
Numéro National de Thèse: 2022LYSEN014

THÈSE DE DOCTORAT DE L’UNIVERSITÉ DE LYON
opérée par

l’École Normale Supérieure de Lyon

École Doctorale N◦ 512
École Doctorale en Informatique et Mathématiques de Lyon

Discipline : Informatique

Soutenue publiquement le 11 mai 2022, par:

Julien BRAINE

The Data-abstraction Framework: abstracting
unbounded data-structures in Horn clauses, the

case of arrays
La Méthode Data-abstraction : une technique d’abstraction
de structures de données non-bornées dans des clauses de

Horn, le cas des tableaux

Devant le jury composé de :
SIGHIREANU Mihaela, Professeure des universités, ENS Paris Saclay Rapportrice
MINÉ Antoine, Professeur des universités, Sorbonne Université Rapporteur
BODIN Martin, Chargé de recherche, Inria Grenoble Examinateur
FERET Jérôme, Chargé de recherche, ENS Paris Examinateur
POUS Damien, Directeur de recherche, École Normale Supérieure de Lyon Examinateur
GONNORD Laure, Professeure des universités, Grenoble INP Directrice de thèse
MONNIAUX David, Directeur de recherche, CNRS, Vérimag, Grenoble Co-encadrant de thèse





Remerciements

Je souhaite remercier ma directrice de thèse Laure Gonnord pour son accompagnement, ses
conseils et sa bienveillance. Je voudrais également remercier mon co-encadrant David Monniaux

pour nos échanges, ses conseils et sa relecture technique de ce manuscrit. Je tiens tout
particulièrement à remercier Russ Harmer pour son implication, sa disponibilité et la qualité de

nos échanges durant l’écriture de ce manuscrit.
Un grand merci à mes collègues Paul, Alexis et Amaury pour leur aide, les moments de partage et

nos grandes discussions. Merci à ma famille et mes amis pour leur soutien durant ces quatre
années, dont deux de pandémie.

J’aimerais remercier mes rapporteurs Mihaela Sighireanu et Antoine Miné qui ont pris le temps
de lire avec soin ce manuscrit. Enfin, merci aux membres de l’équipe CASH et au personnel du

LIP pour nos conversations et l’aide apportée dans le labyrinthe administratif.



Abstract

Proving properties of programs using data-structures such as arrays
often requires universally quantified invariants, e.g., “all elements be-
low index i are nonzero”. Instead of directly manipulating programs,
we use Horn formulas which have recently become a popular format
to express safety properties of programs.
In this manuscript, we propose a general abstraction scheme operat-
ing on Horn formulas for unbounded data-structures. The main idea
is to use abstraction to simplify the unbounded data-structures into
simpler types such as integers. As such a simplification loses infor-
mation, not all safety properties can be proven after abstraction. It is
thus key to choose the right abstraction for the given problem.
Our contribution is a general framework for which the data-structures
and the abstraction to apply are parameterized. The specificity of that
framework is the attention spent to ensure that our algorithm exactly
implements the simplification induced by the abstraction by using a
property called relative completeness. This contrasts with previous
work that mainly uses benchmarks to prove the validity of the tech-
nique instead of analyzing whether the technique verifies a similar
property.
Although the proposed framework is general and may theoretically
handle data-structures such as trees or graphs, our focus has been
on a specific abstraction of arrays that has already been studied in
the literature called cell abstraction. This abstraction is of particular
interest as it can handle most container algorithms.
There are three main contributions in this manuscript. First,
a demonstration that our framework in combination with cell-
abstraction can express many existing techniques, and thus our
framework handles those as well. Secondly, a proof that an exist-
ing restricted technique actually satisfies relative completeness and
an extension of the technique to handle a broader class of programs.
Thirdly, the framework gives definitions, algorithms and theorems pa-
rameterized by the desired abstraction and, even though we have only
used this framework for arrays, it gives the foundation for future ab-
straction of other data-structures.



Résumé

Prouver des propriétés sur des programmes utilisant des structures
de données telles que des tableaux nécessite souvent des invariants
universellement quantifiés, par exemple, "tous les éléments avec in-
dice plus petit que i sont non nuls". Au lieu de manipuler directe-
ment les programmes, nous utilisons des clauses de Horn, un format
de plus en plus courant pour exprimer les propriétés de sécurité des
programmes.
Dans ce manuscrit, nous proposons un schéma d’abstraction général
opérant sur des formules de Horn pour des structures de données non
bornées. L’idée principale est d’utiliser l’abstraction pour simplifier
les structures de données en types plus simples tels que les entiers.
Comme une telle simplification perd de l’information, toutes les pro-
priétés ne peuvent pas être prouvées après abstraction. Il est donc
essentiel de choisir la bonne abstraction pour le problème donné.
Notre contribution est d’avoir créé une méthode générale où les
structures de données et l’abstraction à appliquer sont paramétrées.
La spécificité de cette méthode est l’attention portée à une pro-
priété que nous nommons complétude relative et qui spécifie que
l’algorithme implémente exactement la simplification induite par
l’abstraction. Cette approche contraste avec les travaux antérieurs
qui utilisent principalement des benchmarks pour prouver la validité
de la technique au lieu d’analyser si la technique vérifie une propriété
similaire.
Bien que le cadre proposé soit général et puisse théoriquement gérer
des structures de données telles que des arbres et graphes, nous nous
sommes concentrés sur une abstraction spécifique de tableaux, déjà
étudiée dans la littérature et appelée abstraction de cellule. Cette ab-
straction est particulièrement intéressante car elle peut gérer la plu-
part des algorithmes de conteneur.
La contribution de ce manuscrit peut être résumée en trois points.
Tout d’abord, nous démontrons que notre méthode, en combinaison
avec l’abstraction de cellule, permet d’exprimer, et donc de gérer, de
nombreuses techniques existantes. Deuxièmement, nous prouvons
qu’une de ces techniques existantes satisfait le propriété de complé-
tude relative et une extension de celle-ci pour gérer une classe plus
large de programmes. Troisièmement, même si nous nous sommes
focalisés sur les tableaux, les définitions, algorithmes et théorèmes
que nous fournissons sont paramétrés avec l’abstraction souhaitée et
donne les bases pour de futures abstractions d’autres structures de
données.
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1 Introduction

1.1 General concerns

1.1.1 Purpose to which the PhD contributes

Have you ever encountered a program without any bugs? Probably not. There are several rea-
sons that can explain why programs are written with bugs: lack of programmer concentration,
takeover of old code by a new programmer who may not know the specifics, subtle behavior of
programming languages, . . . However, not all bugs are equal: while most of them only impact
the usability of the software, others can have much larger negative impacts: imagine an airplane
software segfaulting or the guiding system of a missile failing. Historically, bugs were considered
critical only in very specific locations: airplanes, submarines, banking servers, military devices,
. . . However, more recently, with the rise of data-analysis and thus data-storage, more and more
servers can be viewed as critical: a bug leading to an attack within a Google server might lead to
huge amounts of data being gathered, with possibilities like large-scale identity theft, attacks on
other servers by using the data gathered, ransomware, . . . Even worse, with the current number
of connected devices, even bugs that enable attacks in phones or computers of individuals can
be considered critical: apps are deployed on such a scale that targeting individuals through their
browser, operating system, or app can lead to disastrous consequences.

Although techniques to ensure protection of devices have increased – sandboxes, containers,
virtual machines, higher control over scripts that are executed within apps, . . . – programs are also
more and more complex and ensuring that there is no critical bug, especially in these protection
tools, is very important. Whereas for non-critical bugs, aiming to remove as many bugs as possi-
ble from the software before release, and then, as bugs appear, correct them during updates is a
sensible approach; for these critical bugs, this approach needs to be changed: the goal is not to
remove as many bugs as possible before release, but to ensure that there is no critical bug.

For most programs, most of the debugging, such as unit testing, is done through testing execu-
tion paths of the program and checking that the program behaves correctly on those examples;
however, in the case of critical bugs, one usually uses static verification to ensure that the program
behaves correctly. Static verification of a program consists in stating a behavior that the program
should have, that is, a mathematical property, and then, using formal semantics of code, that is,
a mathematical description of how code behaves, provide a proof that the behavior of the code
respects the behavior that we stated the program should have. This ensures that for any execution
path, even those that we have not tested, the program behaves correctly, or at least as we defined
it should. In order to apply static verification of programs, one needs three components: a formal
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CHAPTER 1. INTRODUCTION

definition of code semantics, a specification of correct behavior of code, and a proof that the code
obeys the specifications.

Formal definition of code semantics. This is non-trivial work and the formalization of code has
been tackled for several languages in different proof frameworks. The difficulties lie in several
parts: the first issue is correctly understanding the semantics of code according to a definition
which is written in English in many many pages. For example, the standard, that is, the description
of the behavior of code, for C++ is around 1500 pages [ISO17]! The second issue is that many lan-
guages have constructions that are hard to formalize, such as exceptions, dynamic typing, mem-
ory layout, binary compatibility, . . . Finally, and this is the hardest part, which explains why the
standard is so long, is the very subtle interaction between language constructions, for example the
interaction between polymorphism and references in Ocaml1 [Ler+21], but such examples can be
found in almost all programming languages. Just to give an idea of how difficult it is: most compil-
ers have bugs initially from not handling correctly the standard (and not only due to optimization
issues). The writing of a formally certified C compiler [Ler20] (which is a fairly simple language),
which is not at all as optimized as current state-of-the-art compilers was a huge project under-
taken only recently!

In this PhD, I do not aim to provide formal semantics of code. Instead, I will be using a transfor-
mation from code to a logical formula which we will assume correct and through that transforma-
tion, the semantics of code is given. In practice, for a fully-verified system, one should adapt that
transformation for the chosen programming language and prove the correctness of that transfor-
mation using the formal semantics of code.

Specification of correct behavior of code. In practice, asking programmers to write a formal
specification of there are no critical bugs in the program is extremely hard. Of course, some bugs,
such as illegal memory accesses, division by zero, integer overflow . . . are fairly easy to specify,
and one may even have automated tools add such specifications; other bugs, such as eventually
my thread will be executed or my app can recover from loss of connection or from hardware failure
are much easier to overlook. Even for very small functions, it is hard to perfectly describe the
intended behavior of the code! For example, the correct (functional) summary of a function that
sorts a container is that the output is sorted and is a permutation of the input; however, one often
forgets to state the latter and the function is thus under-specified.

In practice, code is highly layered: from built-in functions to general libraries, to application-
specific libraries and finally the application itself which links all these libraries together. Because
writing complete specifications of the application is extremely hard, one has better chances of
writing complete specifications by also writing the specifications of each function on which the
application and libraries are built. Furthermore, by doing so, proofs of each function are decou-
pled: to prove that function f which uses function g is correct, one only needs to check that g
verifies its specifications and that f is correct using the specifications of g instead of the code of g .
The consequence of such an approach is that static program verification schemes can scale better,
that is, handle much larger code at lower cost.

Another important part of writing specifications is the formal language in which we write them.
Some of the most expressive languages for properties about programs are temporal logics [RU71].

1Naive polymorphism and references lead to a breach within the type system. Thus, when references are used, weak
polymorphism is introduced. A thorough example can be found on https://ocamlverse.github.io/content/
weak_type_variables.html
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CHAPTER 1. INTRODUCTION

An important subset of temporal logics can be divided into safety properties, that is, which pro-
gram states are valid, and liveness properties, that is, properties that ensure a program eventu-
ally/repeatedly goes through a given state. To stress how important both properties are, let us
give an example of each. Safety properties are similar to assertions in programs; the aim is to
restrict the set of values that are valid at a given program point. For example, one may need
to asser t (n < si ze(a)) before the expression a[n], or asser t (sor ted(a)) before doing a binary
search. Unlike safety properties, liveness properties are useful to ensure that the program will
react. For example, one may want to say that whenever the pilot of an airplane moves the con-
trol joystick, the program will eventually (one may also wish to ensure time constraints) move the
wings of the airplane. In other words, to guarantee that the program will not get stuck doing some-
thing else or continuously have new things to do and forever procrastinate the task of moving the
wings.

In this PhD, I focused on safety properties because I believe safety properties constitute the core
of library function specifications. An example of such a safety property in a very simple array
initialization function is given in Listing 1.1.

Listing 1.1 – Array initialization

void array_init(Array <int > a)
{

unsigned i=0;
while(i<a.size())
{

/* loop invariant to discover:
∀k ∈ [0, i [, a[k] = 0∧ i < a.si ze() */

/* Note that ∀k ∈ [0, i [, a[k] = 0 is the core ,
but i < a.si ze() is also necessary */

a[i] <- 0;
i <- i+1;

}
// Safety property
assert(∀k ∈ [0, a.si ze()[, a[k] = 0);

}

A proof that the code obeys the specifications. In other words, provide a proof that the pro-
gram is correct. In general, this problem is undecidable [Ric53]. Worse, even for simple programs
and simple safety properties, the problem is undecidable. The main difficulty lies in finding loop
invariants, that is, a property that is satisfied in all loop iterations and is enough to ensure the
correctness of the program. For example, in the array initialization program depicted in List-
ing 1.1, the difficulty is to guess the property ∀k ≤ i , a[k] = 0: unrolling the loop would just give
(i = 1 ⇒ a[0] = 0)∧ (i = 2 ⇒ a[0] = 0∧a[1] = 0)∧ . . .; and finding the invariant of Listing 1.2 is even
harder! However, checking that a program is correct with given loop invariants is much easier: it
consists in deciding the satisfiability of a formula that uses program operations and the given loop
invariants, but without any fixpoints; an SMT2 problem! Even in the case of integer programs,
finding the right generalizing property, that is, loop invariant, from loop unrolling is extremely
hard: it is akin to finding the right property in proofs by recursion, and any student who has gone
through a math bachelor can attest to how hard this can be! Whereas checking that a program is
correct given loop invariants is akin to checking that the given recursion hypothesis works, which

2Satisfiability Modulo Theory
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CHAPTER 1. INTRODUCTION

is usually much easier! In the case of simple programs and loop invariants this problem is in the
NP complexity class [Sch78], an extremely simple class considering that most problems in static
verification are undecidable. However, the undecidability of finding loop invariants should not
make us abandon it and restrain us from tackling it as there are several factors that may help us
cope with this issue.

First, programmers do not write random programs: they know the intended behavior of their
program and have at least an intuition of why they believe the code they wrote is correct. Thus, one
may rely on the programmer’s help when automated tools fail to find a correct proof. Tools such as
FramaC and theorem provers such as Coq and Isabelle [Cuo+12; Fil+97; NWP02] do so extensively
as the programmer may directly give invariants or prove manually the given specifications, but
most techniques also do so in a much lighter fashion: techniques are usually only successful for
some types of programs or have parameters to handle different types of programs and it is up to
the user to choose the correct technique and/or parameter.

Secondly, many bugs are due to cases overlooked by the programmer, updates in some part of
the code whose impact on another part of code was not thought of, typing and concentration er-
rors, in very simple functions whose proof of specifications would seem easy to humans; whereas
complex algorithmic computations – think of an algorithm which colors a planar graph and the
specification asserts that it is done in at most 4 colors – for which the proof requires complex math
is usually restricted only within very specific functions. For example, common cases overlooked by
programmers include: what if this function throws an exception? What if the previous result was 0
and thus my division is invalid (for example, the average of an empty container)? What if my array
was empty when computing max, making the first initialization value a[0] invalid? And common
programmer mistakes may be: forgetting that array indices start at zero in this language, that the
bound of the loop was n−1 and not n, using the wrong variable k instead of n, . . . This means that
for many functions, ensuring that they are correct should be much easier than providing proofs of
non-trivial math problems and one may hope to do so.

Tools to tackle this problem can mainly be divided into two types: proof assistants such as Coq
and Isabelle [Fil+97; NWP02], where the entire proof that the program is correct is checked by
an automated system, and non-certified tools such as FramaC, Z3, Astrée, . . . [Cuo+12; MB08;
Cou+05] who provide a proof of correctness based on proven techniques, usually a research paper
whose proofs have not been implemented in a proof assistant. On one hand, proof assistants are
much more demanding: the level of formalism required for the behavior of code, specifications
and proofs of theorems that are used to prove the correctness of a program is extremely high: it
must be understandable by an automated system based on type or set theory. On the other hand,
proof assistants provide the most solid proofs and allow one to reason with the full expressivity of
type/set theory.

In this PhD, the technique I produce aims to be mostly automated: the user chooses only a
few input parameters and should not have to provide full invariants. The automated technique is
proven on paper and is implemented within a non-certified tool – unlike Verasco [Jou16]; hope-
fully, the task of transferring the theorems and algorithms to a proof assistant may be done as
future work.

1.1.2 Scope of the PhD

Before going into depth as to how I suggest to statically verify programs, let us briefly discuss the
scaling of writing and verifying programs. Programs are executed as binary code which is usually
generated from an assembly language which is itself usually written from a language similar to C
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or let us say an LLVM3 intermediate representation. For most people, it would seem much easier
to make sense of a program written in C than in assembly and thus it would be much easier to
check the correctness of a program in its C version than in its assembly version. We believe we
should expect the same for algorithms and therefore program verification algorithms should strive
to work on high-level, rather than low-level, languages where it is extremely hard to make sense of
the program.

In practice, the levels of abstraction that a language such as C offers, that is, mainly functions
and libraries, allows us to apply techniques such as function summaries to verify programs, which
allows for effective scaling. This would be much harder in a language not offering functions. How-
ever, as seen by the history of current programming languages, the levels of abstraction provided
by C are not sufficient to write programs efficiently and we should not expect it to be different for
the goal of verifying programs.

This leads me to my topic of focus: the verification of programs containing unbounded data-
structures, that is, data-structures that use a statically unknown amount of memory, or simply
said, an unbounded amount of memory. However, we assume that data-structures are already
recognizable, because given by the programming language, and thus, it is not necessary to use
techniques such as separation logic [Rey02] to recover the data-structures from the memory lay-
out. A simple example of the type of functions I aim to verify is the array initialization of Listing
1.1 and a slightly more complex one is given in Listing 1.2.

Listing 1.2 – Binary search

// summary:∀a, v, (sor ted(a)∧bi nar y_sear ch(a, v). f i r st () ⇒ a[bi nar y_sear ch(a, v).second()] = v)
pair <bool ,unsigned > binary_search(Array <int > a, int v)
{

unsigned min = 0;
unsigned max = a.size();
while(max >=min)
{

/* loop invariant to discover:
∀k ∈ [0,mi n[, a[k] < v ∧∀k ∈]max, a.si ze()[, a[k] > v */

/* Note that if one wanted to prove the liveness
property that the function terminates , one needs to find
that max −mi n is strictly decreasing */

unsigned mid <- (max+min)/2;
if(a[mid]>v)

min <- mid+1;
else if(a[mid]==v)

return pair(true ,mid);
else

max <- mid -1;
}
return pair(false , 0);

}
//Did you spot the under -specification in the summary?

A key aspect of unbounded data-structures compared to integer programs is that we introduce
another difficulty: the number of locations is now unbounded. Although both problems are unde-
cidable, the unbounded data-structures case seems much harder. This intuition can be justified
by what happens with bounded model checking [VW86] on linear programs with quantifiers. In

3LLVM is not an acronym and denotes a set of compiling projects, more information on https://llvm.org/
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the case with only integers and no unbounded data-structure, the problem is decidable [Len83],
whereas with a simple unbounded data-structure such as arrays, the problem becomes undecid-
able [BMS06].

The approach that I considered tried to separate concerns: use existing techniques to handle
the integer part of the problem and provide an approach whose sole purpose is to handle the
unboundedness of the space locations. The key idea to handle the unbounded space is to ag-
gregate information so that the result may speak about the whole data-structure in a condensed
form. An example of an aggregation tool is quantifiers: instead of writing a property such as
a[0] = 0∧a[1] = 0∧ . . .∧a[n−1] = 0 we can aggregate this information as ∀i < n, a[i ] = 0. However,
aggregation of values means that we lose information and thus we are applying a kind of abstrac-
tion. It is crucial that we do not lose the information which is necessary to prove the correctness
of our program and thus we need to choose the correct aggregation method, in other words, the
correct abstraction! For example, using quantifier aggregation is not adequate to speak about the
sum of an array; however, it is adequate to speak about the relation between indices and values of
an array.

1.1.3 Philosophy of the PhD

When considering a new method, two main concerns stand out. The first is the use cases of that
method. In other words, because of the undecidability problem stating that no method can solve
all cases, I believe that the use of a method should be sufficiently framed that a user (i.e. a program-
mer) can understand whether this method should be used for their program verification problem.
The second concern consists in being able to evaluate if a method is good in the use cases for
which it is considered relevant. There are two main ways to evaluate a method: an experimental
one, which requires a large number of relevant benchmarks and an experimental comparison with
other methods; and a theoretical one, that is, a theoretical property of this method that ascertains
that it is good.

In my PhD, I do not consider that I provide a method that can already be used for real world pro-
grams and thus, I do not strive to make an experimental evaluation which is enough to judge the
quality of my method. Although there are synthetic small benchmarks and competitions [Bey12]
created by the community on which we can apply my method, I have witnessed too much vari-
ance to be convinced by these: we will see later on that it is easy to tweak methods so that they
satisfy the benchmarks and thus, it is hard to compare experimental results between two tools as
we would have to know how much tweaking has been done or use a set of unknown benchmarks.

Therefore, I aim to provide a solid theoretical proof of the quality of my method through the-
orems and I believe the best way to frame and prove the quality of a theoretical result is having
a result of the form If the problem is in this form then applying this method makes this problem
strictly easier. I also believe that the form in question needs to be easy to identify for the user, so
that it is fairly easy to determine if this method should be used. Note that I aim to make the problem
strictly easier and not to solve the problem. This is mainly because any interesting static verifica-
tion problem is undecidable and I believe reducing the difficulty of the problem, as discussed in
the aggregation of the space locations, is the best achievable goal.

1.2 Methodology : a problem verification transformation technique

Inspired by several papers [GRS05; CCL11; BMR13; MA15; MG16], we noticed that the problem of
data-structure aggregation/abstraction methods is fairly independent of the handling of the rest
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of the program: control flow graph, integers, . . . In order to fully dissociate the data-structure as-
pects and the integer program aspects, I aim to provide a transformation method to handle the
abstraction of data-structures and have existing methods handle the data-structureless verifica-
tion problem.

1.2.1 Choosing an adequate intermediate representation: Horn clauses

Several papers handle program verification of data-structures through transformations. Perhaps
one of the simplest approaches is program transformation as in [MA15], in which the array vari-
ables of a program are replaced by two integers and each array operation is transformed into op-
erations on those two integers. One of the biggest drawbacks of this paper is demonstrated by
[MG16], in which the technique of [MA15] was refined by using the additional possibilities that
Horn clauses offer [Bjø+15]: the transformation of [MG16] transforms programs with arrays into
Horn clauses over integers. In many ways, the technique is similar, but the authors have lever-
aged the expressivity of Horn clauses to achieve a better transformation. In other words, by using
Horn clauses, the authors were not limited by what is expressible by programs and could achieve
better results. However, one of the drawbacks of [MG16] is that transformations can’t be chained:
one can’t compose the technique of [MG16] with itself, simply because it does not take as input
Horn clauses. Another approach to handle arrays is described in [BMR13] in which arrays are re-
moved from Horn clauses by using logical operations. This transformation is thus from and to
Horn clauses, but it is unclear whether it makes sense to limit the main technique used behind it,
quantifier instantiation, to Horn clauses instead of generic logical formulae.

The importance of choosing the right input and output representations for transformations
has been demonstrated by research: SSA form [Cyt+91], LLVM passes [LA04], the hierarchy of
compiling representations as in Compcert [Ler20]. The common pattern consists in dividing an
important problem, such as program verification or compilation, into a series of intermediate
representations with different levels of abstraction, with usually at most a single transformation
from one intermediate representation to another and multiple passes that go from and to a given
same intermediate representation. With that in mind, one may see how the transformation from
[MG16] is ill-suited: it compounds the tasks of transforming a program verification problem into
Horn clauses and eliminating the data-structures. I believe a transformation aimed at abstracting
data-structures should have an output compatible with its input: a transformation that can be
re-applied on its output.

In our case, we need an intermediate representation which abstracts us from low-level issues
such as memory and from high-level constructions such as classes, exceptions, RAII4 – a C++ con-
struct to help ressource management and class invariants – which are not related to our issue, but
keeps the core of the verification problem: we keep track of possible variable values at each pro-
gram point and we can encode a safety property. Note that we do not need program execution or-
der, but we need to be able to express function summaries to have a scalable verification scheme.
Furthermore, we also need a format expressive enough to encode safety properties and allow us
to apply techniques such as [MG16]. These constraints explain why we have not chosen one of
the following representations. Low-level program representations such as the C language were
not chosen mainly because we have the issues caused by syntax, preprocessor, memory and exe-
cution order. Functional and high-level program languages such as OcamL were avoided mainly
because of constructions such as modules and higher order functions, polymorphic functions . . .
The LLVM representation was dismissed mainly because of memory and execution order. Why3

4RAII stands for Resource Acquisition Is Initialization
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[FP13] and theorem prover representations [Fil+97; NWP02] were ill-suited mainly because of the
extensive possible constructions. Automata and control flow graph [OG86] representations were
avoided mainly because they encode the execution order which is not necessary for the verifica-
tion of safety properties. Furthermore, logical transformations such as [BMR13; MG16; BMS06]
are not easily expressible within that framework.

However, Horn clauses seem like the perfect fit. They encode a fixpoint relation on the possi-
ble values at each program point and allow to specify that some values are not within it. In other
words, they exactly encode safety properties. Although one can usually recover the execution or-
der from Horn clauses, it is not a key part of the specification, whereas logical transformations are
easier: Horn clauses are a subset of logical formulae. Furthermore, the encoding of data-structures
in Horn clauses meets our constraints: a recognizable type with a set of simple operations and
axioms. Moreover, Horn clauses already have front-ends from programs and back-ends to solve
them [Gur+15; Kah+16; MG16], thus, implementing a verification scheme using them does not
need to be done from scratch. On all aspects, Horn clauses seem the perfect fit! Note that this only
applies for safety properties as liveness properties cannot be encoded using Horn clauses.

1.2.2 Completeness, a key property for theoretical guarantees

While using existing tools from [MB08; BMR13; MG16] to solve Horn clauses, a problem arose.
Slight modifications within the analyzed program could shift the result from program certified to
timeout and it was unclear where the problem was located: was it the transformation that han-
dled the data-structures that had issues with the modification, or, was it the back-end solver? As
no theoretical guarantee was given for these transformation methods, finding out where the is-
sue was for each example was extremely tiresome; and there began the long quest to prove the
effectiveness of transformations.

A way to measure the theoretical effectiveness of verification methods is completeness. In gen-
eral logics, a technique is said complete for a set of logical formulae if it can decide it. For example,
a subset of first-order theory over integers and arrays is decidable [BMS06] and a subset of second
order logic with trees is decidable [Cou90].

As mentioned previously, our focus is aggregation/abstraction methods. For these methods, one
can look at how completeness is stated in the abstract interpretation community. A technique is
said to be complete relative to an abstract domain D , for a class of programs P and a class of safety
properties S , if for any P ∈ P and φ ∈ S , the technique can decide the existence of an inductive
invariant I in D guaranteeing that P satisfies φ. The existence of a technique complete relative
to D for a P and S has been called the Monniaux problem in [Fij+19]. In practice, techniques
complete relative to fixed polyhedral abstract domains exist for programs (resp. properties) with
polyhedral transitions (resp. statements) [Mon19]. However, to the best of our knowledge, it is still
unknown for the general polyhedral abstract domain.

In our case, our transformation method aims to handle the data-structures and leaves an inte-
ger problem to a back-end solver. However, the back-end problem of handling integers is already
undecidable and thus, we cannot hope to satisfy a form of completeness for the scheme consist-
ing in transforming and back-end solving. Instead, we adapt the definition of completeness for
transformations so that it does not depend on the decidability of the transformed problem, which
leads us to formulations of the form: A transformation T is complete for a class of Horn clauses H

if and only if H ∈H is equivalent to T (H) has a solution. Then, introducing abstraction leads us
to A transformation T is said complete relative to an abstract domain D for a class of Horn clauses
H if and only if H ∈H has a solution in D is equivalent to T (H) has a solution.
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1.2.3 A Horn clause transformation framework: Data-Abstraction

The aim is to lay ground-work to provide transformation techniques that allow data-structures to
be abstracted in Horn clauses, with a way to analyze the completeness of those transformations.
This work leads to The Data-Abstraction Framework, which is the main contribution of this PhD.

The The Data-Abstraction Framework is parametrized by the chosen abstraction and gives al-
gorithms to implement the abstraction as a Horn clause transformation. It provides the tools to
combine abstractions and analyze the completeness of the generated transformation. We pub-
lished a first version of the Data-Abstraction Framework without the proofs of completeness in
[BG20] and a second version with the analysis of completeness in [BGM21].

1.3 Overview of the contribution and manuscript

1.3.1 Overview of the proposed verification scheme

The overall method presented in this PhD is divided into several steps as depicted in Figure 1.1.
The process takes as input a program with properties to verify and outputs whether these proper-
ties are verified for any possible run of the program. The process is divided into three main steps:

1. A front-end which transforms a program with safety properties into Horn clauses encoding
whether these are verified. The semantics of our programs and safety properties is given by
this transformation.

2. Our main contribution is the Data-Abstraction framework which simplifies the data-structures
in Horn clauses using abstraction. The key aspect is being able to predict and prove the ef-
fectiveness of this framework.

3. A back-end solver which then solves the resulting problem which does not have the added
difficulty of unbounded data-structures.

Figure 1.1 – Overall program verification scheme
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1.3.2 Structure of the manuscript

The main content of the manuscript is divided into 6 chapters.
1. Chapter 2 introduces Horn clauses and Horn problems and how the problem of verifying

safety properties on programs are transformed into them.
2. Chapter 3 explains what is expected of the data-abstraction framework: to implement data-

abstractions and presents within that framework Cell abstraction [MG16], an important ab-
straction for arrays.

3. Chapters 4, 5 define the algorithms used in the data-abstraction framework with their anal-
ysis of completeness. Chapter 4 describes the main algorithm and Chapter 5 describes how
to tune the main algorithm to make it complete.

4. Chapter 6 discusses the theoretical impact of our results on Horn clauses with respect to the
problem of verifying programs.

5. Chapter 7 describes our implementation and practical results using the full toolchain.

J. Braine 13/144



Notation Sheet

These pages summarize the different notations used in this manuscript. We advise the reader to refer to
it whenever a doubt arises.

Notation Description

B
o

o
le

an
s

b1 ∧b2 b1 and b2

b1 ∨b2 b1 or b2

b1 → b2; b1 ⇒ b2
b1 implies b2. We usually use the latter notation for expressions that
do not have evaluation contexts.

=; ≡ b1 equals b2. We usually use the latter for proof steps or definitions
or when the former is already used.

¬b not b

ite(b,e1,e2) If-then-else: if b then e1 otherwise e2

A
rr

ay
s

a[i ] Returns the value of the array a at index i

a[i ← v] Returns an array a′ such that ∀k, a′[k] = ite(k = i , v, a[k])

Const Ar r ay(val ) Returns an array such that all cells have value val

sor ted(a, s,e) Returns whether an array is sorted for indices in [s,e[

BoundEq(a,b, s,e) Returns whether an array a is equal to b for indices in [s,e[

Se
ts

&
Fu

n
ct

io
n

s

; The empty set

Z Signed integers

SS2
1 The set of functions from S2 to S1

[a,b]; ]a,b];

[a,b[; ]a,b[

Integer values between a and b. The inclusion of values a and b
depend on the direction of the braces.

{x | expr } The set of values x such that expr is verified.

f ◦ g Is the composition of f and g : ∀x, f ◦ g (x) = f (g (x))

lfp f The smallest fixpoint of f

Ty
p

es

Int A type for Horn clauses representing Z.

Array<T>
Are program arrays with index type unsigned integers and value type
T .

Ar r (Ind ,V al )
A type for Horn clauses representing the set of functions from Ind
to V al

T1 +T2; T1(v); T2(v);

match val fi

T1 +T2 represents the or type. T1(v) and T2(v) are the two ways to
construct that type. match val fi destroys the type: match Ti (v) fi

returns fi (v)

∼
O

ca
m

l

fun a -> expr Is a function that to a value a returns b.

map f l Is the list obtained by calling f on each element of the list l

concat_map f l
Here f is a function that to an element returns a list. Calls map f l

and flattens the result: instead of a list of lists, one obtains a list.

filter p l
Returns the list obtained by removing the element of the list l not
satisfying p

∼
C

+
+ sorted(a) Returns whether an array is sorted

a.push_back(v) Adds value v at end of array a

sub_array(a, s, e) Returns a reference to the subpart of the array with indices in [s,e[



E
va

lC
o

n
te

xt
s

P
A typed predicate named P . Stands for the name of a program point
or function relation.

M A function that to a predicate returns a set of values.

vars A function that to a variable name returns a value.

�expr �vars
M

Evaluates an expression expr in the contexts M for predicates and
vars for its free variables. This can be used on any kind of expres-
sions, including sets. Definition 2, page 29

�expr �∀
M

Stands for ∀vars,�expr �vars
M

H
o

rn

C , goal, premises

normalized, extended

linear, assertion

Horn clause C and syntax. Definition 3, page 29

C satisfiable A set of Horn clauses C is satisfiable if and only if ∃M ,∀C ∈C,�C�∀
M

H , fH ,UH
H is a Horn problem, that is, a pair ( fH ,UH ) where fH is a function
and UH is a model. Definition 5, page 31

H(M ) fH (M ) ≤M ∧M ≤UH . Definition 6, page 31

H satisfiable
One of the two following equivalent definitions lfp fH ≤ UH or
∃M , H(M )

HC The Horn problem encoded by C. Definition 7, page 31

G
en

er
ic

(d
at

a-
)a

b
st

ra
ct

io
n

G ; αG ; γG
The Galois connection G . αG and γG are its abstraction and con-
cretization functions. Definition 8, page 38

e /G e is expressible by the abstraction G . Definition 11, page 42

σ(a); ασ; γσ

σ is a data-abstraction, σ(a) is the set of abstract values for a. ασ
and γσ represent the abstraction and concretization functions of the
abstraction of sets induced by σ. Definition 15, page 46

Gσabs
Is the abstraction that abstracts each predicate P using the data-
abstraction abs(P ). This is the abstraction our framework must im-
plement. Definition 15, page 46

α
Gσabs (M )

This is a consequence of the previous notations.
∀P,α

Gσabs (M )(P #) =αabs(P )(M (P ))

G (H) Horn problem induces by the abstraction G . Definition 19, page 58

Fσ The relation encoding a# ∈σ(a). Definition 20, page 60

Fσ[q] Fσ with existential quantifiers set to q . Definition 21, page 63

A
b

s
In

st
an

ce
s

i d ,σi d Is the identity data-abstraction. Definition 16, page 48

σ1 •σ2 Is the data-abstraction combinator for pairs. Definition 16, page 48

σ1 ¯σ2 Is the combinator for composition. Definition 16, page 48

Cel l ,σCel l Is the cell data-abstraction for arrays. Definition 17, page 50

σ1 ⊕σ2 Is the sum data-abstraction combinator. Definition 18, page 53

σ1 ⊗σ2 Is the product data-abstraction combinator. Definition 18, page 53

σn
Cel l σCel l ⊗ . . .⊗σCel l , n times

P
ro

p
er

ti
es

Sound, complete, relative completeness, implements the abstraction. Definition 14, page 45

Per clause completeness is a local completeness property. Definition 22, page 68

Per clause relative completeness is its relative variant. Definition 23, page 71

Complete call to i nst s enables completeness of el i mi nate. Definition 24, page 73

Relevant cells enables completeness of i nst s for cell abstraction. Definition 27, page 98

A
lg

o
ri

th
m

s abstr act is Algorithm 1 of page 60.

el i mi nate is Algorithm 2 of page 66.

i nst s when absP =σCel l and r elevant are in Algorithm 3 of page 102.

i nst s when absP is finite is Algorithm 4 of page 106.

i nst s when absP is a combinator are Algorithms 5, 6, 7, 8, pages 107, 110, 113, 114.





2 From programs to Horn clauses

As discussed in the introduction, we use Horn clauses as an intermediate representation in our
verification scheme. Horn clauses were chosen because they are general enough to encode safety
properties of programs and are written in a syntax with clear semantics. Chapters 3, 4 and 5 mainly
talk about Horn clauses and it is thus key that the reader fully understands the link between Horn
clauses and programs. This is especially true for the discussions of Chapters 5 and 7 which aim to
show how what we do with Horn clauses impacts programs.

