; R)

  for every , ∈ {1, . . . , };•[0,1[ and [0,1[ are injective for every , ∈ {1, . . . , };
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 3 Figure 3.1.: The gure depicts two opens ⊆ ⊆ C as the ones featured in De nition 3.1.2, and a path ⊆ as the one featured in Theorem 3.1.3

Theorem 3 .

 3 1.5 -The Hardy-Ramanujan class Let F denote the class of functions de ned in Theorem 3.1.3, and let

  .4) and for ∈ R xed we have that lim →+∞ ∫ 2 ( , ) sin( ) • ( ) (-) = lim →+∞ ∫ 4 ( , ) sin( ) • ( ) (-) = 0 (3.5) as follows easily from the bounds | ( )| ≤ ( ( )) • ( )+ | ( ) | and | /sin( )| ≤ 1 • -| ( ) | which hold for every ∈ ( , ). Moreover, the same estimates show that lim
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 331 Figure 3.2.: The integration contour ( , ) featured in Theorem 3.1.5

  using Proposition 3.2.1. Now, let us de ne the local Archimedean -function associated to a mixed Hodge structure / ∈ MHS( ; ), where is an Archimedean local eld and is a number eld. First of all, let us observe that C is a free module over the ring ⊗ Q C C Hom( ,C) . Moreover, C supports the decreasing ltration • ( C ), given by ( C ) := ( C ) ∩ ( C ) = ( ( C ) ∩ ) ⊗ C and the sub-spaces ( C ) ⊆ C are modules over ( ⊗ C), which are also invariant under the action : Gal(C/R) → Aut( /C ) if = R. This allows one to de ne, for every ∈ Z and every ∈ Hom( , C) the number , ( /C ) := dim C (gr ( C ) ⊗ ⊗C, C) associated to every mixed Hodge structure /C ∈ MHS(C; ) de ned over = C. In a similar fashion, one can de ne for every ∈ Z, every ∈ Hom( , C) and every ∈ {±1} a number , ( /R ) := dim R (gr ( C ) ⊗ ⊗C, C) ∞ = associated to every mixed Hodge structure /R ∈ MHS(R; ) de ned over = R. Here ∞ : C → C denotes complex conjugation, i.e. the unique non-trivial element ∞ ∈ Gal(C/R). This being said, we can de ne the local -function associated to each mixed Hodge structure / ∈ MHS( ; ) as the function ( / , ) C = ( ( / , ) ) ∈Hom( ,C) : C → ( ⊗ C) (3.15) 3.2 Constructing the motivic -functions with components ( / , ) : C → C which are given by

  without changing the good properties of the pair (Γ R , Γ C ). Choosing = √ 2 one gets the Γ-factors used by Deligne in [Del79, § 5.3].
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 3 L-functions and their special values Then one can consider the formal Euler product ∈ \ ( ( ) , ) C(3.17)

  .18) having coe cients ( , ) ∈ ⊗ Q C. Hence we can associate to ( , ) an abscissa of convergence 0 ( , ) ∈ R ∪ {±∞} (see [HR64, Chapter II, § 6]). This can be computed by the explicit formula 0 ( , ) := max ∈Hom( ,C) { 0 ( , ) }, where 0 ( ,

Remark 3 . 3 . 3 .

 333 Conjecture 3.3.1 is compatible with extensions. More precisely, sequence in MM ( ; ) and Conjecture 3.3.1 holds for and then Conjecture 3.3.1 holds for .

  an entire function of order of growth equal to one (see [SS03, Chapter 5, § 2]) and (2) ( , ) ∈ ( ⊗ Q C) [ ] is a polynomial whose components (2) ( , ) ∈ C[ ] associated to each embedding ∈ Hom( , C) have zeros in Z.Remark 3.3.5. We observe that there exist -functions of automorphic origin which have poles that are not rational integers. Most notably, if ∈ R and : A × → C × is the character given by ( ) := -, the -function ( , ) has two poles at = and = 1 + (see [RV99, Theorem 7-19]).

Remark 3 .

 3 3.7. The -factor ( , ) admits also a decomposition in an Euler product, as the -function ( , ) itself. More precisely, we have a decomposition ( , ) = ∈ , (WD ( ( )), ) where : → C × and are the local components, for each place ∈ , of a continuous group homomorphism : A / → C × and of a Haar measure on A / . Here can be any character, satisfying only the condition that ( ) = exp(2 Tr /R ( )) for every Archimedean place ∈ ∞ and every ∈ . Moreover, is the unique Haar measure on A / such that (A / ) = 1. The local components are Haar measures for the additive groups ( , +). We assume that = [ : R] • for every Archimedean place ∈ ∞ , where is the Lesbesgue measure for ∈ {R, C}. Finally, the local factors , (WD ( ( )), ) associated to the Weil-Deligne representation WD ( ( )) (see Remark 3.2.4) are the ones de ned in [Roh94, § 11], whose general de nition uses Brauer's induction theorem (see [Roh94, § 2, Corollary 2]) to reduce to explicit formulas for characters (see [Roh94, Equation 11.3]). Example 3.3.8. If = ( ) for some algebraic Hecke character : A × → × , Conjecture 3.3.6 holds with ( ( )) = ( ) |Δ N /Q ( )| and ( ( )) = -log||Δ | N /Q ( )|. Here ( ) = ( ( ) ) ∈Hom( ,C) ∈ ( ⊗ C) × is a number whose components have absolute value | ( ) | = 1, and ⊆ O denotes the conductor of the Hecke character . Both of them are de ned in terms of local constributions associated to every place ∈ . Finally, Δ ∈ Z denotes the absolute discriminant of the number eld . Example 3.3.9. If = ( ) for some cuspidal modular form ∈ (Γ 1 ( )) then Conjecture 3.3.6 holds with ( ( )) = ( ) • √ and ( ( )) =log( ). Here again ( ) = ( ( ) ) ∈Hom( ,C) ∈ ( ⊗ Q C) × is a number whose components have absolute value | ( ) | = 1. Remark 3.3.10. If = ( ) for some smooth and proper variety de ned over , then ∨ ( ), where ( ) denotes the -th Tate twist of . Hence, applying Remark 3.2.11 we see that the functional equation (3.19) becomes ( ( ), ) = ( ( ), ) ( ( ), + 1 -).

Remark 3 . 3 .

 33 11. Conjecture 3.3.4 and Conjecture 3.3.6 are both compatible with short exact sequences. More precisely, for every short exact sequence 0 → → → → 0 in MM ( ; ) we have that if Conjecture 3.3.4 and Conjecture 3.3.6 hold for two out of three of { , ,

  .22) for every motive ∈ MM ( ; ). Putting together the two isomorphisms (3.21) and (3.22) we get an isomorphism • : Δ ( ) ⊗ →

Remark 3 .

 3 3.22. The conjectures of Beilinson and Bloch-Kato are usually stated only for the special values of a motivic -function ( , ) at = 0. However, since * ( , ) = * ( ( ), 0), the conjectures immediately generalise to the special values at every integer ∈ Z. In particular, one can de ne an element L * ( , ) ∈ Δ ( ( )), which is expected to satisfy * ( , ) • L * ( , ) ⊗ 1 ∞ = 1 and L * ( , ) ⊗ 1 = 1 for every ∈ 0 . If the -function ( , ) satis es the functional equation predicted in Conjecture 3.3.6, it is natural to expect that the Beilinson and Bloch-Kato conjectures for the special value * ( , ) are equivalent to the corresponding ones for the special value * ( ∨ , 1 -). This is known to be true for the Beilinson conjecture (see[START_REF] Fontaine | Autour des conjectures de Bloch et Kato: cohomologie galoisienne et valeurs de fonctions[END_REF] Chapitre III, Remarque 4.4.4.(iv)], which refers to Deligne's computation [Del79, Théorème 5.6]), but it is not known in general for the Bloch-Kato conjecture (see[START_REF] Fontaine | Autour des conjectures de Bloch et Kato: cohomologie galoisienne et valeurs de fonctions[END_REF] § 4.5.4]).
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 33 26 -Analytic class number formula Let be a number eld, and let denote its Dedekind zeta function. Then one has that ord =0 ( ( )) = rk(O × ) and * (0) = -|Pic(O )| |(O × ) tors | • (3.23) where := det(log| ( )|) , =1,...,rk( O × ) denotes the unit regulator of and Pic(O ) denotes the class group of O , which is a nite group (see [Neu99, Chapter I, Theorem 6.3]). We recall as well that the unit group O × is a nitely generated abelian group of rank rk(O × ) = 1 ( ) + 2 ( ) -1 (see [Neu99, Chapter I, Theorem 7.4]).

  is the Néron model of , which is a smooth and separated (but usually not proper) model of over O , uniquely characterised by the fact that the mapHom O (X, A) → Hom (X , ) ↦ → × Ois a bijection for every smooth and separated scheme X → Spec(O );• A ∈ A/O isa generator of the canonical bundle A/O := Ω 1 A/O , where we set := dim( / ) = dim(A/O ); 94 Chapter 3 L-functions and their special values • Ω := ∫ (R) | A | ∈ R >0 is called the real period of ; • for every non-Archimedean place ∈ 0 , we let ( ) := | 0 (A O )| ∈ N denote the number of connected components of the Néron model of ;

  3.4]); • P ∈ Pic( × ∨ ) denotes the Poincaré divisor class (see again [HS00, Theorem A.7.3.4]); • ( ) denotes the set of points of which are de ned over . This is an abelian group because is an abelian variety, and it is nitely generated by the Mordell-Weil theorem (see [HS00, Theorem C.0.1]); • ĥP : ( ) × ∨ ( ) → R denotes the Néron-Tate height associated to the Poincaré divisor class (see [HS00, Theorem B.5.6]); • , ∈ R >0 denotes the regulator of over , which is de ned as the determinant , := det ĥP ( , ˇ ) , =1,..., ,

Conjecture 3 . 3 . 3 . 3

 3333 27 -Birch and Swinnerton-Dyer, TateLet be a number eld and let be an abelian variety de ned over . Then we have that:• Conjecture 3.3.4 and Conjecture 3.3.6 hold for the -function ( , ) := ( 1 ( ), ); • ord =1 ( ( , )) = rk( ( )), where ( ) denotes the abelian group of points of which are de ned over . This group is nitely generated by the Mordell-Weil theorem (see [HS00, Theorem C.0.1]); • the Tate-Shafarevich group X( / ) is nite; Conjectures on motivic -functions • we have the equality * ( , tors | • | ∨ ( ) tors | • / • Ω (3.25) where * ( , 1) denotes the special value of the -function ( , ) at = 1. As we already pointed out, the validity of Conjecture 3.3.27 is equivalent to the combined validity of Conjecture 3.3.4, Conjecture 3.3.6, Conjecture 3.3.20 and Conjecture 3.3.25 for the motive = 1 ( ) ∈ MM ( ; Q). Extensive evidence in favour of Conjecture 3.3.27 is known when = Q and is an elliptic curve such that rk( (Q)) ∈ {0, 1}. In this case, Conjecture 3.3.4 and Conjecture 3.3.6 are known from the modularity theorem (see

Conjecture 3 . 3 .

 33 28 -Weak form of the Beilinson and Bloch-Kato conjectures
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 3 L-functions and their special valuesExample 3.4.1 (logarithmic Weil height). The results of [AV16], combined with the class number formula (3.23), show that for every number eld with unit rank :

  .27) which shows that the special value * (0) of the Dedekind -function associated to a number eld is commensurable to a product of Weil heights (see Section 1.2.1). The constants appearing in (3.27) are given by := [ : Q], ℎ := |Pic(O )| and := |(O × ) tors |. Example 3.4.2 (Mahler measures). As we illustrate in the next chapter, the study of relations between Mahler measures and special values of -functions is very active and rich. Most of the conjectural relations of this kind involve a family of Laurent polynomials ∈ Z[ ] [ ±1 1 , . . . ,

Example 3 .

 3 4.3 (Faltings's height). The stable Faltings's height ℎ : A (Q) → R (see Section 1.2.4) is expected to be related to -functions by Colmez's conjecture [Col93, Conjecture 0.4] which predicts the relation -

Theorem 3 .

 3 4.6 -Northcott property for Dedekind -values at = 0 Let be the set of isomorphism classes of number elds. Then for every ∈ R >0 the set {[ ] ∈ : | * (0)| ≤ } is nite.

3 . 4

 34 Galois, and ( ) = [ : Q]! otherwise. If we x + then this inequality gives us immediately an upper bound for the discriminant of over Q depending on ℎ (recall ≥ 4), and thus implies the niteness of isomorphism classes of Diophantine properties of special values of -functions

Chapter 3 L

 3 .39) for some 4 ∈ R, depending only on and . Hence, putting together (3.38) and (3.39) we see that | ( , )| ≤ 5 for every ∈ , where 5 := • 3 / 4 . 104 -functions and their special values

3 . 4

 34 .40) which depends on a family of functions = { } ∈N . These functions are given by 0 : M × Z 2 → R Diophantine properties of special values of -functions and : M × Z → R for ≥ 1.

  3.40) and (3.41). See Example 3.4.11 for some examples of functions and . Let us get into the de nition of ℎ 0 0 , which is given by ℎ 0 ( ) := ( , ) ∈Z 2 0 ( ; , ) • deg L (gr W ( )), {|•| } ∈Ω . (3.41) where L (gr W ( )) is a one dimensional -vector space endowed with an absolute value |•| for every place ∈ Ω . For every such vector space ( , {|•| } ∈Ω ) we de ne the "Arakelov degree" deg( , {|•| } ∈Ω ) := ∈Ω log| | for any generator ∈ which is well de ned because is one dimensional and the absolute values of are normalized to satisfy the product formula ∈Ω | | = 1. In our speci c case, for every ∈ Z and every pure motive of weight we de ne L ( ) := det(gr H ( dR )) ⊗ det(gr - H ( dR ))

0

  ( ; , ) := ( ; ) • (gr W ( ); ) for two functions : M × Z → R and : M pure × Z → R. Possible choices for and are given by ( ; ) := 1 ( ; ) := 1( ; ) := 1, if = 0 0, otherwise ( ; ) := < dim (gr H ( dR )) ( ; ) := dim (gr W ( dR )) ( ; ) := dim (gr H ( dR ))and these examples (in any combination of choices from the rst and the second column) allow us to recover the functions ℎ * and ℎ ♣ de ned by Kato. Observe that[START_REF] Kato | Height functions for motives[END_REF] de nes these heights only for pure motives: the rst choice of paired with any of the rst two choices of gives us ℎ * when restricted to pure motives of xed weight 0 .On the other hand, the function ℎ ♠ can be recovered by taking = 0 for ≥ 1 and 0 ( ; , )

  is the -dimensional realanalytic torus and T is the unique Haar probability measure on T . Moreover, we de ne the exponential Mahler measure : C[ ±1 1 , . . . , ±1 ] → R ≥0 as ( ) := exp( ( )). Finally, we de ne the plus-Mahler measures as the positive functionals + : C[ ±1 1 , . . . , ±1 ] → R ≥0 and + : C[ ±1 1 , . . . , ±1 ] → R ≥1 given by + ( ) := ∫ T log + | | T and + ( ) := exp( + ( ))

4. 1

 1 Definition and Diophantine properties Example 4.1.2. We regard T 0 as a point, hence the Mahler measure of a constant ∈ C is de ned to be ( ) := log( ). Analogously, one has + ( ) = log + | |, and the exponential Mahler measures are given by ( ) = | | and + ( ) = max(1, | |).

  Remark 4.1.4. The inclusions : C[ ±1 1 , . . . , ±1 ] ↩→ C[ ±1 1 , . . . , ±1 +1 ] are compatible with the Mahler measure, i.e. ( ( )) = ( ) for every Laurent polynomial ∈ C[ ±1 1 , . . . , ±1 ]. This allows one to see the Mahler measure as a functional : 0

  that ( ) = exp( ( )). As we did in De nition 4.1.1, we de ne the plus-Mahler measure+ : >0 ( ) → R ≥0 as + ( ) := ∫ log + | |and we denote by + : >0 ( ) → R ≥1 the exponential analogue + ( ) := exp( + ( )).

  Proposition 4.1.8 -Jensen's formula For every ∈ N let : >0 (T ) → >0 (T +1 ) be the functional sending : T → C to the function ( ) : T +1 → C given by ( ) ( 1 , . . . , +1 ) := +1 -( 1 , . . . , ). Then we have that • = + , i.e. ( +1 -( 1 , . . . , )) = + ( ( 1 , . . . , ))for every ∈ >0 (T ).

  Let us show how to use Proposition 4.1.8 to reduce the computation of the Mahler measure ( ) of a polynomial ∈ C[ ±1 1 , . . . , ±1 , ±1 ] in + 1 variables to the computation of some -variable integrals. First of all, it is clear from De nition 4.1.1 that ( • ) = ( ) + ( ) for every pair of Laurent polynomials , ∈ C[ ±1 1 , . . . , ±1 ]. Hence one can factor each Laurent polynomial∈ C[x, ] as = 0 (x) • ( -1 (x)) • • • ( -(x)), where 0 (x) ∈ C[ ±1 1 , . . . , ±1] is a Laurent polynomial and 1 , • • • , are algebraic functions in the variables x = ( 1 , . . . , ). Now, applying Proposition 4.1.8 to this factorisation we see that

  Proposition 4.1.10 -Cyclotomic integers and reciprocal polynomials Let ∈ Z[ ] be a non-zero, monic polynomial and suppose that ( ) = (1/ ) where = deg( ). Then for every , ∈ N such that | the ratio |Δ ( )/Δ ( )| ∈ Z is a square if ≡ (2).

  Theorem 4.1.13 -Bogomolov's property for non-reciprocal polynomials The Mahler measure function ↦ → ( ) has the Bogomolov property, in the sense of De nition 1.1.7, when restricted to the set of non-zero integral polynomials ∈ Z[ ] such that ( ) ≠ deg( ) (1/ ). More precisely, for every non-zero, irreducible polynomial ∈ Z[ ] we have that

4. 1

 1 1 ( )| associated to a self-reciprocal polynomial ∈ Z[ ]. As Lehmer himself points out at the end of his paper [Leh33], the amateur Belgian mathematician Poulet was able to compute that |Δ 379 ( 0 )| ? number, where 0 ∈ Z[ ] denotes the self-reciprocal polynomial 0 ( ) = 10 + 9 -7 -6 -5 -4 -3 + + 1 Definition and Diophantine properties

  Theorem 4.1.15 -Kronecker's theorem Let : C[ ±1 1 , . . . , ±1 ] → R ∪ {-∞} denote the Mahler measure (see De nition 4.1.1). Then ( ) = -∞ if and only if = 0 and ( ) ≥ 0 for every ∈ Z[ ±1 1 , . . . , ±1 ] \ {0}. Moreover, for every ∈ Z[ ±1 1 , . . . , ±1 ] we have that ( ) = 0 if and only if there exists ∈ N and a nite sequence of -tuples {a = ( ,1 , . . . , , )} =1 ⊆ Z such that An introduction to the Mahler measure where Φ 0 ( ) := ∈ Z[ ] and for every ≥ 1 we denote by Φ ( ) ∈ Z[ ] the -th cyclotomic polynomial.

  Conjecture 4.1.16 -Boyd's conjecture on Lehmer's problem For every ∈ N, de ne := (Z[ 1 , . . . , ] \ {0}) ⊆ R ≥0 to be the set of Mahler measures of non-zero integral polynomials in -variables. Then the set ∞

  Lemma 4.1.19 -Closures of semi-groups Let ⊆ R ≥0 be a subset such that • ⊆ for every ∈ Z ≥1 . If 0 ∈ (1) is a limit point of we have that = [0, +∞) Proof. For every ∈ R, let { } := -∈ [0, 1) denote the fractional part of . Then it is immediate to see that lim →+∞ = 0 for every sequence { } ⊆ R such that → 0 as → +∞. This implies that lim
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4. 2

 2 Mahler measures and special values of -functions: an historical introduction• Boyd's computations considered mainly families of polynomials whose Newton polygon is re exive, i.e. it contains only one interior point with integer coordinates (see Appendix A.2).

  and collaborators (see [Ber08; Ber10; Ber+13]), the paper [PRS14] by Papanikolas, Rogers and Samart and the article [BN18] by Brunault and Neururer;

  4.25) where denotes the symmetric group on letters. The di erential form is closed on reg ↩→ G ,C .