Therefore, the goal of this chapter is not to explain the transformation of a full-fledged program-
ming language into Horn clauses, as a tool such as SeaHorn [Gur+15] may do, but mainly to show
how the safety properties of simple programs can be converted into Horn clauses, and the choices
that impact our solving of Horn clauses. Note that a full transformation should not only handle
complex programming language constructions such as exceptions, memory layout, . . . , but also
uncover the data-structures expressed through memory pointers: writing the memory as a huge
array in Horn clauses will not lead to tractable Horn clauses. This is however not the purpose of
this chapter and this chapter should not be viewed as a scientific contribution, but rather as a
preliminary chapter.

In this chapter, we first give in Section 2.1 an informal explanation of the transformation through
examples and show how some choices impact the underlying Horn clauses. In that section, Horn
clauses are not well defined and should be viewed as logical formulae. We then give a formal
definition of Horn clauses and Horn problems which sets up notations for the rest of this PhD.
Finally, we consider our running example, merge sort.

2.1 Transforming programs into logical constraints

In this section, we discuss how the problem of verifying safety properties in programs can be ex-
pressed as logical formulae. These logical formulae will encode what we define as Horn problems
in the next section, but for now, this is not necessary.

2.1.1 The transformation of a simple program: array initialization

Safety properties define sets of variable values that are not allowed at given program points. For
example, assert(a[0] =0); states that at the program point defined by the assertion, any array
value for a in {a | a[0] 6= 0} is not allowed. Thus, we need a definition of the set of possible variable
values at the program point of the safety property.
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The set of possible variable values at a given program point can usually be de-
fined by the operation and the program point that precedes it: for example in
/*Program point P1*/ i=i+1; /*Program point P2*/ , the set of possible values for i at pro-

gram point P2 is simply {v +1 | v is a possible value for i at P1}. Of course, the notion of
program point that precedes it is defined by the control flow graph [OG86]. For example
/*Program point P1*/ while(i<n) {i=i+1; /*Program point P2*/} , has P1 preceding P2, but also

P2 preceding P1. In the case of while loops, this creates a mutual relation between the possible
variable values at program points: in our example, the possible variable values for P2 depend on
those for P1 which depends on those for P2 and so on.

To compute the possible variable values at each program point, we define for each program
point Pi , the function Pi (vars). The aim is to write constraints on Pi (vars) such that Pi (vars)
returns whether the variable values vars are possible at program point Pi . In other words.
{vars | Pi (vars)} should be the set of possible variable values at program point Pi . In Example
1 we show, on an array initialization function, how to write the minimal constraints that ensure
that, for all possible variable values vars at program point Pi , we have Pi (vars). Because these
constraints are minimal, to retrieve the exact possible variable values at each program point, one
just needs to find Pi (vars) satisfying these contraints and such that {vars | Pi (vars)} is as small as
possible. However, this is not our primary goal: we do not wish to find the exact set of possible
variable values at each program point, and such that {vars | Pi (vars)} is as small as possible, we
only need to find Pi (vars) satisfying these contraints and satisfying the safety property.

A more abstract view which is not yet of great importance but will form the basis of what we call
Horn problems is: the program constraints we write on each function Pi define the set of possible
variable values at each program point by mutual induction. As we only need to check that the
least fixpoint of the induction satisfies the safety property, it is sufficient to check the existence of
a postfixpoint satisfying the safety property.

The constraints created by the array initialization program of Listing 1.1 without any specified
safety property, that is, without the assertion, are given in Example 1. To add the safety property
corresponding to the assertion assert(∀k ∈ [0, a.si ze()[, a[k] = 0); that states that, for any input array
a, at the end of the function, we have ∀k ∈ [0, a.si ze()[, a[k] = 0, where [0, a.si ze()[ is the interval
from 0 to a.si ze() containing 0 but not a.si ze(), we need two additional constraints:

1. the constraint ∀a,P1(a) expresses that the array initialization function can be called with
any input array, and thus, we should consider any value of the array a at program point P1.

2. the constraint ∀a, i ,k, (P8(a, i )∧0 ≤ k < a.si ze()) → a[k] = 0 expresses that, at the end of the
function, the array is initialized.

The problem of whether the array initialization program verifies that safety property is now re-
duced to the question of existence of P1,P3, . . . verifying all the constraints.
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Example 1 (Program point constraints for the array initialization program). In this example, Pi

represents the program point at the end of the line numbered i , ∧ is the boolean and operand, → is
the boolean implies operand, si ze(a) is the size of the array a, a[i ← 0] is a new array a′ defined as
a′[i ] = 0 and a′[k] = a[k], for k 6= i .

1 void array_init(Array <int >& a)
2 {
3 unsigned i=0;
4 while(i<a.size())
5 {
6 a[i] <- 0;
7 i <- i+1;
8 }
9 }

∀a, i ,P1(a) → P3(a,0)
∀a, i ,P3(a, i )∧ i < si ze(a) → P4(a, i )

∀a, i ,P4(a, i ) → P6(a[i ← 0], i )
∀a, i ,P6(a, i ) → P7(a, i +1)
∀a, i ,P7(a, i ) → P3(a, i )
∀a, i ,P3(a, i )∧¬(i < a.si ze()) → P8(a, i )

2.1.2 Verifying safety properties of program points: assertions

The basic principle of how safety properties on programs are transformed into logical constraints
has been explained in Section 2.1.1. We separated two types of constraints: those due to program
constraints and those expressing the safety property. Among safety properties, we mainly distin-
guish properties of program points and properties linking program points. The former are mainly
assertions, whereas the latter may for example be relations between input and output values of
a function. In this section, we explain how assertion properties can be transformed into logical
constraints.

Program assertions. The most basic type of safety property is simply an assertion written
in the program language. The way to handle such safety properties as a verification con-
straint is fairly straightforward: simply write the constraint if we have values vars at the pro-
gram point of the assertion, then they must verify the assertion. For example, one could have
added /* Program point P_8 */ if(a.size() > 0) assert(a[0]=0); at the end of the array ini-
tialization function of Example 1. This safety property would have added the constraints
∀a, i ,P8(a, i )∧a.si ze() > 0 → P9(a, i ) and ∀a, i ,P9(a, i ) → a[0] = 0.

In practice, one would want to verify that the array is properly initialized for all values, not
only 0. If we are limited to program assertions, one should do so by going through a loop
for(unsigned i=0; i< a.size(); i++) assert(a[i]=0); and verifying all indices. This may be seen

as cumbersome and explains why one may wish to use more expressive type of assertions. The
code corresponding to this loop verification is available in Listing 2.1.

Extending assertions: quantifiers. In the case of the array initialization example, it is tempt-
ing to use the assertion /* Program point P_8 */ assert(∀k ∈ [0, a.si ze()[, a[k] = 0); to express the
desired safety property as in Listing 2.2. This is an extension with quantifiers to program as-
sertions and can be handled by our transformation into logical constraints. To handle the as-
sertion /* Program point P_8 */ assert(∀k ∈ [0, a.si ze()[, a[k] = 0); , we simply add the constraint
∀a, i ,P8(a, i ) → (∀k,0 ≤ k < a.si ze() → a[k] = 0) which is equivalent to the one discussed in Sec-
tion 2.1. In practice, a proper language for safety properties such as ACSL [Bau+08] would consider
other extensions, but these are not of much interest to us in this PhD.

The method we suggest to handle assertions with quantifiers is fairly straightforward. How-
ever, we wish to discuss another method that has been used to prove quantified assertions [MA15;
MG16]: using a random index. In this method, instead of checking that all indices of the array are
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Listing 2.1 – Using program assertions

void array_init(Array <int >& a)
{

unsigned i=0;
while(i<a.size())
{// Program point P

a[i] <- 0;
i <- i+1;

}
i=0;
while(i<a.size())
{

assert(a[i] =0);
i++;

}
}

Listing 2.2 – Using quantified assertions

void array_init(Array <int >& a)
{

unsigned i=0;
while(i<a.size())
{// Program point P

a[i] <- 0;
i <- i+1;

}
assert(∀k ∈ [0, a.si ze()[, a[k] = 0);

}

Listing 2.3 – Using start random index

void array_init(Array <int >& a)
{

unsigned k=rand()%a.size();
unsigned i=0;
while(i<a.size())
{// Program point P

a[i] <- 0;
i <- i+1;

}
assert(a[k]=0);

}

Listing 2.4 – Using end random index

void array_init(Array <int >& a)
{

unsigned i=0;
while(i<a.size())
{// Program point P

a[i] <- 0;
i <- i+1;

}
unsigned k=rand()%a.size();
assert(a[k]=0);

}

Listing 2.5 – Variation of the array initialization program

bool array_init_and_check(Array <int >& a)
{

unsigned i=0;
while(i<a.size())
{// Program point P

a[i] <- 0;
i <- i+1;

}
bool b=true;
i=0;
while(i<a.size())
{

if(a[i] 6= 0)
b=false;

i++;
}
// Checking a single random index will not work to prove that b = tr ue
return b;

}
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initialized, the idea is to introduce a new variable whose value is random, and check that the array
is initialized at that value. Since that value is random, this means that the array is initialized for all
values. The code corresponding to this method is given in Listings 2.3 and 2.4.

One of the key differences between Listings 2.1 and 2.2 and the Listing 2.3 is the loop invariant re-
quired to prove correctness of the program. In the cases of Listings 2.1 and 2.2, the invariant at pro-
gram point P needs to be ∀k ∈ [0, i [, a[k] = 0, whereas for Listing 2.3, the invariant k < i → a[k] = 0
suffices. As for Listing 2.4, it does formally require a quantified invariant; however, due to its syn-
tactical proximity with Listing 2.3, we are unsure whether current solving techniques would not
reorder without our knowledge, thus making our next argument hold for it as well.

We argue that the random index method is perhaps best to verify programs as it allows for sim-
pler invariants – i.e. not quantified – and thus has the best chance of succeeding. However, we do
not believe it should be used to demonstrate the effectiveness of techniques handling universal
properties of arrays for two reasons. First the resulting program does not need quantified invari-
ants and thus, the success of the verification technique on it does not prove anything about its
handling of quantified invariants. Second, and this is highly tied to the previous reason, a tech-
nique that succeeds on Listing 2.3, but fails on Listings 2.1 and 2.2 cannot handle variations of
these programs such as the one of Listing 2.5.

Thus, as our goal for now is to prove the effectiveness of our verification technique and not verify
as many programs as possible, as well as making it reliable to variations and syntactical changes,
we will use either the method of Listing 2.1 or the one of Listing 2.2. Our method can later be
combined with a method that transforms some quantifiers into random indices.

2.1.3 Verifying and using functions

2.1.3.1 Functions as relations between input and output values

Unlike properties of program points, properties of functions usually link the input and the output
value of a function. Thus, just like we encoded the set of possible variable values at each program
point using logical constraints, we suggest to encode the relation between input and output val-
ues by logical constraints. The main idea is to consider a program point that has both the initial
variable values and the returned values so that we can extract the relationship from it.

In the case of the binary search program of Listing 1.2, because it does not modify its input
and does not have any side-effect, the program points of the return statements contain all the
information. If we call BS((a, v), (b, i )) the relation between the input values (a, v) and the output
values (b, i ) of the binary search program, we add two constraints corresponding to the two return
statements.

1. The return statement /* Program point P_10*/return pair(true,mid); yields the constraint
∀a, v,mi n,max,mi d ,P10(a, v,mi n,max,mi d) → BS((a, v), (tr ue,mi d)).

2. The return statement /* Program point P_16*/return pair(false,0); yields the constraint
∀a, v,mi n,max,P16(a, v,mi n,max) → BS((a, v), ( f al se,0)).

The full transformation of the binary search program into logical constraints can be found in Ex-
ample 2.

However, in the case of functions with side-effects, it is not as easy: we want to capture the
side-effects within the relation and thus we consider the side-effects as a new returned value. In
the case of the array initialization function, this means that the final value of the array should be
viewed as a return value and thus the relation we consider for it has as input a, the initial value of
the array, and as output a′, the value of the array at the end of the function. Let us call the relation
for the array initialization AI (a, a′).

J. Braine 21/144



CHAPTER 2. FROM PROGRAMS TO HORN CLAUSES

There is still another problem with the array initialization example: we do not have a program
point at which we have both the initial value of a and the final value of a. We solve this prob-
lem by proceeding as if we had copied the initial arguments in a variable that is kept unchanged
throughout execution. In Example 3, we show how this is done for the array initialization program.

We now need to use the constrained relation either to verify that the function veri-
fies a given safety property or to encode function calls, that is instructions of the form
/* Program point P_s*/ out = f(in); /* Program point P_e*/ .

Example 2 (Transformation of the binary search function into logical constraints). The free vari-
ables of each constraint (i.e. each line) are assumed universally quantified.

1 pair <bool ,unsigned >
binary_search(Array <int > a,
int v)

2 {
3 unsigned min = 0;
4 unsigned max = a.size();
5 while(max >=min)
6 {
7 unsigned mid = (max+min)/2;
8 if(a[mid]>v)
9 min <- mid +1;

10 else if(a[mid]=v)
11 return pair(true ,mid);
12 else
13 max <- mid -1;
14
15
16 }
17 return pair(false , 0);
18 }

P1(a, v) → P3(a, v,0)
P3(a, v,mi n) → P4(a, v,mi n, si ze(a))
P4(a, v,mi n,max)∧max ≥ mi n → P5(a, v,mi n,max)

P5(a, v,mi n,max) → P7(a, v,mi n,max, (max +mi n)/2)
P7(a, v,mi n,max,mi d)∧a[mi d ] > v → P8(a, v,mi n,max,mi d)
P8(a, v,mi n,max,mi d) → P9(a, v,mi d +1,max,mi d)
P7(a, v,mi n,max,mi d)∧¬a[mi d ] > v ∧a[mi d ] = v → P10(a, v,mi n,max,mi d)
P10(a, v,mi n,max,mi d) → BS((a, v), (tr ue,mi d))
P7(a, v,mi n,max,mi d)∧¬a[mi d ] > v ∧a[mi d ] 6= v → P12(a, v,mi n,max,mi d)
P12(a, v,mi n,max,mi d) → P13(a, v,mi n,mi d −1,mi d)
P9(a, v,mi n,max,mi d) → P15(a, v,mi n,max,mi d)
P13(a, v,mi n,max,mi d) → P15(a, v,mi n,max,mi d)
P15(a, v,mi n,max,mi d) → P4(a, v,mi n,max)
P4(a, v,mi n,max,mi d)∧¬max ≥ mi n → P16(a, v,mi n,max)
P16(a, v,mi n,max) → BS((a, v), ( f al se,0))

Example 3 (Array initialization program as a function.). We add a new variable aI which stays
constant throughout execution and do as if we returned the modified array. Thus, we encode the
relation AI for function calls to ar r ay_i ni t . The free variables of each constraint (i.e. each line) are
assumed universally quantified.

1 void array_init(Array <int >& a)
2 {
3 unsigned i=0;
4 while(i<a.size())
5 {
6 a[i] <- 0;
7 i <- i+1;
8 }
9 }

10

P1(aI ) → P3(aI , aI ,0)
P3(aI , a, i )∧ i < si ze(a) → P4(aI , a, i )

P4(aI , a, i ) → P6(aI , a[i ← 0], i )
P6(aI , a, i ) → P7(aI , a, i +1)
P7(aI , a, i ) → P3(aI , a, i )
P3(aI , a, i )∧¬(i < a.si ze()) → P8(aI , a, i )
P8(aI , a, i ) → AI (aI , a)

2.1.3.2 Verifying functions

A safety property of a function is simply a property of the relation between the input and output
values; and thus, amounts to adding a logical constraint for the relation corresponding to that
property.

For example, in the case of the array initialization function, one may wish to specify the
safety property stating that at the end of the function, all cells of the array are equal to zero and
the size of the array is equal to its initial size. This is simply done by adding the constraint
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∀aI , a, AI (aI , a) → (∀k,0 ≤ k < a.si ze() → a[k] = 0)∧a.si ze() = aI .si ze()) to the constraints of Ex-
ample 3.

This can be reproduced for the binary search function: consider the property
∀a, v, ((sor ted(a)∧bi nar y_sear ch(a, v). f i r st ()) ⇒ a[bi nar y_sear ch(a, v).second()] = v) of
Listing 1.2, which states that, for any input sorted array a and value v , if bi nar y_sear ch says it
has found the element, then a read of the array a at the index returned by bi nar y_sear ch returns
v . This is translated by adding the following logical constraint to the constraints of Example 2:
∀a, v,b, i , (BS((a, v), (b, i ))∧ sor ted(a)∧b) → a[i ] = v .

However, this idea is not sufficient as we have not constrained the input values of the function.
Currently, all sets of possible values can be picked empty, as we have no constraint on the set of
possible values at the input of the function. Thus, we also need to add the logical constraints
∀a,P1(a) for the array initialization function and ∀a, v,P1(a, v) for the binary search function.

In this approach, we consider that both the array initialization function and the binary search
function are defined for all inputs. However, intuitively, the binary search function should only
be used on sorted array inputs. We have already handled this in the way we specified the
safety property: ∀a, v,b, i , (BS((a, v), (b, i ))∧ sor t ed (a)∧b) → a[i ] = v only ensures that the re-
turn value makes sense when the input array is sorted.

While this method does work for our examples, if we consider a slight modification of
the binary search function by adding, for example at program point P3, the assertion
/*Program point P_3*/ assert(sorted(a)); , this creates a problem: we return that the function

is buggy as we cannot find P1,P3, . . . verifying all the constraints anymore: we have ∀a, v,P1(a, v),
which implies ∀a, v,P3(a, v,0), which does not imply sor ted(a) and thus breaks the assertion. Yet,
we consider such modifications of the binary search function still correct and thus, we suggest a
modification of the approach.

Instead of considering that functions are defined for all inputs but check the relation only for
relevant inputs, we suggest to verify partial functions, that is, functions that are only defined for
inputs verifying a given condition. Classically [FL11], we name such a condition a precondition. By
doing so, the full safety property of binary search can be simplified so that it does not need to check
that the array is sorted. By doing so, we say that we have divided the full safety property of binary
search into a precondition and a postcondition. This leads to the following logical constraints:

1. The precondition sorted(a) leads to the constraint ∀a, v, sor ted(a) → P1(a, v) instead of
∀a, v,P1(a, v).

2. The constraint ∀a, v,b, i , (BS((a, v), (b, i ))∧b) → a[i ] = v is created by the postcondition
∀a, v, (bi nar y_sear ch(a, v). f i r st () ⇒ a[bi nar y_sear ch(a, v).second()] = v).

This allows for the adding of assertions of the form assert(sorted(a)); at any point of the binary
search function without any issues.

2.1.3.3 Handling function calls

In this section, we do not aim to verify functions, but to handle function calls when verifying
safety properties of either program points or other functions. This amounts to creating logi-
cal constraints for the instruction /* Program point P_s*/ out = f(in); /* Program point P_e*/ ,

or /* Program point P_s*/ f(in); /* Program point P_e*/ , where f is a function; and we suggest
three approaches.

Modular handling of function calls This approach consists in using the already constrained re-
lation F (i n,out ) to express the logical constraints linking Ps and Pe . However, it is important to
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also constrain the input program point of the function f : it must now include i n. Thus, with possi-
ble slight variations depending on whether f has side effects and the variables defined at program
points Ps and Pe , we need two following logical constraints:

1. ∀i n,out ,Ps(i n)∧F (i n,out ) → Pe (i n,out ), where F is the relation of the function f .
2. ∀i n,Ps(i n) → P f (i n), where P f is the input program point of the function f .

For example, the following call to the binary search function
/* Program point P_s*/ (b, i) = binary_search(a, 3); /* Program point P_e*/ yields con-

straints ∀a,b, i ,Ps(a)∧BS((a,3), (b, i )) → Pe (a, (b, i )) and ∀a,Ps(a) → P1(a,3). As for the instruc-
tion /* Program point P_s*/ array_init(a); /* Program point P_e*/ we have the constraints
∀a, a′,Ps(a)∧ AI (a, a′) → Pe (a′) and ∀a,Ps(a) → P1(a).

This approach is extremely general, fairly simple and scales well. However, the generated logical
constraints may be hard to solve: the relation F (i n,out ) is constrained not only by the definition
of the function, but also by all calls to the function. Thus, solving the constraints on F (i n,out )
cannot be done locally.

Using verified functions to handle function calls: summaries Another technique to handle
function calls is by using properties we have already verified on functions: instead of using the
relation F (i n,out ), which is defined by the code of the function, to specify the behavior of the
function call, we may use preconditions and postconditions that have already been proven about
the function.

With this approach, the instruction /*Program point P_s*/ out = f(in);/* Program point P_e*/ ,
where f has a precondition pr e(i n) and a postcondition post (i n,out ), creates two constraints:

1. ∀i n,out ,Ps(i n)∧post (i n,out ) → Pe (i n,out ) stating that we use the postcondition for our
knowledge of the relation between i n and out .

2. ∀i n,Ps(i n) → pr e(i n) stating that the input must verify the precondition.
Of course, we assume that the logical constraints stating that post (i n,out ) is a valid postcondition
and for the precondition pr e(i n) have already been added as discussed in Section 2.1.3.2.

For example, on the following instruction searching for the value 3 in the array
a, /* Program point P_s*/ (b, i) = binary_search(a, 3); /* Program point P_e*/ , if we con-
sider the already discussed precondition sor ted(a) and postcondition b ⇒ a[i ] = v , where
(a, v) is the input expression and (b, i ) the output expression, this yields the constraints
∀a,b, i , (Ps(a)∧ (b → a[i ] = v)) → Pe (a, (b, i )) and ∀a,Ps(a) → sor ted(a), in addition to the al-
ready mentioned constraints stating that sor ted(a) is a precondition and b ⇒ a[i ] = v a postcon-
dition.

This method has two drawbacks and one major advantage compared to the modu-
lar handling of function calls. The first drawback is that we need the user, or a
tool, to supply a precondition and a postcondition for the function we wish to call.
Second, even if the postcondition can be verified, it may be too imprecise to prove
the safety property we are considering. For example, consider the following program
a = random_array; (b, i) = binary_search(a, 3); assert(¬b → (∀i ∈ [0, a.si ze()[, a[i ] 6= 3)); . If we use

the already mentioned precondition and postcondition for binary search, we cannot prove that
the assertion is verified: the postcondition b ⇒ a[i ] = v does not state anything interesting when
b evaluates to f al se. We say that the postcondition is under-specified.

However, the main advantage of this method is that it separates the problem of handling func-
tion calls and verifying functions: we ensure that functions verify the postcondition for the given
precondition, and then use the precondition and postcondition in the calls, instead of adding con-
straints to the unknown relation F (i n,out ). By doing so, the verification problem becomes sim-

J. Braine 24/144



CHAPTER 2. FROM PROGRAMS TO HORN CLAUSES

pler as the unknown relation F (i n,out ) is only constrained locally, and more robust to changes: a
change to the function f that does not break its postcondition does not affect the verification of
the rest of the code.

In many ways, this is very similar to what is already done in libraries and large code-bases: in-
stead of using the code of the function as the specification for the function, one uses its docu-
mentation! Therefore, in many cases, the drawbacks of this technique are small: the user already
specified the behavior of the function in the documentation, and that behavior is the one the pro-
grammer should use and should therefore not be under-specified; the main difference is that the
documentation needs to be written in a language understood by the verification process. This is
why we believe summaries is the most important function call technique to handle.

Inlining: removing function calls Another way to handle function calls in programming lan-
guages is by replacing a call to a function by the code of the called function. Example 4 is a simple
example of how this can be done. This technique is called inlining and suffers from two major
drawbacks. First, this technique may generate huge duplication of code as the function is copied
for each calling context. Secondly, this technique is unable to handle general recursion as the
function needs to unroll itself recursively: a recursive function f calls f and thus requires to em-
bed the code of f at that point, but that code also calls f and requires to embed the code of f and
so on and so forth.

Our handling of function calls for verification purposes can also be done using inlining: inline
the desired function calls and only then transform the resulting program into logical constraints.
On the one hand, this may make the problem huge; on the other hand, the logical constraints are
simpler: we do not need to use a set describing the relation between input and output values of
the function. Thus, this approach is extremely relevant for functions that only have one or two
calling contexts.

Comparison of these three techniques We suggested three different ways of how one can write
the constraints due to function calls. In Table 2.1, we summarize the benefits, the drawbacks and
the use cases of each one. Note that each call of a same program can be handled by a different
method according to what seems best suited.

Table 2.1 – Comparison of how function calls are handled

Method Benefits Drawbacks When to use

Inlining
Extremely simple and
amounts to not handling
function calls.

Produces duplication of the
whole function at each call
and cannot handle recur-
sive functions

If the function is
small or called
from only 1 or 2
places.

Summaries
No duplication, possible
abstraction by the user.

Requires pre/postcondi-
tions to be provided.

If the function is
used a lot.

Modular
No duplication and no
added information.

Harder to check: the rela-
tion needs to be inferred.

If we have a ver-
ification technique
that can handle it.
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Example 4 (Inlining of the factorial function in the computation of
(n

k

)
).

unsigned factorial(unsigned n)
{

unsigned res =1;
while(n>0)
{

res=res*n;
n--;

}
return res;

}

unsigned choose(unsigned n,
unsigned k)

{
unsigned num=factorial(n);
unsigned bot1=factorial(k);
unsigned bot2=factorial(n-k);
return num/(bot1*bot2);

}

If we inline the calls to factorial in choose , this yields the program:

unsigned choose(unsigned n,
unsigned k)

{
//First inline call
unsigned n_1=n;
unsigned res_1 =1;
while(n_1 >0)
{

res_1=res_1*n_1;
n_1 --;

}
unsigned num=res_1;

// Second inline call
unsigned n_2=k;
unsigned res_2 =1;
while(n_2 >0)
{

res_2=res_2*n_2;

n_2 --;
}
unsigned bot1=res_2;

//Third inline call
unsigned n_3=n-k;
unsigned res_3 =1;
while(n_3 >0)
{

res_3=res_3*n_2;
n_3 --;

}
unsigned bot2=res_3;

return num/(bot1*bot2);
}

2.1.4 Using a theory adapted to logical formulae

Consider the array merge sorted program of Listing 2.6 which merges two sorted arrays. In this
program we see not only the si ze instruction, but also the push_back instruction which adds an
element to the end of the array. Our current transformation from programs to logical constraints
uses the same theory for the logical formulae as the used programming language. Thus, we would
use push_back in the logical constraints.

The problem with that approach is that the theory of a programming language is usually ill-
suited for logical formulae: first, the programming language usually has many elements in its
theory so that one can program fast. Our logical formulae are generated automatically and this
is thus not a benefit and it introduces multiple syntactical elements that one needs to handle
in algorithms, making them longer. Secondly, the types of a programming language are usually
constrained by execution problems: for example, integers are usually bound so that they fit in
the processor. This is not an interesting property for types in our logical formulae and the better
approach is to use infinite integers, and add bound constraints during the transformation. This
makes algorithms more general as they need to handle general bound constraints while making
the type system easier.
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The theory we use in our logical formulae can be changed but usually has the following speci-
ficities which corresponds to what already exists in the Horn solver we use. This theory is basic
and may be extended according to need.

1. An integer type Int which represents any unbounded signed integer, that is, an element of
Z. The operations on the Int type are as usual: addtion, multiplication, comparison. . .

2. A boolean type Bool with usual operations and the if-then-else instruction i te(b, v1, v2)
which return v1 when b is true and v2 otherwise.

3. And, as in this PhD we consider arrays, an array type Ar r parametrized by an index type I

and a value type V . When I is unspecified, one should assume Int . These arrays represent
functions from I to V , however, the operations on the type Ar r are closer to arrays: we have
the write operation a[i ← v], the read operation a[i ] and the = operation.

4. Additionally, we use Const Ar r ay(val ), sor ted(a,beg ,end) and BoundEq(a,b,beg ,end)
which are not usually handled within Horn solvers, where Const Ar r ay(val ) is the constant
array equal to val , sor ted(a,beg ,end) is equivalent to ∀i , j ,beg ≤ i < j < end → a[i ] ≤ a[ j ]
and BoundEq(a,b,beg ,end) denotes partial equality and is equivalent to ∀i ,beg ≤ i <
end → a[i ] = b[i ].
In practice, one can either consider sor ted and BoundEq to be aliases for their respective
quantified expressions or as new elements of the theory. The difference is that in one case
one needs to handle these quantified expressions whereas in the other case, one needs to
handle additional theory constructors but not quantifiers. In this manuscript, this differ-
ence is only of importance for the algorithm of Listing 5.6.

To demonstrate how a transformation from program to logical constraints may change the the-
ory, we show how the array merge sorted program of Listing 2.6 can be transformed into logical
constraints using the above theory for arrays: thus we eliminate the si ze and push_back oper-
ations. For readability, we do not give the transformation into logical constraints, but how this
program can be transformed into the equivalent program of Listing 2.7 which uses the theory of
logical constraints for arrays. To deduce the final constraints, one should simply transform the
program of Listing 2.7 into logical constraints as we have done before. Note that in this transfor-
mation we only simplify the theory of arrays and we leave the theory for integers untouched.

2.1.5 Large block encoding

The transformation we described creates, for each program point P , the unknown set of possi-
ble variable values at program point P . In practice, this is not necessary: for example, the two
instructions i++;/*Program point P*/ i=i*2; are semantically equivalent with respect to safety

properties to the single instruction i= (i+1)*2; , thus why introduce the set of possible values at
program point P?

This idea is well-known in the compiling community and is called large block encoding [Bey+09]:
instead of encoding each instruction separately, we can encode blocks of instructions together.
This allows further simplification within the logical constraints. For example, the loop body of
Listing 2.7, without the assertion, can be converted into the following logical constraint, where P
is the program point at the beginning of the loop and with a few simplifications.

∀b,bs ,c,cs ,r es,r ess ,bi ,ci ,r es′,bi ′,ci ′,
(
P (b,bs ,c,cs ,r es,r ess ,bi ,ci )∧bi + ci < bs + cs −1∧

(r es′,bi ′,ci ′) = i te(b[bi ] > c[ci ], (r es[r ess ← c[ci ]],bi ,ci +1), (r es[r ess ← b[bi ]],bi +1,ci ))
)

→ P (b,bs ,c,cs ,r es′,r ess +1,bi ′,ci ′)
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Listing 2.6 – Array merge sorted

// Merging of two sorted arrays

Array <int > merge_sorted(Array <int > b,
Array <int > c)

{
Array <int > res;

unsigned bi=0;
unsigned ci=0;
while(bi+ci<b.size()+ c.size() -1)
{

if(b[bi] > c[ci])
{

res.push_back(c[ci]);

ci++;
}
else
{

res.push_back(b[bi]);

bi++;
}

}
return res;

}

Listing 2.7 – Array merge sorted simplified

// Merging of two sorted arrays
//Let ArrInt = Arr <unsigned , int >
(ArrInt , unsigned) merge_sorted(

ArrInt b, unsigned b_size ,
ArrInt c, unsigned c_size)

{
ArrInt res;
unsigned res_size;
unsigned bi=0;
unsigned ci=0;
while(bi+ci<b_size+c_size -1)
{

assert(bi< b_size && ci< c_size);
if(b[bi] > c[ci])
{

res[res_size] = c[ci];
res_size ++;
ci++;

}
else
{

res[res_size] = b[bi];
res_size ++;
bi++;

}
}
return (res , res_size);

}

In practice, this part of the transformation does not need to occur during the transforma-
tion from programs to logical constraints but can directly occur on the set of logical con-
straints: the idea is to merge constraints of the form ∀vars1,P1(i n1)∧φ1 → P2(out1) and
∀vars1,P2(i n1)∧φ2 → P3(out2) where φ1 and φ2 are explicit expressions and vars1 ∩ vars2 = ;,
into the constraint ∀vars1,vars2,P1(i n1)∧φ1 ∧φ2 → P3(out2), thus removing the use of P2.

2.2 Horn clauses and Horn problems

2.2.1 Syntax: expressions, evaluation contexts and Horn clauses

We use the classical representation of expressions as trees where each node is either a constructor
of the theory or logic in which we work or a variable. Our expressions are assumed well-typed and
the only specificity is that we divide the set of symbols into two subsets: the predicates usually
named P,P ′,Pi , . . . and the variables of a given theory.

Definition 1 (Expressions). An expression is simply a tree where each node is either:
1. a typed variable.
2. the application of a typed predicate to arguments of the correct type.
3. a constructor of the theory applied to correctly typed expressions.
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4. a quantified typed variable applied to an expression.

We define two evaluation contexts for expressions: models, usually written M ,M ′,Mi , which
are functions that to a predicate P associate a set of the correct type; and an evaluation context for
the free variables, usually written vars,vars′,varsi , which are functions associating mathematical
values to the free variables. We use denotational semantics for expressions and the evaluation of
an expression e in the evaluation context vars for the free variables and the evaluation context M

for the predicates, written �e�vars
M

, as described in Definition 2. If the evaluation is independent of
a context, one can remove M or vars and simply write, �e�M or �e�vars or even �e�. Furthermore,
for a boolean expression e, we define �e�∀ and �e�∀

M
which returns a boolean corresponding to

whether e is true for all values of the free variables.

Definition 2 (Evaluation of expressions: �e�vars
M

). �e�vars
M

is recursively defined by:
1. �v�vars

M
≡ vars(v), where v is a variable.

2. �P (e1, . . . ,en)�vars
M

≡ (�e1�vars
M

, . . . ,�en�vars
M

) ∈M (P ), where P is a predicate.
3. �C (e1, . . . ,en)�vars

M
≡C (�e1�vars

M
, . . . ,�en�vars

M
), where C is a constructor.

4. �∀v,e�vars
M

≡∀vval,�e�varsv val

M
where varsvval(v) = v val and varsvval(v ′) = vars(v ′). Existential

quantifiers are evaluated in similar manner.

The expressions on which we work are usually over a theory containing boolean, tuples, integers
and arrays. However, our algorithms and proofs are general enough to account for any theory.
Thus, we do not wish to restrict the theory we consider and one may assume we use the same the-
ory for expressions as for formulae. Doing so enables us to go through broader theories to simplify
our writing of expressions: for example, using set theory and considering that {. . .} is a construc-
tor makes �{e1, . . . ,en}�vars

M
well-defined and this can be used to simplify {�e1�vars

M
, . . . ,�en�vars

M
} while

staying formal.
Although we may not constrain the expressions on which we work, the logical constraints gen-

erated from programs as described in Section 2.1 must be in the subset of expressions called
Horn clauses. This subset is mainly defined by how predicates are used: the goal is to allow at
most one positive predicate instance in each clause, that is at most one predicate which would
not have a negation preceding it after expanding boolean operations. Normalized Horn clauses
directly enforce such a syntax whereas general Horn clauses are simply expressions that can be
reduced to normalized Horn clauses through boolean manipulations using the Tseitin transfor-
mation [Tse83]. We also define extended Horn clauses that correspond to Horn clauses with an
unbounded number of predicate instances; linear Horn clauses which correspond to transitions
from a single predicate to another and correspond to non-function call program instructions; as-
sertion Horn clauses which encode safety properties. The satisfiability of a set of Horn clauses is
simply the existence of a model – corresponding to the existence of P1, . . . ,Pn of Section 2.1.1 –
that satisfies each of its clauses for all values of its free variables – as in our examples of Section 2.1
which have universal quantifiers around each clause.

Definition 3 (Horn clauses). Normalized Horn clauses are expressions of the form e1 ∧ . . .∧en → e ′

where: e1, . . . ,en are either a predicate application or an expression without predicates. We call
e1, . . . ,en the premises and e ′ the goal.

General Horn clauses are clauses that can be rewritten into a conjunction of normalized Horn
clauses by using only boolean manipulations. This transformation can always be done efficiently
(i.e. in linear time) by introducing intermediate predicates by using the Tseitin transformation
[Tse83].
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Normalized extended Horn clauses allow e1, . . . ,en to be expressions of the form ∀v,cond(e) →
P (e ′) where e,e ′ are expressions that may use the variable v. Normalized linear Horn clauses have
at most one predicate instance in e1∧. . .∧en . The linear Horn clauses that have no predicate instance
in e1 ∧ . . .∧en are said to be start Horn clauses. Normalized assertion Horn clauses are such that e ′

is an expression without predicates.

Definition 4 (Satisfiability of Horn clauses). A set of Horn clauses C is said to be satisfiable by M if
and only if ∀C ∈ C,�C�∀

M
. It is said to be satisfiable if there exists a model such that C is satisfiable

by that model.

2.2.2 Horn problems

Horn problems consist in taking an abstract view of the syntax of Horn clauses that is more suited
for non-syntactical proofs. In this section, we first show how the problem of verifying safety prop-
erties on programs naturally redefines predicates and models, and create what we call Horn prob-
lems. We then explain that Horn clauses are a natural syntax for Horn problems and formally show
in Theorem 2 that Horn clauses encode Horn problems.

2.2.2.1 Defining Horn problems

In this section, we work without Section 2.2.1 and we informally redefine predicates and mod-
els using a more semantical view. We urge the reader to understand that these redefinitions are
equivalent and we will use the formal definitions of Section 2.2.1 in the rest of this manuscript.

To understand the formalization of Horn problems, let us define an abstract view of what kind of
problem the program verifies the safety properties actually is instead of defining it through the syn-
tax of the program or through the syntax of the logical formulae generated by the transformation
of programs into logical constraints.

To formally define what a safety property is, we first need to define what a program point is and
what a set of values for program points are. We define program points as simply typed identifiers,
usually written P,Pn ,P ′, . . ., where the intuition is that the type of a program point P matches the
type of the tuple of variables defined at program point P .

Sets of variable values for program points are called models and are written
M ,Mn ,M ′,U ,U ′, . . . They are simply functions from program points to set of values. For
example, M (P ) = {(0,2,4), (1,2,4)} is a set of values for program points M such that the values of
variables at program point P is 0 or 1 for the first variable, 2 for the second and 4 for the third.

Safety properties encode that the set of possible variable values at each program point must
belong in a set of allowed values. Thus, it corresponds to the property ∀P,Mpr g (P ) ⊆Usa f et y (P ),
also written Mpr g ≤Usa f et y using a custom ordering, where Mpr g is the model that corresponds
to the set of possible values at each program point of the considered program and Usa f et y is a
model that specifies the allowed values for each program point.

We have captured the notion of a safety property for the set of possible variable values at each
program point. We now need to capture what it means that that set of possible values is constructed
by a program. In other words, we need to capture the properties of Mpr g .

The set of possible values at each program point can be computed through a possibly un-
bounded symbolic execution of the program. Thus, if we call fpr g the function that executes one
step of that unbounded symbolic execution, one may say that these sets and relations correspond
to the least fixpoint of f , written lfp f . Thus, Mpr g should in fact be defined as lfp fpr g .

Thus, we define Horn problems as pairs ( fpr g ,Usa f et y ) and we say that they are satisfiable when-
ever lfp fpr g ≤Usa f et y . This was already briefly discussed in Section 2.1.1.
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Definition 5 (Horn Problem H , defines fH ,UH ). A Horn problem H is a pair ( fH ,UH ) where:
1. fH is a monotone function over models with order M1 ≤M2 ≡∀P,M1(P ) ⊆M2(P ).
2. UH is a model.

It is said to be satisfiable if and only if lfp fH ≤UH (where lfp is the least fixpoint operator).

2.2.2.2 Horn clauses encode Horn problems

Horn clauses encode Horn problems without using the least fixpoint operator. To do so, we for-
malize our discussion of Section 2.1.1, which states that we only need to check for the existence of
what we call a postfixpoint.

Let us encode the property H is satisfiable as a logical formula without using the least fixpoint
operator. Instead of saying that lfp fH ≤UH , we instead write ∃M , lfp fH ≤M ≤UH ; and, using
properties of the least fixpoint, this simplifies to ∃M , fH (M ) ≤M ≤UH . Such a model is called a
postfixpoint in the literature. Because this is the main property we will be using, we define H(M )
stating that the model M verifies the property fH (M ) ≤M ≤UH .

Definition 6 (H(M )).
H(M ) ≡ fH (M ) ≤M ∧M ≤UH

Theorem 1 (Horn problems as a condition on models). A Horn problem H is satisfiable if and only
if ∃M , H(M ).

Proof . We divide the proof in two parts: the main part H satisfiable ≡ ∃M , H(M ) and the auxil-
iary lemma fH (M ) ≤M ⇒ lfp fH ≤M used by the main part.

Proof that H satisfiable ≡∃M , H(M ) Proof that fH (M ) ≤M ⇒ lfp fH ≤M

H satisfiable
≡ lfp fH ≤UH

≡∃M , lfp fH ≤M ≤UH

(⇒) By taking M equals lfp fH

(⇐) is proven in the auxiliary lemma
≡∃M , fH (M ) ≤M ≤UH

≡∃M , H(M )

We prove that x ≤M implies fH (x) ≤M

lfp fH ≤M follows by induction
x ≤M

≡ fH (x) ≤ fH (M ) by monotonicity of fH

≡ fH (x) ≤M by assumption fH (M ) ≤M

We now show that Horn clauses encode, for some H , H(M ), and thus, the satisfiability of Horn
clauses encode ∃M , H(M ). The main idea is that assertion Horn clauses define UH whereas non-
assertion Horn clauses define fH . This view enables us to understand the restriction of the syntax
of Horn clauses: fH must be a monotone function, and this is why we cannot have several predi-
cates instances in the goal.

Definition 7 (Horn problem encoded by a set of Horn clauses HC). For a set of possibly extended
Horn clauses C, we call HC a Horn problem encoding them1. That is HC verifies:

∀M , HC(M ) ≡∀C ∈C,�C�∀M
Theorem 2 (Definition 7 is correct). Let C be a set of possibly extended Horn clauses.

∃H ,∀M , H(M ) ≡∀C ∈C,�C�∀M
1The Horn problem is in fact unique, but we have not proved it as this is not useful in our manuscript.
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Proof . Assume C normalized (otherwise, simply normalize it using Tseitin). Let us first construct
fH and UH .

1. Let C=C1 ∪C2 where C1 are the assertion clauses and C2 are the non-assertion clauses.
2. Let us define UH as the biggest model satisfying Pr op(M ) where Pr op(M ) ≡ ∀C ∈

C1,�C�∀
M

.
Formally2, UH = ⊔

{M | ∀C ∈ C1,�C�∀
M

}, where
⊔

is the join of the lattice. In other words,
∀E ,P, (

⊔
E)(P ) =⋃

{E(P )}.
3. Let us define fH such that ∀P, fH (M )(P ) =M (P )∪Mn(M )(P ) where Mn(M ) is the smallest

model verifying cond(M ,Mn(M )) where cond(M ,M ′) ≡∀C ∈C2,∀vars,�e1∧. . .∧en�vars
M

⇒
�e ′�vars

M ′ using the notations of Definition 3: e1 ∧ . . .∧en are the premises of C and e ′ its goal.
Formally3, Mn(M ) =d

{M ′ | ∀C ∈C2,∀vars,�e1∧. . .∧en�vars
M

⇒�e ′�vars
M ′ }, where

d
is the meet

of the lattice. In other words, ∀E ,P, (
d

E)(P ) =⋂
{E(P )}.

We need to show that fH is monotone and ∀M , H(M ) ≡∀C ∈C,�C�∀
M

. The monotonicity of fH is
simply because cond is monotone in its first argument.

Proof of the monotonicity of fH .
1. Let M1 ≤M2

2. Thus, ∀C ∈C2,∀vars,�e1 ∧ . . .∧en�vars
M1

⇒�e1 ∧ . . .∧en�vars
M2

3. Thus, for any M ′, cond(M2,M ′) ⇒ cond(M1,M ′)
4. Thus, Mn(M1) ≤Mn(M2)
5. Adding M1 ≤M2, we obtain fH (M1) ≤ fH (M2).

Proof that H encodes C. We need to prove ∀M , H(M ) ≡∀C ∈C,�C�∀
M

.
1. Introduce M .
2. H(M ) can be rewritten into fH (M ) ≤M ∧M ≤UH .
3. Let us prove M ≤UH ≡∀C ∈C1,�C�∀

M

(a) Pr op is decreasing as C ∈C1 only uses predicate instances in the premises.
(b) Reason by implication and assume M ≤UH . We have Pr op(UH ) as UH is the biggest

model satisfying Pr op, thus, as Pr op decreasing, we have Pr op(M ) our desired result.
(c) Now assume Pr op(M ). As UH is the biggest model satisfying Pr op, we have M ≤UH .

4. Let us prove fH (M ) ≤M ≡∀C ∈C2,�C�∀
M

(a) fH (M ) ≤M is equivalent to Mn(M ) ≤M

(b) As Mn(M ) is the smallest model satisfying cond(M ,Mn(M )), Mn(M ) ≤M is equiv-
alent to cond(M ,M )

(c) But cond(M ,M ) is exactly ∀C ∈C2,�C�∀
M

5. Thus, H(M ) ≡∀C ∈C,�C�∀
M

2.3 A complex example: merge sort

In this section, we consider a more complex example: the merge sort program of Listing 2.9 and
Listing 2.10. Listing 2.8 corresponds to the merge_sorted of Listing 2.6 with added program point
names and safety properties. To our knowledge, sorting algorithms, and especially those with

2The proof that this corresponds to the biggest model satisfying pr op is due to its continuity.
3The proof that this corresponds to the smallest model satisfying cond is due to its continuity.
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Listing 2.8 – Array merge sorted

//pre: sor ted(b)∧ sor ted(c)
//post sor ted(r es)
Array <int > merge_sorted(Array <int > b, Array <int > c)
{

// Program point Pms_st ar t or Pms_st ar t_i nl when inlined.
Array <int > res;
unsigned bi=0, ci=0; // Program point Ploop

while(bi+ci<b.size()+ c.size() -1)
{

if(b[bi] > c[ci])
{ res.push_back(c[ci]); ci++; }

else
{ res.push_back(b[bi]); bi++; }

}
// Program point Pms_end or Pms_end_i nl when inlined.
return res;

}

Listing 2.9 – Merge sort recursive

Array <int > merge_sort_rec(Array <int > a)
{

if(a.size() >1)
{

unsigned mid=a.size()/2; // Program point Pb
Array <int > b = sub_array(a, 0, mid);// Program point P ′

b
Array <int > c = sub_array(a, mid , a.size());
b = merge_sort_rec(b); c = merge_sort_rec(c); // Program point Pcal l
Array <int > res= merge_sorted(b, c); // Program point P ′

cal l
assert(sorted(res)); return res;

}
else

return a;
}

Listing 2.10 – Merge sort non-recursive

Array <int > merge_sort_not_rec(Array <int > a)
{

for(unsigned step =1; step <a.size();step *=2){
unsigned i=0;
Array <int > b, c;
while(i<a.size())
{

unsigned istart=i, j;
for(j=i;j<min(i+step , a.size());j++)

b.push_back(a[j]);
i=j;
for(j=i;j<min(i+step , a.size());j++)

c.push_back(a[j]);
i=j;
Array <int > res=merge_sorted(b, c);
a.sub_array(istart , j) = res;

}
}
assert(sorted(a));
return a;

}
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nlogn complexity [MG16] have barely been tackled by automated tools in the literature, and merge
sort is one of them.

This example is of particular interest as it manipulates arrays, requires complex universally
quantified invariants, has a recursive and a non-recursive form and has function calls. The only
interest of the non-recursive form is to show that such a program can be fully inlined and this will
serve for the discussion of Chapter 6. Furthermore, we use the sub_array(a, beg, end) operation
that we assume to be a language primitive extracting the subpart of the array corresponding to
indices in [beg ,end [. The Horn clauses we write for this example are created using Section 2.1
and the theory we use is that of Section 2.1.4. For readability reasons, our transformation assumes
program integers to be infinite.

Instead of transforming the full program into Horn clauses, we divide program operations into
several categories and select a single well-chosen program operation to transform for each cat-
egory. For each category, we discuss whether the generated clauses are linear, non-linear, asser-
tion, start4 and whether the expressions on arrays they use are trivial, basic, complex. We say
that clauses are trivial when there is no array operation, basic when the only operations are non-
quantified array reads and writes, and complex otherwise. Furthermore, our discussion holds for
the two ways of implementing sor ted and BoundEq discussed in Section 2.1.4: the semantics of
both versions are identical and the difference will only be witnessed in a very specific algorithm5.

The classification is given in Table 2.3 and the generated Horn clauses are given in Example 5.
The important conclusion of this classification, which will be key for our discussion of Chapter 6,
is that:

1. We must handle clauses which are linear, basic.
2. We must handle clauses that are linear, assert, complex.
3. We must handle clauses that are linear, start, complex.
4. For the non-recursive merge sort of Listing 2.10, using the inlining technique, we only need

to additionally handle clauses that are linear, trivial. The inlining technique cannot be used
for Listing 2.9 and this is why we provided Listing 2.10.

5. If we want to use function summaries, we need to additionally handle clauses that are linear,
complex.

6. If we want to use modular function calls, we need to additionally handle clauses that are
non-linear, trivial.

Example 5 (Horn clauses generated by merge sort).(
Ploop (b,bs ,c,cs ,r es,r ess ,bi ,ci )∧bi + ci < bs + cs −1∧

(r es′,bi ′,ci ′) = i te(b[bi ] > c[ci ], (r es[r ess ← c[ci ]],bi ,ci +1), (r es[r ess ← b[bi ]],bi +1,ci ))
)

→ Pl oop (b,bs ,c,cs ,r es′,r ess +1,bi ′,ci ′) (2.1)

(
Pb(a, as ,mi d)∧BoundEq(b, a,0,mi d)∧bs = mi d

)→ P ′
b(a, as ,mi d ,b,bs) (2.2)

P ′
cal l (a, as ,mi d ,b,bs ,c,cs ,r es,r ess) → sor ted(r es,0,r ess) (2.3)

(sor ted(b,0,bs)∧ sor ted(c,0,cs)) → Pms_st ar t (b,bs ,c,cs) (2.4)

4Note that none of the clauses are extended as the quantifiers are not over predicates.
5More precisely, the algorithm of Listing 5.6.
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Table 2.3 – Classification of the clauses of Example 5 generated by program operations

Category Example Clauses Type

Simple prg transitions1 Loop block of merge_sorted 2.1 linear, basic

Complex prg transitions2 b = sub_array(a, 0, middle) 2.2 linear, complex

Program point verification3 assert(sorted(res)); 2.3 linear, assert, complex
Function verification4 Verifying merge_sorted 2.4 linear, start, complex

2.5 linear, assert, complex
Inline function call5 res= merge_sorted(b, c); 2.6 linear, trivial

2.7 linear, trivial
Modular function call6 res= merge_sorted(b, c); 2.8 linear, trivial

2.9 non-linear, trivial
Summary function call7 res= merge_sorted(b, c); 2.10 linear, assert, complex

2.11 linear, complex

1 Program block transitions that use only simple operations on arrays that we illustrate with the complex loop block
of merge_sorted already considered in Section 2.1.5.

2 Program block transitions that use more complex operations on arrays that we illustrate with the call

b = sub_array(a, 0, middle) of Listing 2.9. Note that this is very similar to using a function summary.

3 The verification of program points that we illustrate with the call assert(sorted(res)); of Listing 2.9.
4 The verification of a function that we illustrate by checking that the precondition ∀b,c, sor ted(b)∧ sor ted(c) and

the postcondition ∀b,c, sor ted(mer g e_sor ted(b,c)) is valid for merge_sorted .

5 The handling of inline function calls that illustrated by the call Array<int> res= merge_sorted(b, c); of
Listing 2.9.

6 The modular handling of function calls that we illustrate with the call

Array<int> res= merge_sorted(b, c); of Listing 2.9.
7 The handling of function calls using summaries that we illustrate with the call

Array<int> res= merge_sorted(b, c); of Listing 2.9 using the already verified precondition and postcon-

dition.

Pms_end ((b,bs ,c,cs), (r es,r ess)) → sor ted(r es,0,r ess) (2.5)

Pcal l (a, as ,mi d ,b,bs ,c,cs) → Pms_st ar t_i nl (a, as ,mi d ,b,bs ,c,cs) (2.6)

Pms_end_i nl (a, as ,mi d ,b,bs ,c,cs ,r es,r ess) → P ′
cal l (a, as ,mi d ,b,bs ,c,cs ,r es,r ess) (2.7)

Pcal l (a, as ,mi d ,b,bs ,c,cs) → Pms_st ar t (b,bs ,c,cs) (2.8)

(
Pcal l (a, as ,mi d ,b,bs ,c,cs)∧Pms_end ((b,bs ,c,cs), (r es,r ess))

)
→ P ′

cal l (a, as ,mi d ,b,bs ,c,cs ,r es,r ess) (2.9)

Pcal l (a, as ,mi d ,b,bs ,c,cs) → (sor ted(b,0,bs)∧ sor ted(c,0,cs)) (2.10)

(
Pcal l (a, as ,mi d ,b,bs ,c,cs)∧ sor ted(r es,0,r ess)

)
→ P ′

cal l (a, as ,mi d ,b,bs ,c,cs ,r es,r ess) (2.11)
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3 Data-Abstraction: expectations

The Data-Abstraction framework is the key contribution of this manuscript. The goal of this frame-
work is to simplify Horn problems that require models with unbounded data-structures – the
equivalent of candidate invariants for programs – into Horn problems that do not require such
models. Not all data-structures of all programs can be simplified in the same manner and our
framework takes as parameter the user specifications for this simplification.

Obviously, our framework does not target all kinds of simplifications: its goal is to transform in-
variants with unbounded data-structures into invariants without, which usually is a simplification
that loses information. We believe the right formalism to specify such simplification is abstraction:
the transformation can be specified through semantics instead of through syntactic operations
and the information loss is, at least partially, quantified. In our case, we only handle a subset of
abstractions: abstractions that target unbounded data-structures and the formalism we choose
for these abstractions, called data-abstraction, reflects that.

This chapter does not give an algorithm; instead, its purpose is to lay out the formalism, the
core properties and abstractions the data-abstraction algorithm must handle, and to show that by
doing so, the data-abstraction framework handles the unbounded data-structures of a broad class
of programs. The work of actually finding the data-abstraction framework’s algorithm such that it
verifies these properties is left to Chapter 4.

This chapter is organized as follows: Section 3.1 states the properties of algorithms based on ab-
stractions; Section 3.2 restricts the abstraction parameter to unbounded data-structures and gives
the base of the data-abstraction formalism; finally, Section 3.3 shows the relevance and motiva-
tion of these properties and formalism by studying an important abstraction for arrays called cell
abstraction [MG16].

3.1 Algorithm based on abstraction: definition & properties

3.1.1 Abstraction: definition

Abstraction in computer science is very similar to a natural process in everyday life: its a form of
approximation. For example, instead of saying I cut down the Oak and the Acacia of my garden,
one may instead say I cut down the Trees of my garden. In this example, one may say that Oak
and Acacia was abstracted by Trees and one may see how the latter is less precise: unless the audi-
ence of the sentence already knows that I only have Oak and Acacia in my garden, they have less
information.

While we abstract objects in sentences in everyday life, we rarely define how objects should be
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abstracted: Oak and Acacia could also have been abstracted by two things in another sentence. In
static verification of programs, our goal is to abstract the concrete properties of variables at a given
program point - the candidate invariants - by simpler abstract objects, with the intention that
finding the properties of interest is simpler with these abstract objects. In our case, the concrete
properties will contain unbounded data-structures whereas the abstract objects will not. These
concrete properties are unknowns of our program verification problem and thus we must not state
how an individual concrete property needs to be abstracted, as was done for Oak and Acacia; but,
instead, give a general rule for how they must be abstracted.

Such a rule is called an abstraction and, formally, is a function α that expresses by what some-
thing is abstracted. This abstraction function α is defined on C , the set of things to abstract called
the concrete domain, whose elements are called concrete, and α has value in A , the set of things
into which we approximate, called the abstract domain, whose elements are called abstract and
will be noted with a # suffix. In our example, the abstraction which abstracts Oak and Acacia by
Trees is different from the abstraction that abstracts Oak and Acacia by two things; the former may
be viewed as the abstraction that abstracts a set of objects by the class of objects that contains
them, whereas the latter may be viewed as the abstraction that approximates with the number of
instances contained in that set.

The abstraction function α can’t be just any function: it must have the properties of an approx-
imation, that is, the approximation of a precise property such as the value of that variable at this
program point is 2 must be contained within the approximation of an imprecise property con-
taining it such as the value of that variable at this program point is even. Formally, the concrete
domain C and the abstract domain A are given an order < which represents this notion of pre-
cision of statements: a < b means that b is less precise than a, or equivalently, that the behaviors
of a are included in the behaviors of b. Furthermore, this order must have lattice properties: one
must be able to take the least upper bound written t and the greatest lower bound written u of
any subset of objects. A canonical example of lattices is sets where < is represented by ⊂, t by ∪
and u by ∩. For example, the property the value of that variable at this program point is 2 is simply
represented by the set {2} and the property the value of that variable at this program point is even
is simply represented by the set {i |i mod 2 = 0}. These two properties are comparable and their
comparison yields {2} < {i |i mod 2 = 0}.

The abstraction function α states how concrete objects are abstracted but not how abstract ob-
jects are related to concrete objects. In other words, it is not obvious what concrete properties an
abstract object represents. Classically, we use a concretization function γ which, to an abstract
object, gives the most precise concrete object to which it corresponds. Obviously, there is a link
betweenα andγ and given one of them, the other one is unique. Such a couple (α,γ) is called a Ga-
lois connection [CC77], has a composition function ◦ which consists in chaining abstractions, and
obeys many classical properties [RY20]. Here we recall the properties that we will use throughout
this manuscript.

Definition 8 (Galois connection G = (α,γ) and G1 ◦G2). A Galois connection G = (α,γ) is defined
between a concrete domain C and an abstract domain A .

• α : C →A gives the abstraction of a value.
• γ : A →C gives the concrete value of an abstract element.

where:
1. C and A are complete lattices
2. α,γ are monotone, a necessary property for approximations
3. a# ≤α(c) ≡ γ(a#) ≤ c, states the key property linking α and γ
4. γ(a#) =t{c|α(c) ≤ a#}, states that γ returns the most precise concrete element
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5. α◦γ◦α = α and γ◦α◦γ = γ states that repeating the same abstraction does not change the
result.

Note that properties 1, 2 and 3 are sufficient to deduce the others.
The composition of two Galois connections G1 = (α1,γ1) and G2 = (α2,γ2) is written G1 ◦G2 is

(α1 ◦α2,γ2 ◦γ1).

To illustrate how the formalism of Definition 8 works on properties of variable values at pro-
gram points, let us consider a few examples. Example 6 abstracts a property for a program point
with only an integer variable by the signs that integer variable may have and is a classic didactic
abstraction [CC77]. Example 7 abstracts a property for a program with a single integer variable by
the best interval to which that variable belongs and is an efficient abstract domain used in abstract
interpretation [CC76]. Example 8 abstracts a property for a program with a single array variable by
the set of values the first cell of that array may have and is a didactic data-structure abstraction for
this manuscript.

Example 6 (Integers to sign abstraction Gsi g n = (αsi g n ,γsi g n)). We abstract a property over an in-
teger variable, that is, a set of integers, thus C =P (Z), by one of {+,−, None,Both} =A , where:

1. + states that the variable is always positive
2. − states that the variable is always strictly negative
3. None states that the variable has no value, this corresponds to an unreached program point
4. Both states that the variable may be positive or negative
5. The lattice of C =P (Z) is simply the set lattice.
6. The lattice of {+,−, None,Both} =A has partial order: None <+,−< Both where + and −

are not comparable.
Formally, this corresponds to the following (α,γ) Galois connexion.

αsi g n(S) = + if ∀x ∈ S, x ≥ 0

− if ∀x ∈ S, x < 0

None if S =;
Both otherwise

γsi g n(+) = {x|x ≥ 0}

γsi g n(−) = {x|x < 0}

γsi g n(None) =;
γsi g n(Both) =Z

Example 7 (Integers to intervals abstraction). We abstract a property over an integer variable, that
is, a set of integers, thus C =P (Z), by the pair (a,b) representing the best interval [a,b] that contains
all those values, thus A =Z2. Formally, this corresponds to the following (α,γ) Galois connexion.

α(S) = (mi n S,max S) γ(a,b) = [a,b]

Example 8 (Arrays to first cell abstraction). We abstract a property over an array variable, that is,
a set of arrays, thus C =P (ZZ), by only the first cell, thus A =P (Z). Formally, this corresponds to
the following (α,γ) Galois connexion.

α(S) = {a[0]|a ∈ S} γ(S#) = {a|a[0] ∈ S#}

The previous examples can be used to abstract program points. For example, consider
the property {i |2 ≤ i ≤ 12 ∧ i %2 = 0} for variable values at program point P in the program
int i = (rand()%5)*2; /*Program point Start*/ i <- i+2;/*Program point P*/ and apply the in-

terval abstraction of Example 7. The result is the abstract value (2,12) representing the interval
[2,12] and one can see we have lost the information i %2 = 0.

In practice, one does not only abstract a single program point: in our example, it would not
make sense to abstract the program point P without abstracting the program point St ar t , as P
and St ar t are intrinsically linked and this explains our choice to abstract all program points of
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a program. However, the abstraction for each program point may be different, mainly because
variables may come in and out of scope, and thus the abstraction, which involves all variables
in scope, must change; but also because some specific locations of the program, such as an al-
gorithmic function, may require a specific abstraction. Therefore, when considering a program,
one should not consider a single abstraction, but a function that to a program point associates an
abstraction for that program point.

The Horn problem counterpart to this program point abstraction scheme is an abstraction of
models, the equivalent of the candidate invariant property for all program points. However, we
only focus on abstractions of models that are defined by a function fabs that to a predicate, the
equivalent of a program point, associates the abstraction for that predicate. These abstractions
G fabs define a subset of all models abstractions: the abstractions that abstract each predicate in-
dependently.

Definition 9 (Abstraction of models: G fabs ). For a function fabs that to each predicate P associates

an abstraction (α fabs

P ,γ fabs

P ), one can construct the abstraction over models G fabs = (α,γ) by:

α(M )(P #) =α fabs

P (M (P )) γ(M #)(P ) = γ fabs

P (M #(P #))
where:

1. The lattices over models has order M1 ≤M2 ≡∀P,M1(P ) ⊆M2(P )
2. The concrete domain of G P is the set of models over predicates without an additional suffix #.
3. The abstract domain of G P is the set of models over predicates with an additional suffix #.

3.1.2 Solving algorithms: definition, soundness and completeness

The purpose of the Data-abstraction framework verification scheme is to give an algorithm that
aims to determine if a given Horn problem, usually created from a program, is satisfiable or un-
satisfiable.

Formally, we call these solving algorithms and, because they may produce incorrect answers,
that is, output that a satisfiable (resp unsatisfiable) Horn problem is unsatisfiable (resp satisfiable),
we avoid confusion between the satisfiability of a Horn problem and the output of the algorithm
by naming the outputs Certified and Buggy. Thus, a solving algorithm for a set of Horn clauses C is
an algorithm from C to {Cer ti f i ed ,Bug g y}.

One of our goals in this manuscript is to have a theoretical evaluation of our solving algorithms,
and thus, we need properties to express that a solving algorithm is good or bad. The expectation is
that a good algorithm answers Certified on satisfiable Horn problems and Buggy on non-satisfiable
ones. From this expectation one can create a measure for how good a solving algorithm is: the ratio
of correct to incorrect answers, inclusion of sets on which the algorithm returns correct answers,
. . . These natural measures handle the Certified and Buggy answers in symmetric manners, but,
in static verification of programs, errors on the Certified answer are quite different from errors on
the Buggy answer.

Because in the field of static verification of programs our goal is to ensure the absence of bugs and
not catch as many bugs as possible, errors on the Certified answer are back-breaking: there is no
more way to ensure the absence of bugs. This property of solving algorithms is called soundness
and formally, it states that if the algorithm returns Certified then the input problem was satisfiable.

Errors on the Buggy answer are much less problematic. An algorithm that may return Buggy even
though the input Horn problem is satisfiable just changes the meaning of the Buggy answer from
there is a bug to there may be a bug. Thus, an algorithm with such errors, but with the soundness
property, still allows us to ensure the absence of bugs for some programs: those on which it returns
Certified.
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However, a solving algorithm that returns Buggy on all inputs verifies our mandatory soundness
property but is not a good algorithm. Thus, the soundness property is not enough, and as it is
mandatory, the evaluation of solving algorithms must be based on the cases it answers Buggy on
satisfiable Horn problems. It may be tempting to evaluate by using the size of the sets on which
errors occur, but the drawback is that each of these errors appears to have identical weight which
may be quite far from reality: some patterns may occur extremely frequently in programs whereas
others may not, thus an algorithm which fails on many rare patterns but succeeds on a few com-
mon patterns may be better than an algorithm doing the reverse. A solution may be to add weights
to the cases, but that would require a distribution for Horn problems which must be obtained ex-
perimentally and offers the same drawbacks as an experimental evaluation. Thus, as for now we
do not have any further information about our Horn problems, we restrict ourselves to the prop-
erty called completeness that states that there are no cases where the algorithm returns Buggy on
satisfiable Horn problems. The completeness property will be refined once abstractions are intro-
duced.

Definition 10 (Solving algorithm S, soundness, completeness). A solving algorithm S for a class of
sets of Horn clauses C, is an algorithm that for any set of Horn clauses C of C returns either Certified
or Buggy.

Note that algorithms operate on syntax and this is why, this and future definitions use Horn
clauses instead of Horn problems. However, in practice, these definitions hold for many other syn-
tactical objects, mainly extended Horn clauses and programs.

Furthermore, for pratical reasons in formulae, we identify Certified with the boolean Tr ue and
Buggy with the boolean F al se.

The soundness and completeness of a solving technique are formally stated as:
1. S is sound on C if and only if ∀C ∈C,S(C) ⇒ HC satisfiable.
2. S is complete on C if and only if ∀C ∈C,¬S(C) ⇒ HC unsatisfiable, or equivalently,

∀C ∈C, HC satisfiable ⇒ S(C)

3.1.3 Solving algorithms based on abstraction: relative completeness

The definition of abstraction as a Galois connection indicates how the unknowns of our problems,
that is the candidate properties for each predicate, are simplified. However, this definition does
not directly relate to how solving algorithms, that aim to decide if a set of Horn clauses is sat-
isfiable, must behave with respect to an abstraction and the properties they may satisfy. In this
section, we formalize this link by stating that a solving algorithm is based on abstraction and we
adapt the completeness property for such algorithms.

Abstractions define a loss of information and a solving algorithm based on an abstraction is
simply a solving algorithm that reasons without that loss of information. In practice, this means
that if the proof of correctness of a program depends on information that is lost by the ab-
straction, then a solving algorithm based on that abstraction cannot return Certified. For ex-
ample, consider the program a[3] <- 1;/*Program point P*/ assert(a[3] = 1); and the program

a[0] <- 1;/*Program point P*/ assert(a[0] = 1); and the first cell abstraction of Example 8 ap-
plied to program point P . After abstraction, the first program should not be provable whereas the
second should. The first cell abstraction loses all information about cells with index different from
0, thus proving the first program requires information about a[3] which is lost, whereas proving
the second requires information about a[0] which is kept.

J. Braine 41/144



CHAPTER 3. DATA-ABSTRACTION: EXPECTATIONS

The formalization of why the property a[3] = 1 is lost whereas the property a[0] = 1 is kept can
be done by looking at what their abstractions represent. The abstraction of a[3] = 1 by the first
cell abstraction of Example 8 is α({a|a[3] = 1}) =Z and the concrete representation of the abstract
value Z is γ(Z) = ZZ. The concrete value ZZ represents the property tr ue and not the property
a[3] = 1 and thus this property has been lost. However, the concrete representation of the abstrac-
tion of the property a[0] = 1 is γ(α({a|a[0] = 1})) = γ({1}) = {a|a[0] = 1} and the information has not
been lost.

More generally, the information loss of a given concrete element e by an abstraction G = (α,γ)
can be measured by computing γ◦α(e) as shown in Example 9. If γ◦α(e) = e, then there is no infor-
mation lost and we say that e is expressible by the abstraction and is written e/G . In the literature,
the set of elements expressible by the abstraction form a Moore family linked to the abstraction
[CC79].

Solving algorithms based on an abstraction G = (α,γ) are simply algorithms that can only return
Certified on an input C if C is satisfiable by a model expressible by G . In other words, algorithms
based on an abstraction can only attempt to prove the correctness of a problem by using elements
that are expressible by the abstraction.

Example 9 (Information loss of abstractions).

x−1 0 1 2 3

SL = {0,1}
α(S) = {+}

Figure 3.1 – Information loss L for sign ab-
straction on S = [2,∞[: we lose information
that {0,1} 6⊆ S, thus S is not expressible by the
abstraction.

x−1 0 1 2 3

SL =;
α(S) = {(2,∞)}

Figure 3.2 – Information loss L for interval
abstraction on S = [2,∞[: there is no informa-
tion loss, S is expressible by the abstraction.

x−1 0 1 2 3

SL = {2}
α(S) = {(1,3)}

Figure 3.3 – Information loss L for interval
abstraction on S = {1,3}: we lose the informa-
tion {2} 6⊆ S. Thus, S is not expressible by the
abstraction.

k

a[k]

−1 1 2 3

−2

−1

1

2
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a1

a2

a3

l1

l2

Figure 3.4 – Information loss for first-cell ab-
straction on S = {a1, a2, a3}: the information
loss is hard to depict, but arrays l1 and l2 be-
long to the information loss. Array l1 shows
the information loss due to added cells and
array l2 shows the information loss due to for-
getting the array from which the cell comes.

Definition 11 (Element expressible by the abstraction). A concrete element e is said expressible by
an abstraction G = (α,γ) if and only if ∃e#,e = γ(e#), or equivalently, e = γ ◦α(e). This property is
written e/G .

Definition 12 (Solving algorithm based on an abstraction G ). A solving algorithm S is said based
on abstraction G if and only if ∀C ∈C,S(C) ⇒ (∃M /G , HC(M ))
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The consequence of the information loss of abstraction is that completeness of a solving algo-
rithm based on a interesting abstraction cannot be achieved: a sound algorithm which is also
complete decides the non-abstracted problem, and thus, no relevant information has been lost.
We thus adapt the completeness property that we use for solving algorithms to solving algorithms
based on abstraction.

The adaptation is straightforward: we follow the same methodology and add the information
that our algorithm is abstraction based and thus can only return Certified on problems that have
models expressible by the abstraction. Thus, no errors becomes there are no cases of Horn problems
satisfiable by a model expressible by the abstraction on which the algorithm returns Buggy instead
of considering all Horn problems. This property is called relative completeness and we say that a
solving algorithm is complete relative to an abstraction G .

Definition 13 (Relative completeness of a solving algorithm). A solving algorithm S is said com-
plete relative to an abstraction G if and only if ∀C ∈C, (∃M /G , HC(M )) ⇒ S(C).

In many solving algorithms to handle static verification of programs, completeness, relative
completeness or any other kind of theoretical measure of effectiveness of solving algorithms is
not considered. Thus, the proof of effectiveness of these algorithms relies on benchmarks, which,
considering the quantity of heuristics used for these undecidable problems is often unconvincing:
it is extremely difficult to judge if the algorithm is successful thanks to specific tuning of the heuris-
tics for these benchmarks or if these algorithms would fare well in real world applications: in many
cases, the benchmarks are small, proof-of-concept programs and not fully grown applications.

Perhaps one of the main reasons these properties of solving algorithms, soundness, completeness
and relative completeness, are not considered is that they are hard to satisfy. These algorithms are
required to be sound and thus, should they be complete, they would decide the static analysis
problem. However, this is impossible for all interesting classes of programs: even the class of
programs with only integers and loops is undecidable [Ric53]! As for relative completeness, we
believe the question has long been in the mind of the community, however, the only name we
have found in the literature [Fij+19] for it is the Monniaux problem.

For example, solving algorithms complete relative to the interval abstraction, or even any fixed
polyhedral abstraction – here, we mean the polyhedral abstract domains from abstract interpre-
tation [CH78] –, exist [MS04], mainly because the abstract domain is simple enough that the exis-
tence of an abstract invariant can be expressed in first-order logic over integers; and thus, is decid-
able. In the case of the general polyhedral abstract domain [CH78], it is still unknown whether the
problem is decidable: the main difference compared to the fixed polyhedral domains is that the
number of faces of the polyhedral is unbounded, thus, convergence is no longer assured; however,
it is as yet unknown whether this added difficulty makes the problem undecidable.