  Lemma 4.3.2 -Introducing constant terms Let be a ring and let ∈ [ ±1 1 , . . . , ±1 ]. Then there exist ∈ Z GL (Z) and 0 ∈ \ {0} such that -0 ∈ • [ 1 , . . . , ] where := ( * ) denotes the -image of under the action of Z GL (Z) on [ ±1 1 , . . . , ±1 ], which is given by

0

  which makes Z -1 GL -1 (Z) act on the last -1 coordinates of [ ±1 1 , . . . , ±1 ]. To conclude, clearly satis es D.1 with * = 0 (a constant). Moreover, ( ) = ( ), because ( 1 1 • • • ) = 0 for every v ∈ Z (compare with Theorem 4.1.15) and ( ) = ( ) for every ∈ GL (Z), as one can observe by performing a change of variables in the integral (4.3).Getting rid of the second restriction D.2 appearing in Proposition 4.3.1 is more di cult. This can be done when = 2 as long as (C) sing ∩ T 2 = ∅, as the following result of Bornhorn shows (see [Bor99, Lemma 5.2.8] and [Bor15, Lemma 1.7]).

Lemma 4. 3 . 3 -

 33 Eliminating singularities in Deninger's cycle
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 4 An introduction to the Mahler measure Proof. Combining Lemma 4.3.2 and Lemma 4.3.3 we see that there exist ∈ Z GL (Z) and 0 ∈ × such that -0 ∈ [ 1 , . . . , ] and ∩ (C) sing = ∅, where := . In particular, applying Proposition 4.3.1 we see that

  (see [Den97a, Page 274]) and Bornhorn (see [Bor99, Satz 5.3.8] and [Bor15, Theorem 2.2]). Theorem 4.4.1 -Beilinson's conjecture and Deninger's family

  ( (C); Z) there exists ∈ 2,2 ( ) such that ( , 0) = ∞ ( ), per , where ∞ denotes Beilinson's regulator (see Example 2.4.6). Since is reciprocal, one can use Theorem 4.3.4 to show that there exists a class ∈ sing -1,1-( (C) reg ; Z) such that ( ) = ∞ ({ , }), per (4.36)

  family of residue maps, indexed over the set of closed points ∈ | | and the set of maximal ideals ⊆ O at which has split multiplicative reduction. More precisely, the components at closed points ∈ | | are given by the formula ({ , }) := (-1) ord ( ) ord ( ) An introduction to the Mahler measure

  which arises from work of Schappacher and Nekovář, and has been studied in Rolshausen's PhD thesis (see [RS98, § 5.2] and [Rol96, Chapitre IV]). Remark 4.4.5. As already pointed out by Boyd in [Boy98, Page 12], it would be interesting to generalise the two theorems Theorem 4.4.1 and Theorem 4.4.3 by showing that the ratios( , 0)/ ( ) are not only rational but also integral for all but nitely many ∈ Z. To do this one probably needs to assume the conjecture of Bloch and Kato (see Conjecture 3.3.20), and then compute the -adic norms of the element ∈ 2,2 ( ) such that * ( ) = { 1 , 2 }.

  Proposition 4.4.6 -Mahler measures of Weierstraß forms For every ∈ C such that | | ≥ 2 we have that ( 2 -3 -) = log| |.

  Theorem 4.4.9 -Mahler measures expansions Let ∈ C[ ±1 1 , . . . , ±1 ] be a Laurent polynomial with no constant term. Then for every ∈ C such that | | ≥ max z∈T | (z)| we have that ( ( 1 , . . . , ) -) = log(

  otherwise for every a = ( 1 , . . . , ) ∈ Z . Here we write x a := 1 1 • • • , as we did in the statement of the theorem. Hence we get that log( and using the Taylor expansion log(1 -) = -+∞ =1 with = (x)/ we see that( †) = log| | + x) -| T = ( (x) -)which shows (4.49). Observe that our usage of the Taylor expansion of log(1 -) is admissible because we assumed that | | ≥ max z∈T | (z)|. To conclude, it is su cient to point out that (4.50) is an easy consequence of the multinomial theorem (see [AS64, § 24.1.2]).
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 31485 = 0 → . . . Mahler measures of exact polynomials associated to the abstract blow-

  0 := G . The embedding 0 : 1 ↩→ 0 ts in a diagram of complex varieties

  a∈ {1,..., } -2 # (a)= -2 ⊆ {1,..., }\ (a) # =2 (a)∪
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 1525 per (5.8) where +1 ∈ -( +1), D ( ) is any Deligne-Beilinson cohomology class such that ( +1 ) = , and +1 ∈ sing -,1-( (C)) is de ned by induction as +1 = ( ). Mahler measures of exact polynomials
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 5 sing -1,1-( 1 (C), 2 (C)). Moreover, one can lift this class through 154 Mahler measures of exact polynomials the abstract blow-up (5.9), to get a relative homology class rel ∈ sing -1,1-( 1 (C), 2 (C)). Now, Theorem 4.3.4 should admit the following generalisation ( ) = log| 0 | + rel , rel per where •, • per :

  Furthermore, for every idèle ∈ A × and every lattice Λ ∈ L ( ) we have a multiplication by map /Λ • -→ /( • Λ), de ned by means of the following commutative diagram

6. 1

 1 Lattices, idèles and class field theory De nition 6.1.10 -Global Artin map Let be a number eld. Then the global Artin map is the unique surjective, continuous group homomorphism [•, ] : A × Gal( ab / )

  Remark 6.2.6. Let O be an order inside a number eld . Then it is immediate to see that |O : O| • O ⊆ O, which implies that the conductor ideal O ⊆ O divides the principal ideal |O : O| • O generated by the index |O : O| ∈ N.

  bijection, whose inverse is given by ↦ → • O . These maps are multiplicative, i.e. ( • ) ∩ O = ( ∩ O) • ( ∩ O) and ( • )O = ( • O ) • ( • O ) for every two pairs of ideals , ⊆ O and , ⊆ O such that + O = + O = O and + O = + O = O . Finally, for every ideal ⊆ O such that ∩ O is invertible, the natural map The rst statement is the content of [Con19, Lemma 3.2] and the second can be obtained by combining [Neu99, Chapter I, Proposition 12.10] and [Con19, Theorem 3.6]. The fact that the maps ↦ → ∩ O and ↦ → • O establish a bijection between the sets of ideals of O and O which are coprime with O is the content of [Con19, Theorem 3.6]. Finally, [Con19, Theorem 3.12] proves that (6.10) is an isomorphism for every ideal ⊆ O such that ∩ O is invertible. Example 6.2.8 (Conductors of imaginary quadratic orders). Let O be an order inside an imaginary quadratic eld . Then it can be shown that the conductor O ⊆ O equals the ideal generated inside O by the integer |O : O| ∈ N (see [Con19, Example 2.1]). Hence, we usually abuse notation and denote by O both the index |O : O| and the conductor ideal O ⊆ O generated by this index. Moreover, let us observe that for every natural number ∈ N and every number eld there exists a unique order O ⊆ O whose conductor equals • O . Indeed, O is given by the ring O := Z + O .

  13) denotes the completion of O with respect to the ideal O (see also De nition 6.1.4). When ∞ = ∅ we write ,O := , and if = • O for some ∈ Z we denote ,O by ,O , and we write O := 1,O . The corresponding ray class elds are denoted by ,O , ,O and O , respectively.

  Remark 6.2.14. When = is an imaginary quadratic eld, the ray class elds ,O have been de ned by Söhngen in [Söh35]. His work is exposed in great detail by Schertz in [Sch10, §3.3], and if = • O for some ∈ N the construction of ,O = ,O has been reformulated by Stevenhagen in [Ste01, § 4], using an idelic language. Finally, the ring class elds O have been studied for general number elds by Lv and Deng in [LD15] and by Yi and Lv in [YL18], who treated also the case of general number rings. Remark 6.2.15. For every generalised module = (O, , ∞ ) we have that ⊆ ,O , which implies that ⊇ ,O . Moreover, for every pair of ideals ⊆ ⊆ O we have that ,O ⊆ ,O , which implies that ,O ⊇ ,O . In particular, O ⊆ ,O for every ideal ⊆ O. Similarly, for every pair of orders O 1 ⊆ O 2 ⊆ and every ideal ⊆ O 1 we have that ,O 1 ⊆ •O 2 ,O 2 , which gives the containment ,O 1 ⊇ •O 2 ,O 2 . This generalises Deuring's Anordnungssatz, as explained for example in [Ste01, Page 169]. In particular for every generalised module = (O, , ∞ ) we have the following diagram of inclusions

  Let= (O, , ∞ ) be a generalised module, relative to the number eld = Frac(O). Let I be the group of invertible ideals ⊆ O such that + = O, and let P ⊆ I be the subgroup of principal ideals generated by elements ∈ O such that ≡ 1( ) and ( ) > 0 for every ∈ ∞ , where : ↩→ denotes the canonical embedding of inside its completion R. Then there is an isomorphism Gal( / ) I P which shows in particular that Gal( O / ) Pic(O) for every order O ⊆ .Proof. First of all, let J be the group of fractional O-ideals 1 • -1 2 ⊆ , where 1 , 2 ∈ I , and let Q ⊆ J be the subgroup of principal fractional O-ideals ( 1 / 2 ) • O, where 1 , 2 ∈ O 6.2 The notion of ray class fields for orders are elements such that 1 O + = 2 O + = O and 1 ≡ 2 ( ). Then the natural inclusion : I ↩→ J induces an isomorphism : clearing denominators. Indeed, if = 1 • -1 2 ∈ J and 2 = ( 1 , . . . , ) then • ⊆ O, where := 1 • • • . Since 2 + = O we have that becomes a unit modulo , hence there exists ∈ O such that ≡ 1( ), which shows that the class of in the quotient J /Q coincides with the class of ( ) • , where ( ) • ∈ I . This shows that the map (6.15) is surjective. Since it is also naturally injective, we see that it is an isomorphism. Now, let := (O , • O • O , ∞ ), where O ⊆ O denotes the conductor ideal of O. Then there is a map : J → J induced by the map I → I given by ↦ → ∩ O. Moreover, for every ∈ I we have that = ( ∩ O) • O because is coprime with O , which shows that -1 (Q ) is the subgroup of all principal fractional ideals ( 1 / 2 ) • O which are generated by quotients of elements 1 , 2 ∈ O such that 1 O + O = 2 O + O = O and 1 ≡ 2 ( ).

  2.4). Then one can use the Chinese remainder theorem combined with [Neu99, Chapter I, Proposition 12.4] and [Bou89, Chapter II, § 2.6, Proposition 15] to show that for every ∈ {1, . . . , } there exist , ∈ O and ∈ Z ≥1 such that O ( ) ⊆ O ( ) = O ( ) one can take = = = 1 whenever ⊇ , since + = O. Under these assumptions we can set := 1 • • • , because ≡ 1( ) and O ( ) = O ( ) = ≠ O ( ) = O ( ) for every ∈ {1, . . . , }. Now, since -1 ⊆ O ( ) for every ∈ {1, . . . , } we see that -1 = -1 for some ⊆ O and some ∈ O such that + O = O + O = O and ≡ 1( ). Hence the map : J → J induces an isomorphism : where R := -1 (Q ) is, as we said above, the set of all principal fractional ideals ( 1 / 2 ) • O which are generated by quotients of elements 1 , 2 ∈ O such that 1 O + O = 2 O + O = O and 1 ≡ 2 ( ). Now, let A × , ⊆ A × be the subgroup given by those idèles ∈ A × such that ∈ O × ∩ (1+ O ) for every rational prime ∈ N dividing N /Q ( • O • O ), and ( ) > 0 for every real place ∈ ∞ . Observe that A × = A × , • × . Indeed, let • O • O = 1 1 • • • be the factorisation of the ideal • O • O ⊆ O into prime powers, and x any element ∈ R >0 such that for every ∈ {1, . . . , } the ball of radius centred at the origin of is contained in • O . Then for every ∈ {1, . . . , } and every idèle ∈ A × we see that there exists ∈ such that | --1 | < | -1 | • ( /2) because ⊆ is dense, Moreover, the approximation theorem [Neu99, Chapter II, Theorem 3.4] shows that there exists ∈ × such that | -| < | -1 | • ( /2). Hence we get |( • ) -1| ≤ | | • | -| + | --1 | < which implies that ( • ) ∈ 1 + O for every ∈ {1, . . . , }. This allows us to conclude that A × , • × = A × , where A × , ⊆ A × is de ned analogously to A × , using the modulus

  : A × , → J which sends an idèle ∈ A × to the fractional ideal ( ) := ⊆ O ord ( ) ⊆ . Indeed for any ∈ A × , and every ∈ {1, . . . , } we have that ord ( ) = 0 because = ( P ) P | O ∈ O × ⊆ the rational prime lying under . Now, is surjective because for every fractional ideal = we have = ( ) with := for some uniformiser ∈ . Moreover, we have that -1 (R ) = • where := A × , ∩ × . Indeed let ∈ A × , and suppose that ( ) = • O where = 1 / 2 for some 1 , 2 ∈ O such that 1 O + O = 2 O + O = O and 1 ≡ 2 ( ). Then 1 , 2 ∈ O × for every rational prime ∈ N dividing N /Q ( • O • O ), which shows that ∈ . Moreover, since ( ) = O we see that • O , = O , for every rational prime ∈ N, which implies that • O = • O after noticing that 1 and 2 are coprime with O . Hence we get -1 • ∈ ( O ∩ A × , ) = , and thus ∈ • ⊆

  2.10 that = (O , • O • O , ∞ ) can be thought of as a classical module for the number eld . Then the classical version of global class eld theory (see for example [Neu99, 6.2 The notion of ray class fields for orders Chapter VI, Corollary 7.2]) shows that for every nite abelian extension ⊆ there exists a classical module = (O , , ∞ ) such that Gal( / ) J ℜ / ,

  pair, in the sense of De nition 7.1.7.

  ( ) ∈ C and ( ) ∈ N are the unique numbers such that ( ) = | | ( ) ( /| |) ( ) for every ∈ C × . Finally, if R we de ne ( ) := Γ R ( ( ) + ( )) where ( ) ∈ C and ( ) ∈ {0, 1} are such that ( ) = | | ( ) ( /| |) ( ) for every ∈ R × . De nition 7.1.20 -Hecke -functions Let be a number eld and : A × → C × be a Hecke character. Then, for every nite set ⊆ we de ne the -function of as the Euler product ( where : × → C × denotes the character induced by the embedding ↩→ A , and |•| : × → R >0 denotes the -adic absolute value, normalised in such a way that the product formula ∈ | | = 1 holds for every ∈ × . We nally write ( , ) := ∞ ( , ) and ( , ) := ∅ ( , ). One of the reasons why Hecke -functions are so interesting to study is because they are amongst the few which are known to admit a meromorphic continuation to C, and to satisfy a functional equation, as explained by the following result (see [Neu99, Chapter VII, Theorem 8.5] and [RV99, Theorem 7-19]). Theorem 7.1.21 -Meromorphic continuation and functional equations for Hecke -functions

  Fix O := End( ) ∩ , so that O × ⊆ Aut ( ) ⊆ Aut Z ( tors ). Then: • the image of the Galois representation : Gal( ( tors )/ ) ↩→ Aut Z ( tors ) is contained in the centraliser of Aut ( ) inside Aut Z ( tors ). Moreover, the centraliser of O × inside Aut Z ( tors ) is isomorphic to O × , where O := lim ← --∈N O/ O denotes the pro nite completion of the ring O. Hence induces a representation : Gal( ( tors )/ ) ↩→ O × and in particular the extension ⊆ ( tors ) is abelian. Now, we associate to O the subgroup

  13)admits exactly [ ab ∩ : ] continuous extensions : A × → (C Φ ) × to the whole idèle group A × . Moreover, each is a Hecke character, i.e. a continuous group homomorphism which is trivial on× := × 1 × • • • × × .Here the embedding Φ : ↩→ C Φ is induced by the CM type Φ ⊆ Hom( , C), and for every idèle∈ A × we denote by ∞ ∈ × ∞ C Φ its Archimedean component, coming from the decomposition A A Q ⊗ Q ; (c) the following diagram × • N / (A × ) O : O O / ×∞ is the natural quotient map, and

  C) such that ker( ) = • ker( ) and the following diagram ker( ) ker( ) The theory of complex multiplication commutes. Here the notation • ker( ) refers to the action of A × on the set of lattices L ( ) which we de ned in Proposition 6.1.8, and analogously the map ker(

  if 1 = • • • = = 1 in Theorem 7.1.1. Remark 7.1.27. If ( * 1 • • • * ) ⊆ ⊆ ⊆and ( tors ) ⊆ ab then ⊆ is abelian and Theorem 7.1.25 gives us [ ab ∩ : ] = [ : ] Hecke characters : A × → (C Φ ) × and [( ) ab ∩ :

,N

  whose existence is guaranteed by Theorem 7.1.25. Assume nally that ∩ End 0 ( ) is a eld and that [ : ∩ End 0 ( )] = [ : ]. Then we have that [ : ] | 2 dim( ) and the following formula = N / ( ) disc( / ) 2 dim( )/[ : ] holds, where ⊆ O is the conductor (see Equation (7.10)) of the Hecke character : A × → (C Φ ) × de ned by Theorem 7.1.25. Proof. Let := dim( ) and := [ : ]. Since [ : Q] = 2 it is immediate to see that | 2 . Now, observe that for every ∈ Φ we have that = , , where , : A × → C × denotes the -th component of . This is indeed easy to see, and follows from the fact that the re ex norm N Φ * appears in the de nition of . Then the theorem follows from the fact that the Weil restriction N / ( ) is isogenous to , as proved by Milne in [Mil72, Theorem 3], and from the two formulas: = 2 / ( ) = N / ( ) disc( / ) 2 proved by Serre and Tate in [ST68, Theorem 12] and by Milne in [Mil72, Theorem 1].

  Proposition 7.1.33 -Fields of moduli for CM elliptic curves Let be an elliptic curve de ned over C, such that End( ) O for some imaginary quadratic order O. Then the -invariant ( ) ∈ C is an algebraic integer, and the number eld Q( ( )) is isomorphic to the ring class eld O (see De nition 6.2.11). Furthermore, any isomorphism End( ) O induces an embedding O ↩→ C, and there exists an invertible ideal ⊆ O such that (C) C/ . This ideal is uniquely determined up to the multiplicative action of O × , and in particular there are as many -invariants of elliptic curves with complex multiplication by O as the class number |Pic(O)|.

[

  ] ( ) := ( ) [ ] := { ∈ ( ) : [ ] ( ) = 0 for all ∈ } for every -algebra . When = • O for some ∈ O we write ( ) [ ] := ( ) [ ] and [ ] := (Q) [ ]. For any non-zero ideal ⊆ O we denote (Q) [ ] by [ ], with a slight abuse of notation. These groups [ ] are always nite and they give rise to nite extensions ⊆ ( [ ]) obtained by adjoining to the coordinates of every -torsion point. We refer to the number eld ( [ ]) as the -division eld of / .
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 7 Lemma 7.2.4 -Division elds and invertible ideals Let be a number eld and / an elliptic curve with complex multiplication by an order O in an imaginary quadratic eld ⊆ . Then for every ideal ⊆ O the extension ⊆ ( [ ]) is Galois and there is a canonical inclusion Gal( ( [ ])/ ) ↩→ Aut O ( [ ]). 200 The theory of complex multiplication Moreover, if is invertible, the group [ ] has a natural structure of free O/ -module of rank one and, after choosing a generator, one gets an injective group homomorphism , : Gal( ( [ ])/ ) ↩→ (O/ ) × which is denoted by , when = • O for some ∈ Z. Under the further assumption that is coprime to the ideal O • O generated by the conductor O := |O : O| of the order O, one has that O/ O / O . Proof. Since contains the CM eld , the endomorphisms of are all de ned over and this implies that Gal(Q/ ) acts on [ ] by O-module automorphisms. In particular ⊆ ( [ ]) is Galois and there is a canonical inclusion Gal( ( [ ])/ ) ↩→ Aut O ( [ ]). If is invertible, [ ] has the structure of free O/ -module of rank one by [BC20, Lemma 2.4], and the choice of a generator induces an isomorphism Aut O ( [ ]) (O/ ) × which gives the map , appearing in the statement. The last assertion follows from [Cox13, Proposition 7.20].