In our case, our goal is to extend current solving algorithms so that they may handle unbounded
data-structures by using a parametrized abstraction for them. The problem is that even the non-
extended solving algorithm cannot be complete on non-datastructure problems as they handle
integers, and, thus, our extended solving algorithm cannot be complete relative to the chosen ab-
stract domain for data-structures: consider an extension of a solving algorithm to handle arrays
with the first cell array abstraction of Example 8 and a class of programs with integers, arrays and
loops. Even if the extension handles the arrays correctly, the leftover problem is still undecidable
and thus, the extended solving algorithm cannot be complete relative to the first cell array ab-
straction. Therefore, properties of solving algorithms are not the right properties to measure the
effectiveness of an extension.
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3.1.4 Working around undecidability: transformations implementing the abstraction

Attempting to extend a solving algorithm such that it may handle unbounded data-structures and
satisfy properties such as relative completeness is the wrong way to go: integer problems are al-
ready too hard, thus, even if our extension handles the unbounded data-structures optimally with
respect to the chosen abstraction, the extended algorithm will not satisfy relative completeness as
it would require deciding problems at least as hard as integer problems.

However, we do not believe that evaluating extensions is vain: consider the first cell array ab-
straction of Example 8. This abstraction is extremely simple and seems straightforward to handle:
as we only care about the first cell of the array, let us consider arrays as just a single integer value
representing the first cell and replace all array writes (resp reads) such that when the index is the
first cell, the integer is modified (resp read) and if not, the operation is removed (resp returns a
random value). This transformation on the array initialization program of Listing 1.1 is explained
in Example 10 and seems perfect: there is no information loss except for the one due to the ab-
straction and one can use another solving algorithm to handle the resulting integer problem. We
would like to say that this transformation implements the abstraction, but, for now, we lack the
formalism.

Example 10 (Transformation of the array initialization program of Listing 1.1 by the first cell array
abstraction of Example 8).

Listing 3.1 – Before abstraction

void array_init(Array <int > a)

{
unsigned i=0;
while(i<a.size())
{

a[i] <- 0;
i <- i+1;

}
// Safety property
i=0;
while(i<a.size())
{

assert(a[i]=0);

i <- i+1;
}

}

Listing 3.2 – After abstraction

void array_init(
int a/*the abstract array */,
unsigned n /*the size of a*/)

{
unsigned i=0;
while(i<n)
{

if(i=0) then a <- 0;
i <- i+1;

}
// Safety property
i=0;
while(i<n)
{

if(i=0) then assert(a=0);
else {int rnd=rand();assert(rnd=0);}
i <- i+1;

}
}

After abstraction, for an array with at least two cells, the program is incorrect. This is to be expected
as the necessary invariant after the initialization loop ∀k < a.si ze(), a[i ] = 0 is not expressible by the
abstraction: this invariant cares about multiple cells whereas the abstraction only cares about the
first.

Let us take a closer look at what we did in Example 10: we considered a solving algorithm based
on the first cell array abstraction of Example 8 that first transforms our program with arrays into an
integer program and then uses an algorithm of our choice to solve the integer program. In other
words, our solving algorithm S is the composition of a transformation T with a back-end solving
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algorithm of our choice S′; we write S = S′◦T . Furthermore, in Example 10 the transformation ver-
ifies a relative completeness property adapted to transformations: the output program is satisfiable
if and only if the initial program is satisfiable by a model expressible by the abstraction.

Inspired by this example, our Data-abstraction framework aims at being an extension of solving
algorithms for unbounded data-structures by being a transformation as shown in Figure 3.5. The
effectiveness of the transformation can be stated by properties linking the satisfiability of the out-
put problem and the satisfiability of the input problem. This is unlike approaches that attempt to
improve current solving algorithms, such as interpolation or abstract interpretation based algo-
rithms, for which it seems extremely hard to correctly formalize a property stating the extension
does its job well.

Figure 3.5 – Solving algorithm S induced by the Data-abstraction framework

Data-Abstraction
Transformation T

abstraction G

Solver S′

Certified

Buggy

Input
Problem H

Abstracted Horn
problem T (H)

We adapt the soundness and completeness properties to transformations and we will say that
a transformation algorithm satisfying both soundness and relative completeness implements the
abstraction. Let us stress that a transformation algorithm that implements an abstraction is a trans-
formation whose information loss is precisely the abstraction. In other words, the approximation
made by an algorithm implementing an abstraction is exactly described by the abstraction and is
the best one available for abstraction based transformations. The property of implementing the
abstraction is the target property of our work.

Definition 14 (Transformation algorithm and their properties). A transformation algorithm T :
C→ C′ is an algorithm that takes an input a set of Horn clauses C ∈ C and outputs a set of Horn
clauses C′ ∈C′.

As with solving algorithms, we state the formal definition for sets of Horn clauses, but this defini-
tion can be adapted to other syntactical objects, mainly extended Horn clauses and programs.

Such a transformation T is said:
1. Sound on C if and only if: ∀C ∈C, HT (C) satisfiable ⇒ HC satisfiable.
2. Complete on C if and only if: ∀C ∈C, HT (C) unsatisfiable ⇒ HC unsatisfiable.
3. Based on an abstraction G for C if and only if: ∀C ∈C, HT (C) satisfiable ⇒∃M /G , HC(M ).
4. Complete on C relative to an abstraction G if and only if:

∀C ∈C,∃M ,M /G ∧HC(M ) ⇒ HT (C) satisfiable.
5. To implement the abstraction G on C if and only if the transformation T is based

the abstraction G and is sound and complete relative to G . This yields the formula:
∀C ∈C, HT (C) satisfiable ≡∃M ,M /G ∧HC(M ).

3.2 Data-abstraction: a specific subset of abstractions

The purpose of this manuscript is to tackle the problem of finding models for Horn problems
with unbounded data-structures. To do so, we suggest a solving technique which first consists in
a transformation to abstract these data-structures and then use a back-end solver to handle the
abstracted problem. Abstraction of unbounded data-structures is a specific subset of abstractions
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and we need to correctly frame its specificity in order to write a transformation algorithm that
implements the abstraction. In this section, we capture and formalize that specificity.

In program verification we abstract properties of variable values at program points, that is, sets
of values. However, the intuition for abstractions of data is that one should only need to specify
how a single value is abstracted: one expects to specify how an array is abstracted, and, from that,
deduce how a property over arrays is abstracted. The sentence above captures exactly one of the
specificities of unbounded data-structure abstraction: the abstraction is defined for each value of
a data-structure independently, whereas general abstraction expresses how a set of data-structure
values is abstracted. With this idea in mind, one can revisit Examples 6, 7 and 8.

Inherently, the sign abstraction of Example 6 could be defined by how a single integer value is
abstracted by its sign. In other words, each integer of the set is abstracted by its sign. The same
is true of the first cell abstraction of Example 8, where each array is abstracted by its first cell.
However, this is not the case of Example 7, one cannot define the interval abstraction of a set from
its individual elements: the abstraction of any of the single elements would be itself; it is the fact
of abstracting several of them at the same time which gives meaning to the abstraction.

We thus distinguish two types of abstractions: abstractions of data that can be defined as the
union of how each individual element is abstracted, and shape abstractions that do not aim to
abstract individual values but rather usually aim to give a shape, such as intervals, to a set of values.
Our Data-Abstraction framework targets abstractions of data and thus, the abstraction for sets of
values will be defined from it. The model abstraction for a predicate can then be deduced using
Definition 9.

A second specificity is that we do not target just any data-structure, but unbounded or infinite
data-structures. Thus, the sign abstraction of Example 6 is not entirely relevant to our framework,
but the first cell abstraction of Example 8 is. In the latter example, we abstract an array by a single
cell, the cell with index zero. However, this has drastic expressivity limitations and unless the safety
property only cares about a[0], the process is doomed to fail. Natural extensions of such an idea
could be to abstract a not only by a[0], but perhaps by a specific finite subset a[0], a[x], a[y], . . ..
In fact, one may push the idea further and say that in an unbounded data-structure, perhaps all
elements of this unbounded data-structure are relevant, thus no finite subset may suffice. We
drop the finite limitation and say that an unbounded data-structure abstraction abstracts a given
element, such as an array a, by a set of abstract elements, for example {a[0], a[1], . . .}.

Formally, an unbounded data-structure abstraction is defined by a functionσ : C →P (A) which
describes how a single data-value is abstracted into multiple abstract values. From the functionσ,
one may deduce the abstraction of set of values Gσ, that is, how a single predicate is abstracted.
In our Horn clauses setting, our final objective is to abstract entire models and not individual
predicates. Thus, we use Definition 9 with the function σabs = funP → Gabs(P ), where abs is a
function that, to a predicate, returns the data-abstraction to use for that predicate.

Definition 15 (Data abstractionσ,Gσ,σabs). Let C and A be sets . A data abstractionσ is a function
from C to P (A ). It defines a Galois connection Gσ = (ασ,γσ) with concrete domain P (C ) and
abstract domain P (A ) by:

ασ(S) = ⋃
a∈S

σ(a) γσ(S#) = {a ∈C |σ(a) ⊆ S#}

A data-abstraction of models is a function abs that to each predicate P associates a data-
abstraction abs(P ). It defines a model abstraction function σabs = funP →Gabs(P ); and using Defi-

nition 9, an abstraction of models Gσabs = (α
Gσabs ,γ

Gσabs ) with:
1. α

Gσabs (M )(P #) =αabs(P )(M (P )) = ⋃
a∈M (P )

abs(P )(a)

2. γ
Gσabs (M #)(P ) = γabs(P )(M

#(P #)) = {a | abs(P )(a) ⊆M #(P #)}
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To illustrate the formalism of Definition 15, we suggest to revisit a few classical examples. Exam-
ple 11 revisits our first cell abstraction of Example 8 within the data-abstraction formalism. Exam-
ple 12 considers the classical array smashing abstraction [GRS05] which consists in abstracting an
array by the set of values contained in that array. Properties of the values contained in the array,
such that ∀i ,0 ≤ a[i ] ≤ 10, are expressible with this abstraction, but not properties linking indices
to values, such as ∀i , a[i ] ≤ i . Example 13 considers a simple variant of the widely used slice ab-
straction [GRS05; CCL11]. There are many variants of the slice abstraction, but the foundation of
this abstraction is to divide an array into several parts which are treated uniformly. One of the most
common uses is for loops of the form for(i=0; i<n;i++) : one divides the array into three slices
[0, i [, the part of the array that has already gone through the loop; {i }, the slice representing only the
current index and thus allows strong updates; and ]i ,n[ the part of the array that has not already
gone through the loop. With this abstraction, properties which are different for the first slice [0, i [,
that is, the part of the array that has already been passed through the loop and the combination of
the second and third slice [i ,n[, that is, the part of the array that has not been yet handled, can be
stated separately. In our simple variant, each slice will be handled as if we had done the smashing
abstraction. Such an abstraction can prove properties such as ∀k < i , a[k] < 50∧∀k ≥ i , a[k] < 100
which could be necessary for a loop which divides array values by two.

Example 11 (Arrays to first cell data-abstraction). The first cell abstraction of Example 8 can be
defined as Gσ[0] where σ[0] is the data-abstraction defined by

σ[0](a) = {a[0]}

Example 12 (Array smashing data-abstraction). Array smashing [GRS05] consists in abstracting an
array by the values of all of its cells values, thus

σsmashi ng (a) = {a[i ] | i ∈Z}

Example 13 (Simple array slicing data-abstraction). Array slicing partitions the array in several
slices, that is, continuous subarrays and then, in our simple case, we handle each of these subarrays
as if we had done smashing.

Finding a good partitioning of the array is a non-trivial problem but a common case is for loops
such as for(i=0; i<n;i++) and an array a partitioned into three slices: the slice of already handled
indices ]0, i [; the slice of the current index {i }; the slice of the future indices of the loop to handle
]i ,n[. Thus, the abstraction is dependent on the variables i and n and can be defined as:

σsl i ce (a, i ,n) = {((a[k1], a[k2], a[k3]), i ,n) | 0 ≤ k1 < i ∧k2 = i ∧ i < k3 < n}

The previous examples explain how a data-structure is abstracted. However, in practice, one
wishes to abstract values that have the type of the tuple of all defined variables at the given pro-
gram point, or, in Horn terms, values that match the predicate type. First, most of these variables
are non-data-structure values that do not need to be abstracted; secondly, there might be several
data-structure values that need to be abstracted with possibly different abstractions. Our solution
to these problems is to give an identity abstraction for variables that do not need to be abstracted
and an abstraction combinator written • which takes two abstractions and creates an abstraction
of pairs where each element is abstracted by its abstraction.

We also add other abstraction combinators which can be used to create new interesting ab-
stractions from existing abstractions. The most important of them is the composition combinator
which takes two abstractions and returns the abstraction that corresponds to chaining the two
abstractions. Other combinators will added later on in Definition 18.
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Definition 16 (σi d ,σ1 •σ2,σ1 ¯σ2 ). We define
1. The no abstraction abstraction by σi d (x) = {x}
2. The pair abstraction by σ1 •σ2(x1, x2) =σ1(x1)×σ2(x2)
3. The composition abstraction by σ1 ¯σ2(x) = ⋃

x#∈σ2(x)
σ1(x#)

3.3 Cell abstraction: an interesting Data-abstraction for arrays

In this section, we formalize the cell-abstraction of [MG16] in our framework and justify why this
abstraction is so important. The contribution in this section is not in the abstraction itself, but in
its formalism within the data-abstraction framework, which provides new abstractions by using
combinators and Horn problem transformation algorithms with proven properties.

3.3.1 Properties of a good array abstraction

3.3.1.1 General properties of a good data-abstraction

Before we dive in and explain what cell-abstraction is, let us first understand the characteristics of
a good abstraction.

The expressiveness trade-off property. First, there needs to be a good trade-off between how
much an abstraction simplifies the verification problem and the size of the class of programs one
may wish to use this abstraction on1. For example, the abstraction the first cell abstraction of
Example 11 simplifies the problem greatly, but is barely useful: it only cares about the first cell of
the array. However, the smashing abstraction of Example 12 is already much more useful and has
the same abstract domain; thus, the problems generated after transformation may not be much
harder to solve than with the first cell abstraction. As for the slice abstraction of Example 13, it is
even more expressive and handles a much broader class of programs if the slices are chosen wisely
and seems to only linearly complexify smashing: it uses three integers instead of one. Under this
metric, one may say that slicing is much better than the other two abstractions.

The composability property. Secondly, in our data-abstraction framework, abstractions can be
combined; for example by using the composition combinator. This means that abstractions
that can be used as a good basis to construct other abstractions, usually with a different ex-
pressiveness/simplification trade-off, are of particular interest. For example, the slice abstrac-
tion of Example 13 can be composed with the abstraction that mixes the three slices, defined by
σ(v1, v2, v3) = {v1, v2, v3}, to create the smashing abstraction of Example 12. However, one cannot
use the slice abstraction of Example 13 or the smashing abstraction of Example 12 to create the first
cell abstraction of Example 11. Perhaps, a better abstraction with respect to this framework would
do so and thus would allow users to combine abstractions to create a very simple abstraction when
all they need is the first cell.

The predictability property. Thirdly, and perhaps more importantly, a good abstraction should
make it straightforward for the user to know whether his problem belongs to the class of problems
the abstraction targets: even though the user is not expected to know the exact program invariant

1The same trade-off appears when considering abstract domains for integers, for example, intervals versus octagons
versus convex polyhedra.
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– otherwise, why even bother with a tool that helps finding them – he is expected to know enough
to correctly chose the input abstractions for the Data-abstraction framework. This means that the
class of programs targeted by the abstraction should not depend on details that the user cannot
easily predict. For example, in the slice abstraction of Example 13, the slices are guided by the
syntactical analysis of loop bounds, and thus a programmer that uses a[i+1] instead of a[i ] within
the loop changes the loss of information of the abstraction from irrelevant to relevant; thus the
slice abstraction is perhaps not the best in this regard.

3.3.1.2 The class of Horn problems a good abstraction should handle

Example 14 (Properties of container libraries algorithms). The main container property to find is
the set of values restricting the array values at the beginning of the loop of the main algorithm.

Category Algorithm Main container property to find
Init Constant value(a, v) ∀k < i , a[k] = v

Identity(a) ∀k < i , a[k] = k
Modifying b =Copy(a) ∀k < i ,b[k] = a[k]

b =Insert(a, pos, v)

∀k < i ,k < pos ⇒ b[k] = a[k]

∧k = pos ⇒ b[k] = v

∧k > pos ⇒ b[k] = a[k −1]
b =Rev(a) ∀k < i ,b[k] = a[a.si ze()−1−k]

Finding r =Linear search(a, v)
(a[r ] = v ∧∀k < r, a[k] 6= v)∨

((r =−1)∧∀k < i , a[k] 6= v)

Binary search(a, v)
∀k < lower, a[k] < v ∧∀k ≥ upper, a[k] > v∧

s(a, l ower,upper )
Max(a) ∀k < i , a[k] ≤ a[max]

Sorting Bubble sort(a) chang e = f al se ⇒ s(a,0, a.si ze())

b =Insertion sort(a)
s(b,0,b.si ze())∧

∀k < lower,b[k] < a[cur r ]∧∀k ≥ upper,b[k] > a[cur r ]

c =Merge sorted(a,b)
s(c,0, ia + ib)∧ s(a, ia , a.si ze())∧ s(b, ib ,b.si ze())

∧∀k < ia + ib ,c[k] ≤ a[ia]∧ c[k] ≤ b[ib]
Merge sort(a) Property given by Mer g esor ted

Quick sort(a)
s(b,0,b.si ze())∧ s(c,0,c.si ze())∧

∀k ≤ b.si ze(),b[k] ≤ pi vot ∧∀k ≤ c.si ze(),c[k] > pi vot
Fold v = sum(a) v =∑i

0 a[i ]
c = count (a, val ) c = car d {k|k ≤ ia ∧a[k] = val }

1 s(a, lower,upper ) should expand to ∀k1,k2, lower ≤ k1 < k2 < upper ⇒ a[k1] ≤ a[k2].
2 car d S denotes the number of elements in the set S.
3 For conciseness reasons, integer related bounds such as 0 ≤ k or k ≤ a.si ze() are not always stated.
4 Variable notations are the following: a,b,c denote array variables, i , ia , ib denote loop indices, k,k1,k2 are quantified

variables used to express properties. In some algorithms, the main container property uses locally scoped variables
such as pi vot .

5 We do not necessarily display the property for the full specification of the algorithm: for example, the full specification
of sorting algorithms should also state that the multiset of values has been left unchanged.

6 Algorithms that are just slight modifications of already given algorithms have been omitted: for example, the property
for mi n can be deduced from the property given for max.

The predictability property of a good abstraction requires knowing the types of programs and
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properties we aim to handle with an array abstraction. In this PhD, we target algorithms that
form the basis of container librairies and thus we need an abstraction that makes invariants of
such algorithms expressible. Example 14 shows the most common container algorithms with the
properties we need to express.

There are a few things to notice in Example 14. First, all properties involve an unbounded num-
ber of cells of the array; thus, abstractions that consider only a fixed finite number of cells, such
as the first cell abstraction of Example 8, are not expressive enough. Secondly, except for fold
operations and constant value, these properties care about how indices are linked to values: ini-
tialization needs to link the index with its value, copy needs to link the index of the array a with
the index of the array b, . . . Thus, abstractions based on the smashing of all cells cannot work and
thus the slice abstraction of Example 13 does not work either.

Not all slice based abstractions require each slice to be abstracted as if we had done smashing
as in Example 13. The general principle of slices is to divide the array into a finite number of
multiple continuous segments that are handled uniformly and the way they are handled can be
parameterized [CCL11]. In our data-abstraction framework, slice abstraction can be viewed as
an abstraction that divides an array into multiple subarrays – in Example 13, this corresponds to
the abstraction σ(a) = {(a1, a2, a3)|a1 = a[0 . . . i [ ∧a2 = a[i . . . i ] ∧a3 = a]i . . . a.si ze()[ } – composed
with an abstraction that handles each of these arrays uniformly, for example smashing. Thus, a
proper slice abstraction can be used to prove any of the non-fold algorithms: one can cut the
slices such that they correspond to the bounds of the quantifiers k,k1,k2 of Example 14 and then
use an abstraction that can express the property stated after the quantifier.

The whole problem with the slice abstraction is thus finding a proper slicing of the array and the
correct abstraction for each slice that allows to express the desired property. In practice, asking the
user to specify the right slices and the right abstraction is much too complex, and no automatic
tool currently manages to correctly handle our algorithms; thus, we do not believe slice based
abstractions to be the way to go, especially once taking into account the reliance on syntax most
of these automatic tools have.

3.3.2 Cell-abstraction: possibly the right abstraction

3.3.2.1 Cell-abstraction: definition

Cell abstraction [MG16] consists in viewing arrays through their relationship between k and a[k].
This allows properties such as ∀k < i , a[k] = v and ∀k < i , a[k] = k to be easily stated in the ab-
stract domain, but not properties such as sor ted(a,0,n) ≡∀k1,k2,0 ≤ k1 < k2 < n ⇒ a[k1] ≤ a[k2]
as a[k1] not only depends on k1, but also on a[k2]. More formally, elements expressible by the
abstraction are of the form ∀k,P (k, a[k]) where P is some property, and the data-abstraction cor-
responding to cell abstraction is the functional representation of an array σ(a) = {(k, v)|v = a[k]}.

Definition 17. Cell abstractions σCel l .
σCel l (a) = {(k, v)|v = a[k]}

It might not be obvious why properties such as sortedness are not expressible; after all, an array
is abstracted by all its cells and thus, no information seems lost. The loss of information does not
happen on individual arrays, but when considering properties about arrays. Let us consider the
simple property a[1] = a[0], that is, the set {a | a[1] = a[0]}, and let us show why this property is
not expressible by cell abstraction in three different manners.

The intuitive way is based on a very simple idea: if this property is expressible by cell abstraction,
one needs to differentiate a set that satisfies this property from a set that does not satisfy this
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property in the abstract domain. We show this is not the case by considering the two sets, one with
two constant arrays a0 and a1 with constant value 0 and 1 respectively that respects the property
a[1] = a[0]; and another set with two alternating arrays aodd , aeven with value equal to 1 on odd,
respectively even, values and 0 otherwise which breaks the property a[1] = a[0]. These two sets of
arrays are the same after abstraction: they are both equal to {(i , v) | 0 ≤ v ≤ 1} as depicted in Figure
3.6; thus, these two sets cannot be differentiated by cell abstraction and the property a[1] = a[0] is
not expressible by the abstraction.

The computational way is simply to use Definition 11 of elements expressible by an abstraction.
Let us show that γσCel l ◦ασCel l ({a | a[1] = a[0]}) is all arrays and thus that the property is entirely
lost. ασCel l ({a | a[1] = a[0]}) = {(i , v) | ∃a ∈ {a | a[1] = a[0]}∧v = a[i ]}. The problem is that this set is
simply Z2 as for any value of v the constant array equal to v verifies a[1] = a[0] and v = a[i ]. Thus,
γσCel l ◦ασCel l ({a | a[1] = a[0]}) is all arrays.

Finally the quick way is to simply see that this property is not expressible as ∀k,P (k, a[k]) for
some property P : there are several different cells used in the property simultaneously, in this case,
the ones with indices 0 and 1. Note that by simultaneously, we mean that both indices need to
be accessed at the same time because they need to be compared with one another. This is unlike
a property such as ∀k, a[k] = 0 where each index k can be accessed independently. This leads to
the following rule of thumb to determine if a property is expressible: just look at the number of
different array reads in the syntax of the property; if it is 1 or less, then the property is expressible,
otherwise, it is not2.

Figure 3.6 – Unexpressibility of cell abstraction

i

v

0 1 2 3 4 5
0

1

(a) Abstraction of {a0, a1} is {(i , v)|0 ≤ v ≤ 1}

i

v

0 1 2 3 4 5
0

1

(b) Abstraction of {aodd , aeven} is also {(i , v)|0 ≤ v ≤ 1}

3.3.2.2 Cell-abstraction: extending expressibility with combinators

The main problem about the expressivity of cell-abstraction for the type of algorithm we tar-
get is that it cannot express properties such as sortedness which links two array values, that is,
properties of the form ∀k1,k2,P (k1, a[k1],k2, a[k2]) for some property P . A natural extension to
the cell abstraction σ(a) = {k, a[k]} is to consider the data-abstraction σ(a) = {k1, a[k1],k2, a[k2]}
which is more expressive and thus would allow us to express exactly properties of the form
∀k1,k2,P (k1, a[k1],k2, a[k2]).

However, instead of defining a new abstraction σ(a) = {k1, a[k1],k2, a[k2]}, that, in many ways is
very similar to cell abstraction, we prefer to use combinators which allow, from cell abstraction,
to construct σ(a) = {k1, a[k1],k2, a[k2]}. The abstraction σ(a) = {k1, a[k1],k2, a[k2]} can be viewed
as we abstract a twice by cell abstraction such that links between both abstraction instances can be
stated.

2This rule of thumb is not entirely exact and only handles properties where arrays are only used in select and store
operations.
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Example 15 (Properties of container libraries algorithms abstracted with σn
Cel l ). We consider the

notations of Example 14. The n column denotes the n in the abstraction σn
Cel l that is used and the

property column states the abstract property P over an array a in the abstract domain, that is, the
abstract set {(ka , va)|P (ka , va)} for σ1

Cel l and {((k1
a , v1

a), (k2
a , v2

a))|P (k1
a , v1

a ,k2
a , v2

a)} for σ2
Cel l .

Category Algorithm n Property of Example 14 in the abstract domain
Init Constant value(a, v) 1 ka < i ⇒ va = v

Identity(a) 1 ka < i ⇒ va = ka

Modifying b =Copy(a) 1 ka = kb < i ⇒ va = vb

b =Insert(a, pos, v) 1

kb < i ⇒
((kb < pos ∧ka = kb) ⇒ vb = va)∧
((kb = pos) ⇒ vb = v)∧
((kb > pos)∧ka = kb −1 ⇒ vb = va)

b =Rev(a) 1 (kb < i ∧ka = na −1−kb) ⇒ vb = va

Finding r =Linear search(a, v) 1
((ka = r ⇒ va = v)∧ka < r ⇒ va 6= v)∨

ka < i ⇒ va 6= v

Binary search(a, v) 2

k1
a < l ower ⇒ v1

a < v∧
k1

a ≥ upper ⇒ v1
a > v∧

lower ≤ k1
a < k2

a < upper ⇒ v1
a ≤ v2

a

Max(a) 2 k1
a < i ∧k2

a = max ⇒ v1
a ≤ v2

a

Sorting Bubble sort(a) 2
chang e = f al se ⇒

0 ≤ k1
a < k2

a < upper ⇒ v1
a ≤ v2

a)

b =Insertion sort(a) 2

s#(b,0,nb)∧
(k1

b < lower ∧k1
a = cur r ) ⇒ v1

b < v1
a∧

(k1
b ≥ upper ∧k1

a = cur r ) ⇒ v1
b > v1

a

c =Merge sorted(a,b) 2
s#(c,0, ia + ib)∧ s#(a, ia ,na)∧ s#(b, ib ,nb)∧

(k1
c < ia + ib ∧k1

a = ia ∧k1
b = ib) ⇒ (v1

c ≤ v1
a ∧ v1

c ≤ v1
b)

Merge sort(a) 2 Property given by Mer g esor ted

Quick sort(a) 1
s#(b,0,nb)∧ s#(c,0,nc )

∧k1
b ≤ nb ⇒ v1

b ≤ pi vot ∧k1
c ≤ nc ⇒ n1

c > pi vot
Fold sum ; impossible

count ; impossible

1 The • combinator is used to abstract multiple variables, with identity for non-array variables and σn
Cel l for array

variables.
2 For a program array a, we write na the size of that array.
3 For space reasons we write s#(a, st ar t ,end) the abstract sortedness property which expands to st ar t ≤ k1

a < k2
a <

end ⇒ v1
a ≤ v2

a .
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This leads to the definition of two new combinators: the product combinator written ⊗ and the
sum combinator written ⊕. Both combinators allow one to abstract a data-value by two abstrac-
tions; however, the product combinator keeps links between the abstraction instances whereas
the sum combinator does not; thus, the product combinator is more expressive and, in the case of
cell abstraction, is the one we will use. Note that both combinators extend the expressiveness of
each of the individual abstractions.

Definition 18 (Sum and product combinators ⊕,⊗). The product abstraction expresses any proper-
ties of both abstract domains and relations between both abstract domains and is defined by:

σ1 ⊗σ2(x) =σ1(x)×σ2(x)

The sum abstraction expresses properties of both abstract domains, but not properties linking both
abstract domains and is defined by

σ1 ⊕σ2(x) = {T1(x1) | x1 ∈σ1(x)}∪ {T2(x2) | x2 ∈σ2(x)}

where T1 and T2 are the constructors for the sum type. View notation sheet for details.

With these new combinators, one can extend cell abstraction to handle our new properties with
the abstraction σCel l ⊗σCel l . Although in our examples we never need σCel l ⊗σCel l ⊗σCel l , which
would allow one to express properties relating three cells, we generalize these multiple products
with the power notation; thus, σCel l ⊗σCel l is written as σ2

Cel l . Let us now consider in Example 15
our desired properties of Example 14 and see how they can be expressed with σn

Cel l .

3.3.2.3 Cell abstraction: evaluation

In Section 3.3.1, we discussed three properties a good array abstraction should have. We now
evaluate the cell abstraction with respect to these criteria.

The first is the trade-off between expressivity and simplicity. The cell-abstraction is extremely
expressive as it allows, by using the product combinator ⊗, to express any property which involves
only a finite number of cells at a given time, and thus, to handle all non-fold operations of Example
14. As for simplicity, the abstract domain is barely more complicated than smashing: we only use
an additional integer representing the index, and when using the product combinator, the abstract
domain is still only a subset of P (Zn). Overall, the cell abstraction seems to offer one of the best
trade-offs compared to the abstractions of Examples 11, 12 and 13.

The second is how well cell-abstraction and the data-abstraction framework, mainly combina-
tors, fare together. Several example properties show this is a perfect match. First, cell abstraction is
naturally extended by the product combinator which is general and not specifically targeted at cell
abstractions. Secondly, many previous abstractions can be expressed, as demonstrated by Exam-
ple 16, using cell abstraction, combinators, and very simple abstractions, thus these abstractions
can be easily handled within our framework if we handle cell-abstractions. Finally, cell-abstraction
with combinators can also target specific abstractions that were not properly formalized in previ-
ous works, such as ensuring that multisets of elements are kept unchanged during sorting or fold
operations, as demonstrated in Example 17.

Finally, the class of properties that are handled by cell-abstraction is well framed and is pre-
dictable: for σn

Cel l , this set of properties contains those that use at most n array accesses, possibly
universally quantified. Thus, cell abstractions cannot be used to handle properties dependent on
the full array, which fall in the category of what we call fold operations. Note that they can still be
used as a preprocessing method for other abstractions that do handle specific fold operations as
has been done for the count property of Example 17.
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Example 16 (Expressing previous abstractions with Cell abstraction and combinators). The fol-
lowing abstraction can be expressed using cell abstraction, combinators, and simple abstractions:

1. The first cell array abstraction of Example 11 can be expressed using the simple abstraction
σ(k, v) = ite(k 6= 0,;, {v}). This yields, σ[0] =σ¯σCel l .

2. The smashing abstraction of Example 12 can be expressed using the simple abstraction
σ(k, v) = {v}. This yields, σsmashi ng =σ¯σCel l .

3. The slicing abstraction of Example 13 can be expressed using the simple abstraction σ(i , v) =
{v} and the abstractions σ[a,b](k, v) = ite(a ≤ k ≤ b, {k, v},;). Up to parentheses, this yields,
σsl i ci ng = ((σ[0,i [ ¯σ)• (σ[i ,i ] ¯σ)• (σ[i ,n[ ¯σ))¯σ3

Cel l .

Example 17 (Expressing new abstractions using Cell abstraction and combinators). Some proper-
ties, such as counting the number of elements in a given set, are global properties and cannot directly
be tackled by cell abstraction. However, in [MG16], an idea is to consider the map that to a value
associates the number of occurences in an array. In such a map, one usually only cares about the
relationship between indices and elements, and thus, the property is local.

We formalize this idea by using a global abstraction σmul ti set (a) = {b | ∀ j ,b[ j ] = car d{i | a[i ] =
j }} and then combining it with cell abstraction. Thus, the right abstraction to prove properties of
multisets are σCel l ¯σmul ti set .

For the counting property of Example 14 this is enough; however, for sortedness, one usually wants
both the property that ensures sorted with σ2

Cel l and the property that the multiset is preserved. To
do so, one can just combine both abstraction with the sum combinator. This yields σ2

Cel l ⊕ (σCel l ¯
σmul ti set ).

Overview and contribution within this chapter

In this chapter, we introduced the notion of abstraction and formalized how algorithms based on
abstractions should behave and the interesting properties they might have. We then constructed
a specific framework to formalize and combine abstractions of unbounded data-structures and
show that this framework allows us to construct interesting abstractions of arrays. The contribu-
tion in this chapter is mostly in what we believe to be the correct setup for abstractions of data-
structures and the demonstration that this setup handles existing techniques.

More specifically:
1. The notion of abstraction presented in Section 3.1.1, mainly Galois connections, is already

well known work. The only slight deviation is our adaptation to Horn problems and models
instead of programs and invariants.

2. In Sections 3.1.2 and 3.1.4, we link abstraction of models and algorithms by defining algo-
rithm properties. We motivate and formalize these properties and justify our choice for a
transformation based solving algorithm. Although we do not believe these properties to be
ground-breaking, we have not found their formalism stated as such in the literature, except
for soundness and completeness.

3. The full data-abstraction framework formalism introduced in Section 3.2 is a contribution,
which can only be fully understood after having read this full manuscript: the formalism
may seem simple, but this powerful framework enables abstractions to be assembled like
legos, without too much added difficulty, and to formalize existing abstractions. This frame-
work has gone through multiple trial and error steps which may be better understood in
the following chapters. We hope the current formalism is the right one, but future work
may succeed in improving it as more abstractions – for example abstractions for trees – are
added.
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4. Finally Section 3.3 aims to demonstrate the power of this framework by tackling container
library algorithms. The contribution is formalizing existing abstractions and techniques in
our framework.
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4 Data-Abstraction: transformation algorithm

In Chapter 3 we gave the specifications of the Data-abstraction framework: the input abstractions,
the properties of the output, and the capabilities of that framework. However, we have not yet
shown that these specifications can be implemented as an algorithm.

In this chapter, we give the data-abstraction framework algorithm and show that meeting the im-
plementing the abstraction specification of Chapter 3 depends on an heuristic called i nst s. Later
on, in Chapter 5, we construct i nst s and show that we meet the specifications for a broad class of
algorithms that includes most of those discussed in Chapter 3.

The construction of the data-abstraction framework algorithm is divided into two parts. First,
we show the existence of a Horn problem that satisfies the right properties and give a constructive
definition for it. We adapt this constructive definition in the abstr act algorithm which operates
on the syntax of Horn problems, that is, Horn clauses. This algorithm returns extended Horn
clauses, that is, Horn clauses with additional quantifiers around predicates. Then we transform
this logical formula back to Horn clauses by removing the additional quantifiers in an algorithm
called el i mi nate that depends on an heuristic i nst s. The full picture of the verification process
using these two algorithms is given in Figure 4.1.

Figure 4.1 – Overall program verification scheme

Front
- end

Data-Abstraction
Transformation Tσ

abstraction σ

Solver

Certified

Buggy

Timeoutabstract eliminate

Input
program P

Horn
problem H

Simplified Horn
problem Tσ(H)

This chapter is organized into three sections: one section for the abstr act algorithm, one for
the el i mi nate algorithm and one that translates the property The data-abstraction framework
algorithm verifies the specifications of Chapter 3 into a property that each call to the heuristic i nst s
must verify. The construction of the i nst s heuristic is left to Chapter 5.

4.1 The abstr act algorithm

The goal of the abstr act algorithm is to transform a non-abstracted Horn problem into an ab-
stracted Horn problem. The requirement from Chapter 3 is that it implements the abstraction,
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Figure 4.2 – Constructing the abstract transition of a concrete transition fH
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that is, the abstracted problem is satisfiable if and only if the initial problem is satisfiable by a
model expressible by the abstraction as defined in Definition 11.

To construct such an algorithm, we divide the work into two parts. First, we prove the existence
of an abstracted Horn problem that verifies the requirement and provide a constructive definition
for it. Then, we write this mathematical definition as an algorithm, the abstr act algorithm.