  2.5 is given by [Sil94, Chapter II, Theorem 5.6]. Fix a generator of [ ] as a module over O/ , which exists by Lemma 7.2.4 because ⊆ O is invertible. Then O ( ( [ ])) = O ( ( )), as one can see by writing every endomorphism of in the standard form described in [Was08, § 2.9] and applying [Lan87, Chapter I, Theorem 7]. 7.2 Division fields of CM elliptic curves and ray class fields for imaginary quadratic orders

  • ) = where := ⊗ Z Z = O for any rational prime ∈ N. Since O = ( ( )), the theorem follows from the claim = ,O

  ). To show the inclusion ,O ⊆ take any ∈ ,O . Then • = because = for every rational prime ∈ N, since by de nition ∈ O × . Moreover, • = because ∈ ( : ) and ∈ 1 + O for every rational prime ∈ N, which implies that ( -1) ∈ . This shows that ,O ⊆ To prove the opposite inclusion ⊆ ,O , x any rational prime ∈ N and take ∈ , so that • = and • = . Since ⊆ O is invertible we have that • (O : ) = O and • O = • ( • (O : )) = ( • ) • (O : ) = • (O : ) = O which shows that ∈ O × . Let us now prove that ∈ 1 + • O . Since ⊆ O and ⊆ O are both invertible we have that • (O : ) • ( : ) = O, so that we can write 1 = =1 with ∈ , ∈ (O : ) and ∈ ( : ). Notice that • = for every ∈ {1, . . . , } because • = and = ( ) generates [ ] as a module over O/ . Hence -1 ∈ • O , because we can write -O since ∈ (O : ) for every ∈ {1, . . . , }. Thus we have shown that ∈ O × and ∈ 1 + • O for every prime ∈ N, which gives ⊆ ,O . This shows the claimed equality (7.17), and allows us to conclude.

  Theorem 7.3.1 -An optimal bound for the index of the image of Galois, for CM elliptic curves Let ⊆ C be a number eld and let be an elliptic curve with CM by an order O inside an imaginary quadratic eld ⊆ . Denote by the associated Galois representation. Then the index |Aut O ( tors ) : Im( )| divides := |Aut( )| • [ ∩ ab : O ], where O denotes the ring class eld of O.
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 3 • [ : Q], otherwise and := |Aut( )| • [ : O ] are the quantities provided respectively by Lombardo [Lom17, Theorem 6.6] and Bourdon and Clark [BC20, Corollary 1.5] as upper bounds for the index |Aut O ( tors ) : Im( )|. We give two proofs of Theorem 7.3.1. The rst one uses the fact that every elliptic curve / with complex multiplication by O ⊆ is a twist of the base-change to of an elliptic curve de ned over the ring class eld O . Bounding the index of the image of Galois for elliptic curves with complex multiplication First proof of Theorem 7.3.1. Recall that ab ⊆ ( tors ), thanks to Theorem 7.2.5, and observe that (Gal( ( tors )/ • ab )) = Aut( ) ∩ Im( ) because the values of the Weber function : /Aut( ) P 1 are all contained in ab , and generate the extension ⊆ ab . This shows that induces an injective map : Gal( • ab / ) ↩→ Aut O ( tors )/Aut( ) such that |Aut O ( tors ) : Im( )| divides |Aut( )| • |Aut O ( tors )/Aut( ) : Im( )|. Hence to conclude it is su cient to prove that |Aut O ( tors )/Aut( ) : Im( )| = [ ∩ ab : O ].

,

  every ∈ Gal( / ).

  and Wingberg in [DW88, Theorem 4.10], and we devote Section 9.1.2 to recall the constructions of the pairs of functions , : → P 1 de ned by Rohrlich in [Roh87, Page 384]. 7.4 Beilinson's conjecture for elliptic curves with complex multiplication 8 Entanglement in the family of division fields of CM elliptic curves If your confusion leads you in the right direction, the results can be uncommonly rewarding. Haruki Murakami, Hard-Boiled Wonderland and the End of the World

F

  ( ) [Φ] := ∈Φ ker( ). These Φ-torsion subgroups generalise the usual -torsion subgroups F ( ) [ ] ⊆ F ( ) dened for every ∈ Z. The following lemma provides some information about the behaviour of F ( ) [ ] under nite extensions of local rings with residue characteristic (see [Sil09, Chapter IV, Exercise 4.6] and [Sil15, Page 15]). Lemma 8.1.2 -Valuations of -adic torsion points of formal groups

Theorem 8.1. 3 -

 3 Integrality of formal endomorphismsLet be an elliptic curve de ned over a number eld ⊆ C and let ∈ O 1 , 2 be the formal group law associated to a Weierstraß model of with coe cients 1 , . . . , 6 ∈ O . Then for every ∈ End ( ) we have that ∈ O .Proof (sketch). One can show by induction that[ ] = [ ] ∈ Z[ 1 , . . . , 6 ] ⊆ O for every ∈ Z,where [ ] ∈ End ( ) denotes the multiplication-by-map. This proves the theorem when End ( ) Z. Otherwise has complex multiplication. Hence one can combine Example 7.1.9 and Proposition 7.2.1 with [Sil09, Chapter IV, Corollary 4.3] to see that there exists a unique isomorphism [•] : O -→ ∼ End ( ) such that [ ] (0) = for every ∈ O, where O is an order in an imaginary quadratic eld ⊆ . Let { } ∈N ⊆ [ ] be the polynomials determined by the equality +∞ =0 ( ) • = exp ( • log ( )) ∈ , and observe that (Z) ⊆ O for every ∈ N, because (8.3) shows that +∞ =0 ( ) • = [ ] ( ) ∈ O for every ∈ Z. 8.1 Formal groups and elliptic curves

[

  •] : O -→ ∼ End ( ) associated to every elliptic curve which has complex multiplication by an order O inside an imaginary quadratic eld , and is de ned over a number eld ⊆ C such that ⊆ (see Proposition 7.2.1).With the next proposition, we start our study concerning the rami cation properties of the extensions ⊆ ( [ ]) (see De nition 7.2.3), by nding an explicit nite set of primes outside which these are unrami ed. Proposition 8.2.1 -Unrami edness of division elds Let ⊆ C be a number eld and / an elliptic curve with complex multiplication by an order O in an imaginary quadratic eld ⊆ . Denote by O := |O : O| the conductor of the order O, and by ⊆ O the conductor ideal of the elliptic curve . Then for every ideal ⊆ O coprime with O the extension ⊆ ( [ ]) is unrami ed at all primes not dividing ( • O ) • .Proof. Since is coprime with the conductor of the order O, it can be uniquely factored into a product of invertible prime ideals of O (see Lemma 6.2.7). The eld ( [ ]) is then the compositum of all the division elds ( [ ]) with the prime power factors of in O. Hence it su ces to prove that for every invertible prime ideal ⊆ O and every ∈ N, the eld extension ⊆ ( [ ]) is unrami ed at every prime of not dividing ( O ) • .Fix an invertible prime ⊆ O and write := ( [ ]). Let ( O ) • be a prime of and x a prime ⊆ O lying above , with residue eld . Since does not divide the conductor of the elliptic curve, has good reduction modulo and we then denote by : ( ) → ( ) the reduction map. Take ∈ ( / ), where ( / ) ⊆ Gal( / ) denotes the inertia subgroup of ⊆ , and x a torsion point ∈ [ ] = ( ) [ ]. By de nition of inertia, acts trivially on the residue eld , hence( -) = ( ) -( ) = ( ) -( ) = 0 (8.7)i.e. the point is in the kernel of the reduction map . We are going to use the exact sequence (8.6) to show that the only -torsion point contained in this kernel is 0. To this aim, we embed in its -adic completion , with ring of integers O and maximal ideal . Notice that the set ( ∩ O) \ ( ∩ O) is non-empty because O and ( O ). Consider then the formal group ∈ O 1 , 2 associated to an integral Weierstraß model of , and let ∈ ( ∩ O) \ ( ∩ O). The endomorphism [ ] ∈ End ( ) corresponding to [ ] ∈ End ( ) via (8.4) becomes an automorphism over , because [ ] (0) = ∈ O × . 8.2 Division fields of CM elliptic curves: ramification and entanglement Hence taking Φ = [ ] in (8.6) shows that [ ] ∩ ker( ) ⊆ [ ] ∩ ker( ) = {0}, where the last equality holds because (

  Proposition 8.2.2 -Total rami cation in division elds Let ⊆ C be a number eld and / be an elliptic curve with complex multiplication by an order O in an imaginary quadratic eld ⊆ . Denote by := O Δ /Q ( ) the product of the conductor O := |O : O| of the order O, the absolute discriminant Δ ∈ Z of the number eld and the norm /Q ( ) := |O / | of the conductor ideal ⊆ O . Then, for any ∈ N and any prime ideal ⊆ O coprime with O the extension ⊆ ( [ ]) is totally rami ed at each prime dividing O . Moreover, the Galois representation , : Gal( ( [ ])/ ) ↩→ (O/ ) × (O / O ) × de ned in Lemma 7.2.4 is an isomorphism.

  Theorem 8.2.6 -Entanglement and division elds of CM elliptic curves Let be a number eld and / be an elliptic curve with complex multiplication by an order O in an imaginary quadratic eld ⊆ . Denote by := O Δ /Q ( ) the product of the conductor O := |O : O| of the order O, the absolute discriminant Δ ∈ Z of the number eld and the norm /Q ( ) := |O / | of the conductor ideal ⊆ O . Then the map (8.1) induces an isomorphism Gal( ( tors )/ ) Gal( ( [ ∞ ])/ ) × ∉ Gal( ( [ ∞ ])/ ) ∼ where ⊆ N denotes the nite set of primes dividing . Remark 8.2.7. Recall that a family F = { } ∈S of Galois extensions of a number eld , indexed over any set S, is called linearly disjoint over if the natural inclusion map Gal( / ) ↩→ ∈S Gal( / )

[

  : ] ≤ [ : ] = [

  ℎ O := [ O : ] = |Pic(O )| and analogously ℎ := [ O : ] = |Pic(O )|. Since either ≥ 3 or = 2 and ≥ 2, we see from (8.10) that O ≠ O except when = 3, = 1 and = Q( √ -3). In this last case the extension Q ⊆ is rami ed at = 3. Otherwise the extension O O is rami ed at some prime dividing . Indeed, O O is rami ed at some prime because ⊆ O is abelian and O is the Hilbert class eld of , and this su ces to conclude because ⊆ O can ramify only at primes lying above . Remark 8.2.11. If 2 | O but 4 O , the extension Q ⊆ O could still be unrami ed at 2. This happens, for instance, if O = 2 and 2 splits in , because in this case the ring class eld O is equal to the Hilbert class eld O . Proposition 8.2.10 shows that the set in Theorem 8.2.6 could be replaced by the set of primes dividing 2 • Δ • N /Q ( ), even if this results in a slightly weaker statement. However, choosing the set instead of the set allows to draw a comparison with a result of Lombardo on the image of -adic Galois representations attached to CM elliptic curves, which is shown in [Lom17, Theorem 6.6]. In this paper, Lombardo proves the isomorphism Gal( ( [ ∞ ])/ ) (O ⊗ Z Z ) ×

  2.4 is surjective. When is de ned over the ring class eld O of relative to O, the division elds O ( [ ]) always contain the ray class eld ,O (see De nition 6.2.11), as we proved in Theorem 7.2.5. If the division eld O ( [ ]) is maximal and > 2, then the containment ,O ⊆ O ( [ ]) is strict. In this section, we want to study for which integers the division elds are minimal, in the sense that O ( [ ]) =

  Theorem 8.3.1 -Minimality of division elds of CM elliptic curvesLet ⊆ C be a number eld and let / be an elliptic curve such that End ( ) O for some order O inside an imaginary quadratic eld ⊆ . Suppose that ( tors ) ⊆ ab , i.e. that satis es Shimura's condition (see De nition 7.1.30). Let := O the ring class eld of O, and x : × • N / (A × ) → × as in Theorem 7.1.25, with = . Then we have that ( [ ]) = • ,O for every invertible ideal ⊆ O such that ⊆ ∩ O, where ⊆ O is the conductor of any of the Hecke characters : A × → C × extending the group homomorphism : × • N / (A × ) → C × de ned in (7.13). Proof. The containment ,O ⊆ ( [ ]) is given by Theorem 7.2.5. Observe moreover that ⊆ is an abelian extension, since ⊆ ( tors ) ⊆ ab by assumption. Hence, to prove that ( [ ]) ⊆ • ,O it is su cient to show that every -torsion point of is xed by [ , ], for any ∈ A × such that [ , ] ,O = Id. Moreover, it su ces to consider only those ∈ A × such that ∞ = 1 and ∈ ,O , where ,O ≤ A × is the subgroup de ned in (6.12). This follows from the fact that [ ,O , ] = Gal( ab / ,O ) and × ∞ ⊆ ker( [•, ]) ∩ ,O by De nition 6.2.11 and Lemma 6.2.16. Fix then ∈ ,O with ∞ = 1. To study the action of [ , ] on [ ], we x an invertible ideal ⊆ O ⊆ C and a complex uniformisation : C/ -→ ∼ (C), which exists by Proposition 7.1.33. Take a torsion point ∈ [ ], and let ∈ ( : ) be any element such that ( ) = , where ∈ ( : )/ denotes the image of in the quotient. Since ∈ × • N / (A × ), we have that [ , ] = ( ) [ , ] = ( ( ) -1 ) •
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 8 since ⊆ ∩ O by assumption. This implies that ( ) = 1 for every prime ∈ N. Indeed ∈ 1 + O by the de nition of ,O and for every ∈ 0 we have that (1 + O ) = 1, because is the conductor of . Since ∞ = 1 we get that ( ) = ( ) = 1, as was to be shown. Remark 8.3.2. Theorem 8.3.1 has been proved by Coates and Wiles (see [CW77, Lemma 3]) if O = O is a maximal order of class number one. Their result has been generalised in the PhD thesis of Kuhman (see [Kuh78, Chapter II, Lemma 3]) to maximal orders O = O , under the hypothesis that ⊆ ,O . 228 Entanglement in the family of division fields of CM elliptic curves Theorem 8.3.1 has a partial converse, as we show in the following proposition. Proposition 8.3.3 -A partial converse to Theorem 8.3.1

  means that acts on tors as an automorphism = • -1 ∈ Aut( ) O × . In particular, for any point ∈ [ ] we have ( ) = ( ) = (8.11) since by assumption ( [ ]) = • ,O ⊆ ab . Notice now that, if ( ) ∉ {0, 1728} we have Aut( ) = {±1}, and equality (8.11) can occur for = -1 only when ∩ Z = 2Z. Similarly, if ( ) = 1728 or ( ) = 0, one sees that a non-trivial element of Aut( ) can possibly x only points of [2] or points of [2] ∪

8. 3

 3 Minimality of division fields O ( tors ) = ab . This question is discussed by Shimura in [Shi94, Page 217]. Here the author proves that, if O = O is a maximal order whose discriminant is a square modulo 3, then there exists an elliptic curve / O such that O ( tors ) = ab . The next theorem generalises this result to arbitrary imaginary quadratic orders. Theorem 8.3.6 -In nitely many curves satisfy Shimura's condition Let O be an order in an imaginary quadratic eld and let ∈ O be the -invariant of any elliptic curve with complex multiplication by O. Then there exist in nitely many elliptic curves / O with ( ) = but non-isomorphic over O , such that O ( tors ) = ab . Proof. When O has class number 1 the statement is trivially true. We may then assume that Pic(O) ≠ {1}, and in particular that ∉ {0, 1728}. Let 0/ O be any elliptic curve with ( ) = , and let ∈ N be a prime satisfying 1 ≡ 3 mod 4; 2 does not divide O • O /Q ( 0 ), where O := |O : O| denotes the conductor of the order O and 0 ⊆ O O is the conductor ideal of the elliptic curve 0 ; 3 splits completely in .

  3.6. We observe now that, for every ∈ × O such that the extension ⊆ O ( √ ) is not abelian, we have that O (( ( ) 0 ) tors ) ≠ ab where ( ) 0 denotes the quadratic twist of 0 by ∈ × O . Indeed, Theorem 8.3.1 shows that O ( 0 [ ]) =

  |Pic(O)| = [ ( ( )) : Q] = 1 as follows from Proposition 7.1.33. This implies that ( ) ∈ Q because Q( ( )) ∩ = Q (see [Cox13, Proposition 13.2]). Hence the elliptic curve has complex multiplication by one of the thirteen imaginary quadratic orders O of class number 1, listed in [Cox13, Theorem 7.30].

  First of all, observe that , (respectively ( ) , ) has maximal image if and only if there exists ∈ Gal(Q/ O ) such that , ( ) = -1 ∈ (O/ ) × (respectively ( ) , ( ) = -1). Indeed, O ( [ ]) contains the ray class eld ,O , which is generated over O by the values of the Weber function :/Aut( ) P 1 at -torsion points (see Theorem 7.2.5). Since ( [ ] ( )) = ( ) for every ∈ [ ] and ∈ {±1} = O × Aut( ), we see that , induces the identi cationGal( O ( [ ])/ ,O ) Im( × ) ∩ Im( , ) = {±1} ∩ Im( , ) ⊆ (O/ ) × (8.14)where × : O × → (O/ ) × denotes the map induced by the quotient : O O/ . Hence, , is surjective if and only if -1 ∈ Im( , ), and the same holds for ( ) , . Moreover, ( ) , is linked to , , after choosing compatible generators of [ ] and( ) [ ] as O/ -modules, by the formula( ) , = , •(8.15)where :Gal(Q/ O ) → {±1} ⊆ (O/ ) × is the quadratic character associated to O ( √ ).To prove 1 , suppose that , has maximal image. First, assume thatO ( [ ]) ≠ ,O ( √ ). Then, either O ( √ ) ∩ O ( [ ]) = O or we have O ( √ ) ⊆ ,O .In the rst case, we can certainly nd ∈ Gal(Q/ O ) acting trivially on O ( √ ) and such that , ( ) = -1. Hence we can use (8.15) to see that ( ) , ( ) = , ( ) • ( ) = -1. This implies, by the initial discussion, that ( ) , has maximal image. In the second case, any ∈ Gal(Q/ O ) with , ( ) = -1 acts trivially on ,O ⊇ O ( √ ) by (8.14). As before, we can use (8.15) to conclude that ( ) , has maximal image. over Q, become isomorphic when base-changed to . Observe that = ( Δ) 2 , which follows from (8.15) and [Ulm16, § 10, Proposition 1], because 0 is coprime with Δ. We see that Gal( ( tors )/ )∉ Gal( ( [ ∞ ])/ ) × Gal( ( [ ∞ ])/ ) (8.18)as a consequence of Theorem 8.2.6. The product appearing in (8.18) runs over the rational primes ∈ N such that ∉ , because in this case the nite set = ⊆ N appearing in Theorem 8.2.6 consists uniquely of the primes dividing= ( Δ) 2 . Moreover, Gal( ( [ℓ ])/ ) (O/ℓ O) × forevery prime ℓ ∈ N and every ∈ N, since T.1 and T.3 show that, for every ∈ N, the Galois representation ,ℓ has maximal image. On the other hand, Proposition 8.4.1 shows that ( [ ]) = every ∈ Z ≥1 . Hence the family of division elds { ( [ ∞ ])} ∈ is entangled over , and for every collection of integers { } ∈ ⊆ Z ≥1 we get Gal( / ) ∈ (O/ O) × {±1} where is the compositum of all the division elds ( [ ]) for ∈ . Let us now consider orders O such that gcd(Δ O , 6) ≠ 1. The analysis of the division elds of an elliptic curve /Q having complex multiplication by such an order O proceeds similarly to what happened before, with the only exception of the order O = Z[ √ -3]. Indeed, if O ∈ {Z[3 3 ], Z[2 ], Z[

0

  are linearly disjoint over . Moreover, Proposition 8.2.2 gives that Gal( ( 0 [ ])/ ) (O/ O) ×for every rational prime ≠ and every ∈ N. On the other hand, (8.16) entails that 0 = is a power of the unique prime ideal ⊆ O lying over , with≤ 2 if O ∉ {Z[2 ], Z[ √ -2]}, and ≤ 6 otherwise. Therefore, Theorem 8.3.1 and Theorem 6.2.20 give that Gal( ( 0 [ ])/ ) (O/ ) × /{±1} for every ∈ N such that ≥ 1 if O ∉ {Z[2 ], Z[ √ -2]}, and every ≥ 3 otherwise. 8.4 Entanglement in the family of division fields of CM elliptic curves over QLet now /Q be any elliptic curve with complex multiplication by an order O belonging to the list (8.19). Since ( ) = ( 0 ) ∉ {0, 1728} we know that = (Δ)0 for some fundamental discriminant Δ ∈ Z. If O = Z[3 3 ] or O = Z[ √ -7], we can assume that Δ because √ -∈ .Hence, Theorem 8.2.6 shows that Gal( ( tors )/ )∉ Gal( ( [ ∞ ])/ ) × Gal( ( [ ∞ ])/ )with the product running over the rational primes ∈ N such that ∉ , where in this case the nite set = ⊆ N appearing in Theorem 8.2.6 consists of the primes dividing = ( Δ) 2 . Exactly as before, T.1 and T.3 show that Gal(( [ℓ ])/ ) (O/ℓ O) ×for every prime ℓ ∈ N and every ∈ N. Moreover, Proposition 8.4.1 shows that( [ ]) = ,O ( √ Δ) and ( [ ]) ∩ ( [Δ]) = ( √ Δ)for every ∈ Z ≥1 . Hence, the family of division elds { ( [ ∞ ])} ∈ is entangled over , and for every collection of integers { } ∈ ⊆ Z ≥1 we getGal( / ) ∈ (O/ O) × {±1}where is the compositum of all the division elds ( [ ]) for ∈ .Studying the entanglement in the family of division elds of becomes slightly more compli-cated if O ∈ {Z[2 ], Z[ √ -2]}.First of all, note that there exists a unique Δ 2 ∈ {1, -4, -8, 8} such that Δ = Δ 2 Δ , where Δ ∈ Z is an odd fundamental discriminant. We can now write =(Δ ) 1 , where 1 := (Δ 2 ) 0 . One can check that, if O = Z[ √ -2] then 1 is isomorphic to one of the four elliptic curves with complex multiplication by Z[ √ -2] appearing in Table A.11. On the other hand, if O = Z[2 ] then 1 can be either one of the two elliptic curves 2 = 3 -44 -112 2 = 3 -44 + 112 or one of the two elliptic curves with complex multiplication by Z[2 ] appearing in Table A.11.

  2.6 shows that Gal( ( tors )/ ) ∉ Gal( ( [ ∞ ])/ ) × Gal( ( [ ∞ ])/ ) with the product running over the rational primes ∈ N such that ∉ , where = denotes the nite set appearing in Theorem 8.2.6, which in this case consists of the primes dividing 2 • Δ . Similarly to what happened before, T.1 and T.4 show that Gal( ( [ℓ ])/ ) (O/ℓ O) × for every prime ℓ ∈ N and every ∈ N. Moreover, Proposition 8.4.1 gives ( [2 ]) = 2 ,O ( √ Δ ) and ( [2 ]) ∩ ( [Δ ]) = ( √ Δ ) for every ≥ 3. Therefore, the family of division elds { ( [ ∞ ])} ∈ is entangled over , and for all { } ∈ ⊆ Z ≥1 with 2 ≥ 3 we get Gal( / ) ∈ (O/ O) × {±1}

  O : ] [ ( 0 [3]) : ] ≤ [ ( 0 [2 3]) : ] [ ( 0 [3]) : ] ≤ [ ( 0 [2 ]) : ] (8.20) hence Lemma 7.2.4 shows that every inequality appearing in (8.20) is actually an equality, and 0 ,2 is surjective. This gives that ( 0 [2 ]) ∩ ( 0 [3 ]) = for every , ∈ Z ≥1 . These considerations, together with Theorem 8.2.6 and Proposition 8.2.2, give a decomposition Gal( (( 0) tors )/ ) Gal( ( 0 [ ∞ ])/ )where the product runs over all rational primes ∈ N. Moreover, for every ∈ N we get Gal(( 0 [ ])/ ) (O/ O) × , if ≠ 3 (O/3 O) × /{±1}, if = 3and the family of division elds { ( [ ∞ ])} is linearly disjoint over . 8.4 Entanglement in the family of division fields of CM elliptic curves over Q Remark 8.4.5. Fix an imaginary quadratic order O having trivial class group Pic(O) = {1}, conductor O ≠ 2 and discriminant Δ O < -4. Let = (O) ∈ {2, 4} be as in Theorem 8.4.4.

  Lemma 9.1.1 -The Deninger-Wingberg pair of functions Let be an elliptic curve de ned over Q having potential complex multiplication by the ring of integers O of an imaginary quadratic eld ⊆ C. Let moreover:•∈ O be the number de ned as:= N /Q( ) • min{ ∩ R >0 }where ∈ is a xed generator of the fractional ideal de ned in Proposition 7.4.2, and ⊆ O denotes the conductor of the Hecke character : A × → C × associated to the base-change of to the imaginary quadratic eld ;• := O × denote the group of roots of unity contained in , which coincides with the group of units of O since is imaginary quadratic; is the multiplicative map de ned by ( ) := ( )/ for every ∈ O which is coprime to , and by ( ) = 0 otherwise. Moreover, the map : C (C) appearing in (9.3) is the complex uniformisation constructed in Proposition 7.4.2.Then there exists a pair of functions , : → P 1 such that div( 2} denotes the order of the point∈ [ ] (Q)/ [ ( )] ( ) ∈ [2] (Q). Moreover we have that R (div( )♦ div( )) = |disc( /Q)| = N /Q ( ) ∈ Z \ {0} (9.4)where is the base change of over .
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 9 | = [ ( ) : ( )] = [ ( ) : ( )] = | | (see [Ful89, Proposition 8.4]). Moreover, we see that = + + for some ∈ GL 2 ( ) and since both and have 0 as their unique pole we must have that = 0. Hence we get -Hurwitz formula (see [SP, Section 0C1B]) for the covering : → P 1 . This implies that = = 1, and thus that | | = | |. Now, in order to show that Q( ) = Q( , ) for any pair of functions , : → P 1 as in Lemma 9.1.1, we need to use an explicit description of the action of the Galois group Gal( ( [ ])/ ) over the set [ ]/ (see [DW88, Page 264]). Lemma 9.1.4 -Galois action on torsion points modulo units We can describe the action of Gal( ( [ ])/ ) on [ ]/ as Gal( ( [ ])/ ) × [ ]/ → [ ]/ ( , ) ↦ → [ ( ( [ ]) denotes the ray class eld of relative to O (see De nition 6.2.11) and : Gal( ,O / ) -→ ∼ (O / ) × / denotes the isomorphism given by Theorem 6.2.20. for any ∈ Γ satisfying the conditions of Lemma 9.2.2. Let ∈ Q × be de ned by the identity [ * ( * ( ))] = (-) , where denotes the open embedding : reg ↩→ \ , and denotes the open embedding : \ , ↩→ . Let moreover:• {[ ]} ∈ , ⊆ 1 ( (C) \ , ; Z) be the homology classes associated to small loops around each point ∈ , ;•[ 1 ], [ 2 ] ∈ 1 ( (C) \ , ; Z) be such that the set {[ ]} 2 =1 ∪ {[ ]} ∈ , generates 1 ( (C) \ , ; Z); • { } ∈ , \{0} ⊆ Z and { } 2=1 ⊆ Z be the numbers de ned by the decomposition is unique thanks to the exact sequence (2.43);• ˜ , ˜ ∈ Q( ) be the functions given by ˜ := and ˜ := (see Remark 9.2.1)Then is birational to and( ) = ( , 0) + log| |where ∈ Q and ∈ Q are de ned by := R (div( ˜ )♦ div( ˜ )) a suitable choice of .Proof. Recall rst of all that ˜ , ˜ = , . Observe moreover that[ * ( * ( ))], ∈ 1 ( (C); Q) -Q which implies that ∈ Q exists.We have now the following chain of identities:( ) = -∞ ({ , }), [ ] = (9.16) = -∞ reg ( * ({ , })), [ ] = (9.17) = -∞ \ ˜ , ˜ ({ ˜ , ˜ }), [ * ( )] , ˜ ), [ * ( * ( ))] -∈ ˜ , ˜ \{0} ∞ \ ˜ , ˜ ({ ({ ˜ , ˜ }), ( ) ˜ , ˜ }), [ * ( )] = (9.19) = ˜ , ˜ ∞ ( ˜ , ˜ ), + ∈ ˜ , ˜ \{0} log| ({ ˜ , ˜ })| =(9.20) 254 Mahler measures and elliptic curves with complex multiplication where { } ∈ , \{0} ⊆ Z (and { } 2 =1 ⊆ Z) are de ned by the decomposition [ * ( )] = ∈ ˜ , ˜ \{ 0 } is unique (see Proposition 2.5.5). Remark 9.3.2. If a polynomial ∈ C[ ±1 , ±1 ] is tempered, in the sense of De nition 4.2.7 and Remark 4.2.8, then is weakly tempered in the sense of De nition 9.3.1.

  from Remark 4.2.8 that ∈ Z[ , ] is tempered (in the sense of De nition 4.2.7) if and only if ( ) = 0 for every face < Δ , where (•) denotes the Mahler measure (see De nition 4.1.1).

  property if and only if • h has the very weak Bogomolov property;

• the weak Lehmer property if and only if • h has the weak Bogomolov property; • the Lehmer property if and only if • h has the Bogomolov property. It is easy to observe that one has the following implications ℎ has very weak Bogomolov + • h ≥ ℎ ⇒ (h, ) has very weak Lehmer ℎ has weak Bogomolov + • h ≥ ℎ ⇒ (h, ) has weak Lehmer ℎ has Bogomolov + • h ≥ ℎ ⇒ (h, ) has Lehmer

  3.1] for an equivalent de nition).

	Remark 2.2.3. Typical examples of adequate equivalence relations ∼ are given by:
	• the rational equivalence relation ∼ rat , such that Z • rat ( ) is the quotient of Z • ( ) by
	the sub-module generated by cycles of the form [ ∩ ( × {0})] -[ ∩ ( × {∞})],
	for ⊆	× P 1 a closed integral sub-scheme which dominates P 1 . This is the nest
	of adequate equivalence relations (see [And04, Lemme 3.2.2.1]), and the corresponding
	category of motives CHM( ; ) is called the category of Chow motives, because the groups
	CH • ( ; ) := Z • rat ( ) are called Chow groups;
	• the algebraic equivalence relation ∼ alg , such that Z • alg ( ) is the quotient of Z • ( ) by
	the sub-module generated by cycles of the form [

  This group is de ned as the quotient of the free abelian group generated by isomorphism classes [ ] of motives ∈ M ∼ ( ; ), by the relation[ ⊕ ] = [ ] + [ ].One can similarly de ne a group 0 (S) for every category of schemes S over which is closed under disjoint unions. More precisely, this group 0 (S) is given by the quotient of the free abelian group on the isomorphism classes [ ] of objects ∈ S, by the relation [

	2.11)
	where the horizontal maps are closed immersions, and every adequate equivalence relation ∼,
	we have that [ ∼ ( ; )] -[ ∼ ( ; )] = [ ∼ ( ; )] -[ ∼ ( ; )] inside the Grothendieck group
	0 (M ∼ ( ; )).

  Page 616]). Moreover, for every eld there exists a commutative square Mod Λ of modules over Λ. Such a presheaf with transfers ∈ PSh tr

		P ( ) op	S( ) op
		rat (-;Λ)	gm (-/ ;Λ) op	(2.15)
		CHM( ; Λ)	DM gm ( ; Λ) op
	where DM gm ( ; Λ) := DM gm (Spec( ); Λ), and the functor on the bottom is a fully faithful embedding, which maps 1 rat,Q (-1) to 1(1)[2] and sends a Chow motive ( , , ) with ≥ 0 to
	an e ective mixed geometric motive (see [And04, § 18.3]). Hence the diagram (2.15) seems to be
	a rst step towards the construction of a diagram like (2.14). It turns out that in order to extend
	the functor gm (-; Λ) to singular schemes it is better to work with a bigger category, which we
	are now going to de ne.	
	Let us recall rst of all that a Λ-linear presheaf with transfers over a scheme is a presheaf
	on the category	cor ,Λ of Λ-linear smooth correspondences (see [CD19, De nition 10.1.1]),
	valued in the category	

  Clearly, the Bogomolov property holds for the function (4.2) if and only if it holds for the function : Z

2) has the Bogomolov property (see De nition 1.1.7), i.e. whether the set 1 := (Z[ ] \ {0}) ⊆ R has an isolated minimum. It is known that min( 1 ) = 1 (see Theorem 4.1.15), but Lehmer's general question remains unanswered, despite the numerous attempts and partial results, which we describe in Section 4.1.1.

  countable, this would easily imply Lehmer's conjecture (see Lemma 4.1.19).

  Mahler measures and special values of -functions: an historical introduction and combining this with the analytic class number formula (see Theorem 3.3.26) we see that *

	4.2 Q	2	4

  This conjecture was our original inspiration for the work which appears in Chapter 9. Indeed, as we have mentioned in Section 3.3.4, the special values of the -functions ( , ) are amongst the few families of examples for which the conjectures of Beilinson (see Conjecture 3.3.18) and Bloch-Kato (see Conjecture 3.3.20) are completely known. Using in particular the constructions of Huber and Kings (see

	.4), and Chinburg proved in [Chi84] that for every
	imaginary quadratic eld there exist two polynomials ,	∈ Z[ 1 , 2 ] such that
	( , -1) ( ) -( )	∈ Q ×

but in general one has ( ) ≠ 0 (in Chinburg's construction). Unfortunately Chinburg's proof never appeared in the literature, and we were not able to nd an account of his construction elsewhere. Nevertheless, in the same unpublished manuscript

[START_REF] Chinburg | Mahler measures and derivatives of -functions at non-positive integers[END_REF]

, Chinburg conjectures that identities of the kind (4.20) should hold for every imaginary quadratic eld .

  4.31)where 1 ∈ [ 2 , . . . , ] and 1 ∈ [ 1 , . . . , ]. If we set ∈ Z

				GL (Z) to be the element
	de ned as := w	, where	
		1	
		=	. . .	∈ GL (Z)
		1 . . . 1
	we see from (4.31) that	
		= 2 ( 2 , . . . , ) +	2 ( 1 , . . . , )
	where 2		

  Remark 4.4.7. Despite what one may be lead to believe from Proposition 4.4.6, the Mahler measures of Weierstraß forms can be related to -values of elliptic curves. Some examples of these kinds of relations are collected in Table A.3. Now, another canonical model for elliptic curves has been introduced by Edwards in [Edw07], as we now recall.

	Proposition 4.4.8 -The existence of Edwards model

4.4 Some explicit computations

  Bur94] (see Example 2.1.22 and Example 2.4.6). The complexes D • log (-, ) turn out to be pseudo-asque, as it is proved by Burgos Gil, Kramer and Kühn in [BKK07, Proposition 5.29].

• := D • log (-, ) introduced by Burgos Gil in [

  ( ) comes from Lemma 6.2.16, ( ) holds because ⊆ O and ( ) follows from the fact that × ∩ O = O × . Now, observe that × ∞ ⊆ O , where ∞ := ⊗ Q R run over the rational primes ∈ N, and O is the ring de ned in (6.13). In the chain of isomorphisms (6.16) the ring O is the pro nite completion of O, i.e.

	where the products O := lim ← --∈Z ≥1	O O		∈N	O	⊆ O	O			(6.17)
	where the second product runs over all the non-zero prime ideals ⊆ O and O := lim ← --∈N is the completion of O at the prime . The second isomorphism appearing in (6.17) can be O/
	obtained by applying [Eis95, Corollary 7.6] to = Z and = O . This gives the decomposition
				O		O						(6.18)
					⊇							
	where the product runs over all primes ⊆ O lying above .				
	Under the isomorphism (6.16) the subgroup ,O / × ∞ ⊆ O / × ∞	O × is identi ed with the
	kernel of the map × : O × → ( O/ O) × induced by the projection : O		O/ O. Using this,
	one sees that the subgroup (											
	O × ∞	∈N	O ×	∈N	lim ← --∈N	O O	×		lim ← --∈Z ≥1	O O	×	O ×	(6.16)

|∞

↩→ A . Moreover, we have O :

  , Chapter I, Proposition 12.3], and is an isomorphism because O is a one-dimensional Noetherian domain (see [Neu99, Chapter I, Proposition 12.2]). More explicitly, for any prime ⊆ O such that ⊇ we have that • O ( ) = • O ( ) because O ( ) is a one-dimensional local ring. Hence [Bou89, Chapter II, § 2.6, Proposition 15] shows that O ( ) / O ( ) is complete with respect to O ( ) . Thus we can conclude that O ( ) / O ( ) is isomorphic to O / O using the exactness of completion, which holds because O ( ) is Noetherian (see [Eis95, Lemma 7.15]).

  Division fields of CM elliptic curves and ray class fields for imaginary quadratic orders de ned over , and an imaginary quadratic eld . This implies that there exists an order O ⊆ such that O End ( ). Moreover, the following result shows that this isomorphism can be xed once we x an embedding ↩→ C (see [Sil94, Chapter II, Proposition 1.1]). Hom( , C) and every ∈ O we have that [ ] * ( ) = ( ) • for every invariant di erential ∈ Ω 1 /C . Here the base-change of to the complex numbers is achieved by means of the embedding : ↩→ C. Remark 7.2.2. Usually, we x the embedding ↩→ C, and denote the corresponding normalised isomorphism simply by [•] : O -→ ∼ End ( ).

	Proposition 7.2.1 -Normalised isomorphism for CM elliptic curves
	Let be an elliptic curve with complex multiplication, de ned over a number eld . Then
	there exists a map
	Hom( , C) → Isom(O, End ( ))
	↦ → [] ,
	such that for every ∈

7.2

  The theory of complex multiplication commutes. Now, using [BC20, Theorem 1.4], which was already proved in[START_REF] Stevenhagen | Hilbert's 12th Problem, Complex Multiplication and Shimura Reciprocity[END_REF], one sees that 0 is an isomorphism. In particular |Aut O ( tors )/Aut( ) : Im( )| = [ ∩ ab : O ] as we wanted to prove.Our second proof uses the main theorem of complex multiplication, rather than the twiststructure of CM elliptic curves.Second proof of Theorem 7.3.1. Recall that ab ⊆ ( tors ), thanks to Theorem 7.2.5, and that(Gal( ( tors )/ • ab )) = Aut( ) ∩ Im( )because the values of the Weber function :/Aut( ) P 1 are all contained in ab , and generate the extension ⊆ ab . This shows that induces an injective map : Gal( • ab / ) ↩→ Aut O ( tors )/Aut( ) such that |Aut O ( tors ) : Im( )| divides |Aut( )| • |Aut O ( tors )/Aut( ) : Im( )|. To conclude it su ces to prove that |Aut O ( tors )/Aut( ) : Im( )| = [ ∩ ab : O ], and we prove this by showing that there exists a group surjection : Aut O ( tors ) Gal( ab / O ) such that ker( ) = Aut( ) and the following diagram Gal( ( tors )/ ) Aut O ( tors )

	(7.21)	
	This shows that the following diagram Gal( • ab / ) Aut ∼ 0 Gal( ab / O ) commutes, where the map Gal( ( tors )/ ) 204 Gal( ab / ∩ ab ) is the canonical restriction. * ∼ Let us see how to de ne the map . First of all, let Chapter 7 Gal( ab / ∩ ab ) : Aut O	(7.20)

O ( tors )/Aut( )

Gal( ab / ∩ ab ) Gal( ab / O ) Aut O (( 0 ) tors )/Aut( 0 )

  ( ) = • • -1 , and Λ : O / × ∞ -→ ∼ Aut O ( /Λ) is induced by the map which sends ∈ O to the automorphism /Λ -→ • /Λ. Now, applying Theorem 7.1.25 with = we see that there exists a unique group homomorphism : A × → × with open kernel, such that the following diagram is the canonical projection and : A × → O is the group homomorphism given by ( ) := ( ) • N / ( -1 ). Since the vertical maps appearing in (7.22) are surjective, to show that the diagram (7.21) commutes it is su cient to show the commutativity of the following square

		A ×	O •	∞ O / ×
	[ •, ]	( tors )		∼	-1	(7.22)
	Gal( ( tors )/ )		Aut O ( tors )
	commutes, where O : O	O / × ∞ A ×		O / × ∞
	[ •, ] ab			O	(7.23)
	Gal( ab / ∩ ab )		Gal( ab / O )
	obtained by gluing (7.22) above (7.21). Now, since		

-1 = * • Λ , where * : Aut O ( /Λ) -→ ∼ Aut O ( tors ) is 7.3 Bounding the index of the image of Galois for elliptic curves with complex multiplication de ned as * × ⊆ ker( [•, ]) we have that O

  for in nitely many elliptic curves which are de ned over the ring class eld O and have complex multiplication by the order O. These elliptic curves are precisely the ones satisfying Shimura's condition, which was de ned in De nition 7.1.30. On the other hand, we show in Theorem 8.3.7 that there exist also in nitely many elliptic curves de ned over the ring class eld O which have complex multiplication by O and do not satisfy Shimura's condition. For these elliptic curves, Corollary 8.3.4 shows that |Aut

	3.4, where we prove
	that that the bound
	|Aut O ( tors ) : Im( )| ≤
	provided by Theorem 7.3.1 is optimal. More precisely, for every imaginary quadratic order O
	we can combine Corollary 8.3.4 and Theorem 8.3.6 to see that
	|Aut O (

tors ) : Im( )| = := |Aut( )| • [ : ab : O ] O ( tors ) : Im( )| = 1 206 Chapter 7 The theory of complex multiplication

  asserts that the image of has nite index in GL 2 ( Z). However, explicitly describing this image is a non-trivial problem in general, which is connected to the celebrated Uniformity Conjecture[START_REF] Serre | Propriétés galoisiennes des points d'ordre ni des courbes elliptiques[END_REF] § 4.3]. A rst step in this direction is to study the entanglement of the family { ( [ ∞ ])} for prime, i.e. to describe the image of the natural inclusion ]) denotes the compositum of the family of elds { ( [ ∞ ])} ∈ . In this case one says that the family { ([ ∞ ])} ∪ { ( [ ∞ ])} is linearly disjoint over . The rst goal of this paper is to prove Theorem B (see also Theorem 8.2.6), which provides an analogous statement for CM elliptic curves.A key ingredient in the proof of Theorem B is Proposition 8.2.2, which can be seen as an explicit version of Deuring's analogue, for CM elliptic curves, of Serre's Open Image Theorem (see[START_REF] Serre | Propriétés galoisiennes des points d'ordre ni des courbes elliptiques[END_REF] § 4.5]). More precisely, if / is an elliptic curve with complex multiplication by an order O in an imaginary quadratic eld , the extension ⊆ ( tors ) is abelian. This shows that the image of has in nite index in Aut Z ( tors ) GL 2 ( Z), and in particular the conclusion of Serre's theorem does not hold in this setting. Nevertheless, the elements of Gal( / ) act on tors as O-module automorphisms, so that the image of is contained in the subgroup Aut O ( tors ) ⊆ Aut Z ( tors ). Then Proposition 8.2.2 says that (Gal( ( [ ])/ )) = Aut O ( [ ]) for every prime ∉ and every ∈ N. Hence one has the inclusionAut O ( [ ∞ ]) ⊆ Im( ) := (Gal ( ( tors )/ ))which can be used to show, as Deuring did, that Im( ) ⊆ Aut O ( tors ) has nite index. Proposition 8.2.2 is proved using some results concerning formal groups attached to CM elliptic curves, which are recalled in Section 8.1. We point out that another proof of Proposition 8.2.2 can also be deduced from previous work of Lozano-Robledo, as explained in Remark 8.2.3.The condition ( tors ) ⊆ ab was introduced by Shimura in [Shi94, Theorem 7.44], and we have provided a possible generalisation of this condition in De nition 7.1.30. Shimura also shows in [Shi94, Page 217] that, if is an imaginary quadratic eld with absolute discriminant Δ -1 (3), then there exists an elliptic curve de ned over the Hilbert class eld with complex multiplication by O such that ( tors ) ⊆ ab . We generalise Shimura's result in Theorem 8.3.6 by proving that, for every imaginary quadratic eld and any order O ⊆ , there exist in nitely many ellipic curves / O with complex multiplication by O which satisfy Shimura's condition, i.e. such that the extension ⊆ O ( tors ) is abelian. Here O denotes the ring class eld of relative to O (see [Cox13, § 9]), which is an abelian extension of coinciding with the Hilbert class eld when O = O . We also show in Theorem 8.3.7 that there exist in nitely many elliptic curves / O which have complex multiplication by O and do not satisfy Shimura's condition. For these elliptic curves, we show in Corollary 8.3.4 that the whole family of division elds { O ( [ ∞ ])} is linearly disjoint over O .