4.1.1 Defining the abstracted Horn problem G (H)

Our goal is for any Horn problem H and abstraction G = (α,γ) to prove the existence of and con-
struct a Horn problem, that we call G (H), such that the transformation that to H returns G (H)
implements the abstraction, that is, G (H) satisfiable ≡ ∃M /G , H(M ) as given in Definition 14.
A Horn problem G (H) that verifies such a property may not be unique, and here we consider a
classical construction that achieves these properties.

A Horn problem H is a pair of a function fH , which is similar to the transition relation of a pro-
gram, and a model UH expressing the set of correct states for the program. The abstraction of H
by an abstraction G = (α,γ) is a new Horn problem where both fH and UH are abstracted. The
abstraction of UH , the set of correct states, is extremely simple: the abstraction function α can
be used and yields α(UH ). However, fH is not that easy to handle, but the technique is common
knowledge in the abstract interpretation community.

The abstraction G = (α,γ) of the function fH is a function f #
H that to an abstract model M #

must return some abstract model f #
H (M #); and somehow, the link between M # and f #

H (M #) must
reflect fH . The key to compute f #

H (M #) and link it to fH is to pass through the concrete domain
so that we can use fH directly. To do so, we follow the diagram given in Figure 4.2: given M #, we
first compute what it represents in the concrete domain by using γ. We can now apply fH . Finally,
we can use α to obtain the value in the abstract domain. Thus, the abstraction of a Horn problem
H = ( fH ,UH ), written G (H) is thus (α◦ fH ◦γ,α(UH )).

Definition 19 (Abstraction of a Horn problem G (H)). The abstraction of a Horn problem
H = ( fH ,UH ) by G = (α,γ) is G (H) = (α◦ fH ◦γ,α(UH )).

Before going onward, one needs to check that Definition 19 indeed satisfies the best properties
of an abstraction stated in Chapter 3. In Theorem 3, we prove that Definition 19 is well formed,
that is, constructs a Horn problem and that it meets the expectations of Chapter 3.

Theorem 3 (The definition of G (H) is correct). Let H = ( fH ,UH ) be a Horn problem and G = (α,γ)
be an abstraction.

1. G (H) is a Horn problem.
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2. The transformation algorithm T that to Horn clauses encoding H returns Horn clauses en-
coding G (H) implements the abstraction G .

Proof .

1. To prove that G (H) is a Horn problem one needs to prove that α◦ fH ◦γ is monotonic. This
is the case because each function is monotonic and monotonicity is preserved by composi-
tion.

2. We recall that M /G means that M is expressible by the abstraction G and advise to read
Definition 11 on Page 42 while reading this proof.
Let us now prove that T implements the abstraction G by proving that
HT (C) satisfiable ≡∃M /G , HC(M ). As HT (C) = G (HC) by assumption, and let us call
HC simply H , we prove G (H) satisfiable ≡∃M /G , H(M ).

G (H) satisfiable

≡∃M #,G (H)(M #)

≡∃M #,α◦ fH ◦γ(M #) ≤M # ∧M # ≤α(UH )

We use the item 3 of Definition 8

≡∃M #, fH ◦γ(M #) ≤ γ(M #)∧γ(M #) ≤UH

≡∃M #, H(γ(M #))

(⇒) γ(M #)/G

(⇐) Let M # =α(M ), H(γ(M #)) = H(γ(α(M ))) = H(M ) because M expressible by G

≡∃M /G , H(M )

4.1.2 G (H) as an algorithm

In Section 4.1.1 we showed that a transformation algorithm that to Horn clauses encoding H re-
turns Horn clauses encoding G (H) implements the abstraction G . In this section, we tackle the
problem of finding such a transformation algorithm for data-abstractions, the main issue being
that we need to write G (H) in a Horn clause syntax. However, as discussed in Chapter 3, we do
not aim to implement as a transformation algorithm any abstraction of models, but only, using
the notations of Definition 15, those of the form Gσabs

, where abs is a function that to a predicate
returns the data-abstraction to use.

To construct Horn clauses encoding Gσabs
(H), let us recall that the satisfiability of Horn

problems can be expressed in two different manners: the definition as lfp fH ≤ UH or as
∃M ,M ≥ fH (M )∧M ≤UH , which is also written ∃M , H(M ). As discussed in Chapter 2, the syn-
tax of Horn clauses encode the latter definition, ∃M , H(M ). Therefore, for our abstracted Horn
problem, one should compute Gσabs

(H)(M #).
In Theorem 4, we show that Gσabs

(H)(M #) is equivalent to H ◦γ
Gσabs (M #). Thus, the intuition

behind our algorithm is to compose with γ
Gσabs .

Theorem 4 (Definition of G (H) as conditions on models). ∀M #, H ◦γ(M #) ≡G (H)(M #)

Proof .
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G (H)(M #)

≡M # ≥α◦ fH ◦γ(M #)∧M # ≤α(UH )

We use the item 3 of Definition 8

≡γ(M #) ≥ fH ◦γ(M #)∧γ(M #) ≤UH

≡H ◦γ(M #)

The unrolling of Definition 15 and 9 gives us that γ
Gσabs is defined by

γ
Gσabs (M #)(P ) = {a|σP (a) ⊆M #(P #)}.
The problem with the latter definition is that it uses sets: in Horn clauses, one

does not manipulate sets; instead, one encodes a set through its inclusion re-
lation function. Rewriting γ

Gσabs (M #)(P ) through its inclusion relation yields
a ∈ γ

Gσabs (M #)(P ) ≡∀a#, a# ∈σP (a) ⇒ a# ∈M #(P #).
Next, as the definition of the data-abstraction appears within the expression, we need a syntac-

tical expression for that set. Again, we choose to use the definition through the inclusion relation
function defined by FσP (a#, a) ≡ a# ∈ σP (a). Therefore, the abstraction parameter abs for the
abstr act algorithm will be a function that, to each predicate, associates a formula Fσ. Definition
20 gives the Fσ formula for the abstractions and combinators we have already seen.

Finally, let us recall that, in Horn clauses, a# ∈ M #(P #) is written P #(a#). We obtain
a ∈ γ

Gσabs (M #)(P ) ≡∀a#, abs(P )(a#, a) → P #(a#).
Thus, our algorithm simply consists in replacing everywhere P (expr ) by its value once com-

posed with γ, that is, ∀a#, abs(P )(a#,expr ) → P #(a#).

Algorithm 1 (abstr actabs(C)).
Input: C, the set of Horn clauses.
Computation: FOR EACH clause C ∈C, FOR EACH P (expr ) in C ,

REPLACE P (expr ) by ∀a#, abs(P )(a#,expr ) → P #(a#)

Definition 20 (Data-abstractions as formulae Fσ).

σCel l (a) = {(i , v)|v = a[i ]} FσCel l ((i , v), a) ≡ v = a[i ]

σi d (a) = {a} Fσi d (a#, a) ≡ a# = a

σ1 •σ2(a,b) =σ1(a)×σ2(b) Fσ1•σ2 ((a#,b#), (a,b)) ≡ Fσ1 (a#, a)∧Fσ2 (b#,b)

σ1 ¯σ2(a) =⋃σ2(a)
a′ σ1(a′) Fσ1¯σ2 (a#, a) ≡∃a′,Fσ2 (a′, a)∧Fσ1 (a#, a′)

σ1 ⊗σ2(a) =σ1(a)×σ2(a) Fσ1⊗σ2 ((a#
1, a#

2), a) ≡ Fσ1 (a#
1, a)∧Fσ2 (a#

2, a)

σ1 ⊕σ2(a) = {T1(x1) | x1 ∈σ1(a)}
∪{T2(x2) | x2 ∈σ2(a)}

Fσ1⊕σ2 (a#, a) ≡ match a# (fun v → Fσi (v, a))

The process used to construct Algorithm 1 exactly encodes Gσabs
(H) and thus implements the

abstraction as stated by Theorem 5. However, the transformation introduces a new quantifier
∀a#; and, even though the output is still a formula encoding a Horn problem, it is no longer in the
syntax of Horn clauses. Thus, we may not use current Horn solvers – or with poor results – and this
leads us the el i mi nate algorithm that aims to recover from this defect. An example of the output
of Algorithm 1 is given in Example 18 and highlights the added quantifiers.

Example 18 (Using the abstr act algorithm). Since abstr act operates on each clause indepen-
dently, we exemplify its use on individual clauses. We do not use clauses of Example 5 as these yield
huge formulae.
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On a simple Horn clause. Consider the very simple clause P (a) → P ′(a) and the abstraction abs
such that abs(P ) = abs(P ′) =σCel l . We obtain the following extended Horn clause where (i , v) and
(i ′, v ′) represents a# and v = a[i ] and v ′ = a[i ′] represents FσCel l ((i , v), a).(∀(i , v), v = a[i ] → P #(i , v)

)→ (∀(i ′, v ′), v ′ = a[i ′] → P ′#(i ′, v ′)
)

On a non-linear Horn clause. Consider the non-linear clause
(
P (a)∧F ((a,0), x)

)→ P ′(x) which
encodes the instruction x=f(a, 0); , and the abstraction abs such that abs(P ) = σCel l , abs(F ) =
σCel l •σi d •σi d , and abs(P ′) =σi d . We obtain the following extended Horn clause using Definition
20 to compute Fabs(F ):(

(∀(i , v), v = a[i ] → P #(i , v))∧
(∀(((i f , v f ), z#), x#), (v f = a[i f ]∧ z# = 0∧x# = x) → F #(((i f , v f ), z#), x#))

)
→ (∀x ′#, x ′# = x → P ′#(x ′#)

)
(4.1)

Theorem 5 (The abstr act algorithm implements the abstraction).

∀abs,C,M #, Habstr actabs (C)(M
#) ≡ HC(γ

Gσabs (M #))

Thus, abstr actabs implements the abstraction Gσabs
using Theorem 3 and Theorem 4.

Proof . Let us introduce M #.
1. For an expression e (possibly a clause), let r epl aced(e) be the expression constructed from

e by replacing all instances of P (expr ) by ∀a#, abs(P )(a#,expr ) → P #(a#).
2. We need to prove Habstr actabs (C)(M

#) ≡ HC ◦ γ
Gσabs (M #) Let us reduce this

proof goal to proving ∀C ∈ C, (�r epl aced(C )�∀
M # ≡ �C�∀

γ
Gσ

abs (M #)
). Proof:

Habstr actabs (C)(M
#) ≡ HC ◦γGσabs (M #)

By definition of HC

≡(∀C # ∈ abstr actabs(C),�C #�∀
M # ) ≡ (∀C ∈C,�C�∀

γ
Gσ

abs (M #))

By definition of r epl aced(e) and abstr actabs

≡(∀C ∈C,�r epl aced(C )�∀
M # ) ≡ (∀C ∈C,�C�∀

γ
Gσ

abs (M #))

⇐∀C ∈C, (�r epl aced(C )�∀
M # ≡ �C�∀

γ
Gσ

abs (M #))

3. But we prove by structural induction on the expression e that ∀vars, (�r epl aced(e)�vars
M # =

�e�vars
γ

Gσ
abs (M #)

), thus we have ∀C ∈C, (�r epl aced(C )�∀
M # ≡ �C�∀

γ
Gσ

abs (M #)
).

Consider e = Cons(e1, . . . ,en) where Cons is an expression constructor or a predicate and
consider the following cases:

(a) if Cons is not a predicate then by the induction hypothesis, the evaluation of e1, . . . ,en

is unchanged, and Cons is unchanged, thus �r epl aced(e)�vars
M # = �e�vars

γ
Gσ

abs (M #)

(b) if e = P (expr ) with P a predicate, then
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�r epl aced(e)�vars
M #

Expanding the definition of r epl aced

=�∀a#, abs(P )(a#,r epl aced(expr )) → P #(a#)�vars
M #

Using set notation

=abs(P )(�r epl aced(expr )�vars
M # ) ⊆M #(P #)

By expanding the definition of γ
Gσabs (see Definition 15)

=�r epl aced(expr )�vars
M # ∈ γ

Gσabs (M #)(P )

By induction hypothesis

=�expr �vars
γ

Gσ
abs (M #) ∈ γGσabs (M #)(P )

By definition of the semantics

=�P (expr )�vars
γ

Gσ
abs (M #)

=�e�vars
γ

Gσ
abs (M #)

4.2 The el i mi nate algorithm

The output produced by the abstr act algorithm is not in pure Horn clause format: there are addi-
tional universal quantifiers. These additional quantifiers make current solving techniques struggle
and, in this section, we focus on removing them through an algorithm called el i mi nate. Unlike
previous approaches [BMR13; BMS06], we do not believe in a general quantifier elimination tech-
nique independent of the abstraction used and we believe that knowledge about the abstraction
is important to remove quantifiers without losing too much information.

The principle behind the el i mi nate algorithm is fairly straightforward and is called quantifier
instantiation [BMR13]. Usually this technique is applied without any regards for the completeness
property and thus a simple explanation usually suffices. However, in this PhD, we tackle the prob-
lem of precisely figuring out how this technique should be applied so that the information loss
may be minimized and controlled. This requires precision and, in this section, we decompose the
problem into several parts.

Two types of quantifiers instances. To understand how to handle the additional quantifiers, we
need to understand where they are added in the Horn clause. First, let us consider the case where
abs(P ) does not contain quantifiers and the only added quantifier is thus ∀a#. For this purpose,
we consider two examples that show that not all added quantifiers should be handled in the same
manner.

First, consider the clause i = 0 → P (a). After abstraction, this clause yields
i = 0 → (∀a#, abs(P )(a#, a) → P #(a#)), which is equivalent to, by moving quantifiers to prenex and
decurrifying, ∀a#, (i = 0∧abs(P )(a#, a)) → P #(a#). However, variables in Horn clauses are
implicitly universally quantified as shown by Definition 4; thus, quantifiers that when moved to
prenex position would be universal can be removed and replaced by a fresh variable. Therefore,
this clause is semantically equivalent to the clause (i = 0∧abs(P )(a#, a)) → P #(a#).

Secondly, consider the clause P (a) → i = n. After abstraction this clause yields
(∀a#, abs(P )(a#, a) → P #(a#)) → i = n, which is equivalent to, by moving quantifiers to prenex,
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∃a#, (abs(P )(a#, a) → P #(a#)) → i = n. This quantifier cannot be removed easily and needs to be
handled in a specific manner.

The generalization of these two examples is that when the quantifier is introduced by replacing
an instance of a predicate in the goal of the clause – the right hand side of the implication – then
the quantifier can simply be replaced by a new free variable. One just needs to make sure that
that variable is unused to avoid clashing of names. However, when the quantifier is introduced by
replacing an instance of a predicate in the premise of a clause – the left hand side of the implication
–, then the generated quantifier ∃a# cannot simply be replaced by a free variable and we will use a
technique called quantifier instantiation [BMR13].

Categorizing quantifiers within abs(P ). The formula Fσ(a#, a) expressing the condition a# ∈
σ(a) for a data-abstraction σ may contain quantifiers; albeit one may argue that our only exam-
ple is the data-abstraction composition combinator. The handling of these quantifiers is again
explained by what happens once they are moved to prenex position. The conclusion is that it
depends on the type of the quantifier: universal or existential.

If the quantifier would be existential in prenex position, then that quantifier can be handled
exactly as the ∀a# quantifier and therefore we use the same technique: if the predicate instance is
in the goal of the clause, just replace it by a free variable; if it is in the premise of the clause, use
quantifier instantiation.

However, if the quantifier would be universal in prenex position of Fσ, then it introduces yet an-
other quantifier alternation when considering a predicate instance in the premises of the clause
and our current technique is not equipped to handle it. Thus, our technique only removes quan-
tifiers that would be existential in prenex position of Fσ, and this does not seem like much of a
limitation: we have yet to witness a case where this is needed.

Quantifiers that would be existential in prenex position of Fσ act like the quantifier ∀a#. This
can be explained in a much simpler way by introducing the notation Fσ[q], where q is a tuple of
expressions, assumed well typed, corresponding to the existential quantifiers in Fσ. Definition
21 gives the expressions Fσ[q] for the abstractions and combinators of Definition 20. With this
notation, one can rewrite ∀a#, abs(P )(a#,expr ) → P #(a#), that is, by what P (expr ) is replaced as:
∀(a#, q), abs(P )[q](a#,expr ) → P #(a#) and thus, clearly show that q is of the same quantifier type
as a#.

Definition 21 (Fσ[q] for data-abstractions). The only data-abstraction combinator that really uses
an existential quantifier is ¯. The other just pass on the possible existential quantifiers of the ab-
stractions they combine.

FσCel l [()]((i , v), a) ≡ v = a[i ]

Fσi d [()](a#, a) ≡ a# = a

Fσ1•σ2 [(q1, q2)]((a#,b#), (a,b)) ≡ Fσ1 [q1](a#, a)∧Fσ2 [q2](b#,b)

Fσ2¯σ1 [(i #, q1, q2)](a#, a) ≡ Fσ2 [q2](a#, i #)∧Fσ1 [q1](i #, a)

Fσ1⊗σ2 [(q1, q2)]((a#
1, a#

2), a) ≡ Fσ1 [q1](a#
1, a)∧Fσ2 [q2](a#

2, a)

Fσ1⊕σ2 [q](a#, a) ≡ match (q, a#) (fun (q ′, v) → Fσi [q ′](v, a))

Quantifier instantiation [BMR13]. Quantifier instantiation simply consists in replacing a for-
mula of the form ∀q,P (q), where P denotes a boolean formula, which can also be written as an
infinite conjunction

∧
q P (q), by a finite conjunction

∧
q∈S P (q) where S is called the instantiation
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set S. The main problem with this technique is that ∀q,P (q) is not equivalent to
∧

q∈S P (q), and
thus may stop us from implementing the abstraction.

In practice, when this transformation is used on instances in the premise of our clause,
for any instantiation set S, the transformation is sound as ∀q,P (q) ⇒∧

q∈S P (q) and thus
if a formula of the form ((∀q,P (q))∧other s) → g oal is unsatisfiable so is the formula
((

∧
q∈S P (q))∧other s) → g oal .

However, completeness is not guaranteed and is even rarely achieved or even achievable. How
much information is lost is highly dependent on the chosen instantiation set S and, even though
this problem will be mainly tackled in Chapter 5, we illustrate its dependence in Example 19. In
this example, we abstract using cell abstraction an array on a clause that cares about the value at
index 0 of the array. By using an instantiation set that does not consider the index 0, we lose all
information but by considering the instantiation set with only element 0 the information is not
lost.

Example 19 (The choice of instantiation set is important). Consider the clause P (a) ∧
k = a[0] → P ′(k). Let us abstract this clause so that P is abstracted by cell abstrac-
tion and P ′ is abstracted by the identity abstraction. This yields the abstracted clause
(∀(i , v), v = a[i ] → P #(i , v))∧k = a[0] → (∀k#,k# = k → P ′#(k#)). Let us simplify this clause for clar-
ity to get (∀(i , v), v = a[i ] → P #(i , v))∧k = a[0] → P ′#(k), and let us consider two instantiations sets
for the quantifier (i , v) and compare what the abstract clause is equivalent to after instantiation.

Instantiation set {(1, a[1]), (2, a[2])} Instantiation set {(0, a[0])}

(a[1] = a[1] → P #(1, a[1]))∧ (a[2] = a[2] → P #(2, a[2]))

∧k = a[0] → P ′#(k)

(a[0] = a[0] → P #(0, a[0]))

∧k = a[0] → P ′#(k)

P #(1, a[1])∧P #(2, a[2]) → P ′#(a[0]) P #(0, a[0]) → P ′#(a[0])

P #(1, v1)∧P #(2, v2) → P ′#(v0) P #(0, v0) → P ′#(v0)

The first step consists in using the definition of instantiation. The second is a simplification of
redundant equalities and implications. The third replaces the array a by integers as would be done
in the removal of uninterpreted functions: replace a[i ] by a new variable vi and if both a[i ] and a[ j ]
appear, add the condition i = j ⇒ vi = v j .

When using the instantiation set {(1, a[1]), (2, a[2])} there is no link between the parameter of P ′#,
and the premise of the clause, thus no information about variable values is conveyed. However,
when using the instantiation set {(0, a[0])}, there the value of the parameter of P ′# is constrained by
its value in P # and thus, information is conveyed.

This example shows how the choice of instantiation set highly impacts information loss.

Putting it together. Let us now give a first attempt at our quantifier elimination algorithm. The
first version of the el i mi nate algorithm takes a formula f output by the abstr act algorithm, a
pointer p to an instance of an expression of the form ∀(a#, q), abs(P )[q](a#,expr ) → P #(a#) within
f , and an finite instantiation set S for the quantifier formed by the pair (a#, q), where q is the values
for the quantifiers within Fσ.

If that instance is within the goal of the clause, we just remove the ∀ quantifier and make
fresh variables of a# and q , possibly renaming to avoid name clashes. If that instance is
within the premises of the clause, we use quantifier instantiation and replace that instance of
∀(a#, q), abs(P )[q](a#,expr ) → P #(a#) by

∧
(a#,q)∈S abs(P )[q](a#,expr ) → P #(a#).

This algorithm should then be repeatedly applied until all quantifiers are removed.
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Using instantiation heuristics. The problem with this algorithm is that it requires the user to
know the instantiation set S for each predicate instance. This is not desirable and our goal is to cre-
ate heuristics i nst s to automatically compute the instantiation set S for each instance [BMR13].

The main problem with automating the instantiation set S is that we need to figure out correct
parameters for our heuristics. What is for sure is that the heuristic is highly dependent on the
abstraction and should, in fact, be defined with the abstraction. However, what is unclear is how
much more context about the current Horn problem should be passed to the instantiation heuris-
tic: if no other context than the abstraction is given, we hit the pitfalls demonstrated by Example
19: the right instantiation set depends on the current Horn problem. However, passing the whole
Horn problem as a parameter would make it extremely hard to state properties about those heuris-
tics: a good heuristic could use any technique to attempt to solve the Horn problem, and, if that
problem is solved, just return the finite set that works.

Our approach consists in passing the current extended Horn clause as context to the heuristic as
clauses in Horn problems are an important unit: the variables of a clause are local and implicitly
universally quantified and clauses define a kind of transition relation. Furthermore, the abstr act
algorithm also operates on each clause independently. Thus, our aim is to pass to the instantiation
heuristic i nst s the abstraction abs that is used, the predicate P and the value expr of the instance
that is being instantiated, and the context ct x corresponding to the rest of the current extended
Horn clause C #. Such a call to the instantiation heuristic is written i nst sabs

P (expr,ct x).
In practice, the current extended Horn clause is not passed as

such. To explain this, consider the following extended Horn clause
(a[2] = 3∧ (∀a#, abs(P )(a#, a) → P #(a#))∧a[i ] ≤ 10) → i = n. For this example, the call
to the instantiation heuristic will be i nst sabs

P (a, (a[2] = 3∧a[i ] ≤ 10) → i = n). Let us

explain: i nst sabs
P means that the predicate is P and the abstraction used Gσabs

, a
is simply the expression that was abstracted, and (a[2] = 3∧a[i ] ≤ 10) → i = n) is the
rest of the extended clause: the extended clause can be written using currification as
(∀a#, abs(P )(a#, a) → P #(a#)) → ((a[2] = 3∧a[i ] ≤ 10) → i = n). In other words, to reconstruct
a formula equivalent to the initial extended clause from a call i nst sabs

P (expr,ct x) to the instanti-
ation heuristic, one writes (∀a#, abs(P )(a#,expr ) → P #(a#)) → ct x.

The previous example had only a single predicate instance in the premises. Adding multiple
predicate instances adds another layer of complexity and yields another question: should all
quantifiers induced by all predicates instances be instantiated simultaneously, and thus, the for-
mulae that could be reconstructed from each call to the instantiation heuristic would be the same;
or, should we sequentially instantiate, and thus, the formulae that could be reconstructed from
each call to the instantiation heuristic would be partially instantiated? We choose the sequential
option, and that choice will be explained in the next section. However, this requires us to pick an
instantiation order and, for lack of better information, we simply use the order given by the syntax.

Therefore, there are two calls to the instantiation heuristic when handling the extended clause
∀a#, abs(P1)(a#, a[i ← v]) → P #

1 (a#)∧∀b#, abs(P2)(b#,b) → P #
2 (b#)∧a[i +1] = 2 → f al se. The

first is S1 = i nst sabs
P1

(a[i ← v], (∀b#, abs(P2)(b#,b) → P #
2 (b#)∧a[i +1] = 2) → f al se) and the

second is S2 = i nst sabs
P2

((b, ((
∧

(a#,q)∈S1
, abs(P1)[q](a#, a[i ← v]) → P #

1 (a#))∧a[i +1] = 2) → f al se)
in which we see the dependence of S2 on S1, which demonstrates how our choice is sequential.

The el i mi nate algorithm. The final el i mi nate algorithm thus takes a single parameter, the set
of extended Horn clauses C for which we desire to instantiate the quantifiers: we assume the in-
stantiation heuristics to be used for each abstraction to be in the current context. This algorithm
transforms each extended Horn clause independently, first by transforming the quantifiers in the
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goal into free variables and then by sequentially instantiating the quantifiers in the premise. Al-
gorithm 2 contains the full algorithm used, and, Example 20 is a tiny application example. For a
more complex example, one should refer to Example 21 and the proof of Theorems 13 and 14 may
also serve as examples.

The el i mi nate algorithm is sound for any heuristic i nst s: instantiation is only done in the
premise of clauses, thus making clauses less satisfiable rather than more satisfiable. The proof
is given in Theorem 6. However, the information loss of the el i mi nate algorithm, measured
through the completeness property and not relative completeness as el i mi nate does not perform
any abstraction, is highly dependent on the heuristic i nst s and capturing this dependence is the
purpose of the next section.

Algorithm 2 (Quantifier elimination algorithm el i mi nateabs(C#)). //In this algorithm, we assume
the input to be the output of abstr act on normalized Horn clauses
Input: C#, the set of extended Horn clauses. abs, the abstraction
Computation: FOR EACH clause C # ∈C#

1. Let n, e1, . . . ,en and e ′ such that C # ≡ e1 ∧ . . .∧en → e ′

2. //We transform quantifiers in the goal into free variables
e ′r es := MATCH e ′ WITH

//the abstraction of a predicate
|∀a#, abs(P )(a#,expr ) → P #(a#) THEN abs(P )[q](a#,expr ) → P #(a#)

where a#, q are fresh unused variables.
//an expression without a predicate
| _ THEN e ′

3. For i from 1 to n
(a) //We look if ei is the abstraction of a predicate, if it is not, er esi = ei

Let (ai ,P #
i ) such that ei =∀a#,Fabs(Pi )(a#, ai ) → P #

i (a#)
If it does not match, er esi = ei and go to next loop iteration.

(b) //We compute the context for that instance.
Let ct xi = er es1 ∧ . . .∧er esi−1 ∧ei+1 ∧ . . .∧en → e ′r es //Note:if n = i = 1, ct xi = tr ue → e ′r es

(c) //We compute the instantiation set for that abstraction.
Let Si = i nst sabs

Pi
(ai ,ct xi )

(d) //We finally compute ei after instantiation
Let er esi =

∧
(a#,q)∈Si

Fabs(Pi )[q](a#, ai ) → P #
i (a#)

4. REPLACE C # by er es1 ∧ . . .∧er esn → e ′r es

Example 20 (Array initialization loop instantiation). Consider the clause P (a, i ) → P (a[i ← 0], i+1)
and the abstraction abs(P ) = FσCel l•σi d .

The abstract algorithm transforms this clause into

(∀(( j , v), i #), (v = a[ j ]∧ i # = i ) → P #(( j , v), i #))

→ (∀(( j , v), i #), (v = a[i ← 0][ j ]∧ i # = i +1) → P #(( j , v), i #))

And the eliminate algorithm proceeds in the following way:
1. It removes the quantifiers in the goal, thus yielding:

(∀(( j , v), i #), (v = a[ j ]∧ i # = i ) → P #(( j , v), i #))

→ ((v ′ = a[i ← 0][ j ′]∧ i
′# = i +1) → P #(( j ′, v ′), i

′#))
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2. It calls i nst sabs
P (a, tr ue → ((v ′ = a[i ← 0][ j ′]∧ i

′# = i +1) → P #(( j ′, v ′), i
′#)). Which we will

assume returns {(( j ′, a[ j ′]), i )}.
3. Yields the final clause

((a[ j ′] = a[ j ′]∧ i = i ) → P #(( j ′, a[ j ′]), i ))

→ ((v ′ = a[i ← 0][ j ′]∧ i
′# = i +1) → P #(( j ′, v ′), i

′#))

Example 21 (Instantiation of a non-linear clause). We reuse the Clause 4.1 of Example 18 recalled
below.

(
(∀(i , v), v = a[i ] → P #(i , v))∧

(∀(((i f , v f ), z#), x#), (v f = a[i f ]∧ z# = 0∧x# = x) → F #(((i f , v f ), z#), x#))
)

→ (∀x ′#, x# = x → P ′#(x ′#)
)

(4.2)

The instantiation of this clause yields the following two calls to the instantiation heuristic
i nst sabs

P (a,ct xP ) and i nst sabs
F (((a,0), x),ct xF ) with ct xP and ct xF defined by:

ct xP ≡ (∀(((i f , v f ), z#), x#), (v f = a[i f ]∧ z# = 0∧x# = x) → F #(((i f , v f ), z#), x#)
)

→ (x# = x → P ′#(x ′#)) (4.3)

ct xF ≡ ( ∧
(i ,v)∈i nst sabs

P (a,ct xP )

v = a[i ] → P #(i , v)
)→ (x# = x → P ′#(x ′#)) (4.4)

Theorem 6 (el i mi nate sound). For any abs, el i mi nateabs is a sound transformation. Even bet-
ter, for all abs, M # and Horn clauses C#

�el i mi nateabs(C#)�M # ⇒�C#�M #

Proof . This "better" result implies soundness as it means that whenever a clause is satisfiable
after instantiation, it was also satisfiable before instantiation by the same model.

Let us know prove this "better" result. Let us introduce M # and C#,
and use the notations of Algorithm 2. We can rewrite our proof goal into:
(∀var s′,�er es1 ∧ . . .∧er esn → e ′r es�var s′

M # ) ⇒ (∀var s,�e1 ∧ . . .∧en → e ′�var s
M # ).

The proof of this result if simply because ∀var s′,�e ′�var s′
M # is equivalent to ∀var s′,�e ′r es�var s′

M # and

∀i , (∀var s,�ei �var s
M # ) ⇒ (∀var s′,�er esi �var s′

M # ) as an infinite conjunction implies a finite conjunc-
tion.

4.3 Formalizing the data-abstraction framework algorithm imple-
ments the abstraction as a condition on calls to i nst s

The data-abstraction framework algorithm is obtained by the composition of two algorithms:
abstr act and el i mi nate. The abstr act transformation implements the abstraction but fails
to meet the syntax requirements and the el i mi nate algorithm aims at fulfilling the syntax re-
quirements, but is only proven sound and its loss of information is dependent on the instantiation
heuristic i nst s.
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We want the data-abstraction framework algorithm to implement the abstraction, and find the
instantiation heuristic i nst s that allows it. To do so, we first show that the data-abstraction frame-
work algorithm implements the abstraction if and only if el i mi nate is complete in Theorem 7.
We then show that el i mi nate is complete whenever each call to i nst s in el i mi nate verifies a
property we name completeness of a call to i nst s. Finally, the construction of a heuristic i nst s
and the proof that it satisfies the completeness property are given in Chapter 5.

Theorem 7 (el i mi nate must be complete). If T1 is a transformation that implements an abstrac-
tion G and T2 is a sound transformation, then:

T2 ◦T1 implements G ≡T2 complete on the output of T1

In this theorem, T1 represents the abstr act algorithm and T2 the el i mi nate algorithm. This
theorem combined with theorems 5 and 6 shows that the data-abstraction framework algorithm
implements the abstraction if and only if el i mi nate is complete.

Proof . Let us decompose the equivalence into two implications.
1. Assume T2◦T1 implements G . Reason by contradiction and assume T2 not complete on the

output of T1. This translates to: ∃C, HT1(C) satisfiable ∧HT2◦T1(C) not satisfiable. Introduce
C. We have:

(a) As T1 implements G , HT1(C) satisfiable ≡∃M #/G , HC(M #) .
(b) T2 ◦T1 implements G thus HT2◦T1(C) satisfiable.
(c) But HT2◦T1(C) not satisfiable by assumption of our reasoning by contradiction which

contradicts Item 1b.
2. Assume T2 complete on the ouput of T1. Because T2 is also sound,

∀C in the output of T1, HT2(C) satisfiable ≡ HC satisfiable. Let us prove that
T2 ◦T1 implements G . Introduce C.

HT2◦T1(C) satisfiable

Using our deduction

≡HT1(C) satisfiable

By definition of implementing the abstraction

≡∃M #/G , HC(M #)

4.3.1 Completeness of el i mi nate, seemingly impossible

Because el i mi nate transforms each clause independently, it is very tempting to believe that
el i mi nate must verify the per clause completeness property of Definition 22, that is, for any model
M #, the input clause should be equivalent to the instantiated clause. Here we show that this rea-
soning fails and per clause completeness is not achievable. We believe that, in [BMR13; MG16],
completeness for their algorithms may have been discarded due to that reasoning.

Definition 22 (Per clause completeness). The transformation of C # into C #
i nst s verifies per clause

completeness if and only if
∀M #,�C #�M # ⇒�C #

i nst s�M #

To understand why this reasoning fails, let us consider the cell abstraction of an array whose
index type is infinite. The quantifiers to instantiate for a predicate in the premises using that
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array are ∀(k, v), where k is of the index type, and the condition Fσ is v = a[k]. During in-
stantiation, the ∀(k, v) is replaced by a conjunction over a finite set S given by the instantia-
tion set. However, because S must be finite, it cannot handle all indices and there is a part
of the array which is not considered after instantiation. The idea to show that we do not have
∀M #,�C�M # ⇒�el i mi nate(C )�M # is to construct a model such that what makes the clause satis-
fiable is hidden in the part of the array not considered by S. Thus making C # satisfiable but not
el i mi nate(C #) because C # can consider the part of the array that makes the clause satisfiable.
This problem happens on nearly all clauses, and in Theorem 8 we formalize this reasoning on the
abstraction of the very simple clause P (a) → f al se.

Theorem 8 (Completeness of el i mi nate, seemingly impossible). Assume the index type of ar-
rays is infinite, for simplicity, let us consider arrays from and to integers. Consider C # defined by
(∀(k, v), v = a[k] → P #(k, v)) → f al se which was constructed using the abstr act algorithm with
abstraction abs(P ) =σCel l on the trivial clause P (a) → f al se. There exists no heuristic i nst s, such
that:

∀M #,�C #�∀
M # ⇒�el i mi nateabs({C #})�∀

M #

Proof .

1. Let us compute el i mi nateabs(C #). We obtain:
(
∧

(k,v)∈S v = a[k] → P #(k, a[k])) → f al se where S is the instantiation returned by i nst s.
2. Let i be an index not considered by the instantiation set S. This means ∀v, (i , v) ∉ S. This is

possible because S is an instantiation set and thus, must be finite, whereas the index set is
supposed infinite.

3. Consider a model M # such that M #(P #) = {(k, v) | k 6= i }.
4. Let us compute �el i mi nateabs({C #})�∀

M #

�el i mi nateabs({C #})�∀
M #

≡∀vars,�(∀(k, v) ∈ S, v = a[k] → P #(k, v)) → f al se�vars
M #

Unrolling the definition of M # and realizing that a is the only free variable

≡∀vars, (∀(k, v) ∈ S, v = �a�vars[k] → k 6= i ) ⇒ f al se

But the condition k 6= i is always satisfied as S does not contain i

≡tr ue ⇒ f al se ≡ f al se

5. Let us compute �C #�∀
M #

�C #�∀
M #

≡∀vars,�(∀(k, v), v = a[k] → P #(k, v)) → f al se�vars
M #

≡∀vars, (∀(k, v), v = �a�vars[k] → k 6= i ) → f al se

Consider (k, v) = (i ,�a�vars[i ])

≡ f al se ⇒ f al se ≡ tr ue

6. Thus, we have �el i mi nateabs({C #})�∀
M # ≡ f al se and �C #�∀

M # ≡ tr ue. We do not have the
implication.

4.3.2 Completeness of el i mi nate is possible

Previously, we proved that el i mi nate could not verify per clause completeness and, because
el i mi nate handles each clause separately, we were led to believe that this meant that el i mi nate
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could not satisfy completeness. Here, we investigate further and show that the per clause complete-
ness property is not the right property as we did not account for abstraction. We name the right
property is per clause relative completeness and it allows us to simplify the global property of com-
pleteness into a local (i.e. per clause) property. This brings us one step closer to finding a property
for the instantiation heuristic i nst s.

Investigating per clause completeness. The idea behind why the completeness of el i mi nate
should imply per clause completeness can be formalized. The idea is to consider the use of
el i mi nate on an initial set C# of clauses plus an additional clause C #. Because el i mi nate han-
dles each clause independently, the satisfiability of C # can be expressed separately. Thus, by mak-
ing el i mi nateabs(C#) satisfiable and C # satisfiable, we enforce that C # should be satisfiable by a
model that also satisfies el i mi nateabs(C#). This reasoning is formally expressed in Theorem 9.

The final idea behind per clause completeness is that one may chose C# so that it is satisfiable
by only a single chosen model and thus el i mi nateabs(C#) is also only satisfiable by this single
chosen model. Using the notations of Theorem 9, this idea means choosing C# such that D# only
contains the given chosen singleton model. If this were true, per clause completeness would be
a required property for el i mi nate to be complete. We will see this is not the case as we only
considers clauses output by the abstr act algorithm.

Theorem 9 (Theorem behind per clause completeness). Let C# be a set of Horn clauses and C # be a
clause. Let D# = {M # | �el i mi nateabs(C#)�∀

M # }. If el i mi nateabs is complete then,

(∃M # ∈D#,�C #�∀
M # ) ⇒ (∃M # ∈D#,�el i mi nateabs({C #})�∀

M # )

Proof .

1. Assume el i mi nateabs complete and assume (∃M # ∈D#,�C #�∀
M # ). Introduce M #.

2. The call to el i mi nateabs(C# ∪ {C #}) is complete thus:
(∃M #,�C# ∪ {C #}�∀

M # ) ⇒ (∃M #,�el i mi nateabs(C# ∪ {C #})�∀
M # )

3. The M # introduced in Item 1 verifies �C# ∪ {C #}�∀
M # as

(a) It satisfies the clauses C# as it is in D# as any model that satisfies the clauses in
el i mi nateabs(C#) also satisfies the clauses C# as shown by Theorem 6

(b) It satisfies C # by hypothesis.
4. Thus we have (∃M #,�el i mi nateabs(C# ∪ {C #})�∀

M # ) using Item 2. Introduce that model as

M #
2 .

5. M #
2 is in D# as it satisfies the clauses in el i mi nateabs(C#) as el i mi nateabs(C#) ⊆

el i mi nateabs(C# ∪ {C #}).
6. M #

2 satisfies the clause el i mi nateabs({C #}) as el i mi nateabs(C #) ⊆ el i mi nateabs(C# ∪
{C #}).

7. M #
2 is in D# and satisfies el i mi nateabs({C #}), the proof is thus complete.

Finding the loophole. The idea that we can setC# so that it expresses any model is fundamentally
correct: in our setting, we do not limit the theory for the syntax of Horn clauses and thus, with the
appropriate theory, one could express any model. However, in our setting, it is incorrect: the
clauses on which the el i mi nate algorithm are executed come from the abstr act algorithm and
these clauses cannot express all models, they can only express abstracted models!
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The problem expressed by Theorem 8 was only possible by considering non-abstracted models:
the chosen counterexample model M #(P #) = {(k, v) | k 6= i } is not the abstraction of an array as the
cell abstraction of a set of arrays is either empty or contains at least a value for all indices. Here
the index i is omitted.

Therefore the per clause completeness property must be modified to take into account the ab-
straction, and leads to a property we call per clause relative completeness. This per clause relative
completeness property is formalized in Definition 23 and is a modification of the per clause com-
pleteness property that considers only abstracted models.

Finally, in Theorem 10, we prove that the completeness requirement for el i mi nate can be trans-
formed into a per clause relative completeness requirement. This is a great simplification, as
compl eteness is a global property that involves the full Horn problem whereas per clause rela-
tive completeness is a property local to the clause.

Definition 23 (Per clause relative completeness). Let G = (α,γ) be an abstraction, the transfor-
mation of a clause C # into a clause C #

i nst s verifies per clause completeness relative to G if and only
if:

∀M ,�C #�∀α(M ) ⇒�C #
i nst s�∀α(M )

Theorem 10 (Completeness can be simplified into per clause relative completeness). If
el i mi nateabs verifies per clause completeness relative to the abstraction Gσabs

, then el i mi nateabs

verifies completeness on the output of abstr actabs . Thus, the data-abstraction framework algo-
rithm implements the abstraction.

Furthermore, per clause relative completeness is also necessary for completeness of el i mi nateabs

on the output of abstr act if we allow the syntax of Horn clauses to express any model, that is: for
any model M , there exists a set of Horn clauses C such that M is the only model that satisfies C. In
other words, without syntax limitations, per clause relative completeness is the right property.

Proof . Let G = Gσabs
and let us write el i mi nate and abstr act instead of el i mi nateabs and

abstr actabs .
1. Assume el i mi nate verifies per clause relative completeness. Let C# be a set of Horn

clauses output by abstr act on the input C and assume C# satisfiable. Let us prove that
el i mi nate(C#) is also satisfiable.

(a) Let M # be a model that satisfies C#

(b) α◦γ(M #) also satisfies C#. Proof:

HC# (α◦γ(M #))

≡ HC(γ◦α◦γ(M #)) Using Theorem 5

≡ HC(γ(M #)) Using item 5 of Definition 8

≡ HC# (M #) Using Theorem 5

≡ tr ue

(c) By applying the definition of per clause relative completeness, we obtain that for any
clause C # ∈C#, �C #�∀

α◦γ(M #)
⇒�el i mi nate({C #})�∀

α◦γ(M #)

(d) But α◦γ(M #) also satisfies C#, thus �el i mi nate(C#)�∀
α◦γ(M #)

(e) Thus, el i mi nate(C#) satisfiable and el i mi nate verifies completeness on the output
of abstract

2. Let us prove that given a syntax that may express any single model, if el i mi nate verifies
completeness on the output of abstr act then el i mi nate verifies per clause relative com-
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pleteness. Reason by contradiction and assume there exists a clause C # that can be output
by abstr act and a model M such that �C #�∀

α(M ) ∧¬�el i mi nate({C #})�∀
α(M ).

(a) Let C be a set of Horn clauses that are only satisfiable by γ◦α(M ). We use the expres-
siveness of the syntax assumption.

(b) Let C# = abstr actabs(C). C# is satisfiable only by α(M ) as abstr act implements the
abstraction and α◦γ◦α=α. Proof:

HC# (M #
2 )

≡ HC(γ(M #
2 )) Using Theorem 5

≡ γ(M #
2 ) = γ◦α(M ) As HC only satisfiable by γ◦α(M )

≡ γ(M #
2 ) ≤ γ◦α(M )∧γ(M #

2 ) ≥ γ◦α(M )

≡M #
2 ≤α◦γ◦α(M )∧M #

2 ≥α◦γ◦α(M ) Using item 3 of Definition 8

≡M #
2 ≤α(M )∧M #

2 ≥α(M ) Using item 5 of Definition 8

≡M #
2 =α(M )

(c) C# ∪ {C #} is satisfiable only by α(M ).
(d) But el i mi nate(C#∪{C #}) is not satisfiable byα(M ) because ¬�el i mi nate({C #})�α(M ).
(e) el i mi nate is not satisfiable by any other model: if it was satisfiable by a model M #

2 ,
then C#∪ {C #} would be satisfiable by M #

2 using Theorem 6 and M #
2 =α(M ) by unicity

of the model satisfying C# ∪ {C #}.
(f) Thus el i mi nate(C# ∪ {C #}) cannot satisfiable by any model yet C# ∪ {C #} is satisfiable.

Thus el i mi nate is not complete. Contradiction.

4.3.3 Completeness of a call to i nst s

Our goal to ensure that the data-abstraction framework algorithm implements the abstraction has
been reduced to the completeness of el i mi nate and then to the per clause relative completeness
of el i mi nate. Our aim is to reduce to a condition on i nst s and in this section, we finally do so.

Computing the right property. This step requires to unwind the definition of the el i mi nate
algorithm. In the el i mi nate algorithm, we first transform the goal of the clause. This step pre-
serves equivalence and causes no issues. For each clause, we then successfully instantiate the
quantifiers due to the abstraction of each predicate. Our intuition is that we wish to preserve per
clause relative completeness throughout each instantiation. In other words, we aim to prove that
the transformation of er es1 ∧ . . .er esi−1 ∧ . . .ei ∧ . . .en → e ′r es into er es1 ∧ . . .er esi ∧ei+1 ∧ . . .en → e ′r es

verifies per clause relative completeness. If this property is true for all i , then we can deduce that
el i mi nate verifies per clause relative completeness.

Let us compare the two clauses C = er es1 ∧ . . .er esi−1 ∧ . . .ei ∧ . . .en → e ′r es and
C ′ = er es1 ∧ . . .er esi ∧ . . .ei+1 ∧ . . .en → e ′r es , where ei is the abstraction of a predicate (i.e.
we enter step 3b). To do so, let us rewrite C and C ′ in a currified manner, so that
the similarities may be more explicit. C ≡ ei → (er es1 ∧ . . .er esi−1 ∧ei+1 ∧ . . .en → e ′r es) and
C ′ ≡ er esi → (er es1 ∧ . . .er esi−1 ∧ei+1 ∧ . . .en → e ′r es). Using the definition of ct xi from the algorithm
and expanding ei and er esi , this can simply be written as C ≡∀a#,Fabs(Pi )(a#, ai ) → P #

i (a#) → ct xi

and C ′ ≡ (
∧

(a#,q)∈Si
Fabs(Pi )[q](a#, ai ) → P #

i (a#)) → ct xi .

We recall that the call to i nst s is i nst sabs
P (ai ,ct xi ), and thus the definition of the completeness

of a call to i nst s is computed by unrolling the definition of the transformation of C into C ′ verifies
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per clause relative completeness with the notations of the parameters of i nst s. This is formalized
in Definition 24. The formal proof that this definition is correct and allows el i mi nate to verify
per clause relative completeness and thus, that the data-abstraction framework implements the
abstraction if and only if1 all calls to i nst s in el i mi nate are complete is given in Theorem 11.
We do not provide examples on which we use Definition 24 in this chapter, however, the proof of
Theorem 15 contains two interesting examples.

Definition 24 (Completeness of a call to i nst s). .
We say that a call i nst sabs

P (a,ct x) returning I is complete if and only if, for any M ,(∀vars,�∀(a#, q),Fabs(P )[q](a#, a) ⇒ a# ∈αabs(P )(M (P ))�vars ⇒�ct x�α
Gσ

abs (M )
)

⇒ (∀vars,�∀(a#, q) ∈∈∈ I ,Fabs(P )[q](a#, a) ⇒ a# ∈αabs(P )(M (P ))�vars ⇒�ct x�α
Gσ

abs (M )
)

(4.5)

We use several other versions of Equation 4.5 in our proofs: combinations of contraposition and
cases where Fabs(P ) does not contain existential quantifiers – i.e. Fabs(P ) = Fabs(P )[()] –, in which case
we introduce I ′ such that I = {(a#, ()) | a# ∈ I ′}. The contraposition versions are used to transform
universal quantifiers into existential ones and is more suited for most proofs: from vars we need
to construct a vars′; and the cases where Fabs(P ) does not contain existential quantifiers are mainly
used for cell abstractions and simplify explanations.

(∃vars,�∀(a#, q) ∈∈∈ I ,Fabs(P )[q](a#, a) ⇒ a# ∈αabs(P )(M (P ))�vars ∧¬�ct x�vars
α

Gσ
abs (M )

)
⇒ (∃vars′,�∀(a#, q),Fabs(P )[q](a#, a) ⇒ a# ∈αabs(P )(M (P ))�vars′ ∧¬�ct x�vars′

α
Gσ

abs (M )

)
(4.6)

(∀vars,σ(�a�vars) ⊆αabs(P )(M (P )) ⇒�ct x�α
Gσ

abs (M )
)

⇒ (∀vars,σ(�a�var s)∩∩∩�I ′′′�vars ⊆αabs(P )(M (P )) ⇒�ct x�α
Gσ

abs (M )
)

(4.7)

(∃vars,σ(�a�vars)∩∩∩�I ′′′�vars ⊆αabs(P )(M (P ))∧¬�ct x�vars
α

Gσ
abs (M )

)
⇒ (∃vars′,σ(�a�var s′) ⊆αabs(P )(M (P ))∧¬�ct x�vars′

α
Gσ

abs (M )

)
(4.8)

Theorem 11 (Completeness of a call to i nst s implies completeness of el i mi nate). el i mi nateabs

verifies per clause completeness relative to Gσabs
if and only if all calls to i nst s during its execution

are complete.

This means, using Theorems 10 and 7, that whenever all calls to i nst s are complete during the
execution of el i mi nate that el i mi nate is complete, the data-abstraction framework algorithm
implements the abstraction. Furthermore, given an expressive syntax for Horn clauses, all the nec-
essary conditions of these theorems are also satisfied, thus, this property exactly captures what i nst s
should satisfy2.

Proof of the sufficient condition. Assume all calls i nst s are complete during the execution of
el i mi nate. Assume C # satisfiable by a model α(M ), where α = α

Gσabs , and let us show
el i mi nate({C #}) satisfiable by α(M ).

1if the syntax is expressive enough
2Of course, this is in part due to the parameters of i nst s. If i nst s had had more context than only the current clause,

the per clause relative completeness property would not have been necessary.
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1. Using the notations of the el i mi nate algorithm we prove by induction on i that er es1 ∧ . . .∧
er esi−1 ∧ . . .∧ei ∧ . . .en → e ′r es is satisfied by α(M ).

2. The base case is simply C # after handling the e ′. Handling e ′ does not change satisfiability,
thus, it is satisfied by α(M ).

3. Let us now assume C #
i ≡ er es1 ∧ . . .∧ er esi−1 ∧ ei ∧ . . .∧ en → e ′r es satisfied by α(M ) and let us

show that C #
i+1 ≡ er es1 ∧ . . .∧er esi ∧ei+1 ∧ . . .∧en → e ′r es is satisfied by α(M ).

4. Rewrite these two clauses as:
C #

i ≡ (∀a#,Fabs(Pi )(a#, ai ) → P #
i (a#)) → ct xi

C #
i+1 ≡ (

∧
(a#,q)∈i nst sabs

Pi
(ai ,ct xi )

Fabs(Pi )[q](a#, ai ) → P #
i (a#)) → ct xi

5. Using the definition of completeness of the call to i nst sabs
Pi

(ai ,ct xi ) for α(M ), we obtain

that C #
i implies C #

i+1.
6. By induction hypothesis, we have C #

i satisfiable byα(M ), thus C #
i+1 is as well and our induc-

tion is finished.

Proof of the necessary condition. Reason by contradiction and assume there is a call to i nst s
which is not complete.

1. Use the notations of the el i mi nate algorithm, and let i be the smallest i for which the call
i nst sabs

Pi
(ai ,ct xi ) is not complete.

2. Introduce M corresponding to a model for which that incompleteness occurs. Let α =
α

Gσabs .
3. Assume C # satisfiable by α(M ), let us show el i mi nate({C #}) is not satisfiable by α(M ).
4. Using the notations introduced for the proof of the sufficient condition, we have:

(a) We do not have C #
i implies C #

i+1 for α(M ) by definition of i nst sabs
Pi

(ai ,ct xi ) not com-

plete for M . Thus, C #
i+1 must not be satisfiable by α(M ).

(b) el i mi nate({C #}) →C #
i+1 forα(M ) as we only make the clause less satisfiable. The proof

of this is already done in the proof of Theorem 6. Thus, el i mi nate({C #}) is not satisfi-
able by α(M ) as we do not have C #

i+1 satisfiable by α(M ).

4.3.4 Discussion of a few subtle choices

This chapter contains many subtle choices about the el i mi nate algorithm and the i nst s heuris-
tic. We believe that now the reader has a full picture of the el i mi nate algorithm and its link with
i nst s, some of the subtle choices we made may be better understood.

The choice of clause locality. The choice that the context to i nst s, that is, the second parameter,
is exactly the rest of the clause. We discussed this briefly in the construction of the el i mi nate
algorithm and this was mainly justified by the fact that the clause is a nice syntactical unit. In fact,
this choice can be explained more thoroughly with two arguments.

First, clauses are the equivalent of transitions in programs. The abstr act algorithm may be
viewed as a way to compute the optimal abstract transition. The el i mi nate algorithm may be
viewed as a way to simplify this abstract transition so that it fits the format of Horn clauses. Thus,
together, abstr act and el i mi nate are simply a way to compute the abstraction of a transition. It
befits that they only depend on the transition and the knowledge of the abstraction used.

Secondly, one of the main goals is to transform the property eliminate is complete as properties
of the calls to the instantiation heuristic i nst s. If the full Horn problem is passed as a context
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parameter to i nst s, there is no way to simplify this property in a useful manner. Obviously, if no
context is given, one may not achieve completeness. Therefore, one has to choose a context ex-
pressive enough to make completeness achievable, but yet simple enough that a simple property
of completeness for the calls to the instantiation heuristic can be written. Clauses are the right
choice: predicates have arguments over expressions defined on the variables of the clause. Thus,
anything smaller than the clause does not reflect the constraints on these variables, and thus, on
the predicate’s arguments. Furthermore, taking as parameter the clause allows us to rewrite us-
ing currification the different steps of the el i mi nate algorithm and prove that completeness is
maintained throughout execution.

The choice of a sequential computation of the instantiation sets. During the construction of
the el i mi nate algorithm, we discussed that the expressions e1, . . .en are instantiated sequentially
and the instantiation set for e2 may depend on the er es1 , and thus on the instantiation set for e1.
A natural alternative is to use parallel instantiation, where e2 depends on e1 instead of er es1 . This
was discussed previously and Definition 25 formalizes it.

The main reason to avoid parallel instantiation is that we do not believe the parallel counterpart
to Theorem 11 stated in Conjecture 1 to hold, that is, the completeness of the calls to i nst s would
no longer imply the completeness of el i mi nate. Theorem 11 relies on the fact that in the sequen-
tial version, each predicate instantiation is handled sequentially and equivalence is preserved at
each step. In the parallel version, that is, where i nst s is given e1 ∧ . . .ei−1 ∧ei+1 . . .en → e ′r es as con-
text for all i , Theorem 11 would require to unify the branches. That is, for n = 2, one needs to prove
that if e1 is equivalent to er es1 in the context e2 → e ′r es , and e2 is equivalent to er es2 in the context
e1 → e ′r es , then e1 ∧e2 is equivalent to er es1 ∧er es2 in the context e ′r es .

Although we have not yet found a counter-example for Conjecture 1, we do not believe this uni-
fication possible for two reasons. First, the proof of Conjecture 1 requires a different approach
than that of Theorem 11: in Theorem 11 we prove the completeness of el i mi nate for model M

by using that each call is complete for that same model M but in Theorem 12 we prove such an
approach is not possible for parallel instantiation. Secondly, we attempted another proof for Con-
jecture 1 provided beneath it and a specific step fails. The failure of this step makes us believe that
Conjecture 1 does not hold and that we only need to find the right counter-example. However,
should Conjecture 1 be true, there still are two reasons to use sequential instantiation over parallel
instantiation.

First, er esi is simpler than ei : ei contains additional quantifiers that were removed when trans-
forming it to er esi . Thus it makes sense to pass er esi instead of ei as much as possible to the instan-
tiation heuristic. Although this may not look like much, handling quantifiers within the instanti-
ation heuristic is complex and may lead to cases where the completeness of the call is lost, and
thus, having it already simplified enables better instantiations.

Secondly, there are cases where the instantiation of er esi does not verify completeness. In those
cases, passing ei instead of er esi to the instantiation of ei+1 makes the information loss completely
untrackable. With our scheme, if only the call to the instantiation of ei is incomplete, the com-
pleteness of the other calls guarantees that the information loss is entirely contained in the trans-
formation of C #

i to C #
i+1 (using the notations from the proof of Theorem 11).

Definition 25 (Parallel instantiation algorithm el i mi nate//
abs). Let el i mi nate//

abs be the
el i mi nateabs algorithm of Algorithm 2 where ct xi = e1 ∧ . . .∧ei−1 ∧ei+1 ∧ . . .∧en → e ′r es instead
of er es1 ∧ . . .∧er esi−1 ∧ei+1 ∧ . . .∧en → e ′r es .

Theorem 12 (The proof for parallel instantiation must use different models).
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We may not have per-clause relative completeness of el i mi nate//
abs for M , that is, we have C #,M

such that:
�C #�∀α(M ) ∧¬�el i mi nate//

abs(C #)�∀α(M )

and yet have all calls to i nst s complete for M , that is Equation 4.6 for the model M .

Proof . We give the construction and ideas of the proof and leave the unrolling of the definitions
to the reader.

1. Let C be P (a)∧P ′(a)∧a[0] = 1 → f al se and
2. Let abs such that abs(P ) = abs(P ′) =σCel l .
3. Let C # be abstr actabs(C ).
4. Let M such that M (P ) =M (P ′) = {a | a[0] 6= 1}.
5. Let i nst s such that i nst s always returns the empty set.
6. We have �C #�∀

α(M ) because M (P ) =M (P ′) = {a | a[0] 6= 1}.

7. We have ¬�el i mi nate//
abs(C #)�∀

α(M ) because after instantiation with the empty set, the
clause is simply a[0] = 1 → f al se which does not hold for all values of a.

8. All calls to i nst s are complete during el i mi nate//
abs as the context always evaluates to tr ue.

Conjecture 1 (Parallel instantiation also works). el i mi nate//
abs verifies per clause completeness

relative to Gσabs
if and only if all calls to i nst s during its execution are complete.

Proof attempt of Conjecture 1 for the clause abstr actabs(P1(e1)∧P2(e2) → e ′).

We reuse the notations of Algorithm 2 with our new ct xi . Let σ1 = abs(P1) and σ2 = abs(P2).
Assume the calls i nst sabs

P1
(e1,ct x1) and i nst sabs

P2
(e2,ct x2) are complete. Thus we have for any

M , i ∈ {1,2} where ¬i is 1 if i = 2 and 2 if i = 1,

If var s satisfies We have var s′ satisfying

�σi (ei )∩Si ⊆αGσabs (M )(P #
i )�var s (4.9) �σi (ei ) ⊆α

Gσabs (M )(P #
i )�var s′ (4.10)

�σ¬i (e3) ⊆α
Gσabs (M )(P #

¬i )�var s (4.11) �σ¬i (e¬i )∩S¬i ⊆αGσabs (M )(P #
¬i )�var s′ (4.12)

¬�e ′r es�var s (4.13) ¬�e ′r es�var s′ (4.14)

And let us show per clause relative completeness. Introduce M and reason by contradiction,
thus assume M does not satisfy el i mi nateabs(abstr actabs(P1(e1)∧P2(e2) → e ′)). This means:

We have var s such that We need to show we have var s′ such that

�σ1(e1)∩S1 ⊆αGσabs (M )(P #
1 )�var s (4.15) �σ1(e1) ⊆α

Gσabs (M )(P #
1 )�var s′ (4.16)

�σ2(e2)∩S2 ⊆αGσabs (M )(P #
2 )�var s (4.17) �σ2(e2) ⊆α

Gσabs (M )(P #
2 )�var s′ (4.18)

¬�e ′r es�var s (4.19) ¬�e ′r es�var s′ (4.20)

1. We construct a new model due to Theorem 12. Let M2 such that M2(P2) = M (P2) ∪
{�e2�var s} and M2(P1) =M (P1).

2. We can apply completeness of the call leading to S1 for M2, var s as we have:
(a) �σ1(e1)∩S1 ⊆αGσabs (M2)(P #

1 )�var s using 4.15 as M2(P1) =M (P1).
(b) �σ2(e2) ⊆α

Gσabs (M2)(P #
2 )�var s by definition of M2(P2).

(c) ¬�e ′r es�var s using 4.19
3. This gives us var s1 satisfying properties for M2 that we need to link with properties for M .

(a) �σ1(e1) ⊆α
Gσabs (M 2)(P #

1 )�var s1 which is equivalent to �σ1(e1) ⊆α
Gσabs (M )(P #

1 )�var s1
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(b) �σ2(e2) ⊆ α
Gσabs (M 2)(P #

2 )�var s1 that we would want to imply �σ2(e2) ∩ S2 ⊆
α

Gσabs (M )(P #
2 )�var s1 . This is not true and is the step that currently blocks the proof.

Should a good variation of this step be successfully proven, the proof can be continued
as shown below.

(c) ¬�e ′r es�var s1

4. We can use completeness of the call leading to S2 for M , var s1 as we have
(a) �σ2(e2)∩S2 ⊆αGσabs (M )(P #

2 )�var s1

(b) �σ1(e1) ⊆α
Gσabs (M )(P #

1 )�var s1

(c) ¬�e ′r es�var s1

5. Thus, we have var s′ that satisfies 4.16, 4.18 and 4.20. Our proof is finished.

Overview and contribution within this chapter

In this chapter, we express the data-abstraction framework algorithm as a composition of two
algorithms, abstr act and el i mi nate, and we analyze their properties. The abstr act transfor-
mation implements the abstraction but fails to meet the syntax requirements and the el i mi nate
algorithm aims at fulfilling the syntax requirements while staying complete.

The principle behind the abstr act algorithm is well-known, that is, to consider the transition
α◦ f ◦γ, however, its adaptation as an algorithm is a full contribution: in most abstraction based
works, the transition α◦ f ◦γ is computed by hand and not automatically. This was only possible
through the use of Horn clauses and because we limit ourselves to data-abstractions.

Similarly, the principle behind the el i mi nate algorithm, that is, quantifier instantiation is al-
ready widely used in the Sat-Modulo Theory community to handle problems with additional
quantifiers. However, it usually falls into one of two categories: either there is a complete quan-
tifier elimination procedure based on instantiation [BMS06], or there is no real framing of the
heuristic used [BMR13]. Our contribution is to link this process with abstraction and correctly
capture how each quantifier must be handled.

Finally, we analyze the properties of the algorithm of the data-abstraction framework, mainly
whether it implements the abstraction which was the main concern of Chapter 3. This part is
entirely a contribution.

We first reduce this property to the completeness of el i mi nate on the output of abstr act , and
then aim to capture this condition of el i mi nate as a condition on the instantiation heuristic
i nst s.

Second, we reduce the global property el i mi nate is complete to a property local to the clause.
To do so, we first show that an intuitive version of such property, per clause completeness is not
achievable and that by taking into account abstraction, we can recover from this defect. We obtain
a property we name per clause relative completeness. This is a major improvement as the property
is now local.

Third, we show that per clause completeness of el i mi nate can be reduced to what we call the
completeness of its calls to the instantiation heuristic i nst s. In Chapter 5, the main focus will be
to construct i nst s so that it verifies this property.

The property we obtain for i nst s is not only sufficient to deduce that the algorithm of the data-
abstraction framework implements the abstraction, it is also necessary if we do not consider re-
strictions on the theory of the Horn clauses. Therefore, this is the exact property that the calls to
i nst s must verify.
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5 Data-Abstraction: instantiation heuristics

In Chapter 4 we showed that the data-abstraction algorithm requires an instantiation heuristic
i nst s. In order for the data-abstraction algorithm to verify the specifications described in Chapter
3, each call to the heuristic i nst must verify a property called completeness as defined in Definition
24.

Although each call to the heuristic i nst sabs
P (a,ct x) takes as parameter the whole abstraction

abs, the abstraction abs(P ) plays a special role: the number and types of the elements in the
set returned by i nst sabs

P (a,ct x) only depend on abs(P ), and, when Fabs(P ) does not contain any
quantifiers, instantiating using i nst sabs

P (a,ct x) consists in picking a subset of σ(a). Thus, we de-
fine different instantiation heuristic for each abs(P ).

One of the goals of our data-abstraction framework is to define abstractions as combinations
of basic abstractions by using combinators. Our instantiation heuristic i nst s follows the same
construction scheme, that is, we define i nst s for the base abstractions and combinators, which
can then be combined to handle any abstraction abs(P ).

The abstractions and combinators defined in Chapter 3 can be classified into two categories.
First, the foundation of the data-abstraction framework: the identity abstraction, other data-
abstractions that we call finite, and the combinators •,◦,⊕,⊗. The second category contains ab-
stractions that aim to handle a specific unbounded data-structure. Here, we only consider cell
abstraction but we hope that future work will consider other unbounded data-structures such as
trees or even graphs.

The main difficulty encountered when constructing instantiation heuristics for the foundations
of the data-abstraction framework is the way the context parameter is handled. For example, with
the • abstraction combinator, one cannot simply instantiate each element of the pair separately:
by doing so, the instantiation process of one element of the pair would lose information about the
rest of the clause – namely the other element of the pair – and the completeness property would
be lost. This gets even worse when considering the combinators ◦ and ⊗.

The main difficulty with cell abstraction is that the abstraction of a single array is an infinite set,
and yet, i nst s must choose a finite relevant subset that preserves semantics. In this chapter, we
resolve this problem for cell abstraction, and we hope the technique we used can be adapted for
other abstractions of data-structures.

We divide this chapter into two independent parts: the construction of i nst s for cell abstraction
and the construction of i nst s for the foundations of the data-abstraction framework. Both parts
can be read independently and we suggest reading the cell abstraction part first as we believe it
is the most interesting. The conclusion of what can be handled with this instantiation heuristic is
discussed in Chapter 6.
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5.1 Instantiating Cell abstraction

The goal of this section is to provide an instantiation heuristic i nst abs
P when abs(P ) =σCel l . Fur-

thermore, the formal definition of i nst abs
P when abs(P ) = σCel l returns a set of elements of the

form ((k, v), ()) where (k, v) are the index and value pair and () is the empty tuple due to the ab-
sence of prenex existential quantifiers within FσCel l . From now on, we will assume abs(P ) =σCel l ,
and we will write i nst sCel l (a,ct x) = {(k, v) | ((k, v), ()) ∈ i nst abs

P (a,ct x)}.
Cell abstraction is defined as σCel l (a) = {(k, v) | v = a[k]} and using

the instantiation i nst sCel l (a,ct x) means transforming a clause of the form
(∀(k, v), v = a[k] → P #(k, v))∧e2 ∧ . . .en → e ′ into (∀(k, v) ∈ S, v = a[k] → P #(k, v))∧e2 ∧ . . .en → e ′

where S is the set returned by i nst sCel l (a,e2∧. . .en → e ′). The goal is to construct i nst sCel l (a,ct x)
so that the transformation of one clause into the other preserves semantics, or more formally,
respects per clause relative completeness. Even though in Chapter 4 we already isolated this as a
property named completeness of call to i nst abs

P (a,ct x), we will mostly leave this property to the
proofs and aim to give the intuition by considering the transformation between the two clauses.

The section is divided into three parts. In the first part we strive to prepare the reader by giv-
ing an intuition of three concepts that should guide the construction of instantiation heuristics
for cell abstraction and its proof of completeness. In the second part, we formalize and study the
completeness of instantiation heuristics derived from transformation algorithms of the literature
that study quantified properties for arrays. Finally, we give our instantiation heuristic for cell ab-
straction.

5.1.1 Key concepts to construct i nst sCel l (a,ct x)

To understand the key concepts to construct S = i nst sCel l (a,ct x), we suggest to tackle
the small example i nst sCel l (a, tr ue → a[2] = 0). This call to i nst sCel l comes from the
call to el i mi nate on the clause (∀(k, v), v = a[k] → P #(k, v)) → a[2] = 0, itself created by the
abstr act algorithm on P (a) → a[2] = 0. The clause generated by el i mi nate is equivalent to
(∀(k, v) ∈ S, v = a[k] → P #(k, v)) → a[2] = 0. On this example we show three main concepts that
apply generally.

The quantified variable v should be chosen as a[k]. There is no point in choosing v 6= a[k]. The
aim of the instantiation set is to restrict the possible infinite set of abstract elements by a finite set,
more formally, the goal is to transform ∀a# ∈σ(a) into ∀a# ∈σ(a)∩∩∩S, where S is the instantiation
set. In cell abstraction, the abstracted elements are of the form (k, a[k]) where a is the abstracted
array, thus if v 6= a[k], then σCel l (a)∩ (S ∪ {(a, v)}) =σCel l (a)∩S and there was no point in adding
(k, v) in S. Now that v has been chosen, let us call I the set of indices k to be chosen. In other
words, let us simply consider S = {(k, a[k]) | k ∈ I }. The instantiated clause can now be simplified
into (∀k ∈ I ,P #(k, a[k])) → a[2] = 0.

The context is key. We are now left with the problem of choosing the right finite subset I of
indices k while preserving semantics. Intuitively, this may not seem possible. However, the key
is to understand the context in which that possibly infinite conjunction is used. For example, the
sentence all apples are edible is not equivalent to the sentence red apples are edible; however, in
the context of eating a red apple, both imply that I can eat it, which is the only thing I may care
about. This is our second intuition.
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The initial non-abstracted clause states that the array variable a must verify a[2] = 0 at program
point P ; and thus, the context of the call to i nst sCel l for our clause is equivalent to a[2] = 0. This
context has the specificity of only caring about the index 2. In other words, if a′ is such that a′[2] =
a[2], then a′ and a are equivalent with respect to that context. This gives the intuition that one
should pick I = {2}; and this choice would give us the clause P #(2, a[2]) → a[2] = 0.

To understand how limiting oneself to the index 2 works, let us consider the proof that the trans-
formation of the non-instantiated clause (∀k,P #(k, a[k])) → a[2] = 0 into the instantiated clause
P #(2, a[2]) → a[2] = 0 preserves per clause relative completeness. We reason by contradiction
and prove that whenever the instantiated clause is not satisfiable, neither is the non-instantiated
clause. The reasoning is as follows.

If the instantiated clause is false then we have P #(2, v) for some v different from zero. Then
consider any array a such that ∀k,P #(k, a[k]) and let a′ = a[2 ← v]. Notice that the only knowledge
we have about a′ is that a′[2] = v . This array a′ verifies ∀(k, v), v = a′[k] → P #(k, v)) and not a′[2] =
0. Thus, the non-instantiated clause is not verified.

Considering only abstracted models is important. In the previous proof, we omitted explicitly
using models to ease readability. However, the previous proof would not have worked without our
use of per clause relative completeness instead of per clause completeness. The key argument that
is missing is the existence of a such that ∀k,P #(k, a[k]).

Formulated with models, this means that we need to prove ∃a,∀k, (k, a[k]) ∈M #(P #). This is not
verified with a model such that M #(P #) = {(k, v) | k 6= 1} and thus, had we considered per clause
completeness, the proof would have failed.

However, with per clause relative completeness, we know that M #(P #) = ασCel l (M (P )) for some
model M . As we assumed P #(2, v), that is, (2, v) ∈ M #(P #), thus M #(P #) 6= ;, from which we
deduce that M (P ) 6= ;. Thus, ∃a ∈ M (P ) and this a verifies ∀k, (k, a[k]) ∈ M #(P #) as σCel l (a) ⊆
M #(P #).

This idea that by considering only abstracted models we avoid degenerate models such as
M #(P #) = {(k, v) | k 6= 1} that are non-empty but do not contain a single array is a key part in
all our proofs.

5.1.2 Instantiation heuristics based on literature

5.1.2.1 The transformations from programs of [MA15; MG16]

The [MA15] transformation. The program transformation of [MA15] aims at proving properties
of the form ∀k,P (k, a[k]) and in that sense, it is very similar to cell abstraction. The idea behind
the transformation is very similar to the program transformation technique we presented for the
first cell abstraction of Example 10. However, instead of creating only a variable v representing
a[0], the transformation creates both an index variable k and a value variable v representing a[k].
The key idea is that because k is unbound in this new program, any property proven for k must
stand for any k and thus, one obtains a final property of the form ∀k,P (k, a[k]).

Formally, the transformation is implemented as follows. First, for each array a, create two new
variables ka and va . Second, writing to an array a through an operation a[i] <- v; is replaced
by the operation if(i = k_a) v_a <- v; . This makes complete sense as the only impact a write
has on the value va which represents a[ka] is when ka = i . Finally, replace all reads instructions
v <- a[i]; by the instruction if(i = k_a) v <- v_a; else v = rand(); . The idea behind this

transformation is that we are only tracking what happens at index ka , thus, there is no informa-
tion on the other indices. This lack of information on the cells with an index different than ka is

J. Braine 81/144



CHAPTER 5. DATA-ABSTRACTION: INSTANTIATION HEURISTICS

symbolized by a random value. Note that the technique extends to multiple cells by considering
several index and value variables for each array, similarly to what we did with Cel l n . An example
of this program transformation is given in Example 22.

Example 22 (Array initialization transformation of [MA15]).