	While Proposition 8.2.2 (combined with Lemma 7.2.4) gives the identi cation
		Gal( ( [ ])/ ) (O/ O) ×	(8.2)
	for every ∈ N coprime with , we prove in Theorem 8.3.1 that, if the extension ⊆ is
	abelian and ( tors ) ⊆ ab , the isomorphism (8.2) does not hold for in nitely many ∈ N not
	coprime with . Theorem 8.3.1 extends results of Coates and Wiles (see [CW77, Lemma 3]) and
	Kuhman (see [Kuh78, Chapter II, Lemma 3]) using the ray class elds for orders constructed in
	Section 6.2.		
	Gal( ( tors )/ ) ↩→	Gal( ( [ ∞ ])/ )	(8.1)
	where the product runs over all primes ∈ N. For each non-CM elliptic curve / this has
	been done in [CS19] by Campagna and Stevenhagen. They identify a nite set of "bad primes"
	(depending on and ) such that the map (8.1) induces an isomorphism
	Gal( ( tors )/ )	Gal( ( [ ∞ ])/ ) ×

∉ Gal( ( [ ∞ ])/ ) ∼ where ( [ ∞ ∉

  3 Using (8.6) with Φ = [ ] and Step 2, after recalling that lies over P, one can see that the group ( P ) contains a point of exact order . We now apply Lemma 8.1.2, and the hypothesis Δ , to get

	Remark 8.2.3. As we already stated in the introduction, Proposition 8.2.2 can be obtained by
	combining various results of Lozano-Robledo. More precisely, see [Loz16, Proposition 5.6] for
	the inert case, and the proof of [Loz18, Theorem 6.10] for the split case. The arguments used by
	Lozano-Robledo for the inert case involve a formula for the valuation of the coe cient of
	in the power series [ ] ( ) ∈ O	(see [Loz13, Theorem 3.9]

ℎ ( -1) ( ℎ -1) ≤ P ( ) = (P/ ) = (P/(P ∩ O )) ≤ [ : ] ≤ -1 ( -1).

(8.9)

where ℎ ∈ N denotes the height of the reduction modulo P of the formal group . Since the latter is precisely the formal group associated to the ordinary elliptic curve P , we have that ℎ = 1 by [Sil09, Chapter V, Theorem 3.1]. Thus all the inequalities appearing in (8.9) are actually equalities, and we see at once that (P/(P ∩ O )) = [ : ] = -1 ( -1), which implies that , is an isomorphism, and that P ∩ O is totally rami ed in . This concludes the proof.

  Division fields of CM elliptic curves: ramification and entanglement given by the Anordnungsatz for ring class elds (see Remark 6.2.15), where O denotes the unique order of conductor (see Example 6.2.8). Now, the class number formula [Cox13, Theorem 7.24] yields

8.2

  Minimality of division fieldsBy Proposition 8.4.1, which is proved in the next section, the Galois representation, : Gal( O ( [ ])/ O ) ↩→ (O/ O) × is not surjective. This in particular implies that O ( [ ]) = ,O . It follows from Proposition 8.3.3 that O (( ) tors ) = ab .To conclude the proof, we want to show that the in nitely many elliptic curves with ⊆ O chosen as above, are pairwise non-isomorphic over O . To do so, it su ces to prove that the elds O ( √ ) associated to the quadratic twists are pairwise distinct. But this follows from Proposition 8.2.1 and Proposition 8.2.2, which show that the extension O ⊆ O ( √ ) is rami ed at all primes of O lying above and unrami ed at all primes of O which do not divide • • O O , because O ( √ ) ⊆ O ( 0 [ ]). This nishes the proof.

( ) 0 denotes the twist of 0 by ∈ × O .

8.

3 

  2 1, 1 ∪ 2, 1 ). Again ⊆ O ( √ 1 ) is a non-abelian extension. Moreover, we have that O ( √ 0 ) ≠ O ( √ 1 ), since the prime 1, 1 rami es in the extension O ⊆ O ( √ 1 ), but the same prime does not ramify in O ⊆ O ( √ 0 ). Repeating this process, we construct an in nite set of pairwise distinct quadratic extensions { O ⊆ O ( √ ) : ∈ N} that are non-abelian over . This concludes the proof.

  and ( ) are isomorphic over 8.4 Entanglement in the family of division fields of CM elliptic curves over Q if and only if and represent the same class in × /( × ) 2 , i.e. if and only if ( Proposition 8.4.1 -Twisting and surjectivity of Galois representations Let O be an order of discriminant Δ O < -4 in an imaginary quadratic eld , and let O be the ring class eld of relative to the order O. Consider an elliptic curve / O with complex multiplication by O, and x ∈ × O . Then, for every invertible ideal ⊆ O, the surjectivity of the Galois representation , de ned in Lemma 7.2.4 determines the surjectivity of ( ) , as follows: 1 if , is surjective, then ( ) , is surjective if and only if O ( [ ]) ≠ ,O ( √ ) where ,O is the ray class eld of modulo relative to O (see De nition 6.2.11); 2 if , is not surjective, then ( ) , is surjective if and only if

	√	) = (	√	).

  Table A.7.: Tempered re exive polynomials with Newton polygon Δ (1) -Δ (8) (see Table A.5). Here

	16)	125	1 + 2	1	2 + 2	3 + 3 ( 2 + ) + 1
			1 2 ∈ { 0 -2 , 0 -1 , 0 0 , 0 1 , 0 2 , 1 0 , 1 1 , 1 2 , 2 2 , 2 3 , 3 4 , 4 6 }.

and

∈ {0, 1, 2}. Moreover, we have that ∈ {-1, 0, 1, 2, 3}, and ∈ {±1}.

  Table A.8.: Weierstraß equations for the elliptic surfaces de ned in Table A.6 and Table A.7.
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Chapter 2 Cohomology theories, motives and regulators

2.1What is a cohomology theory?

sequence (2.2) for the corresponding cohomology theory • : (V * ) op → A Z , if V * is de ned simply to be the category of triples ( , , ) where → and → are two objects of V * . Moreover, • satis es the excision axiom (see De nition 2.1.4) with respect to all the morphisms ∈ Arr(V * ) corresponding to a square (2.5) such that the associated squareΓ V ( ) Γ V ( ) Γ V ( ) Γ V ( ) Γ V ( )

2.2 Various categories of motives

2.4 Regulators

3.2 Constructing the motivic -functions

Chapter 3 L-functions and their special values

3.3 Conjectures on motivic -functions

Chapter 3 L-functions and their special values

Chapter 6 Ray class fields for orders

( ) : ( ⊗ Q ) × → ( ⊗ Q ) ×

Chapter 8 Entanglement in the family of division fields of CM elliptic curves

are linearly disjoint over . Moreover, Proposition 8.2.2 shows that Gal( ( 1 [ ])/ ) (O/ O) ×

,

, ( ) = -2 + ( 1 + 2 ) ( + 1) + 2 (2 -1 2 -( 1 + 2 ) 2 ) -( 1 2 + 2) ( 2 ) + 1 ( 1 , 2 ,

,

) = ( 1 + 4 ) 2 + ( 2 + 3 ) 2 + 1 2 3 4 -4
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Remark 4.1.17. A fundamental partial result towards a complete proof of Conjecture 4.1.16 has been recently shown by Smyth in [START_REF] Smyth | Closed sets of Mahler measures[END_REF]. More precisely, for every matrix ∈ Mat × (Z) and every Laurent polynomial ∈ C[ ±1 1 , . . . , ±1 ] we de ne

and we set M ( ) := lim --→ M ( ) where M ( ) := { ( ) | ∈ Mat × (Z)} \ {-∞}. Then

Smyth proves that M ( ) ⊆ R is closed, for every Laurent polynomial ∈ C[ ±1 1 , . . . , ±1 ], and that if 0 ∈ M ( ) and ∈ Z[ ±1 1 , . . . , ±1 ] \ Z then 0 is an isolated point of M ( ). In other words, the Mahler measure function : Z[ ±1 1 , . . . ] \ {0} → R ≥0 satis es the Bogomolov property (in the sense of De nition 1.1.7) when restricted to each set of the form

such that 0 ∈ P ( ), where ∈ Z[ ±1 1 , . . . , ±1 ] \ {0} is a xed polynomial. Finally, Smyth shows that the set ∞ appearing in (4.15) can be written as the nested union

where ( ) ∈ Z[ 1 , . . . , 2 ] denotes the polynomial ( ) := 2 =1 (-1) . In order to prove that Conjecture 4.1.16 implies indeed a positive answer to the weak Lehmer problem (as stated in Question 4.1.14) we need the following theorem, which is originally due to Lawton (see [START_REF] Lawton | A problem of Boyd concerning geometric means of polynomials[END_REF]), and has been revisited recently by Dimitrov Let ∈ Z[ ±1 1 , . . . , ±1 ] \ {0} and let := |{j ∈ Z | j ( ) ≠ 0}|, where j ( ) ∈ Z denotes the j-th coe cient of (x) = j j x j written in multi-index notation. Suppose that ≥ 2, and x a = ( 1 , . . . , ) ∈ Z \ {0} such that for some function : N 2 → R. In particular, we have that lim (a)→+∞ ( ( 1 , . . . , )) = ( ) related to the special values of certain explicitly de ned modular forms of weight three and four, respectively (see [START_REF] Boyd | The many aspects of Mahler's measure. Final report of a Workshop at the Ban International Research Station[END_REF]§ 8] and [BZ20, § 6.2]).

Continuing with our historical introduction, the next crucial step to be mentioned consists in Boyd's extensive numerical computations, published in [START_REF] Boyd | Mahler's measure and special values of -functions[END_REF]. These numerical computations concerned certain explicitly given families of Laurent polynomials ( , ) ∈ Z[ ] [ ±1 , ±1 ], whose zero locus ⊆ G 2 ,Z is birationally equivalent to an elliptic curve for almost all values of ∈ Z. The rst example of such a family is given by

whose zero locus is birationally equivalent to the elliptic curve given by the Weierstraß equation

for every ∈ Z \ {0, ±4}. Boyd computed numerically that for every ∈ Z \ {0, ±4} such that | | ≤ 40 the ratio

seemed to be a rational number, and in fact an integer for every | | ∉ {2 3 , 2 4 , 2 5 , 3, 5, 12, 15}. Here * ( , 0) = ( , 0) denotes the special value of the -function of at = 0. Note that in this case Conjecture 3.3.4 and Conjecture 3.3.6 hold for the -function ( , ) := ( 1 ( ), ) thanks to the modularity theorem. We recall that ( -( , )) = ( (-, )) = ( ( , )), hence it is su cient to study only positive values of . Moreover, the Weierstraß equation (4.22) shows that is de ned over Q as soon as 2 ∈ Q, which originated some interest also in the ratios ( √ ) for ∈ Z. Other families of polynomials that were studied by Boyd are described in Appendix A.1. For now, we content ourselves with remarking that most of these families were tempered, in the sense of the following de nition.

De nition 4.2.7 -Tempered polynomial

Let ∈ [ ±1 1 , . . . , ±1 ] be a Laurent polynomial with coe cients in a ring , and let ↩→ G

, denote its zero locus inside the split algebraic -torus G , de ned over . Fix an embedding : ↩→ of inside a proper -scheme . Then is said to be tempered with respect to if there exists ∈ , M ( ) such that * ( ) = { 1 , . . . , } ∈ , M ( )

where { 1 , . . . , } := { 1 } ∪ • • • ∪ { } denotes the cup product of all the motivic cohomology classes { } ∈ ] be an irreducible Laurent polynomial in two variables, and denote by Δ ⊆ R 2 its Newton polygon, which is de ned to be the convex hull of the set of indices j ∈ Z 2 such that j ( ) ≠ 0, where { j ( ) : j ∈ Z 2 } ⊆ C denote the coe cients of the polynomial ( 1 , 2 ) = j j ( )x j written in multi-index notation. Fix a smooth, projective 4. 2 Mahler measures and special values of -functions: an historical introduction which already appeared in (2.28). Here , ∈ ( ) × is any pair of functions, and

denotes the class of the tensor ⊗ inside the quotient.

Let now E → Spec(O ) be the minimal regular model of (see [START_REF] Liu | Algebraic geometry and arithmetic curves[END_REF]§ 9.3.3]), and denote by E its bres at di erent primes ⊆ O . Then for every ∈ and every pair of functions , ∈ ( ) × such that , ⊆ E reg , where , denotes the set of zeros and poles of and , we have that

, ∈Z/ ( ) , ( ) , ( + ) 3 ( ) (4.37)

where:

• ( ) ∈ N denotes the number of connected components of E , which is a Néron polygon (see [START_REF] Silverman | Advanced topics in the arithmetic of elliptic curves[END_REF] Chapter IV, Theorem 8.2]) because we are assuming that has split multiplicative reduction at . We note that ( ) = ord (Δ ( )) where Δ ( ) ∈ denotes the minimal discriminant of the base change of to the -adic completion of (see [START_REF] Silverman | The arithmetic of elliptic curves[END_REF] Chapter VII, § 1]);

• for every function ℎ ∈ ( ) × with divisor div(ℎ) = ord (ℎ) [ ] whose support ℎ is contained in the smooth part of the bre E for some ∈ , we write ℎ, : Z/ ( ) → Z ↦ → ord (ℎ) , ( ) where , ( ) = 1 if and only if lies in the -th component of the Néron polygon E , and , ( ) = 0 otherwise;

• 3 ( ) := 3 -3 2 2 + 1 2 is the third Bernoulli polynomial; • { / ( )} denotes the unique representative of the quotient / ( ) ∈ Q/Z such that 0 ≤ { / ( )} < 1.

Thus if one proves that { , } ∈ ker( ) then one can combine Theorem 4.4.2 with (4.36) to obtain Theorem 4.4.1. Let us see what this entails in practice, by studying a di erent family of polynomials appearing in Boyd's numerical investigations (see [START_REF] Boyd | Mahler's measure and special values of -functions[END_REF]Table 2] and Appendix A.1).

Theorem 4.4.3 -Beilinson's conjecture and a polynomial family

] denote the family of polynomials

with zero locus ↩→ G 2 . Denote by the curve de ned by the Weierstraß equation : 2 + -2 = ( -1) 3 (4.38)

which is birationally equivalent (over Q) to . Then the validity of Beilinson's conjecture (see Conjecture 3.3.18) for the motive 1 ( ) implies that

for every ∈ Z \ {-6, 2, 3}.

Proof. The polynomial is evidently tempered (see Remark 4.2.8) and reciprocal, hence we can apply [Bor15, Corollary 1.9] (see also [START_REF] Lalín | The Mahler measure of a genus 3 family[END_REF]Equation 9]) to see that there exists a homology class ∈ sing 1,-1 ( (C) reg ; Z) such that

for every ∈ Z \ {-6, 2, 3}. We note in passing that if ∈ {-6, 2, 3} then T 2 ∩ (C) sing ≠ ∅, and the Weierstraß equation (4.38) is singular. One can indeed show that

( 2 ) = ( + ) + ( + 1) + ( + 1) = 0

( 3 ) = ( + + 1) + ( + + ) = 2 ( -3 , -1)

where the rst result is due to Rodriguez Villegas (see [START_REF] Boyd | Mahler's measure and special values of -functions[END_REF] Page 54]), the second is easy to show (see also Theorem 4.1.15) and the third follows from the computations of Smyth (see Theorem 4.2.4). Observe now that we have a birational identi cation

whose inverse is given by

where the coordinates ( 1 , 2 ) on are induced by and the coordinates ( , ) on are given by the Weierstraß equation (4.38). Hence to conclude the proof it is su cient to show that for every prime ∈ we have that ({ , }) = 0, where is the map de ned in (4.37), and , ∈ Q( ) × denote the functions

Chapter 4 An introduction to the Mahler measure appearing in (4.42). To do so, we use the explicit formula (4.37), and in particular we show that for each prime ∈ and every ∈ Z/ ( ) we have that , ( ) = , ( ) = 0. This is done by studying the order of the images of points ∈ , in the Néron component group

where 0 (Q ) ⊆ (Q ) denotes the subgroup of points with non-singular reduction. More precisely, we use the fact that

for every ∈ and every pair of points , ∈ (Q). This is combined with the explicit form of the divisors of and , which is given by div

where [-1] : → is the inversion map, and := (3 -, ( -2) 2 ) ∈ (Q) [6] = (Q) tors denotes the generator of the torsion subgroup of (Q), whose multiples are given by

Let us dive into the details of the proof. First of all, we de ne two polynomials:

which are the 4 -invariant and the discriminant of the Weierstraß equation (4.38) (see for example [Sil09, Chapter III, § 1]). Then we know by [Sil09, Chapter VII, Proposition 5.1] that ∈ if and only if ∈ N is a rational prime such that | Δ( ) and 4 ( ). Suppose that ≥ 3 and | ( -2). Then | Δ( ) and ( -3), which implies that 4 ( ) because 4 ( ) = ( 3 -24( -2)). This shows that ∈ and also that the Weierstraß equation (4.38) is minimal at the prime (see [Sil09, Chapter VII, Remark 1.1]). Thus ( ) = ord (Δ( )) = 3, and the reduction of modulo is given by the curve 2 + 2 -2 = ( -1) 3 , which is singular exactly at the points 2 = 4 = (1, 0). This shows that ord

which in turn implies, as we have seen, that , ( ) = 2 , ( ) = 4 , ( ) = 5 , ( ) and 3 , ( ) = 0, ( ) for every ∈ Z/ ( ). Finally, we see that

Proof. Let ( , ) := 2 + 2 -2 2 -1, and observe that = 2 2 ( ( , ) -) where

which implies that ( ) = ( ( , ) -). Hence we can apply Theorem 4.4.9 to the polynomial . Since we have that = 3 and

. This shows that ker(Ξ ) ∩ N = 0, and combining this with (4.50) we see that [ ] 0 = 0 for every ∈ Z ≥1 . Finally, (4.49) gives us the equality

sense of De nition 3.3.14, then the identity (5.2) holds true, up to a rational number, i.e. * ( 1 (15), -1)/ ( ) ∈ Q × (see [Lal15, Theorem 2 and § 4.1]). We illustrate at the end of this chapter how the cohomological methods developed to explain Maillot's trick can be used to approach the identity (5.2).