Listing 5.1 – Before abstraction

void array_init(Array <int > a)

{
unsigned i=0;
while(i<a.size())
{

a[i] <- 0;
i <- i+1;

}
// Safety property
i=0;
while(i<a.size())
{

assert(a[i]=0);

i <-i+1;
}

}

Listing 5.2 – After abstraction

void array_init(
int k /*the index*/,
int v /* representing a[k] */
unsigned n /*the size of a*/)

{
unsigned i=0;
while(i<n)
{

if(i=k) then v <- 0;
i <- i+1;

}
// Safety property
i=0;
while(i<n)
{

if(i=k) then assert(v=0);
else {int rnd=rand();assert(rnd=0);}
i <- i+1;

}
}

Adapting the [MA15] transformation to Horn clauses. The [MA15] transformation can be
adapted to Horn clauses instead of programs by considering how the Horn clauses representing
the initial program are matched by the Horn clauses representing the transformed program. For
the type of programs handled by the transformation, their are three types of initial clauses: those
corresponding to an array read, those corresponding to an array write and those not manipulat-
ing the array. For reasons of simplicity, we only consider one clause of each type, that is, those
corresponding to the instructions v <- a[i]; , a[i] <- v; and v <- 0; .

The transformation of each of those clauses by the adaptation of the [MA15] transformation
follows closely the transformation of program instructions of [MA15]: first we change the type of
the predicates such that the array variable a is now represented by the two variables ka and va ;
second, we adapt the transition relations, more specifically:

1. Clause 5.1 represents the instruction v <- a[i]; , which by the [MA15] transformation is
transformed into the instruction if(i = k_a) v <- v_a; else v = rand(); . Thus, if we de-
note by v ′ the value of v after the instruction, we have v ′ = i te(i = ka , va ,r nd) where r nd is
a fresh variable and thus denotes any value. This justifies how we obtain Clause 5.4.

2. Clause 5.2 represents the instruction a[i] <- v; , which by the [MA15] transformation is
transformed into the instruction if(i = k_a) v_a <- v; . Thus, if we denote by v ′

a the value
of v after the instruction, we have v ′

a = i te(ka = i , v, va). This justifies how we obtain Clause
5.5.

3. Clause 5.3 represents the instruction v <- 0; , which is not transformed in the [MA15] trans-
formation. Thus, if we denote by v ′ the value of v after the instruction, we have v ′ = 0. This
justifies how we obtain Clause 5.6.
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P1(a, i , v)∧ v ′ = a[i ] → P2(a, i , v ′) (5.1)

P1(a, i , v)∧a′ = a[i ← v] → P2(a′, i , v) (5.2)

P1(a, i , v)∧ v ′ = 0 → P2(a, i , v ′) (5.3)

P #
1 ((ka , va), i , v)∧ v ′ = i te(i = ka , va ,r nd) → P #

2 ((ka , va), i , v ′) (5.4)

P #
1 ((ka , va), i , v)∧ v ′

a = i te(ka = i , v, va) → P #
2 ((ka , v ′

a), i , v) (5.5)

P #
1 ((ka , va), i , v)∧ v ′ = 0 → P #

2 ((ka , va), i , v ′) (5.6)

The Horn clauses adaptation of the [MA15] transformation as a specific instantiation heuristic.
The transformation of Clauses 5.1, 5.2 and 5.3 into the Clauses 5.4, 5.5 and 5.6 is equivalent to
applying the data-abstraction algorithm with input abstractionσCel l •σi d •σi d for both P1 and P2

with specific results for the instantiation heuristic.
To understand this, one needs to execute the data-abstraction algorithm on the Clauses 5.1, 5.2

and 5.3. In Clauses 5.7, 5.8 and 5.9 we show the result of this execution with instantiation sets
of the form S = {((k, a[k]), i , v) |k ∈ I } followed by simple expression simplifications. This choice
behind this instantiation set form is that the variable va should be chosen as a[ka] and that i and
v are variables that are abstracted with σi d . Furthermore, the detailed calls to the instantiation
heuristic during this process are given in Theorem 13.

(∀ka ∈ I1,P #
1 ((ka , a[ka]), i , v)∧ v ′ = a[i ]) → P #

2 ((k ′
a , a[k ′

a]), i , v ′) (5.7)

(∀ka ∈ I2,P #
1 ((ka , a[ka]), i , v)∧a′ = a[i ← v]) → P #

2 ((k ′
a , a′[k ′

a]), i , v) (5.8)

(∀ka ∈ I3,P #
1 ((ka , a[ka]), i , v)∧ v ′ = 0) → P #

2 ((k ′
a , a[k ′

a]), i , v ′) (5.9)

To prove that the Horn clause adaptation of the [MA15] transformation may be viewed as an in-
stance of our data-abstraction algorithm, one needs to find the values of I1, I2 and I3 so that the
clauses transformed by the adaptation are equivalent to those transformed by the data-abstraction
algorithm. In the [MA15] transformation, the index of focus is constant throughout the transfor-
mation: we only look at what happens to the array at cell with index k. Here, we imitate this result
by picking I1 = I2 = I3 = {k ′

a}, thus the first parameter of all predicates is always the same and equal
to k ′

a . Using that instantiation set and a few simplifications, we obtain Clauses 5.10, 5.11 and 5.12.

(P #
1 ((k ′

a , a[k ′
a]), i , v)∧ v ′ = a[i ]) → P #

2 ((k ′
a , a[k ′

a]), i , v ′) (5.10)
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(P #
1 ((k ′

a , a[k ′
a]), i , v)∧a′ = a[i ← v]) → P #

2 ((k ′
a , a′[k ′

a]), i , v) (5.11)

(P #
1 ((k ′

a , a[k ′
a]), i , v)∧ v ′ = 0) → P #

2 ((k ′
a , a[k ′

a]), i , v ′) (5.12)

Finally, we need to prove that Clauses 5.10, 5.11 and 5.12 are equivalent to Clauses 5.4, 5.5 and
5.6. The only delicate part of this proofs consists in eliminating the array variable a from the free
variables of Clauses 5.10, 5.11 and 5.12. The rest of the proof is mostly basic expression simplifica-
tion.

To remove the array a from the clauses, we use a common technique on arrays of the Satisfiabil-
ity Modulo Theory community. The idea for Clauses 5.10 and 5.12 in which the array a is only used
within read expressions is to use a process called Ackermannisation [Ack57] which is commonly
used to eliminate uninterpreted functions. The idea is to create a new free variable vi for each
different expression ei at which the array a is read and replace a[ei ] by vi . Then the constraint∧

i 6= j ei = e j → a[ei ] = a[e j ] must be added. In the case of Clause 5.12, k ′
a is the only expression at

which a is read, and thus, we can just replace a[k ′
a] by a new fresh variable and remove the vari-

able a. For Clause 5.10, there are two indices at which a is read: i and k ′
a . To obtain Clause 5.4, we

replace a[k ′
a] by the fresh variable va and a[i ] by the fresh variable r nd .

For Clause 5.11, the problem is slightly more complicated. First, using a′ = a[i ← v], we re-
place a′ by a[i ← v] everywhere and remove the use of a′. Then, we simplify a′[k ′

a] which is now
a[i ← v][k ′

a] by i te(i = k ′
a , v, a[k ′

a]). Finally, we are left with only array reads and we can apply
Ackermannisation.

This full reasoning is formalized in Theorem 13 which shows that Clauses 5.4, 5.5 and 5.6 are
equivalent to the Clauses obtained by the data-abstraction algorithm of the Clauses 5.1, 5.2 and
5.3 with input abstraction σCel l •σi d •σi d for both P1 and P2 and the instantiation corresponding
to I1 = I2 = I3 = {k ′

a}.

Theorem 13 ([MA15] as an instance of the data-abstraction algorithm). The data-abstraction al-
gorithm (i.e. el i mi nateabs ◦ abstr actabs) applied to the Clauses 5.1, 5.2 and 5.3 (i.e. the clauses
corresponding to the input of the [MA15] transformation) yield clauses equivalent to Clauses 5.4, 5.5
and 5.6 (i.e. the clauses corresponding to the output of the [MA15] transformation) when:

1. abs(P1) = abs(P2) =σCel l •σi d •σi d

2. i nst sabs
P1

((a, i , v),ct x) = {(((k ′
a , a[k ′

a]), i , v), ())}, where:

(a) i nst sabs
P1

((a, i , v),ct x) represents the calls to the instantiation heuristic during the
el i mi nate algorithm.

(b) ct x is given in Table 5.1.

Clause ct x
Clause 5.1 v ′ = a[i ] → ((v ′

a = a[k ′
a]∧ i # = i ∧ v ′# = v ′) → P #

2 ((k ′
a , v ′

a), i #, v ′#)) (5.13)
Clause 5.2 a′ = a[i ← v] → ((v ′

a = a′[k ′
a]∧ i # = i ∧ v# = v) → P #

2 ((k ′
a , v ′

a), i #, v#)) (5.14)
Clause 5.3 v ′ = 0 → ((v ′

a = a[k ′
a]∧ i # = i ∧ v ′# = v) → P #

2 ((k ′
a , v ′

a), i #, v ′#)) (5.15)

Table 5.1 – Calls to i nst s during data-abstraction of Clauses 5.1, 5.2 and 5.3

Proof .
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1. The abstraction and elimination of Clause 5.1 yields:

P1(a, i , v)∧ v ′ = a[i ] → P2(a, i , v ′)
After abstraction(∀((ka , val ), i #, v#), val = a[ka]∧ i # = i ∧ v# = v → P #

1 ((ka , val ), i #, v#)
)∧ v ′ = a[i ] →(∀((k ′

a , val ), i #, v#), val = a[k ′
a]∧ i # = i ∧ v# = v ′ → P #

2 ((k ′
a , val ), i #, v#)

)
After first step of the instantiation: moving quantifiers in e ′.(∀((ka , val ), i #, v#), val = a[ka]∧ i # = i ∧ v# = v → P #

1 ((ka , val ), i #, v#)
)∧ v ′ = a[i ] →

val = a[k ′
a]∧ i # = i ∧ v# = v ′ → P #

2 ((k ′
a , val ), i #, v#)

After second step of the instantiation

a[k ′
a] = a[k ′

a]∧ i = i ∧ v = v → P #
1 ((k ′

a , a[k ′
a]), i , v)∧ v ′ = a[i ] →

(val = a[k ′
a]∧ i # = i ∧ v# = v ′ → P #

2 ((k ′
a , val ), i #, v#))

Simplifying trivial equalities and implications

P #
1 ((k ′

a , a[k ′
a]), i , v)∧ v ′ = a[i ] → (val = a[k ′

a]∧ i # = i ∧ v# = v ′ → P #
2 ((k ′

a , val ), i #, v#))

Removing aliases, that is, simplify ∀x, x = j → expr by expr where x is replaced by j .

P #
1 ((k ′

a , a[k ′
a]), i , v)∧ v ′ = a[i ] → P #

2 ((k ′
a , a[k ′

a]), i , v ′)
Ackermannisation of a

((k ′
a = i ) → vi = vk ′

a
) → (P #

1 ((k ′
a , vk ′

a
), i , v)∧ v ′ = vi → P #

2 ((k ′
a , vk ′

a
), i , v ′))

Rewriting vi as vk ′
a

when k ′
a = i and r nd otherwise

P #
1 ((k ′

a , vk ′
a
), i , v)∧ v ′ = i te(i = k ′

a , vk ′
a
,r nd) → P #

2 ((k ′
a , vk ′

a
), i , v ′)

Renaming k ′
a to ka and vk ′

a
to va

P #
1 ((ka , va), i , v)∧ v ′ = i te(i = ka , va ,r nd) → P #

2 ((ka , va), i , v ′)
Our desired result.

2. The abstraction and elimination of Clause 5.2 follows exactly the same steps.
3. The abstraction and elimination of Clause 5.3 follows exactly the same steps.

Limits of this approach. In Example 22, we already see the problem: the transformed program
is not satisfiable as we enter the branch int rnd=rand();assert(rnd=0); which fails. As Example
22 has invariants that are expressible by cell abstraction, we deduce that the Horn clauses trans-
formation adapted from [MA15] is incomplete.

In fact, the even the simple array initialization program of Listing 2.1 of Chapter 2 cannot be
proven with this technique. In the [MA15] paper, no explicit safety property is used and the back-
end tool infers the abstract invariant k < n → v = 0 at the end of the program. From this inferred
property, the user can deduce that this indeed corresponds to the concrete invariant ∀k < n →
a[k] = 0.

This drawback may not seem like much: enhancing the program transformation so that asser-
tions of the form ∀k < n, a[k] = 0 are abstracted into k < n → v = 0 seems easily feasible. However,
because the properties such as ∀k < n, a[k] = 0 cannot truly be encoded as such, programs that
use that property as an intermediate step cannot be verified, even with the enhancement. Example
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23 demonstrates this problem by storing within a variable b whether there are only occurrences
of zero values in the array. In the non-abstracted case, b can be verified to be tr ue, whereas in
the abstracted version b can either be tr ue or f al se. Thus any following instructions and safety
properties based on the assumption that b = tr ue cannot be verified anymore.

This proves that the transformation technique of [MA15] does not satisfy relative completeness
and that we can construct examples where this incompleteness has consequences: the incom-
pleteness demonstrated previously shows that modularity is not truly possible as even an inlining1

technique will fail.

Example 23 (The transformation of [MA15] is incomplete).

Listing 5.3 – Before abstraction

void init_check(Array <int > a)

{
unsigned i=0;
while(i<a.size())
{

a[i] <- 0;
i <- i+1;

}
// Safety property
i=0;
bool b=true;
while(i<a.size())
{

if(a[i] 6= 0)
b <- false;

i <- i+1;
}
//The value of b is true

}

Listing 5.4 – After abstraction

void init_check(
int k /*the index*/,
int v /* representing a[k] */
unsigned n /*the size of a*/)

{
unsigned i=0;
while(i<n)
{

if(i=k) then v <- 0;
i <- i+1;

}
// Safety property
i=0;
bool b=true;
while(i<n)
{

if(i=k){
if(v 6= 0)

b <- false;
}
else {

int rnd = rand();
if(rnd 6= 0)

b <- false;
}
i <- i+1;

}
//The value of b may be false

}

Improving the [MA15] instantiation with [MG16]. To improve on the [MA15] transforma-
tion, it is key to understand where the lack of relative completeness lies. As expected,
the transformation of Clause 5.1 representing v <- a[i]; into the Clause 5.4 representing
if(i = k_a) v <- v_a; else v = rand(); uses a random value which breaks the per clause rel-

ative completeness property. In Theorem 15 we show that the loss of information is only located in
the transformation of Clause 5.1, by proving that the transformations of Clauses 5.2 and 5.3 verify
per clause relative completeness whereas the transformation of Clause 5.1 does not.

1This process consists in handling non-recursive function calls by copying the code of the function in the function
that calls it.
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One of the main reasons why the [MA15] transformation was unable to yield a good transforma-
tion for the instruction v <- a[i]; was that it attempted to transform programs into programs. In
[MG16], the authors realized that by considering a transformation from programs to Horn clauses,
they can improve their results. We adapt this transformation from programs to Horn clauses to a
transformation between Horn clauses by considering the same three clauses. Only the transfor-
mation of Clause 5.1 is impacted, which makes sense as it was the only one which was incomplete.
Clause 5.1 is now transformed into Clause 5.16

P #
1 ((ka , va), i , v)∧P #

1((i , v i ), i , v )∧ v ′ = i te(i = ka , va , v i )∧⇒ P #
2 ((ka , va), i , v ′) (5.16)

The main difference between the clause generated by [MA15] and the clause generated by
[MG16] is that the clause generated by [MG16] contains two instances of P #

1 and uses that sec-
ond instance to constrain r nd which is now called vi . In our data-abstraction framework setting,
this difference can be formalized as using a different instantiation set. This time, instead of using
I1 = {k ′

a}, we use I1 = {ka , i } in order to take into account what happens at index i . The proof that
Clause 5.16 is equivalent to using the data-abstraction algorithm on Clause 5.1 with an heuristic
returning I1 = {ka , i } is formalized in Theorem 14. To prove this result, we use the same proof
technique we used to prove that the adaptation of the [MA15] transformation could be seen as an
instance of our data-abstraction algorithm.

Although unproven in the [MG16] paper, this change allows the transformation to satisfy relative
completeness as shown in Theorem 15. Using the tools provided by Section 4.3 and the concepts
introduced in Section 5.1.1, this proof does not contain any major difficulties. However, boldly
attempting to prove that the clause before transformation is equivalent to the clause after trans-
formation is incorrect as one needs to take into account the abstraction. This may be one of the
reasons the authors did not prove this result.

Theorem 14 ([MG16] as an instance of the data-abstraction framework algorithm). Let
abs(P1) = abs(P2) =σCel l •σi d •σi d . Applying el i mi nateabs ◦ abstr actabs on Clause 5.1 yields
a Clause equivalent to 5.16 whenever:

i nst sabs
P1

((a, i , v),ct x) = {(((k ′
a , a[k ′

a]), i , v), ()), (((i , a[i ]), i , v), ())}

where ct x is the context given in Equation 5.13.

Note that because the adaptation to Horn clauses of [MA15] and [MG16] are the same for Clauses
5.2 and 5.3, this means that the full adaptation of the [MG16] transformation is an instance of the
data-abstraction algorithm.
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Proof . The abstraction and elimination of Clause 5.1 yields:

P1(a, i , v)∧ v ′ = a[i ] → P2(a, i , v ′)
After abstraction(∀((ka , val ), i #, v#), val = a[ka]∧ i # = i ∧ v# = v → P #

1 ((ka , val ), i #, v#)
)∧ v ′ = a[i ] →(∀((k ′

a , val ), i #, v#), val = a[k ′
a]∧ i # = i ∧ v# = v ′ → P #

2 ((k ′
a , val ), i #, v#)

)
After first step of the instantiation: moving quantifiers in e ′.(∀((ka , val ), i #, v#), val = a[ka]∧ i # = i ∧ v# = v → P #

1 ((ka , val ), i #, v#)
)∧ v ′ = a[i ] →

val = a[k ′
a]∧ i # = i ∧ v# = v ′ → P #

2 ((k ′
a , val ), i #, v#)

After second step of the instantiation

(a[k ′
a] = a[k ′

a]∧ i = i ∧ v = v → P #
1 ((k ′

a , a[k ′
a]), i , v))

∧ (a[i ] = a[i ]∧ i = i ∧ v = v → P #
1 ((i , a[i ]), i , v))∧ v ′ = a[i ]

→ (val = a[k ′
a]∧ i # = i ∧ v# = v ′ → P #

2 ((k ′
a , val ), i #, v#))

Simplifying trivial equalities and implications

P #
1 ((k ′

a , a[k ′
a]), i , v)∧P #

1 ((i , a[i ]), i , v)∧v ′ = a[i ] → (val = a[k ′
a]∧i # = i∧v# = v ′ → P #

2 ((k ′
a , val ), i #, v#))

Removing aliases, that is, simplify ∀x, x = j → expr by expr where x is replaced by j .

P #
1 ((k ′

a , a[k ′
a]), i , v)∧P #

1 ((i , a[i ]), i , v)∧ v ′ = a[i ] → P #
2 ((k ′

a , a[k ′
a]), i , v ′)

Ackermannisation of a

((k ′
a = i ) → vi = vk ′

a
) → (P #

1 ((k ′
a , vk ′

a
), i , v)∧ (P #

1 ((i , vi ), i , v)∧ v ′ = vi → P #
2 ((k ′

a , vk ′
a
), i , v ′))

Rewritting vi as vk ′
a

when k ′
a = i and vi otherwise

P #
1 ((k ′

a , vk ′
a
), i , v)∧ (P #

1 ((i , vi ), i , v)∧ v ′ = i te(i = k ′
a , vk ′

a
, vi ) → P #

2 ((k ′
a , vk ′

a
), i , v ′)

Renaming k ′
a to ka and vk ′

a
to va

P #
1 ((ka , va), i , v)∧P #

1((i , v i ), i , v )∧ v ′ = i te(i = ka , va , vi )∧⇒ P #
2 ((ka , va), i , v ′)

Our desired result.

Theorem 15 (Completeness of calls to i nst s for [MA15; MG16]). The completeness of the calls to
i nst sabs

P1
((a, i , v),ct x) during the data-abstraction of Clauses 5.1, 5.2 is described in Table 5.2:

Program instruction Clause ct x Instantiation I Complete
v=a[i]; Clause 5.1 Equation 5.13 [MA15] {k ′

a} NO
v=a[i]; Clause 5.1 Equation 5.13 [MG16] {k ′

a , i } YES
a[i] <- v; Clause 5.2 Equation 5.14 [MA15] & [MG16] {k ′

a} YES
v=0; Clause 5.3 Equation 5.15 [MA15] & [MG16] {k ′

a} YES

Table 5.2 – Completeness of calls to i nst s from the adaptation to Horn clauses of [MA15] and
[MG16]. I is such that i nst sabs

P1
((a, i , v),ct x) = {(((k, a[k]), i , v), ()) | k ∈ I }.

Proof . We tackle proving those completeness results using the definition of a complete call to
i nst s.
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1. Example 23 already showed that the instantiation for the read clause of [MA15] is insuffi-
cient. This proof is provided to see how we can prove this using the Equation 4.6 of a defini-
tion of a complete call to i nst sabs

P (a,ct x) where ct x is given in Equation 5.13.
Consider the model M such that M (P1) = {(Const Ar r ay(0),1,2)} and M (P2) =
{(Const Ar r ay(0),1,0)}. Let var s such that �k ′

a�var s = 2, �i�var s = 1, �v�var s = 2, �v ′�var s = 2,
�a�var s =Const Ar r ay(0)[1 ← 2], �v ′

a�var s = 0, �i #�var s = 1, �v ′#�var s = 2.
(a) We have ¬�ct x�var s

α
Gσ

abs (M ) because �v ′#�var s = 2 and α
Gσabs (M )(P #

2 ) = {((k,0),1,0)}.

(b) We have ((1,0),1,2) ∈ασCel l•i d•i d (M (P1)).
(c) Thus, if the instantiation was complete, we would have var s′ such that

• ¬�ct x�var s′
α

Gσ
abs (M )

• σCel l•i d•i d (�(a, i , v)�var s′) ⊆ασCel l•i d•i d (M (P1))
• Thus �(a, i , v)�var s′ = (Const Ar r ay(0),1,2).
• Not having ct x implies that �v ′

a�var s′ = �a[k ′
a]�var s′ = 0, �i #�var s′ = �i�var s′ = 1,

�v ′#�var s′ = �v ′�var s′ = �a[i ]�var s′ = 0
• But it also implies �((k ′

a , v ′
a), i #, v ′#)�var s′ ∉ ασCel l•i d•i d (M (P2)), which means that

((�k ′
a�var s′ ,0),1,0) ∉ {((k,0),1,0) |k ∈Z}. Absurd !

2. For the [MG16] instantiation of the read clause. Assume
∃var s,�{((k ′

a , a[k ′
a]), i , v), ((i , a[i ]), i , v)}�var s ⊂ασCel l•i d•i d (M (P1))∧¬�ct x�var s

α
Gσ

abs (M ).

(a) M (P1) 6= ;, otherwise ασCel l•i d•i d (M (P1)) = ; and we do not have
�{((k ′

a , a[k ′
a]), i , v), ((i , a[i ]), i , v)}�var s ⊂ασCel l•i d•i d (M (P1)).

(b) Thus, let (aM , iM , vM ) ∈M (P1).
(c) Let var s′ such that �(i , v, v ′, v ′

a ,k ′
a , i #, v ′#)�var s′ = �(i , v, v ′, v ′

a ,k ′
a , i #, v ′#)�var s , and

∀k,�a[k]�var s′ = i te(k ∈ �{i ,k ′
a}�var s ,�a[k]�var s , aM [k]).

(d) We have σ(�(a, i , v)�var s′) ⊂ ασCel l•i d•i d (M (P1)): this inclusion is true for the cells
with index in �{i ,k ′

a}�var s because we have �{((k ′
a , a[k ′

a]), i , v), ((i , a[i ]), i , v)}�var s ⊂
ασCel l•i d•i d (M (P1)), and this inclusion is true for the other cells because we have
(aM , iM , vM ) ∈M (P1).

(e) And we have not changed the value of the context: we only variable we changed is a,
but not on the cells evaluated by the context. Thus, ¬�ct x�var s′

α
Gσ

abs (M ).

(f) This concludes our proof.
3. The two other clauses are proven in the same manner.

Beyond [MG16]. The [MG16] transformation is limited to programs in a very specific form: a
single array read or write per instruction. Although all usual imperative programs without function
calls can be reduced to that form, we aim to improve on this result by extending the set of clauses
that we handle on more than those three.

In practice, our algorithmic contribution with respect to [MG16] are:
1. proving the completeness of the [MG16] transformation
2. extending the [MG16] transformation to more than those three clauses
3. handle combinators so that we can express different abstractions

5.1.2.2 The array formulae decision procedure of [BMS06]

One of the main contributions of the [BMS06] paper is a decision procedure for a subset of first-
order formulae over the theory of arrays that they call the array property fragment. This deci-
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sion procedure is of particular interest because it is constructed of several transformations, one of
which is a quantifier elimination step based on instantiation.

The array property fragment. The set of formulae handled by the decision procedure of [BMS06]
is called the array property fragment and it is expressive enough to handle universally quantified
array indices. In static analysis of programs, the decision procedure for the array property frag-
ment is currently used [MB08] to check that invariants involving arrays are inductive: the decision
procedure does not help to infer loop invariants within programs, but it allows automatic checking
that those invariants are correct.

For example, in an array initialization loop for(int i=0;i<n;i++) a[i]=0; one may wish to
prove that the invariant ∀k,k < i ⇒ a[k] = 0 is correct. In order to do so, one needs to prove
((∀k,k < i ⇒ a[k] = 0)∧a[i ] = 0) ⇒ (∀k,k < i +1 → a[k] = 0). This array initialization loop is only
a very simple example of the type of program and invariant for which the formula the invari-
ant is correct belongs in the array property fragment. The array property fragment handles much
more complex examples, such as proofs of correctness of sorting algorithms, should the invari-
ants be provided. In fact, it handles all the container algorithms of Example 14 for which our
data-abstraction framework with cell abstraction is expected to succeed.

A simplified view of the array property fragment are formulae of the form depicted in Defini-
tion 26. In many ways, the formula of Equation 5.17 is similar to the formula of Equation 4.6 that
defines that a call to the instantiation heuristic is complete. The main differences are that in For-
mula 5.17, there are no predicates and that the quantifiers i , j are either on the left hand side of
the implication or only used within a[i ], a[ j ]. These differences are better seen in the formula of
Equation 5.21. In our construction of the cell abstraction instantiation heuristic, we handle these
differences.

Definition 26 (Array property fragment). A simplified – yet general enough – view of the array prop-
erty fragment are formulae of the form:

∃a, var s, (∀i ,φ1(i , var s) →φ2(a[i ], var s))�(∀ j ,χ1( j , var s) →χ2(a[ j ], var s))�ω(a, var s) (5.17)

where:
1. φ1(ar g s),φ2(ar g s),χ1(ar g s),χ2(ar g s),ω(ar g s) are used as functions that evaluate their

corresponding expressions with their variables equal to ar g s. This allows us to explicitly state
the free variables of the expressions.

2. var s does not contain array variables.
3. � designates any boolean operation ∧,∨,→, . . .
4. We limited the example to two cases of formula with index quantifiers (∀i , j ) and one case of

a formula not involving quantifiers ω, but in practice one can use any finite number of them.
One may even use several quantifiers within a same subformula to express properties such as
sortedness.

5. There is a single array a, but the paper handles cases with several arrays.
6. Should there be several arrays, there are no array equalities in ω, such as a = b. However, this

can be encoded as ∀i , a[i ] = b[i ].
7. As the contribution is a decision procedure, there are limitations on the integer theory so that

it is decidable.

The decision procedure. The decision procedure for the array property fragment is divided into
several steps. The first mainly transforms syntactical elements of the formula, such as replacing
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a = b by ∀i , a[i ] = b[i ], or by applying the array axiom a[i ← v][ j ] ≡ i te(i = j , v, a[ j ]), or even
dividing index equalities i = j into i < j +1∧ j < i +1, and is not of interest to us. The second step
instantiates the universal index quantifiers by finite sets. In the decision procedure of the paper,
this instantiation set is computed using the syntax and requires the first step. In our presentation
of this phase, we aim to present a proof that abstracts these syntactical elements. The third step
removes all array variables by using Ackermannisation. This process was already described in
Section 5.1.2.1 and is not of key interest for us. Finally, the last step simply decides the resulting
integer problem. This step is decidable due to an adequate choice of theory used for integers.

Our interest is thus only in the second step for which we show an abstracted view of how the
paper constructs an instantiation set. We only sketch out this second step on the formulae of
the form described by Equation 5.17, as the understanding of the instantiation process it yields
suffices for our purposes. We refer the reader to the original paper [BMS06] for a full instantiation
heuristic and a formalized proof of completeness.

We present our construction in an incremental way: we consider subformulae of the formula of
Equation 5.17. First we handle the simple formula of Equation 5.18, then we progress to the two
formulae of Equations 5.19 and 5.20, and finally, we unite the two latter instantiation sets into an
instantiation for the formula of Equation 5.17.

∃a, var s,∀i ,φ1(i , var s) →φ2(a[i ], var s) (5.18)

∃a, var s, (∀i ,φ1(i , var s) →φ2(a[i ], var s))�ω(a, var s) (5.19)

∃a, var s, (∀i ,φ1(i , var s) →φ2(a[i ], var s))� (∀ j ,χ1( j , var s) →χ2(a[ j ], var s)) (5.20)

Instantiation of the formula of Equation 5.18. Before we dive into the construction of the in-
stantiation set for i , notice that in the formula of Equation 5.18, φ2(a[i ], var s) is the only formula
involving a and that φ2 does not depend directly on i . Now, let us build on these remarks by as-
suming ∃v, var s,φ2(v, var s). In that case, the formula and any instantiation of it are satisfiable by
picking a equal to the constant array equal to v .

Now, let us assume there are no such values v, var s. The clause can now be rewritten as
∃a, var s,∀i , (φ1(i , var s) → f al se). This clause is satisfiable if and only if (φ1(i , var s) ≡ f al se)
and the instantiated clause with the set I is satisfiable if and only if ((φ1(i , var s)∧ i ∈ I ) ≡ f al se).
In other words, if we have an expression e that verifies φ1(i , var s) ⇒ φ1(e(var s), var s), then the
instantiation set {e} preserves the equivalence.

In all cases, the instantiation set {e} where e verifies φ1(i , var s) ⇒ φ1(e(var s), var s) preserves
the semantics. The property that e must verify only depends on φ1, and we say that e is a witness
for φ1. In the [BMS06] paper, witnesses for expressions such as φ1 are computed syntactically
from the syntax restrictions imposed on φ1: for example, if φ1(i , var s) ≡ i < n, the value n −1 is a
witness.

Instantiating the formula of Equation 5.19. The reasoning is similar but this time, there are two
formulae involving a: φ2(a[i ], var s)) andω(a, var s). However,ω does not contain quantifiers and
due to the syntax restrictions – mainly no array equalities – ω can only involve a finite number of
indices of a. Let us rewrite ω(a, var s) as ω′(a[e1], . . . , a[en], var s).
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This time, the array a is constrained by bothφ2(a[i ], var s) andω′(a[e1], . . . , a[en], var s), and the
problem is handling the interaction between them. The idea is to separate the interaction between
φ2(a[i ], var s) and ω′(a[e1], . . . , a[en], var s) by rewriting the formula as

∃a, var s, (∀i ∉ {e1(var s), . . .en(var s)},φ1(i , var s) →φ2(a[i ], var s))∧∧
j
φ1(e j , var s) → φ2(a[e j ], var s)�ω(a, var s)

We handle (∀i ∉ {e1(var s), . . .en(var s)},φ1(i , var s) →φ2(a[i ], var s)) in a similar way as the in-
stantiation of formula 5.18, that is, by picking a witness e for φ1. Then, rewriting the formula hav-
ing instantiated that part with {e} and regrouping the terms yields the following formula, which is
exactly the formula of Equation 5.19 instantiated on the set {e,e1, . . . ,en}!

∃a, var s, (∀i ∈ {e,e1, . . . ,en},φ1(e j , var s) ⇒φ2(a[e j ], var s))�ω(a, var s)

Instantiating the formula of Equation 5.20. The difficulty here is that both φ2(a[i ], var s) and
χ2(a[ j ], var s) involve a, and possibly the overlap of indices between φ1(i , var s) and χ1( j , var s)
is infinite. The idea is to divide the set of indices into three disjoint parts: {k | φ1(k, var s) ∧
¬χ1(k, var s)}, {k | χ1(k, var s)∧¬φ1(k, var s)} and {k | χ1(k, var s)∧φ1(k, var s)}.

Because these sets are disjoint, it is as if we had three different arrays. The idea is to reuse the
trick for the instantiation of the formula of Equation 5.18 for each of those arrays separately. This
gives us the witnesses e for φ1 ∧¬χ1, e ′ for χ1 ∧¬φ1 and ee for χ1 ∧φ2.

Thus we need to instantiate the three subarrays with respectively {e}, {e ′} and {ee}. Instead, we in-
stantiate all three with the instantiation {e,e ′,ee} which preserves semantics as instantiating with
a larger set may only increase completeness. This amounts to instantiating directly both quantifiers
of the formula of Equation 5.20 with {e,e ′,ee}. In practice, this set can be refined so that i is only
instantiated with {e,ee} and j with {e ′,ee}.

Instantiating the formula of Equation 5.17. Finally, handling the formula of Equation 5.17 sim-
ply consists in putting the ideas of the instantiaton of the formulae of Equations 5.19 and 5.20
together: using the notations of those instantiations, we instantiate the quantifier i on the set
{e,ee,e1, . . . ,en} and the quantifier j on the set {e ′,ee,e1, . . . ,en}.

[BMS06] for cell abstraction. The decision procedure of [BMS06] for the array property fragment
enables to automatically check invariants, but as it does not handle predicates, it does not allow to
infer invariants; a drastic limitation for our purposes. Furthermore, the universal quantifiers are
restricted to the left hand side of the implication, which is not the case in our formulae as we have
predicates of the form P (i , a[i ]).

Therefore, our main goal is not to use this decision procedure as such, but to reuse some of its
ideas. The abstracted view we used presents these ideas so that we may reuse them to construct
our instantiation heuristic, mainly by removing most of the syntactical elements and by using in-
cremental steps instead of a full solution. Note that the construction of the instantiation heuristic
in the original paper is directly given and the proof of correctness directly constructs a complicated
array a for the full formulae.

5.1.2.3 The instantiation of [BMR13], Quantifiers on demand [GSV18]

Instantiation in [BMR13]. The goal of [BMR13] is to automate the verification programs con-
taining arrays. In many ways, the approach is similar to ours: they convert programs to Horn
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clauses similar to those we generate after the abstr act algorithm, then they eliminate the quan-
tifiers using instantiation and finally, they solve the resulting problem using the Z3 SMT solver.
Thus, the main difference in the overall program verification scheme is in the formalizing of the
abstraction.

The main contribution is an instantiation heuristic that is used to determine how the infinite
conjunction created by the quantifiers is transformed into a finite one. The difference compared
to our instantiation heuristic is that the instantiation heuristic used in [BMR13] is based on triggers
and more specifically, E-matching: they define patterns so that if the pattern appears within the
clause, the quantifiers are instantiated accordingly with respect to the pattern. The pattern they
use are generated from the array axioms, mainly the axiom a[i ← v][ j ] ≡ i te(i = j , v, a[ j ]) that
generates an instantiation on j .

Limits of the [BMR13] instantiation: lack of predictability. Unlike our approach, trigger-based
instantiation is difficult to predict: the instantiation of previous patterns can create new patterns
which may then create new instantiations and thus new patterns, . . . and this process may not
terminate as demonstrated by Example 24 from the [BMR13] paper.

Furthermore, they only evaluate experimentally the choice of patterns for the triggers and the
choice between intra-procedural and inter-procedural context for the triggers, that is, whether the
E-matching process should be done on the full set of Horn clauses or just on the current clause.
These experimental results are insufficient to determine the impact of those parameters and of
how well the overall technique works for two reasons.

First, there are programs on which the back-end SMT solver timeouts. On those cases, because
the approach lacks a theoretical result, it is extremely hard to determine whether the problem is
with the approach of [BMR13] or if the [BMR13] instantiation yielded a satisfiable integer problem
that the back-end solver was unable to solve. Note that the latter problem appears frequently in
our benchmarks.