Maillot's trick, exactness of polynomials and Smyth's results

The aim of this section is to introduce the surprisingly simple observation supporting Maillot's "trick" to compute the Mahler measure of polynomials which escape the framework of Question 4.2.9. This is connected with the notion of exactness of a polynomial, which we also review. We focus in particular on the two identities ( + + 1) = ( -3 , -1) and

( + + + 1) = -14 (-2), proved by Smyth in [START_REF] Smyth | On measures of polynomials in several variables[END_REF] (see also Theorem 4.2.4), which are our guiding examples throughout this chapter.

Just as a di erential form is said to be exact if and only if the cohomology class it represents vanishes, so a Laurent polynomial ∈ [ ±1 1 , . . . , ±1 ] with coe cients in a ring is said to be exact if the motivic cohomology class { 1 , . . . , } ∈ , M ( ) vanishes, where ↩→ G is the zero locus of and { 1 , . . . ,

] \ {0} is an exact polynomial, such that the Deninger cycle ⊆ (C × ) de ned in (4.24) has no boundary, and suppose that satis es the hypotheses of Theorem 4.3.4. Then the formula (4.33) shows that ( ) = log| 0 |, where 0 ∈ C × is the number appearing in Lemma 4.3.2. In particular, if ∈ [ ±1 1 , . . . , ±1 ] \ {0} for some ring ⊆ C then 0 ∈ , hence we see that ( ) is rather uninteresting. We note in passing that, in order to have the equality ( ) = log| 0 |, it is su cient to have that the Deligne-Beilinson cohomology class reg ({ 1 , . . . , }) ∈ , D ( reg ) vanishes, where reg denotes the regular locus of and reg denotes the Deligne-Beilinson regulator (see Example 2.4.6). Despite these initial comments, there are in fact many examples of exact polynomials which are known to have interesting Mahler measures. In particular, either the Deninger cycle associated to these polynomials has a boundary, or these polynomials do not satisfy the hypotheses of Theorem 4.3.4. The rst examples of polynomials of this kind are in fact given by the linear forms 2 ( , ) = + + 1 and 3 ( , , ) = + + + 1 studied by Smyth (see Theorem 4.2.4). These two polynomials are exact because the varieties de ned by them are clearly rational, hence their motivic cohomology groups 2,2 M ( 2 ) and 3,3 M ( 2 ) vanish altogether, as it follows from the A 1 -invariance of motivic cohomology and Borel's theorem on the -theory of number elds (see Section 2.3.1). Nevertheless, it is easy to see that the two Deninger cycles 2 and 2 have a boundary, and it is indeed this boundary which is interesting. For example, the boundary of 2 is given by the points ( 6 , -1 -6 ) and ( 6 , -1 -6 ), where 6 := /3 = (1 + √ -3)/2 is a primitive sixth root of unity. In particular, in this case we can view 2 as a sub-scheme of 2 . Hence it makes sense to consider the relative long exact sequence in motivic cohomology
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Chapter 5 Mahler measures of exact polynomials from which we see that there exists a motivic cohomology class 2 ∈ 1,2 M ( 2 ) such that ( 2 ) = { , }. Now, we can apply Theorem 4.3.4 (whose hypotheses are satis ed by 2 ) to get:

where the last equality follows from Stokes's theorem. Clearly the period pairing is simply given by the evaluation of a function at the points of 2 . This function, it turns out, is given by the Bloch-Wigner dilogarithm (see [Zag07, Chapter I, § 3]), and this allows one to compute that

( 2 ) = ( -3 , -1), as was shown by Smyth (see Theorem 4.2.4) with a di erent, analytically avoured proof. We refer the interested reader to [START_REF] Lalín | Mahler measure of some -variable polynomial families[END_REF]§ 4] for the details of this new proof of Smyth's result. The key point to remember, which is also useful in our discussion, is that the restriction of the di erential form 2 (see Proposition 4.3.1) to 2 is exact, and a primitive is given by the Bloch-Wigner dilogarithm. Thus the regulator ∞

2

( 2 ) is simply given by the restriction of the Bloch-Wigner dilogarithm function to 2 . We refer the interested reader to Vandervelde's work [START_REF] Vandervelde | The Mahler measure of parametrizable polynomials[END_REF] for a formula which computes the Mahler measure of every genus zero polynomial ( , ) ∈ C[ , ], which is automatically exact, and to Guilloux's and Marché's work [START_REF] Guilloux | Volume function and Mahler measure of exact polynomials[END_REF], which computes a general formula for the Mahler measure of any exact two-variable polynomial, in terms of the primitive of the di erential form 2 .

Moving on to the three-variable polynomial 3 = + + + 1, we see that 3 is not zerodimensional, but it is a closed path inside (C × ) 3 . It is at this point that Maillot's insight, which is epitomised in the next result, kicks in.

Proposition 5.1.1 -Maillot's trick Let ∈ C[ ±1 1 , . . . , ±1 ] \ {0} be a Laurent polynomial, and let ⊆ (C × ) be Deninger's cycle, which was de ned in (4.24). Then we have that

where † ( 1 , . . . , ) := ( -1 1 , . . . , -1 ) (see De nition 4.1.11).

Proof. Take z = ( 1 , . . . , ) ∈ . Then z ∈ T , hence -1 = for every ∈ {1, . . . , }. This implies that † (z) = ( -1 1 , . . . , -1 ) = ( 1 , . . . , ) = 0 which allows us to conclude.

Remark 5.1.2. If ∈ C[x ±1 ] \ {0} is written in multi-index notation as (x) = j j x j , then † (x) = j j x -j . Hence † = * := ( -1 1 , . . . , -1 ) for every polynomial ∈ R[ ±1 1 , . . . , ±1 ]. Now, the reason why Maillot's insight is so important is that one can consider cohomology and homology groups relative to := ∩ † rather than ⊆ . More precisely, we clearly have that

) and moreover the relative cohomology long exact sequence is just given by the intersection 2 = ∩ * , and the desingularisation 1 1 is given by the disjoint union 1 = * . Since and * are both rational and de ned over the number eld Q, we see that 3,3 M ( 1 ) = 0. This is enough to show that is 1-exact (with respect to motivic cohomology), because the restriction map * 1 : 3,3 M (G 3 ) → 3,3 M ( 2 ) factors through 3,3 M ( ) = 0. Thus, we can indeed aim at constructing a motivic cohomology class 2 ∈ 2,3 M ( 2 ) such that ( 2 ) = 1 . Using the explicit description of 2,3 M ( 2 ) as the second cohomology of the complex Z •, 3 ( 2 ), one sees that a particularly good way of representing 2 is by taking the di erence of two primitives (in the complex Z •,3 ) of the restriction of the cycle Γ , , ⊆ G 3 × 3 to the subvarieties , † ↩→ G 3 . This leads to a closed cycle representing 2 . Doing this concretely in our situation amounts to the following explicit computation.

Proposition 5.3.1 -An explicit Maillot cycle

Let ( , , ) := -(1 -) (1 -), and let , * ↩→ G 3 be the zero loci of and its reciprocal * ( , , ) := ( -1 , -1 , -1 ). We denote also by := ∩ * the intersection of these two sub-schemes.

Let := P 1 \{1}, whose coordinate is denoted by . Using this notation, we can introduce the closed sub-scheme

given by those pairs ( , ( 1 , . . . , 4 )) ∈ × 4 such that 1 = ( ) and 2 = ( ), as well as

where := 3 . Using a similar notation, we de ne the following closed immersions:

(5.11) which are the constituents of the cycle :

Then the cycle has the property that ( [ ]) = 1 , where 1 ∈ 3,3 M ( ∪ * ) denotes the cup product of the coordinate function symbols { }, { }, { } ∈ [ ] ∈ 2,3 M ( ) denotes the class of in the cohomology of the complex Z •,3 ( ). More precisely, we have that

(5.12)

where : Z 2,3 ( ) → Z 3,3 ( ) denotes the di erential of the cochain complex Z •,3 ( ).

Proof. Using the explicit shape of the di erential introduced in (2.23) we see that

where : × → P 1 denotes the function

already introduced in (5.10). Observe now that the following equations

(5.13) hold on . Moreover, since ↩→ G 3 we have that

and we also have that ∩ { = 1} = ∩ { = 1} = ∅, which follows immediately from a combination of (5.13) with (5.14). Finally, we know that all the coordinates in all the cycles are ≠ 1, because by de nition := P 1 \ {1}. Thus we see that the expression ( †) can be hugely simpli ed, to give

using (5.13). This shows the rst equality appearing in (5.12).

5.3

An explicit computation for 1 (15) Proposition 6.1.3 -Intersections and images of lattices Let be a eld of characteristic zero, endowed with a sub-ring ⊆ such that = Frac( ). Fix a nite dimensional -vector space . Then any pair of -lattices Λ 1 , Λ 2 ∈ L ( ; ) is commensurable, i.e. there exist , ∈ × such that

Suppose now that is a principal ideal domain. Then:

• for every subspace ⊆ and every -lattice Λ ∈ L ( ; ) the intersection Λ ∩ is a -lattice inside ;

• for every surjective map :

and every -lattice Λ ∈ L ( ; ), the image (Λ) ⊆ is again a -lattice.

Proof. To prove the rst assertion we can assume without loss of generality that = and Λ 1 = . Then Λ 2 = • for some ∈ GL ( ), hence there exists ∈ such that ∈ Mat ( ), which implies that Λ 2 ⊆ Λ 1 . We can conclude, swapping Λ 1 and Λ 2 in the previous discussion, that there exists ∈ such that -1 ∈ and Λ 1 ⊆ Λ 2 .

Suppose now that is a principal ideal domain. Then:

• to prove the rst point in the list we can assume that = and = for some ≤ , where ↩→ is the inclusion of the rst coordinates. Then Λ ∩ is a torsion-free sub-module of , which is free because is a principal ideal domain (see for instance [START_REF]The Stacks project authors[END_REF]Lemma 0AUW]). Moreover, we observe that rk (Λ ∩ ) = because there exists ∈ such that • ⊆ Λ, hence

which shows that rk (Λ∩ ) ≥ . This allows us to conclude because rk ( ) ≤ dim ( ) for every free sub-module ⊆ ;

• to prove the second point we proceed analogously. More precisely, (Λ) ⊆ is a free module over (again by [START_REF]The Stacks project authors[END_REF]Lemma 0AUW]) and contains a -basis of (because is surjective). This is enough to conclude that (Λ) ∈ L ( ; ), as before.

Fix now a principal ideal domain of characteristic zero and let := Frac( ). We can use Proposition 6.1.3 to de ne two new kinds of operations on -lattices contained in a nite dimensional -vector space , endowed with a -bilinear pairing : ⊗ → : Internal sum there is a map + : L ( ; ) × L ( ; ) → L ( ; ) sending a pair of -lattices Λ 1 , Λ 2 ⊆ to their internal sum Λ 1 +Λ 2 ⊆ (as -modules). This is again a free -module by [SP, Lemma 0AUW], and it is a lattice because it obviously contains a basis.

Internal product if is surjective we can de ne a map

, which is a lattice in virtue of Proposition 6.1.3.

Quotient if the map :

→ End( ) induced by is injective, we can de ne a quotient operation (• : •) : L ( ; ) × L ( ; ) → L ( ; ) by setting
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Chapter 6 Ray class fields for orders for any pair of -lattices Λ 1 , Λ 2 ⊆ . We observe that (Λ 1 : Λ 2 ) is again a lattice thanks to Proposition 6.1.3.

To conclude, we want to apply the previous discussion to number elds. Indeed, every number eld is a nite dimensional Q-vector space, endowed with a Q-bilinear map : ⊗ Q → given by ( , ) := • . We see immediately that is surjective (because is a unital ring) and that : → End Q ( ) is injective (because is an integral domain). Hence the set of Z-lattices L ( ) supports the following three operations:

which satisfy the natural associativity and distributivity properties. Moreover, we observe that for every lattice Λ ⊆ the quotient O Λ := (Λ : Λ) ⊆ O is an order, in the sense of De nition 6.2.1. The lattice Λ then becomes a fractional ideal for O Λ , which is invertible if is an imaginary quadratic eld (see [START_REF] Cox | Primes of the form 2 + 2[END_REF]Proposition 7.4]). Finally, we conclude this section by recalling a result about the behaviour of lattices under localisation and completion (see [Lan87, Chapter 8, § 1]).

De nition 6.1.4 -Localisation and completion of lattices

Let be an integral domain of characteristic zero, endowed with a prime ideal ⊆ , and denote by ( ) ⊆ the localisation and the completion of at the prime . Let := Frac( ) and x to be a vector space over . Then for every prime ⊆ we write := ⊗ Frac( ) and we associate to every lattice Λ ∈ L ( ; ) two lattices

which are the -localisation Λ ( ) ∈ L ( ; ( ) ) and the -completion Λ ∈ L ( ; ) of Λ.

Lemma 6.1.5 -Behaviour of lattices under localisation and completion

Let be a domain of characteristic zero, and let be a vector space over := Frac( ).

Then for every pair of lattices Λ, Λ ∈ L ( ; ) we have that:

and for every lattice Λ ∈ L ( ; ) we have that:

where runs over all the primes of .

6.1 Lattices, idèles and class field theory denotes the idelic norm map, and the complex numbers ( ), ( ) ∈ C are de ned by setting

where Δ ∈ Z is the absolute discriminant of and ( ) ∈ T 1 is the root number, de ned in [RV99, Page 259]. Moreover, ⊆ O denotes the conductor of , which is de ned as the product of prime ideals := ord ( ) , where the integers ord ( ) are de ned by setting ord ( )

where : × → C × denotes the restriction of to the -adic completion of . Finally, ( , ) is entire unless = • -for some ∈ R. In the latter case the -function ( , ) has two poles at = and = 1 + .

Remark 7.1.22. We note that Theorem 7.1.21 uses the analytic normalisation for Heckefunctions, which is the same one used in [START_REF] Ramakrishnan | Fourier Analysis on Number Fields[END_REF].

Remark 7.1.23. The de nition of the conductor ⊆ O of a Hecke character : A × → C × can be extended to any Hecke character : A × → Ω × valued in a topological ring Ω such that the topological group of units Ω × has no small subgroup. This means that there exists an open subset ⊆ Ω × such that 1 ∈ and does not contain any subgroup. In this case we know that the set

is non-empty for every prime ideal ⊆ O , which shows that the de nition (7.10) makes sense.

The typical example of a topological ring Ω such that Ω × has no small subgroup is given by the product of nitely many copies of C.

We have already mentioned in Example 3.3.8 that Theorem 7.1.21 can be seen as one of the few examples in which Conjecture 3.3.4 holds. In order to do this, we need to relate the Hecke -function ( , ) to some motivic -function. This can be achieved for every Hecke character : A × → C × which arises as the Archimedean component of an algebraic Hecke character, as the following result shows (see [Sch88, § 4 and § 5]) Theorem 7.1.24 -Motives for algebraic Hecke characters Let and be two number elds, and let : A × → × be an algebraic Hecke character, as de ned in Remark 7.1.18. Then there exists a motive ∈ MM ( ; ), which is unique up to isomorphism, such that the motivic -function ( ( ), ) :

and that for every Hecke character : A × → (C Φ ) × given by Theorem 7.1.25 there are exactly [ : ] Hecke characters :

Example 7.1.28. If we take = in Theorem 7.1.25 then we have a unique Hecke character : A × → (C Φ ) × which coincides with the usual Hecke character

associated to abelian varieties with complex multiplication (see [START_REF] Shimura | Introduction to the arithmetic theory of automorphic functions[END_REF]Proposition 7.41]). Moreover, in this case we have that × • N / (A × ) = A × . Thus the homomorphism constructed in Theorem 7.1.25 is actually an algebraic Hecke character : A × → × , and = (∞) is the character induced by on the Archimedean components (see Remark 7.1.18).

Remark 7.1.29. Theorem 7.1.25 can be used to show that the -function ( , ) := ( 1 ( ), ) associated to a CM abelian variety can be expressed in terms of -functions for Hecke characters. For a number eld ⊆ C and a CM elliptic curve / which has potential complex multiplication by the order O inside the imaginary quadratic eld , this relation reads (see [Sil94, Chapter II, Theorem 10.5]):

where • ⊆ C denotes the compositum of and inside C. We refer the reader to [Mil72, Pages 187-189] for a discussion concerning general abelian varieties.

We conclude this section by introducing Shimura's condition, which enables one to take to be the as small as possible in Theorem 7.1.25 (see [START_REF] Shimura | Introduction to the arithmetic theory of automorphic functions[END_REF]).

De nition 7.1.30 -Shimura's condiiton

Let be an abelian variety with complex multiplication de ned over a number eld , and let ↩→ End 0 ( ) be any CM algebra of degree [ : Q] = 2 dim( ), which exists by Theorem 7.1.25. Then we say that satis es Shimura's condition if the extension

Conductors of elliptic curves with complex multiplication

Let be an abelian variety with complex multiplication de ned over a number eld ⊆ C. We have seen in the previous section that the Galois representation : Gal( ( tors )/ ) ↩→ Aut Z ( tors ) admits an explicit description, provided by the diagram (7.14), in terms of Hecke characters. For any abelian variety we know, thanks to Grothendieck's monodromy theorem, that the conductor of the ℓ-adic Galois representation

7.1 Abelian varieties with complex multiplication R/Z (R) 0 which are compatible with the orientations, then = 1. Since satis es all the aforementioned properties, the previous discussion shows that it is unique.

Remark 7.4.3. To avoid unnecessary sign issues, whenever we have an elliptic curve de ned over Q which has potential complex multiplication we x implicitly an embedding : ↩→ C and an orientation of (R) 0 .

Let us now introduce the function R : tors → Q which appears in Rohrlich's theorem.

De nition 7.4.4 -The function R

Let be an elliptic curve de ned over Q, which has potential complex multiplication by the ring of integers O of an imaginary quadratic eld ⊆ C. Then we de ne a function

denotes the annihilator of a point ∈ tors , and denotes the conductor of the Hecke character : A × → C × associated to the base-change (see Remark 7.1.27). Moreover, the function : tors → is de ned as

where ∈ O is the unique generator of the ideal Ann O ( ) -1 ⊆ O such that ( -1 ) ∈ G . Finally, ↦ → denotes the complex conjugation map C → C, and for every prime ⊆ O such that we let ( ) ∈ × denote the image of any -adic uniformiser ∈ × ⊆ A × . This image does not depend on the choice of a uniformiser because (O × ) = 1, since . We also denote by R :

Finally, we are ready to state Rohrlich's theorem, and to provide a sketch of its proof.

Theorem 7.4.5 -Beilinson's conjecture at = 2 for CM elliptic curves over Q Let be an elliptic curve de ned over Q having potential complex multiplication by the ring of integers O of an imaginary quadratic eld ⊆ C. Let moreover , : → P 1 be two functions de ned over Q whose zeros and poles are torsion points. Then we have that

where ∞ ( , ) ∈ Moreover, we have that , R (div( )♦ div( )) ∈ Z, where , ∈ N denotes the smallest common multiple of the orders of the zeros and poles of and , which exists because the latter are assumed to be torsion points. Finally, ∈ sing 1 ( ; Q) -denotes the homology class de ned in Notation 2.5.6.

Proof (sketch). We provide a sketch of the proof, pointing at speci c places of [START_REF] Rohrlich | Elliptic curves and values of -functions[END_REF] for details. The key idea, which is incidentally the same idea which supports the work of Deninger [START_REF] Deninger | Higher regulators and Hecke L-series of imaginary quadratic elds I[END_REF][START_REF] Deninger | Higher Regulators and Hecke L-Series of Imaginary Quadratic Fields II[END_REF], is to express a regulator integral in terms of Eisenstein-Kronecker series, and then relate them to the -function using complex multiplication.

Fix : C

(C) to be the complex uniformisation given by Proposition 7.4.2, which allows us to view and as meromorphic on C, which are invariant with respect to translation by the lattice . Using this point of view, we see that which converges for Re( ) > 3/2. We refer the interested reader to [Wei99, Chapter VII, § 12-13] for the basic properties of the Eisenstein-Kronecker series, and we point out that Weil denotes 1 ( , ; ) as 1 ( , 0, ). The proof of (7.28), which appears in [Roh87, Page 375], uses the following two results:

• for every lattice Λ ⊆ C and every elliptic function :

for every ∈ C such that ( ) < 1. Here ( , ; Λ) denotes the double Eisenstein series, which is the analytic continuation of the double series

7. 4 Beilinson's conjecture for elliptic curves with complex multiplication which converges for every ∈ C such that ( ) > 1. The formula (7.30) is proved in [Roh87, Page 372];

• every elliptic function : C/Λ → C can be factored as

where ∈ C and ( ; Λ) := Δ(Λ) 1/12 -( ;Λ)/2 ( ; Λ) is the Siegel function associated to Λ. This can be proved using the factorisation of elliptic functions in terms of the -function (see [Lan87, Chapter 18, § 1]). We observe moreover that ( ) is related to the Eisenstein series ( , ) by the second Kronecker limit formula, which says that

Now, using the diagonal action of

, one can re-write the de nition (7.29) as

where the sum runs over all the diagonal orbits [ , ] Q ∈ (Q) 2 /G Q , and for every point ∈ /Λ tors , the functions ( ) are de ned as

where the sum runs over all the elements in the Galois orbit of ∈ (Q).

To conclude, Rohrlich proves in [Roh87, Pages 381-384] that

for every torsion point ∈ / , where ( ; ) is an explicitly de ned holomorphic function. More precisely, ( ; ) is de ned as follows

where ( ; ) denotes the nite Euler product

To conclude, it is su cient to show that (O) ⊆ O for every ∈ N and every prime ⊆ O , where denotes the completion of at . Indeed, in this case (O) ⊆ O for every ∈ N, and again (8. 3) gives

for every ∈ O. The inclusion (O) ⊆ O is easily seen if lies above a rational prime ∈ N which splits in , because under this assumption O ⊆ Z and (Z ) ⊆ O , since Z is dense in Z and :

→ is continuous with respect to the -adic topology.

For the remaining cases, we refer the reader to the original proof contained in [START_REF] Streng | Divisibility sequences for elliptic curves with complex multiplication[END_REF]. In fact, Streng provides two proofs: one uses the extension of a morphism ∈ End( ) to the connected component of the identity of a Néron model, whereas the other is more elementary, and uses Vélu's isogeny formulas (see [START_REF] Washington | Elliptic curves[END_REF]§ 12.3]).

Let now

⊆ O be a prime of with residue eld and corresponding maximal ideal ⊆ O , where denotes the completion of at . Then [Str08, § 2] shows that there is a unique injective group homomorphism : ( ) → ( ) making the following diagram

commute for every ∈ End ( ), where := ( ) (see Section 8.1.1). Moreover [Sil09, Chapter VII, Proposition 2.1 and Proposition 2.2] imply that ts in the following exact sequence 0 → ( ) -→ ( ) --→ ( ) → 0 in which denotes the reduction of modulo and : ( ) ( ) is the canonical projection. Taking torsion and using (8.5) we get a left-exact sequence (extensively used in the next section): 

( 2 -1), which implies that , is an isomorphism, and that ∩ O is totally rami ed in . This concludes the proof of the inert case.

Suppose now that splits in , so that O = , where is the image of under the unique non-trivial automorphism of . If we put again := ( [ ]), the injectivity of , gives

It is convenient in this case to work inside the bigger division eld := ( [ ]), which contains both and := ( [ ]). We then x , ⊆ O to be two primes of , lying respectively above O and O , and we denote by P := ∩ O and P := ∩ O the corresponding primes in . For every prime ideal ∈ { , } we denote by the -adic completion of , with ring of integers O and residue eld , and by the reduction of / modulo . We use analogous notation for P and P. The goal is to compute the rami cation index (P/P ∩ O ), and we divide our argument in three steps.

Step 1 First of all, we prove that the reduction map [ ] → ( ) is injective. This is equivalent to say that ker( P ) ∩ ( P ) [ ] = 0, where P : ( P ) P ( P ) ⊆ ( ) Remark 8.2.8. Let be a number eld and / be an elliptic curve with complex multiplication by an order O in an imaginary quadratic eld ⊆ . Denote by ⊆ N the set of primes dividing , as in Theorem 8.2.6. In this general setting, it is an interesting question to study the entanglement in the nite family of "bad" division elds { ( [ ∞ ])} ∈ , as we do in Section 8.4 where we specify = and to be the base-change of an elliptic curve de ned over Q.

A rst step towards a complete answer to the previous question in the general setting is to nd the minimal set ⊆ such that the family of division elds

is linearly disjoint over . We partially answer the latter question in Corollary 8.3.4, where we prove that one can take = ∅ for every elliptic curve de ned over the ring class eld Remark 8.2.9. Let be a number eld and be a CM elliptic curve de ned over . Then, even when , we have that ⊆ ( [ ]) for every > 2. This has been showed in [Mur83, Lemma 6] for = Q, and in [BCS17, Lemma 3.15] for arbitrary . In particular, the statement of Theorem 8.2.6 does not hold when .

The description of the set of primes in Theorem 8.2.6 is actually redundant, since all the primes dividing the conductor O , with the possible exception of = 2, also divide the absolute discriminant Δ of the eld of de nition of . This can be seen using the fact that contains the ring class eld ( ( )) = O (see Proposition 7.1.33). Indeed, the following proposition, which is a weaker form of [Cox13, Exercise 9.20], shows that the extension Q ⊆ O is rami ed at all the odd primes dividing the conductor O , and thus allows us to conclude that for every prime ∈ N such that ≥ 3 we have that Let O be an order inside an imaginary quadratic eld , and let / O be an elliptic curve with complex multiplication by O. Then we have that

In for every ∈ N with ≥ 2. Since ( ) ∉ {0, 1728}, this implies that the Galois representation Remark 8.3.5. The previous Corollary 8. 3.4 generalises [Loz19, Theorem 1.3], whose proof will appear in the forthcoming work [Loz]. Indeed, if /Q is an elliptic curve with complex multiplication by an order O in an imaginary quadratic eld then we clearly have that ( tors ) ⊆ ab , hence Corollary 8. We have seen that, for a CM elliptic curve de ned over an abelian extension of the CM eld , having a minimal division eld is essentially equivalent to Shimura's condition (see De nition 7.1.30), i.e. to the property that torsion points of generate abelian extensions of (and not only of ). It seems then natural to ask whether, for a xed order O in an imaginary quadratic eld , there exists any elliptic curve with complex multiplication by O and de ned over the ring class eld O (the smallest possible eld of de nition for ) with the property that ,O ( √ ) for every ∈ O and every ∈ Z ≥1 . We want now to derive some consequences of Proposition 8.4.1 when ∈ Q × , the class group Pic(O) is trivial, and the elliptic curve / is the base change to the imaginary quadratic eld = O of an elliptic curve de ned over Q. To do this, we make an essential use of Proposition 7.1.32. This result, originally due to Deuring, provides the formula

which relates the conductor of a CM elliptic curve de ned over Q to the conductor of the unique Hecke character : A × → C × associated to its base change over by Theorem 7.1.25 (see also Remark 7.1.27). Now, let / be the base change to an imaginary quadratic eld = O of an elliptic curve /Q of conductor ⊆ Z, and suppose that has complex multiplication by an order O of class number one and discriminant Δ O < -4. Fix also some rational number ∈ Q × . Under these hypotheses, we may assume that = Δ, where Δ = Δ ∈ Z is the fundamental discriminant associated to some quadratic extension Q ⊆ . Since ( ) = ( ( ) ) ( ) for any , ∈ Q × , we reduce the study of the Galois representation (Δ) , , for any prime ∈ Z ≥1 and any ∈ N, to the following cases:

T.1 Δ = (-1) ( -1)/2 for some prime ∈ Z ≥3 with . In this case ( ≥ 3 and Δ = (-1) ( -1)/2 . In this case, class eld theory shows that

where for every ∈ N we let ⊆ Q denote the group of -th roots of unity. Hence, Proposition 8.4.1 implies that (Δ) , has maximal image if and only if , does; Remark 8.4.3. The previous discussion shows in particular that, under suitable hypotheses on Δ, if the Galois representation , is surjective then (Δ) , is surjective. This might not be the case if these assumptions on Δ are not satis ed, as it follows from Theorem 8.4.4.

We are now ready to study the entanglement of division elds of CM elliptic curves de ned over Q such that ( ) ∉ {0, 1728}.

First of all, assume that has complex multiplication by an order O with gcd(Δ O , 6) = 1. Here for some fundamental discriminant Δ ∈ Z, where 0 is one of the two elliptic curves with ( 0 ) = ( ) appearing in Table A.11, which lists the CM elliptic curves de ned over Q whose conductor 0 ∈ N is minimal among its twists.

Let us study the division elds of 0 , as a rst step towards the analysis of the division elds of . Theorem 8.2.6 provides a decomposition Gal( (( 0 ) tors )/ )

Gal( ( 0 [ ∞ ])/ ) (8.17)

where the product runs over all the rational primes ∈ N. Indeed in this case the set 0 appearing in Theorem 8.2.6 consists of the single prime , because an inspection of Table A.11 shows that 0 = 2 . The isomorphism (8.17) implies that the family of division elds { ( 0 [ ∞ ])} is linearly disjoint over , where ∈ N runs over all the rational primes. Proposition 8.2.2 gives also that Gal( ( 0 [ ])/ ) (O/ O) × for every prime ≠ and every ∈ N. On the other hand we have that Gal( ( 0 [ ])/ ) (O/ O) × /{±1} for every ∈ N. Indeed, it follows from (8.16) that 0 = , where ⊆ O is the unique prime lying above and 0 : A × → C × is the unique Hecke character associated by Theorem 7.1.25 to the base-change of 0 over . Hence, Theorem 8.3.1 shows that ( 0 [ ]) =

,O for every ∈ N, where ,O is the ray class eld of modulo because O = O . We can therefore conclude that Gal( ( 0 [ ])/ ) (O/ O) × /{±1}, using Theorem 6.2.20.

Let us now go back to the division elds of = (Δ) 0 . We can assume that Δ, because otherwise Δ = -Δ for some fundamental discriminant Δ ∈ Z, hence (Δ ) 0 , since √ -∈ . Here the symbol means that the two elliptic curves and (Δ ) 0 , which are de ned Let us go back to the division elds of = (Δ) 0 , where we can assume that 3 Δ because √ -3 ∈ . Write now Δ = Δ 2 Δ as above, where Δ 2 ∈ {1, -4, -8, 8} and Δ ∈ Z an odd fundamental discriminant, and let 1 := (Δ 2 ) 0 . Then T.4 shows that 1 ,2 is surjective for every ≥ 3. Moreover, 1 ,3 is surjective for every ≥ 1, which follows from Proposition 8.4.1 after observing that ( 0 [3]) ∩ ( √ Δ 2 ) = because [ ( 0 [3]) : ] = 3. These considerations, together with Theorem 8.2.6, show that Gal( (( 1 ) tors )/ )

with the product running over the rational primes ∈ N such that ∉ , where = {2, 3} and

( 1 [ ∞ ]) denotes the compositum of the division elds ( 1 [2 ∞ ]) and ( 1 [3 ∞ ]). Moreover, T.1 , T.2 , and the previous considerations show that Gal( ( 1 [ℓ ])/ ) (O/ℓ O) × for every prime ℓ ∈ N and every ∈ N. Now, Proposition 8.4.1 shows that

(

) are entangled over , and for every pair of integers , ∈ Z ≥1 we have that

where denotes the compositum of ( 1 [2 ]) and ( 1 [3 ]).

To conclude our analysis of the division elds of = (Δ) 0 , we can observe that = (Δ ) Label all the elliptic curves de ned over Q which have complex multiplication by O as { } ∈Z ≥1 , in such a way that ≤ +1 for every ∈ Z ≥1 . Then < +1 , and the properties of the division elds associated to the elliptic curve depend on as follows: ≤

• the family { ( [ ∞ ])} , where ∈ N runs over all the rational primes, is linearly disjoint over ;

• Gal( ( [ ])/ ) (O/ O) × , for every prime ≠ and every ∈ N;

• Gal( ( [ ])/ ) (O/ O) × /{±1}, for every ≥ -1;

>

• there exist a unique 0 ≤ and a unique fundamental discriminant Δ ∈ Z coprime with , such that

• there is a decomposition Gal( (( ) tors )/ )

where ⊆ N denotes the nite set of primes dividing • Δ , and the product runs over the rational primes ∈ N such that ∉ . Hence the family

is linearly disjoint over ;

• for every ∈ N such that ≥ -1 we have that

which shows that the family { ( [ ∞ ])} ∈ is entangled over ;

• Gal( ( [ ])/ ) (O/ O) × , for every prime ∈ N and every ∈ N;

• for every collection of integers { } ∈ ⊆ Z ≥1 with ≥ -1, we have:

where is the compositum of all the division elds ( [ ]) for ∈ .

8.4 Entanglement in the family of division fields of CM elliptic curves over Q

Mahler measures and elliptic curves with complex multiplication

Faith and mathematical proof are two irreconcilable things.

Fyodor Dostoevsky, A Writer's Diary

This chapter, based on the preprint [START_REF] Pengo | Mahler's measure and elliptic curves with potential complex multiplication[END_REF], studies the special values * ( , 0) = ( , 0) associated to CM elliptic curves de ned over Q, and relates them to the Mahler measure of some two-variable polynomial ∈ Z[ , ] associated to . More speci cally, the aim of this chapter is to prove Theorem A, which asserts that every CM elliptic curve /Q has a planar model

for two explicit numbers ∈ Q × and ∈ Q × . This implies in particular that the zero locus ↩→ G 2 is birationally equivalent to the elliptic curve . The formulas de ning the two numbers and are made precise in Theorem 9.2.4, which provides also the explicit de nition of the polynomial . This polynomial has the following remarkable characteristics:

• in general, is not tempered (see De nition 4.2.7), which implies in particular that the motivic cohomology class { , } ∈ 2,2 M ( ) does not generally extend to the smooth compacti cation . This is the reason for the appearance of the logarithmic term in the identity (9.1). Nevertheless, Mahler measures of non-tempered polynomials have attracted much attention in recent years (see [LSZ16; LM18; MS19; Gia20; Sam20]). Most of them have been related to special values of -functions via formulas comprising a logarithmic term, similarly to what happens in (9.1);

• in general, has a very high degree, and thus the curve ↩→ G 2 is generally highly singular. This is in contrast with the majority of previously known cases of Boyd's conjectures, where the polynomials appearing have small degree (see for instance Section 4.2 or Appendix A.1).

Theorem A ts into the vast landscape of conjectures and results which relate the Mahler measure of a polynomial with special values of certain -functions. We have given an historical introduction to these questions in Section 4.2, and we devote the upcoming Appendix A.1 to list many known examples of such kinds of identities. In particular, we have seen in Question 4.2.9 that these relations often predict that the Mahler measure of a polynomial ∈ Z[ 1 , . . . , ] is a non-zero rational multiple of the special value at = 0 of the -function associated to the motive -1 ( ), where is some desingularisation of some compacti cation of . This type of question, inspired by Boyd's foundational work [START_REF] Boyd | Mahler's measure and special values of -functions[END_REF], investigates the relations which elapse between Mahler measures and special values of -functions starting from the former, and constructing the latter accordingly. It is also interesting to do the opposite, as we expressed in Question 4.2.10. More precisely, it is an intriguing problem to start with the special value of some motivic -function ( , ) and then nd a polynomial whose Mahler measure is related to this special value. We view Theorem A as a step towards a positive answer to Question 4.2.10 for the motives := 1 ( ) associated to CM elliptic curves de ned over Q. Since there are only nitely many Q-isomorphism classes of CM elliptic curves de ned over Q, Theorem A can also be seen as a step towards a positive answer to Question 4.2.11, which refers to the problem of "twisting" identities between Mahler measures and special values of -functions. We remark that most of the research conducted on the subject of Mahler measures and special values of -functions revolves around Question 4.2.9, and not so much around the "inverse problem" posed in Question 4.2.10. Indeed, the only major line of research revolving around Question 4.2.10 is given by Chinburg's conjecture (see Remark 4.2.5) concerning the special values of Dirichlet -functions, which was one of the main inspirations for the work contained in this chapter.

Let us explain what is the strategy behind the proof of Theorem A. We know, thanks to the work of Deninger and Wingberg (see [START_REF] Deninger | On the Beilinson conjectures for elliptic curves with complex multiplication[END_REF]) and Rohrlich (see [START_REF] Rohrlich | Elliptic curves and values of -functions[END_REF]) which is recalled in Section 9.1, that for every CM elliptic curve de ned over Q there exist many pairs of functions , ∈ Q( ) such that the regulator of the Milnor symbol { , } is related to the special value ( , 0). We prove in Section 9.1 that Q( ) = Q( , ), generalising a result of Brunault (see [START_REF] Brunault | Parametrizing elliptic curves by modular units[END_REF]). This allows us to construct the polynomial ∈ Z[ , ] as the minimal polynomial of and . Finally, we can prove Theorem A by relating the regulator of { , } to the Mahler measure of . This is done in Section 9.2, using some generalisations of the seminal work of Deninger (see [START_REF] Deninger | Deligne periods of mixed motives, -theory and the entropy of certain Z -actions[END_REF]) that we recalled in Section 4.3. This chapter makes wide use of the background that was developed in the previous parts of this thesis. First of all, we refer the reader to Chapter 2 for the required background on motives, motivic cohomology and regulators. In particular, Section 2.3.4 is essential to understand the computations presented in this chapter. More speci cally, the results present in this chapter make use of Bloch's trick to construct a motivic cohomology class , ∈ 2,2 M ( ) starting from two functions , : → P 1 whose set of zeros and poles , consists of torsion points. This cohomology class can be expressed as ( ) , }

as we have seen in Example 2.3.14. Here , ∈ N is the least common multiple of the orders of the points of , , which is a natural number because , ⊆ (Q) tors . Moreover, denotes the map de ned in Proposition 2.3.7, and for every ∈ , we denote by ( ) , : → P 1 any function de ned over Q such that div( ( ) , ) = , • (( ) -( 0)). This chapter uses also extensively the Deligne-Beilinson regulator maps

associated to a given variety (see Example 2.4.6). Here •,• D denotes Deligne-Beilinson cohomology (see Example 2.1.22), which was studied more speci cally for curves de ned over the real numbers in Section 2.5. We recall in particular that ∈ 1 ( (C), Q) -denotes the homology 244 Chapter 9 Mahler measures and elliptic curves with complex multiplication class de ned in Notation 2.5.6, which is the Poincaré dual of a di erential form

= 1. Secondly, we refer the reader to Chapter 3 for background on the construction of thefunction ( , ) := ( 1 ( ), ), and to Chapter 7 for background on the theory of complex multiplication. In particular, we recall that ( , ) coincides with the -function ( , -1/2) of the Hecke character : A × → C × associated to the elliptic curve / obtained by basechanging to the imaginary quadratic eld by which has potential complex multiplication (see Theorem 7.1.25 and Remark 7.1.27). This entails that ( , ) has the analytic continuation predicted by Conjecture 3.3.4, and satis es the functional equation expressed by Conjecture 3.3.6. In particular, we have that 4 2 ( , 0) = ( , 2), where ∈ N denotes the unique generator of the conductor ideal ⊆ Z. Moreover, we recalled in Section 7.4 that the weak version of Beilinson's conjectures (see Conjecture 3.3.28) is known for the special value * ( , 0) associated to a CM elliptic curve de ned over Q. More precisely, in this chapter we use the result of Rohrlich recalled in Theorem 7.4.5, which asserts that

for any pair of functions , : → P 1 whose set of zeros and poles , consists of torsion points.

Here the pairing

is the one induced by (2.42). Moreover, R : Q[ (Q) tors ] → Q denotes the function de ned in De nition 7.4.4, and the diamond operator

is de ned in De nition 7.4.1. Finally, we refer the reader to Chapter 4 for an outline of the theory of Mahler measures. In particular, we recall that the Mahler measure of a polynomial ∈ Z[ , ] \ {0} is the real number

which was de ned in De nition 4.1.1. This number is known to be related, under suitable conditions, to some speci c regulator integral, by the foundational work of Deninger [START_REF] Deninger | Extensions of motives associated to symmetric powers of elliptic curves and to Hecke characters of imaginary quadratic elds[END_REF] which we summarised in Section 4.3 (see in particular Theorem 4.3.4). We recall the relevant parts of this work in Section 9.2, and we use it to complete the proof of Theorem A.

Constructing the polynomials

The aim of this section is to associate to every elliptic curve de ned over Q which has potential complex multiplication by the ring of integers O of an imaginary quadratic eld , the polynomial ∈ Z[ , ] appearing in Theorem A. To do so, we study the pairs of functions , : → P 1 de ned in [DW88, Theorem 4.10] and [Roh87, Page 384], for which we have that R (div( )♦ div( )) ≠ 0, and we prove that Q( ) = Q( , ). Hence, if we take ∈ Z[ , ] to be the minimal polynomial of and , we see immediately that is birational to , which was one of the conditions outlined in the statement of Theorem A. The Mahler measure ( ) of is related to ( , 0) in Section 9.2. Hence, combining the current section with the following one, we obtain a complete proof of Theorem A (see also Theorem 9.2.4).

Constructing the polynomials

Proof. The two divisors

as it is clear from the explicit description of the Galois action on torsion points (see [DW88, Section 4] and Section 7.4). Moreover, we have that

For similar reasons we have that

which implies that we can nd two functions , : → P 1 as in the statement of the theorem. Now the identity (9.4) follows from the computations carried out in [DW88, Section 4], after having observed that the regulator used by Rohrlich is twice the regulator used by Deninger and Wingberg (see [Roh87, Page 371] and [DW88, Equation 1.8] for a comparison) and that div( ) is twice the divisor which appears in [DW88, Theorem 4.10].

Remark 9.1.2. It would in principle be possible to prove the identity (9.4) using directly the de nition of R given in De nition 7.4.4. However this seems di cult, given the complexity of the divisors involved in Lemma 9.1.1.

We use now an idea due to Brunault (see [Bru16a, Lemma 3.3]) to prove that the function eld Q( ) is generated, as a transcendental extension of Q, by the functions and .

Lemma 9.1.3 -Generators for elliptic function elds

Let be an elliptic curve de ned over a eld . For every ∈ ( ) tors , let := Gal( / ) • be its Galois orbit, and let ∈ ( ) be any function such that div

where ∈ Z ≥1 is the order of the point ∈ ∈ ( ) tors . Then we have that:

1. the extension ( ) ⊂ ( ) contains no proper sub-extensions; 2. if ( ) = ( ) for some points , ∈ ( ) tors , and char(

Proof. Consider a sub-extension ( ) ⊆ ⊆ ( ). Two possibilities can occur:

• = ( ) for some function ∈ ( ), which implies that = ℎ • for some ℎ : P 1 → P 1 .

We can assume, up to applying two homographies P 1 → P 1 , that (0) = ∞ and that ℎ(0) = 0. These homographies can be taken to be de ned over , because 0 ∈ P 1 ( ) and (0) ∈ P 1 ( ). Then, every zero of is a zero of , and the converse also applies because

Constructing the polynomials

Proof. This follows immediately from Theorem 8.3.1, which was proved by Coates and Wiles in this setting (see [CW77, Lemma 3]).

We are nally ready to prove that the pair of functions , de ned in Lemma 9.1.1 generates the function eld Q( ).

Theorem 9.1.5 -The Deninger-Wingberg polynomial Let be an elliptic curve de ned over Q having potential complex multiplication by the ring of integers O of an imaginary quadratic eld . Let moreover , ∈ Q( ) be a pair of functions as in Lemma 9.1.1.

Then we have that Q( ) = Q( , ) and deg ( ) = N /Q ( ) -1, where ∈ Z[ , ] denotes any minimal polynomial for and .

We also have that

(9.6)

In particular, (9.6) shows that | | can be computed using an inclusion-exclusion principle.

9.1 Constructing the polynomials 9.1.2 Models of CM elliptic curves (according to Rohrlich)

Let us turn our attention to the pairs of functions , constructed by Rohrlich.

Lemma 9.1.7 -The Rohrlich pairs (see [START_REF] Rohrlich | Elliptic curves and values of -functions[END_REF])

Let be an elliptic curve de ned over Q having potential complex multiplication by the ring of integers O of an imaginary quadratic eld . Let ∈ N be a prime such that and O is also prime, where ∈ N denotes the positive generator of the conductor ideal ⊆ Z. Let moreover ∈ N be an integer such that

where ⊆ is the fractional ideal de ned in Proposition 7.4.2, and ⊆ O denotes the conductor of the Hecke character : A × → C × associated to the base-change / .

Then there exist two functions , :

where for every ∈ Z ≥1 we de ne

and we denote by ∈ Z ≥1 the order of the torsion point

Proof. First of all, observe that such a number ∈ N exists because -1 | , which follows from Deuring's formula (see Proposition 7.1.32) and the fact that ord ( ) ≠ 1 for every prime ∈ N. Now, observe that ) for every ∈ Z ≥1 , which implies the existence of the pair , ∈ Q( ).

Let us now turn to the proof of (9.7). First of all, it is evident from the de nition that , which implies that

as follows from Theorem B. This implies that

Chapter 9 Mahler measures and elliptic curves with complex multiplication because {(0, 0), ( (1/ ), 0), (0, (1/ )), ( (1/ ), (1/ ))} is a full set of representatives for the diagonal action of Gal(Q/Q) on × . We have moreover that R ( (-1/ )) = R (0) = 0 and that | | = 2 -1 (see [BC20, Theorem 7.8(c)]). Observe now that

because (1/ ) ∈ (R), no prime ideal | is coprime to and Ann O ( (1/ )) = . Finally, we have that

because Ann O ( (1/( ))) = , and the only prime which divides and is coprime with is O , for which we have that ( O ) = disc( /Q) = -. Putting together (9.8), (9.9) and (9.10) we obtain (9.7).

Remark 9.1.8. Observe that ∈ {1, 2, 3, 4, 6} for every ∈ Z ≥1 , which follows from the complete characterisation of the possible rational torsion subgroups (Q) tors associated to an elliptic curve de ned over Q which has potential complex multiplication (see [START_REF] Olson | Points of nite order on elliptic curves with complex multiplication[END_REF]).

We can now prove the analogue of Theorem 9.1.5 for Rohrlich's functions. 

Computing the Mahler measure

The aim of this section is to complete the proof of Theorem A, taking as ∈ Z[ , ] a slightly modi ed version of the polynomials that we de ned in Section 9.1. To do so, we use Lemma 4.3.2 and Lemma 4.3.3, both of which concern the action of the group

9.2 Computing the Mahler measure on the ring of Q[ ±1 , ±1 ]. We recall that the actions of the elements

on a Laurent polynomial ∈ Q[ ±1 , ±1 ] are given by v * := 0 ( 1 , . . . , 2 )

w * := 1 2 ( , ) * := ( 1,1 1,2 , 2,1 2,2 ).

For every ∈ Γ, we write := * , and we denote by

the components of .

Remark 9.2.1. Let ∈ Q[ ±1 , ±1 ] and let ∈ Γ. Then we have an isomorphism -→ ∼ between the zero loci of and inside G 2 . This induces an isomorphism Q( ) -→ ∼ Q( ) between the function elds of the desingularisations of their compacti cations, which identi es the functions , ∈ Q( ) with := and := , where , , , ∈ Z are such that = . Let now := denote the Jacobian of , let ≤ ( ) denote any subgroup such that , ⊆ and let : Q[ ] → Q be any Q-linear map which is odd, i.e. such that the equality ((-)) = -(( )) holds for every ∈ . Then we have that , = , , and div( ) div( ) = div( ) div( ) (9.12)

which follows simply from the fact that ♦ is bilinear and that is odd.

Using the action of the group Γ de ned in (9.11), we can transform any Laurent polynomial to make the Deninger path (see Equation (4.24)) avoid the unit torus and the set of singular points. This can be done combining the work of Besser 

To conclude it is su cient to observe that there exist , ∈ Q × such that (C) ∩ T 2 = ∅, where := ( , ). To show this, we can use the amoeba map

which deserves this name because for every Laurent polynomial ∈ C[ ±1 , ±1 ] the set ( (C)) ⊆ R 2 is given by a bounded region to which are attached some "tentacles" going towards in nity (see [START_REF] Gelfand | Discriminants, resultants, and multidimensional determinants[END_REF]Page 194] for a picture). In particular, the complement R 2 \ ( (C)) has at least one unbounded connected component (see [START_REF] Gelfand | Discriminants, resultants, and multidimensional determinants[END_REF]Corollary 6.1.8]). Now, the fact that (C) ∩ T 2 = ∅ is equivalent to say that 0 ∉ ( (C)). Moreover, we know that ( (C)) = , ( ( (C))), where , : R 2 → R 2 denotes the translation by the vector -(log| |, log| |). Hence, we can use the fact that the set R 2 \ ( (C)) has at least one unbounded connected component to see that there exist , ∈ Q × su ciently large such that (C) ∩ T 2 = ∅. Thus we can take := ( , ) × , so that = , and this concludes the proof.

Remark 9.2.3. If we start from a tempered polynomial ∈ Q[ ±1 , ±1 ], the resulting polynomial is generally not tempered anymore, because we are scaling its variables and therefore its coe cients. Nevertheless, the functions , are still supported on torsion points, thanks to (9.12), and

( , ) ≠ 0, thanks to (9.13). Hence, we are still able to apply Theorem 7.4.5, and we can nd a relation between the Mahler measure of and the -value ( , 0), despite the fact that is not tempered.

We are now ready to prove Theorem A, which we state more precisely as follows.

Theorem 9.2.4 -Mahler measures and CM elliptic curves (see Theorem A)

Let be an elliptic curve de ned over Q, having potential complex multiplication by the ring of integers O of an imaginary quadratic eld . Let , ∈ Q( ) be any pair of functions which generates the function eld Q( ), such that , ⊆ (Q) tors and ∞ ( , ), ≠ 0. Let ∈ Q[ ±1 , ±1 ] be a minimal polynomial for , and let :=

where denotes the open embedding : reg ↩→ . To explain these identities we observe that (9.16) is an application of Theorem 4.3.4, using the fact that 0 = 1 in this case, and (9.17) is a consequence of the fact that ⊆ reg (C). Moreover, (9.18) follows from the fact that * ({ , }) = * ({ ˜ , ˜ }) and (9.19) follows from the de nition of ˜ , ˜ . Finally, (9.20) follows from Proposition 2.5.5 and (9.21) follows from Theorem 7.4.5. Now, observe that [START_REF] Boyd | Mahler's measure and special values of -functions[END_REF]Page 48]). Clearly, the same holds if we take | | > 1 in the set on the right and if we change with . In other words, if the amoeba ( (C)) does not intersect all the four semi-axes we have that = 0. Nevertheless, it is clear that we can translate the amoeba su ciently enough so that, with a convenient rotation, it intersects all the four semi-axes. When this happens, we have that ≠ 0. Remark 9.2.5. Pairs of functions like the ones described in the statement of Theorem 9.2.4 are given by the constructions of Deninger and Wingberg (see Lemma 9.1.1) and Rohrlich (see Lemma 9.1.7).

Some open questions

We conclude this chapter with some questions which may serve as a guide for future research. First of all, it is interesting to ask whether one can remove the logarithmic term appearing in Theorem 9.2.4, henceforth giving a positive answer to Question 4.2.10 for each motive = 1 ( ) which arises from a CM elliptic curve /Q . This would be equivalent to nding a planar model for which is weakly tempered, in the sense of the following de nition.

De nition 9.3.1 -Weakly tempered polynomials

Let ∈ C[ ±1 , ±1 ] be a Laurent polynomial, with zero locus ↩→ G 2 . Fix also some compacti cation ↩→ , and some desingularisation . Let := dim( ) ∈ N be the genus of and let {[ ]} ∈ ˜ , ˜ ⊆ 1 ( (C) \ ˜ , ˜ ; Z) be the homology classes associated to small loops around each point ∈ ˜ , ˜ . Let denote Deninger's path (see Equation (4.24)) and let : reg ↩→ \ ˜ , ˜ denote the obvious inclusion. Then is said to be weakly tempered if = ∅ and if there exist some homology classes

and a point 0 ∈ ˜ , ˜ such that:

A Some tables

Yea, from the table of my memory I'll wipe away all trivial fond records, All saws of books, all forms, all pressures past, That youth and observation copied there.

William Shakespeare, Hamlet

The aim of this appendix is to collect various tables which have been mentioned in the main body of this thesis. First of all, Appendix A.1 exhibits various lists containing many of the known identities which relate the Mahler measure of a polynomial to some special values of -functions. Then, Appendix A.2 contains a complete list of all the families of two-variable polynomials ∈ Z[ ] [ , ] which are tempered (see De nition 4.2.7) and re exive, i.e. such that the Newton polygon Δ ⊆ R 2 contains only one interior point whose coordinates are both integers. Finally, Table A.11 contains the minimal Weierstraß equations of those CM elliptic curves de ned over Q which have minimal conductor amongst their twists.

A.1 Known Mahler measure identities

As we just stated in the introduction of this appendix, the aim of this section is to gather an almost complete list (to the author's knowledge) of known identities between Mahler measures and special values of -functions. We do this with the hope of giving to the reader a sense of the abundance and variety of works dedicated to this topic. We refer the reader to Chapter 4 for the necessary background on the Mahler measure, and in particular to Section 4.2 for an historical overview of the relations between special values of -functions and Mahler measures.

First of all, let us start with some identities which t in the framework of Question 4.2.9. In other words, we take

] to be a family of polynomials, and we present a list of values ∈ C such that the ratio :=

( 1 ( ), 0) ( ) is known to be a rational number. Here denotes any smooth compacti cation of the curve ↩→ G 2 , de ned as the zero locus of inside G 2 . The most studied polynomial family by far is given by (1) ( 1 , 2 ) := 1 + 1

which is sometimes called Boyd-Deninger family, because it was thoroughly investigated in the work of Deninger [START_REF] Deninger | Extensions of motives associated to symmetric powers of elliptic curves and to Hecke characters of imaginary quadratic elds[END_REF] and Boyd [START_REF] Boyd | Mahler's measure and special values of -functions[END_REF]. It is easy to see that, for every ∈ C \ {-4, 0, 4} such that 2 ∈ Z, the curve (1) is isomorphic (over Q) to the elliptic curve

Moreover, for 2 ∈ {-4, 0, 4} we know that

where := √ -1 denotes the imaginary unit. Indeed, (A.3) follows immediately from Theorem 4.1.15, and (A.4) follows from the identity

which is due to Ray (see Table A.4). Finally, we present in Table A.1 a complete list of values of for which the quotient

(1) := * ( (1) , 0)

is known to be a rational number. This table is taken from the recent article [Sam20] by Samart. Note that ( (1) ) = ( (1) -), hence Table A.1 records only one of the two values ± . As a matter of notation, we remark that the column LMFDB present in Table A.1 refers to the labels of the elliptic curves (1) in the -functions and modular forms database [LMFDB]. Finally, Table A.1 shows that di erent Mahler measures in the family ( (1) ) are rationally related to the same -value, even if the ratios (1) di er as varies. More speci cally, the elliptic curves The second family of polynomials whose Mahler measure has been widely studied is given by

This family was introduced by Boyd in [Boy98, Equation (1-31)], and was the main protagonist of Theorem 4.4.3. Boyd also showed that for every ∈ Z \ {-6, 2, 3}, the polynomial (2) gives a planar model for the elliptic curve (2) given by the Weierstraß equation:

(

which is identi ed with (2) via the mutually inverse birational maps (4.42) and (4.43). As we already stated in Section 4.4.1 (see in particular Equation (4.41)), we have that

which takes care of the polynomials (2) whose zero locus is singular. For the other ones, we report in Table A.2 the values of for which the ratio

(2) := * ( (2) , 0)

is known to be a rational number. Now, another family of polynomials which give interesting Mahler measures is given by the Weierstraß forms 

where (3) a denotes the elliptic curve de ned by (3) a . Moreover, (3) a ∈ Q × is a non-zero rational number, and (3) a ∈ Q × is a non-zero algebraic number. We gather all the identities of this kind which are known to the author in Table A.3. We also mention that Lalín and Mittal managed to prove the in nite family of identities (see [LM18, Corollary 3]):

where is allowed to be any real number, and : 2 + 2 = 3 + is the elliptic curve identi ed by the LMFDB label 20.a3. Finally, we refer the reader to [Bru05, § 3.9] for a proof of the two "sporadic identities"

associated to the elliptic modular curve 1 (11) : 2 + = 3 -2 .

To conclude this section, let us mention something about the other kinds of identities which relate the Mahler measure of some polynomial to some special value. First of all, we have identities which t into the framework of Question 4.2.9, for polynomials ∈ Q[ ±1 1 , . . . , ±1 ] with ≥ 3. We refer the interested reader to the works [Ber08; Ber10; Ber+13; PRS14; BN18; ZGQ20] for examples of these kinds of identities. Moreover, we have identities that answer a A.1 Known Mahler measure identities A little thinking shows that, for every xed convex lattice polygon Δ ⊆ R 2 , there are only nitely many families of tempered Laurent polynomials k ∈ Z[k] [ ±1 , ±1 ] such that Δ k = Δ. Here k denotes a set of free parameters, which are as many as |Δ • ∩ Z 2 |. Then, to nd all the families k , one has simply to nd all the possible face polynomials, which amounts to nd all the polynomials ∈ Z[ ] such that ( ) = 0, up to a given degree. This can be done in particular for the sixteen re exive, convex lattice polygons collected in Table A.5. In this case we see that, if Δ ∉ {Δ (13) , Δ (16) }, we can write As we said, imposing the temperedness of ( , ) gives automatically a nite list of possible polynomials , , associated to every polygon Δ ∈ {Δ (1) , . . . , Δ (16) }.

We write down explicitly this list in Table A.6 and Table A.7. In total, we have 668 families of polynomials ( , ), although we want to remark that some of them parametrise exactly the same family of curves. Finally, we know that ( , ) = 0 gives rise to an elliptic surface, because the polygons Δ (1) , . . . , Δ (16) are re exive. This is an instance of a celebrated theorem of Baker, which computes the genus of a curve in terms of the interior lattice point of the Newton polygon of its planar model (see for instance [BP00, Theorem 4.2] or [Dok18, § 2]). We devote Table A.8 and Table A.9 to the collection of Weierstraß models for all of these elliptic surfaces, except from the ones having Newton polygon Δ (13) . Indeed, for all the other ones, we were able to use the algorithm described in [START_REF] Artin | On the Jacobians of plane cubics[END_REF], which is implemented in PARI/GP, in order to nd closed expressions for the Weierstraß forms. On the other hand, for any of the 220 families ( , ) having Newton polygon Δ (13) , one can certainly use the more sophisticated algorithm implemented in SageMath (see [SAGE, Construct elliptic curves as Jacobians]), to get a Weierstraß equation for the family . We have skipped this step in order to save space and spare the patience of our readers.

A.3 The tables

This section contains the tables that were mentioned in Appendix A.1 and Appendix A.2.

A. 3 

, 0)/ ( (2) ) is known to be rational, where

(2) is de ned as in (A.5) and

(2) is the elliptic curve de ned in (A.6).

Paper a = [ 1 , 2 , 3 , 4 , 6 ] LMFDB [-3, 0, 1, 0, 0] 54.a2 1 1 [START_REF] Brunault | Parametrizing elliptic curves by modular units[END_REF] [-2, 0, 1, 0, 0] 35.a2 1 1 [START_REF] Brunault | Parametrizing elliptic curves by modular units[END_REF] [-1, 0, 1, 0, 0] 14.a5 1/2 1 [LR17]

[3, 0, 0, -1, 0] 17.a4 2/7 1 [START_REF] Giard | Mahler measure of a non-tempered Weierstrass form[END_REF] [4, 0, 2, 0, 0] 20.a3 { (-1,0), (0,1), (1,-1) } Δ (9) { (-1,-1), (-1,0), (0,1), (1,0), (1,-1) } Δ (2) { (-1,-1), (0,1), (1,-1) } Δ (10) { (-1,0), (-1,1), (0,1), (1,0), (1,-1), (0, -1) } Δ (3) { (-1,0), (0,1), (1,-1), (0, -1) } Δ (11) { (-1,-1), (-1,0), (1,0), (2,-1) } Δ (4) { (-1,0), (0,1), (1,0), (0,-1) } Δ (12) { (-1,-1), (-1,0), (1,0), (1,1), (1,-1) } Δ (5) { (-1,-1), (0,1), (1,0), (1,-1) } Δ (13) { (-2,-1), (0,1), (2,-1) } Δ (6) { (-1,0), (0,1), (1,0), (1,-1), (0,-1) } Δ (14)

{ (-1,-1), (-1,1), (0,1), (2,-1) } Δ (7)

{ (-1,-1), (0,1), (2,-1) } Δ (15) { (-1,-1), (-1,1), (1,1), (1,-1) } Δ (8)

{ (-1,-1), (0,1), (1,1), (1,-1) } Δ (16) { (-1,-1), (-1,2), (2,-1) } 

-( 1 2 + 2 ) -( 1 + 2 ) ( + 1) ( 1 + 2 ) 2 + ( + 1) 2 -4 1, 2, ( ) 0

(1 -)