Second, the experimental results are written by hand, and it is hard to determine how resilient
the successful experiments are to slight tweaks in the syntax. For example, the authors claim they
have not encountered the problem of Example 24, but it is unclear whether this problem could
appear with a different ordering of the triggers, or if the clauses were written in a slightly different
syntax.

Example 24 (The E-matching algorithm of [BMR13] may not terminate). Consider the expression
∀y,P (g (y), g ( f (y))) and a trigger on g (y). Consider that in the context we have g (a).

g (a) matches the trigger g (y), which in turn creates the instantiation {a} for the quantifier y,
which generates P (g (a), g ( f (a))) and thus adds among other things g ( f (a)) to the context, which
matches the trigger and creates the instantiation { f (a)} for the quantifier y, which adds g ( f ( f (a)))
to the context, which . . .

This process never terminates and successively adds the instantiation f n(a).

[GSV18], an approach with similar drawbacks. The work in [GSV18] is quite different but has
similar drawbacks: instead of using the SMT solver as a back-end black box solver, they suggest to
modify the solving process within the SMT solver in such a way that it can handle the additional
quantifiers. The main idea compared to [BMR13] is that instead of computing the instantiation
set for a quantifier before the clauses are fed to the back-end solver through trigger based instanti-
ation, the quantifiers are instantiated during the solving of the Horn clauses, and the instantiation
set is computed from the refutation proofs generating during solving.
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This allows a form of lazy computation of the instantiation set but suffers from similar draw-
backs as the [BMR13] technique: it is very hard to predict whether the correct instantiation set
will be found, and there may be occurrences where the computation gets stuck gradually adding
elements in the instantiation set. Furthermore, there are no convincing experimental results for
this technique within the paper.

Conclusion of the litterature overview

The overall verification methodology proposed in this PhD and described in Figure 4.1 shares
many similarities with [BMR13] and [MA15; MG16] when used with cell abstraction: we define
the abstraction of [MA15; MG16], but instead of removing the quantifiers within the abstraction
process, we handle quantifier elimination separately from the abstraction, as in [BMR13].

As we have proven the [MG16] instantiation complete, a simple approach would use that instan-
tiation; however unlike in [MG16], our cell abstraction is supposed to be a building block for other
abstractions. The restrictions on the form of the clauses in [MG16] does not allow that and we
need to extend the [MG16] instantiation heuristic.

We do not wish to use the techniques described in [BMR13] and [GSV18], as the aim of our data-
abstraction framework algorithm is to give predictable results. We thus consider instantiation
techniques such as those of [BMS06] that can handle a broad class of formulae, but the form of
our clauses do not quite match: we have predicates and a key difference in the restrictions of the
universal quantifier: it may be used in the right hand side of the implication.

Our instantiation heuristics unifies the heuristics of [MG16] and [BMS06], in order to handle a
broader class of clauses that include most of those needed for the programs of Chapter 3.

5.1.3 Our instantiation heuristic for cell abstraction

The goal is to construct an instantiation heuristic for cell abstraction that verifies completeness.
This completeness property was verified in the [BMS06] and [MG16] papers, but on a narrower
class of formulae than those we need to handle. We contruct the instantiation heuristic for cell
abstraction by unifying the ideas of our proof of completeness for these two papers which were
themselves imprecisely expressed by the concepts of Section 5.1.1.

We start by formalizing the completeness of a call to i nst sabs
P (expr,ct x) property of Chapter 4

specifically for cell abstraction. This formula is similar to the one of Equation 5.19 and applying
the same construction technique for our formula yields two steps.

The first step, that is, the counterpart of Equation 5.18 is handled by the abstraction concept
described in Section 5.1.1 and used in the proof of [MG16]; and the second step is handled by
introducing the notion of relevant cells.

Finally, we write the r elevant algorithm to retrieve a set of relevant cells from the syntax of
expr and ct x, and thus, deduce the algorithm for i nst sabs

P (expr,ct x). We prove that whenever
the r elevant algorithm succeeds, i nst sabs

P (expr,ct x) is complete.
For reasons of simplicity, the presented r elevant algorithm is the bare minimum to handle the

programs of Chapter 3. However, this algorithm can be extended to handle a broader class of Horn
clauses; and as long as it satisfies the property that it returns a relevant set of cells for (expr,ct x),
the call i nst sabs

P (expr,ct x) is complete. In practice we have extended our implementation of
r elevant to handle, among other things, arrays of arrays.
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5.1.3.1 Property the instantiation set must verify: relevant Cells.

Formalizing i nst sabs
P (expr,ct x) complete. In Chapter 3, we gave the definition of the complete-

ness of a call to i nst sabs
P (expr,ct x). This definition can be simplified for cell abstractions: FσCel l

does not contain any quantifiers and, as discussed in Section 5.1.1, instantiation sets for cell ab-
straction should be defined as (k, a[k]) for k in a set of indices I . Thus, let us introduce I (expr,ct x)
such that i nst sabs

P (expr,ct x) ≡ {((k, a[k]), ()) | k ∈ I (expr,ct x)} With this notation, the definition
of completeness of i nst sabs

P (expr,ct x) in Equation 4.6 can be rewritten as Equation 5.22 implies
Equation 5.21.

∃var s,∀k, (k,�expr �var s[k]) ∈ασCel l (M (P ))∧¬�ct x�var s
α

Gσ
abs (M ) (5.21)

∃var s,∀k ∈ �I (expr,ct x)�var s , (k,�expr �var s[k]) ∈ασCel l (M (P ))∧¬�ct x�var s
α

Gσ
abs (M ) (5.22)

Notice how Equation 5.21 is similar to Equation 5.19 with φ1 ≡ tr ue,
φ2(var s) ≡ (k,�expr �var s[k]) ∈ασCel l (M (P )) and ω(var s) ≡¬�ct x�var s

α
Gσ

abs (M ). We suggest to

construct the instantiation I (expr,ct x) such that 5.22 implies Equation 5.21 similarly to how we
constructed an instantiation set that preserves the semantics for the quantifier ∀i in Equation
5.19. Thus, we divide Equation 5.21 into two parts: ∀k, (k,�expr �var s[k]) ∈ασCel l (M (P )) and
¬�ct x�var s

α
Gσ

abs (M ).

First step of the instantiation: abstraction. It may be tempting to find a semantics preserv-
ing instantiation set for ∃var s, (∀k, (k,�expr �var s[k]) ∈ασCel l (M (P )) in a similar fashion as for
∃a, var s,∀i ,φ1(i , var s) →φ2(a[i ], var s). However, this will not work: what made the proof of
[BMS06] work was that φ2 was not directly dependent on i , and therefore, a constant array could
be used for part of the proof. Here, k is part of (k,�expr �var s[k]) ∈ασCel l (M (P )).

Let us find another approach. First let us realize that, for this step, we need to use the abstraction
as in the proof of [MG16]: if we did not have abstracted models, that is, if the formula had been
∃var s, (∀k, (k,�expr �var s[k]) ∈M #(P #)), there would have been no instantiation set I such the
semantics is preserved. The proof of this fact has already been discussed in Section 5.1.1 and
relies on considering a model M # which represents no arrays and yet is non-empty: consider i ∉ I
and M #(P #) = {(k, v) | k 6= i }. The non-instantiated formula is satisfiable by any choice of var s
whereas the instantiated clause is unsatisfiable. Thus the semantics is not preserved. This example
explains why it was so key to use per clause relative completeness instead of per clause completeness
and why we should use the knowledge that we have an abstracted modelασCel l (M (P )) and not just
any M #.

Now, let us use the abstraction concept in a similar way as in the proof of [MG16]: if the instan-
tiation set I for k is chosen non-empty, then, if the instantiated formula is non-satisfiable, then
∃(i ,expr [i ]) ∈ ασCel l (M (P )), thus ∃a ∈ M (P ) as ασCel l (;) = ;, and thus, σCel l (a) ⊆ ασCel l (M (P )),
that is, ∀k, (k, a[k]) ∈ ασCel l (M (P )). Thus, if we have ∃var s,�expr �var s = a, then any non-empty
instantiation set I for the quantifier k preserves the semantics.

The requirement ∃var s,�expr �var s = a is satisfied when expr is in fact a variable avar by just
picking avar = a. In general, we might not have ∃var s,�expr �var s = a and thus there might be a
non-empty instantiation heuristic that does not preserve the semantics. For example, if expr =
avar [2 ← 0] where avar is a variable of var s, {2} ∉ I and M (P ) = {a | a[2] 6= 0}, then the instantiated
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formula is satisfiable but not the non-instantiated formula: (2, avar [2]) is what makes the non-
instantiated formula fail but is not considered in the instantiated clause.

For now, we work around this problem by considering that we introduce a new variable avar

and that we add avar = expr within the context. The formula of Equation 5.21 that we need to
instantiate now becomes the formula of Equation 5.23. For the first part of this formula, a non-
empty instantiation set suffices.

∃a, var s, (∀k, (k, a[k]) ∈ασCel l (M (P )))∧ (�avar �a = �expr �var s ∧¬�ct x�var s
α

Gσ
abs (M )) (5.23)

Second step of the instantiation: relevant cells. Now that we have handled the part
∃a, (∀k, (k, a[k]) ∈ασCel l (M (P ))) of the formula of Equation 5.23, we need to combine it
with the part �avar �a = �expr �var s ∧¬�ct x�var s

α
Gσ

abs (M ). This part does not contain any quan-

tifiers and can be viewed as ω(a, var s) in our description of the [BMS06] instantiation with
ω(a, var s) ≡ a = �expr �var s ∧¬�ct x�var s

α
Gσ

abs (M ).

In our presentation of the [BMS06] instantiation withω(a, var s), we handledω(a, var s) by using
the assumption that ω(a, var s) could be rewritten as ω′(a[e1(var s)], . . . , a[en(var s)], var s). The
basis of this assumption is that ω can only involve a finite number of cells of a, those with index
e1, . . . ,en , as ω does not contain any quantifiers. The intuition is that {e1, . . . ,en} are the index
expressions of the relevant cells.

However, if ω contains array equalities, this approach fails: array equalities involve an un-
bounded number of cells. This is troublesome as in our definition of ω, we have a = �expr �var s .
First, we show that [BMS06] copes with the problem of array equalities using syntax and explain
why this approach does not work in our setting. Second, we show how we handle the problem
in our case using the same syntax requirements. Finally, we adapt the syntactic requirement into
the semantic property of relevant cells. The use of a semantic property enables future extentions
of the theory in which the formulae are written without any changes in the definition of relevant
cells.

The [BMS06] handling of array equalities. First, they rewrite a = expr as ∀i , a[i ] =
expr [i ]. However in [BMS06], all array expressions expr are assumed to have been constructed
from successive writes into an array variable: for example, if expr is b[l ← val ][l ′ ← val ′], then
expr is constructed by two array writes into the array variable b. This explicit mention of b enables
them to rewrite ∀i , a[i ] = �expr �var s[i ] into ∀i , a[i ] = expr ′(b[i ], var s′), where expr ′(b[i ], var s′)
is the evaluation of expr on var s = {b, var s′} when �b�b[i ] = b[i ]. This is because the value of an
array after successive writes at a given index i only depends on the initial value of that array at
index i and on the other variables.

The ∀i , a[i ] = expr ′(b[i ], var s′) can be rewritten as φ1(i , var s′) → φ2(a[i ],b[i ], var s′) where
φ1(i , var s′) ≡ tr ue and φ2(a[i ],b[i ], var s′) ≡ a[i ] = expr ′(b[i ], var s′). These types of expressions
are handled in [BMS06] by using witnesses2; however, in our setting, we do not use witnesses but
instead use the abstraction to handle similar expressions. This approach is described in our first
step and fails on such expressions.

A restricted definition of relevant cells. Let us first attempt to solve the case
where all array expressions expr are assumed to have been constructed from successive writes
into an array variable b. Thus, var s can be decomposed into b and var s′ such that �expr �var s[i ]

2See our description of [BMS06].
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can be written as expr ′(b[i ], var s′). There is a major difference between the formula of Equa-
tion 5.19 of our explanation of [BMS06] and the formula of Equation 5.23: in Equation 5.19,
φ1,φ2 not only depend on a, but also on var s, whereas in our setting, ∀k, (k, a[k]) ∈ασCel l (M (P ))
only depends on the array a. Thus, the quantifier b of var s may be moved and Equation 5.23
can be rewritten as: ∃a, var s′, (∀k, (k, a[k]) ∈ασCel l (M (P )))∧ω2(a, var s′), where ω2(a, var s′) ≡
∃b,ω(a,b, var s′).

The goal is now to compute the relevant cells of ω2 with our initial approach, that is, to con-
sider whether ω2(a, var s′) can be rewritten into ω′

2(a[e1(var s′)], . . . , a[en(var s′)], var s′). This
time, we might be able to handle the array equality in ω2 because, for some expression E ,
∃b,∀i , a[i ] = expr ′(b[i ], var s′)∧E(a,b, var s′) does not constrain the array a in the same manner
as ∀i , a[i ] = expr ′(b[i ], var s′).

The idea is that, as b can be picked to have the adequate value where it is
not constrained by E , the equality between a and b only adds restrictions on
cells where b is constrained by E . Thus, if ω(a,b, var s′) can be rewritten as
ω′(a[e1(var s′)], . . . , a[en(var s′)],b[e ′1(var s′)], . . . ,b[e ′m(var s′)], var s′) then ω2(a, var s′) can
be rewritten as ω′

2(a[e1(var s′)], . . . , a[en(var s′)], a[e ′1(var s′)], . . . , a[e ′m(var s′)], var s′), and the
index expressions of the relevant cells are simply {e1, . . . ,en ,e ′1, . . .e ′m}.

The definition of relevant cells. In our previous approach, we assumed that all ar-
ray expressions expr are constructed from successive writes into an array variable. This means
that if we extend the theory on which we work with constant arrays or functions to handle expres-
sions of the form f (x) or Const Ar r ay(2), where f (x) is an array, the definition of relevant cells
will need to be updated. We wish to construct a definition of relevant cells that does not need to
be updated, even though the algorithm that returns such a set will have to handle the additional
expressions.

The key idea in our restricted approach was to move the quantified variable b. Here, we do not
have the array b, therefore, we move all the quantified variables var s, and our goal is to define
what a set of relevant cells for ω2(a) = ∃var s,ω(a, var s) is. Replicating our previous approach
consists in considering whether ω2(a) can be rewritten into ω′

2(a[e1()], . . . , a[en()], var s′). The
problem of this approach is that e1, . . . ,en cannot depend on var s anymore, thus for the simple
expression a[i ] = 2, one can not say that {i } is a relevant set of index expressions. . .

This problem is solved by a combination of two ideas. First, instead of rewriting ω with an ex-
pression that does not directly depend on a but only on specific cells of a, we say thatω2(a) should
be equivalent to ω2(a′) whenever the arrays a and a′ match on the relevant cells. Second, the ex-
pressions on which the relevant cells should match are �e1�var s , . . . ,�en�var s where e1, . . . ,en are
the indices of the relevant cells. This is because our goal is to prove that the instantiated version of
Equation 5.23 implies its non-instantiated version. Thus, instead of equivalence – which is guar-
anteed through soundness – the instantiation only needs to prove an implication and thus create
a a′, var s′ from a, var s. The preservation of semantics must thus happen on �e1�var s , . . . ,�en�var s .
Thus, R = {e1, . . . ,en} is a set of index expressions of the relevant cells of ω if and only if:

∀a, a′, var s, (a[�R�var s] = a′[�R�var s]∧ω(a, var s)) ⇒ (∃var s′,ω(a′, var s′))

where a[�R�var s] = a′[�R�var s] is a shorthand for ∀i , a[�ei �var s] = a′[�ei �var s].
In practice ω depends on the model M as ω contains the evaluation of the context. Thus, this

property should be required for all models. This leads to the definition of relevant cells of Defini-
tion 27. Notice that this definition is completely independent of the syntax in which the expres-
sions are written.
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We formalize the results of the two steps of our reasoning in Therorem 16 which states that the
call i nst sabs

P (expr,ct x) is complete whenever the instantiation set returns a non-empty set of
relevant cells for ω(a, var s) ≡ a = �expr �var s ∧¬�ct x�var s

α
Gσ

abs (M ).

In order to claim that one should instantiate on a non-empty set of relevant cells, one should
prove that this condition is not only sufficient for a complete instantiation but also necessary. In
Theorem 16 we also prove that whenever the context ct x does not use the predicate P – or that the
instantiation heuristic does not take advantage of the P parameter – a non-empty set of relevant
cells are necessary for a complete instantiation. This only happens if P appears twice in a clause3.
This restriction on the necessary property allows us to avoid degenerate cases, such as the one
given in Example 25.

We do not believe this restriction to be important enough to question whether a non-empty set
of relevant cells is the correct property: one still needs to handle the class of sets of Horn clauses
where predicates do not appear twice in a clause, which is as expressive as those that allow it as
one can always transform P into a new predicate P ′ by adding the clause P (ar g s) → P ′(ar g s).
However, perhaps future work can make a slight improvement by formalizing Definition 27 and
Therorem 16 in such a way that this restriction can be removed and degenerate cases such as
Example 25 are naturally avoided.

Definition 27 (Relevant cells of a functionω(a, var s)). A set of expressions R = {e1, . . . ,en} is said to
be relevant for ω if and only if

∀a, a′,vars, (a[�R�vars] = a′[�R�vars]∧ω(a,vars)) ⇒ (∃vars′,ω(a′,vars′)) (5.24)

where a[�R�vars] = a′[�R�vars] means that ∀e ∈ R, a[�e�vars] = a′[�e�vars]

Theorem 16 (A non-empty relevant set yields a complete instantiation.). Let
R = {e | ((e,expr [e]), ()) ∈ i nst sabs

P (expr,ct x)} = {e1, . . . ,en}. If for all models M , R is a non-
empty set of expressions relevant for ωM defined in Equation 5.25, then i nst sabs

P (expr,ct x) is
complete.

ωM (a,vars) ≡ a = �expr �vars ∧¬�ct x�vars
α

Gσ
abs (M ) (5.25)

Furthermore, if P ∉ ct x, this condition is also necessary: if i nst sabs
P (expr,ct x) is complete and

P ∉ ct x, then for all M , R is a non-empty set of expressions relevant for ωM

Proof of the sufficient condition. Assume R relevant.
1. Introduce expr,ct x,M , abs such that abs(P ) = σCel l . Let R = {e1, . . . ,en} =

{e | ((e,expr [e]), ()) ∈ i nst sabs
P (expr,ct x)}.

2. We need to prove that Equation 5.22 implies Equation 5.21 with I (expr,ct x) = R.
3. Assume Equation 5.22 and introduce vars. We have ωM (�expr �vars,vars).
4. As R is non-empty, I (expr,ct x) is non-empty.
5. As I (expr,ct x) 6= ; and ∀k ∈ �R�vars, (k,�expr �vars[k]) ∈ ασCel l (M (P )), we have

ασCel l (M (P )) 6= ; and thus M (P ) 6= ;. Let aM ∈M (P ).
6. Let a′ such that ∀i , a′[i ] = i te(i ∈ �R�vars,�expr �vars[i ], aM [i ])
7. Thus, using that R is relevant with a = �expr �vars, a′ = a′,vars = vars, we have

∃vars′,ωM (a′,vars′). Introduce vars′.
8. ωM (a′,vars′) means that we have ¬�ct x�vars′

α
Gσ

abs (M ) and ∀k,�expr �vars′ [k] = a′[k].

9. We have ∀k, (k,�expr �vars′ [k]) ∈ασCel l (M (P )).

3And when combinators are not used as they create new predicate names.
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(a) if k ∉ �R�vars, then �expr �vars′ [k] = a′[k] = aM [k], and ∀k, (k, aM [k]) ∈ασCel l (M (P )).
(b) if k ∈ �R�vars, we have �expr �vars′ [k] = a′[k] = �expr �vars[k], and k ∈ �I (expr,ct x)�vars

and ∀k ∈ �I (expr,ct x)�vars, (k,�expr �vars[k]) ∈ασCel l (M (P )).
10. Thus, we have ∀k, (k,�expr �vars′ [k]) ∈ ασCel l (M (P ))∧¬�ct x�vars′

α
Gσ

abs (M ) and our proof is fin-

ished.

Proof of the necessary condition. Assume i nst sabs
P (expr,ct x) complete and P ∉ ct x.

1. Introduce M , a, a′,vars. Assume a[�R�vars] = a′[�R�vars] and ωM (a,vars).
2. Let M ′ such that ∀P ′,M ′(P ′) = i te(P ′ = P, {a′},M (P ′)).
3. As P is not used in ct x, ∀vars′,ωM (a,vars′) =ωM ′(a,vars′)
4. Let us prove we have ∀k ∈ �I (expr,ct x)�vars, (k,�expr �vars[k]) ∈ ασCel l (M ′(P )), that is, the

first part of Equation 5.22 for M ′ with vars.
(a) �expr �vars = a as ωM (a,vars)
(b) Let k ∈ �I (expr,ct x)�vars = �R�vars

(c) �expr �vars[k] = a[k] = a′[k] using the assumption a[�R�vars] = a′[�R�vars]
(d) As a′ ∈M ′(P ), we have ∀k, (k, a′[k]) ∈ασCel l (M ′(P ))

5. As we have ωM (a,vars), and thus ωM ′(a,vars), we have ¬�ct x�vars
M ′ , that is, the second part

of Equation 5.22 for M ′ with vars.
6. We thus have Equation 5.22 for M ′ with vars.
7. Using completeness of i nst sabs

P (expr,ct x), we have Equation 5.21 for M ′ with some vars′.
8. The first part of Equation 5.21 is thus satisfiable for M ′ with vars′.
9. But using the definition of M ′(P ), this means that �expr �vars′ = a′.

10. The second part of Equation 5.21 for M ′ with vars′ gives us ¬�ct x�vars′
M ′

11. Thus, we have ωM ′(a′,vars′)
12. And thus, ωM (a′,vars′), our goal.

Example 25 (A degenerate case where P ∈ ct x.). Let abs(P ) =σCel l . Consider the following instan-
tiation i nst sabs

P (Const Ar r ay(0), ((∀i , v, (v =Const Ar r ay(0)[i ]) → P #(i , v)) → f al se)), which
comes from the data-abstraction algorithm on P (Const Ar r ay(0))∧P (Const Ar r ay(0)) → f al se.
Remark this clause is degenerate: we repeated P (Const Ar r ay(0)) for no reason.

Let us name expr ≡ Const Ar r ay(0) and ct x ≡ (∀i , v, (v = Const Ar r ay(0)[i ]) → P #(i , v)) →
f al se and R = {e | ((e,expr [e]), ()) ∈ i nst sabs

P (expr,ct x)}.
Let us construct R such that i nst sabs

P (expr,ct x) is complete but there exists M such that R is not
a relevant set for ωM , thus contradicting the necessary property for Theorem 16 when P ∈ ct x.

1. For any non-empty R, the call i nst sabs
P (expr,ct x) is complete, thus, this condition does not

restrict our choice of R. Proof:
(a) if Equation 5.22 is satisfied for some M with var s, then the second part is with M with

var s, and thus M (P ) =;∨M (P ) = {Const Ar r ay(0)}. But if the first part of Equation
5.22 is satisfied, then M (P ) = {Const Ar r ay(0)}, as R 6= ;.

(b) But then Equation 5.21 is satisfiable for M with var s as expr = Const Ar r ay(0) and
M (P ) = {Const Ar r ay(0)}.

2. For any R, R is not a relevant set for ωM : we need ∀a′,ωM (a′, var s′) for some var s′. Yet,
ωM (a′, var s′) implies a′ = �expr �var s′ . But expr = Const Ar r ay(0), and thus, we would
need ∀a′, a′ =Const Ar r ay(0), which is evidently wrong.

3. Thus, any choice of a non-empty R achieves our goal, for example R = {0}.
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The key part in creating this example is to construct ct x using P such that the completeness of the
call assumption does not help. Thus, to improve Definition 27 and Theorem 16, one would have
to take in account the loss of information on R that the completeness of the call assumption yields
when P ∈ ct x.

5.1.3.2 The r elevant and i nst sabs
P (expr,ct x) algorithms

In the previous section we showed that if we had a non-empty set of relevant cells R, then defining
i nst sabs

P (expr,ct x) = {((e,expr [e]), ()) | e ∈ R} yields a complete instantiation. The goal is thus
reduced to computing a non-empty set of relevant cells R.

To do so, we compute a possible empty set of relevant cells R and make it non-empty: if R =;,
we add an element ⊥ to R, where ⊥ is any value of the index type. Because R =; is a set of relevant
cells, so is R∪{⊥} = {⊥}. We thus use the set {⊥} and this yields the instantiation {((⊥,expr [⊥]), ())}.

To compute a set of relevant cells R, we need to define R such that for any model M ωM (a, var s)
of Equation 5.25 verifies Equation 5.24. ωM (a, var s) of Equation 5.25 can be defined as �avar =
expr∧¬ct x�a,var s

α
Gσ

abs (M ), where avar is a new variable, and the context a, var s interprets the variable

avar with a and the other variables with var s.
In practice, the r elevant algorithm may not always succeed in returning a relevant set of cells.

In that case, r elevant still returns a set of indices on which to instantiate which it believes is good,
but adds an element > indicating that the returned set may not satisfy the relevant requirement.
This enables us to track such cases.

Given such a r elevant algorithm, the computation of i nst sabs
P (expr,ct x) simply consists in

constructing avar and ω≡ avar = expr ∧¬ct x, calling r elevant on those parameters and remov-
ing > from it and returning {((⊥,expr [⊥]), ())} if it is empty and {((e,expr [e]), ()) | e ∈ r elevant }
otherwise. The code written in Ocaml style for the algorithm i nst sabs

P (expr,ct x) is given in List-
ing 5.5. Note that it does not use the parameters P and abs.

We need to define r elevant (avar ,ω) such that Equation 5.24 is verified with R =
r elevant (avar ,ω) and ω(a, var s) = �ω�a,var s

α
Gσ

abs (M ) or contains an element >. As discussed during

our construction of the relevant property, this amounts to finding the indices of the cells of avar

that are of importance inω. In other words, changing cells that are not in R should not impact the
value of ω.

We adapt the concept of important cells on which ω depends into the algorithm
r elevant (avar ,ω) using the following main ideas :

1. If avar [i ] appears in ω then i belongs to the indices of the relevant cells: if the value of cell i
of avar is changed, then the expression avar [i ] changes.

2. If avar [i1 ← v1] . . . [in ← vn][ j ] appears in ω, then j belongs to the indices of the rele-
vant cells. This is because v = avar [i1 ← v1] . . . [in ← vn][ j ] ≡ v = i te( j = in , vn , . . . i te( j =
i1, v1, avar [ j ])), thus, it only depends on index j .

3. If avar = bvar then we need to find the relevant indices for bvar . Thus, r elevant (bvar ,ω)
belongs to r elevant (avar ,ω).

4. If avar [i ← v] = bvar then r elevant (bvar ,ω)− {i } belongs to r elevant (avar ,ω). This is be-
cause avar [i ← v] = bvar ⇒∀ j 6 6 6=== i , avar [ j ] = bvar [ j ].

5. If avar is used in one of the ways we do not know how to handle, > belongs to
r elevant (avar ,ω), indicating that we do not know how to handle that case.

In practice, we combine these ideas and the main leftover problem is the possibly infinite re-
cursion to r elevant : r elevant (avar ,ω) may depend on r elevant (bvar ,ω) and vice versa. We
break this infinite recursion by keeping track of variables that have already been visited. The full
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algorithm is given in Listing 5.6. The correctness of i nst sabs
P (expr,ct x) and r elevant is stated in

Theorem 17.

Theorem 17 (Algorithms i nst sabs
P (expr,ct x), r elevant (avar ,ω) are correct.). If

relevant avar (avar = expr ∧¬ct x) does not contain > then the call to i nst sabs
P (expr,ct x) as

defined in Algorithm 3 is complete.

Proof . Introduce expr,ct x. Introduce avar the fresh variable created by the algorithm of Algo-
rithm 3. Define ω as the expression avar = expr ∧¬ct x. Let R = relevant avar ω and assume R

does not contain >. We use Theorem 16 to show that i nst sabs
P (expr,ct x) as defined in Algorithm

3 is complete. Thus, introduce M , we need to show that R is relevant for ωM defined as:

ωM (a,vars) ≡ a = �expr �vars ∧¬�ct x�vars
α

Gσ
abs (M )

Using the evaluation context avar ← a,vars for the free variables ofωwhich evaluates the variable
avar with a and the other variables with vars, this can be rewritten into

ωM (a,vars) ≡ �ω�avar ←a,vars
α

Gσ
abs (M )

Let us prove that R is relevant forωM . Introduce a, a′, var s, assume a[�R�var s] = a′[�R�var s] and
�ω�avar ←a,var s

α
Gσ

abs (M ) and let us show there exists vars′ such that �ω�avar ←a′,vars′
α

Gσ
abs (M ) . Because we will be using

the two evaluations context �e�avar ←a,vars
α

Gσ
abs (M ) and �e�avar ←a′,vars′

α
Gσ

abs (M ) . Let us simply write in this proof these

contexts respectively �e�ca and �e�c ′
a .

Our proof is constructive and we construct vars′ is the following way:
1. If v is a non-array variable, then �v�vars′ = �v�vars

2. If v is a array variable not linked to avar , that is, such that, during the execution of
relevant avar ω , relevant_impl ω visited v ω is not called, for some list vi si ted , then

�v�var s′ = �v�vars

3. If v is a array variable linked to avar , that is, such that, during the execution of
relevant avar ω , relevant_impl ω visited v ω is called, for some list vi si ted , then: let

Iv = � relevant v ω �ca . Note that we use relevant v ω even though it was possibly not
called during the execution of relevant a_var ω .

We define vars′ such that ∀i ,�v[i ]�c ′
a =

(a) �v[i ]�ca if i ∈ Iv : we do not change the values of indices in the relevant set.
(b) a′[i ] if i ∉ Iv and �v[i ]�ca = a[i ]: we change the values previously equal to a[i ] to a′[i ].
(c) a[i ] if i ∉ Iv and �v[i ]�ca = a′[i ]: we change the values previously equal to a′[i ] to a[i ].
(d) �v[i ]�ca otherwise.

Let us show we have �ω�c ′
a . To show this, we show that for all subexpressions ωI of ω, �ωI �ca =

�ωI �c ′
a . Note that this is not necessarily boolean equality. We show this by induction. Note that

we will regularly use that r elevant is increasing, that is: ∀v,e1,e2, e1 is a subexpression of e2 ⇒
relevant v e1 ⊆ relevant v e2 . This property is a consequence that the algorithm only adds

elements to the retuned set. Let us now continue with our induction:

1. Case ωI is a1[i1 ← v1] . . . [in ← vn][ j ]: By induction hypothesis �( j , i1, v1, . . . in , vn)�ca =
�( j , i1, v1, . . . in , vn)�c ′

a . But j ∈ relevant a1 ωI . Thus, as r elevant is increasing, j ∈
relevant a1 ω . And by construction of vars′, �a1[ j ]�ca = �a1[ j ]�c ′

a .

Finally, as a1[i1 ← v1] . . . [in ← vn][ j ] is just an if-then-else combination of
(a[ j ], j , i1, v1, . . . in , vn), and these are equal in both evaluation contexts, we have
�ωI �ca = �ωI �c ′

a .
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Algorithm 3 (i nst sabs
P (expr,ct x),r elevant (avar ,ω)).

Listing 5.5 – Instantiation heuristic for cell abstraction.
let i nst sabs

P expr ctx =
let avar = new_variable () in (* We need avar to be unused in expr and ctx*)
let R = relevant avar (avar = expr ∧¬ct x) in
let R’ = filter (fun e -> e 6= >) R in (*We remove >*)
if R’ = [] then [((⊥, expr[⊥]), ())] (*We need R’ non -empty*)
else map (fun e -> ((e, expr[e]), ())) R’

Listing 5.6 – Computation of a relevant set of cells for basic array theory.
let relevant avar ω =

(*We add two parameters that we set in first position
to keep track of full context and visited variables *)

relevant_impl ω [] avar ω

let rec relevant_impl ω visited avar expr=
if avar ∈ vi si ted then [] (*We ignore visited variables *)
else
(

match expr with
(*the read after possibly multiple writes. If n=0, this is simply avar [ j ]*)
| avar [i1 ← v1] . . . [in ← vn ][ j ] ->

let relevant_from_args = concat_map (relevant_impl ω visited avar )
[i1, v1, . . . , in , vn , j ] in

j:: relevant_from_args
(*The array equality case twice on the variable avar .*)
|avar [i1 ← v1] . . . [in ← vn ] = avar [i ′1 ← v ′

1] . . . [i ′m ← v ′
m ] ->

let relevant_from_args = concat_map (relevant_impl ω visited avar )
[i1, v1, . . . , in , vn , i ′1, v ′

1, . . . , i ′m , v ′
m] in

[i1, . . . , in , i ′1, . . . , i ′m] @ relevant_from_args
(*The array equality case. bvar must be a variable , not any expression *)
(*Note that we consider the match with = to be modulo commutativity *)
| avar [i1 ← v1] . . . [in ← vn ] = bvar [i ′1 ← v ′

1] . . . [i ′m ← v ′
m ] ->

let relevant_b = relevant_impl ω avar :: visited bvar ω in
let rm_useless_rel_b = filter (fun e -> e ∉ {i1, . . . in }) relevant_b in
let relevant_from_args = concat_map (relevant_impl ω visited avar )

[i1, v1, . . . , in , vn , i ′1, v ′
1, . . . , i ′m , v ′

m] in
[i ′1, . . . , i ′m] @ rm_useless_rel_b @ relevant_from_args

(* Quantifiers *)
| ∀q, e | ∃q, e ->

let relevant_e = relevant_impl ω visited avar e in
(*We replace the indices that use q by > *)
map (fun e -> if q ∈ e then > else e) relevant_e

(*A non -array theory constructor or an unknown constructor or predicate *)
| C(e1, . . . ,en) -> (*We just apply recursively *)

concat_map (relevant_impl ω visited avar ) [e1, . . . ,en]
(*The case where avar was not within a handled expression *)
| avar -> [>]
(*A variable different from avar *)
| _ -> []

)
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2. Case ωI is a1[i1 ← v1] . . . [in ← vn] = a1[i ′1 ← v ′
1] . . . [i ′m ← v ′

m]: By induction hy-
pothesis �(i1, v1, . . . , in , vn , i ′1, v ′

1, . . . , i ′m , v ′
m)�ca = �(i1, v1, . . . , in , vn , i ′1, v ′

1, . . . , i ′m , v ′
m)�c ′

a . But
a1[i1 ← v1] . . . [in ← vn] = a1[i ′1 ← v ′

1] . . . [i ′m ← v ′
m] is just an if-then-else combination of

(i1, v1, . . . , in , vn , i ′1, v ′
1, . . . , i ′m , v ′

m), thus we have �ω�ca = �ω�c ′
a .

3. Case ωI is a1[i1 ← v1] . . . [in ← vn] = a2[i ′1 ← v ′
1] . . . [i ′m ← v ′

m] and a1 is linked to avar (which
implies that a2 is as well).

Let E1 ≡ a1[i1 ← v1] . . . [in ← vn] and E2 ≡ a2[i ′1 ← v ′
1] . . . [i ′m ← v ′

m]

We need to prove that �E1 = E2�ca ≡ �E1 = E2�c ′
a . We prove the stronger property ∀k,�E1[k] =

E2[k]�ca ≡ �E1[k] = E2[k]�c ′
a . This is what we believe will allow the proof of the future exten-

sion of Listing 6.1.

Let us prove the equality by dividing the indices into four portions:

(a) The case k ∈ �{i1, . . . , in}�ca . Let l such that k = �il �ca . E1[il ] = E2[il ] can be rewrit-
ten into a combination of if-then-else using a2[il ], i1, v1, . . . , in , vn , i ′1, v ′

1, . . . i ′m , v ′
m .

But by induction hypothesis �(i1, v1, . . . , in , vn , i ′1, v ′
1, . . . i ′m , v ′

m)�ca =
�(i1, v1, . . . , in , vn , i ′1, v ′

1, . . . i ′m , v ′
m)�c ′

a . Thus, if �a2[il ]�ca = �a2[il ]�c ′
a , we have our

result.
il ∈ relevant a2 ωI and thus, il ∈ relevant a2 ω . But by construction, �a2[il ]�c ′

a =
�a2[il ]�ca as il ∈ relevant a2 ω . Which gives our result.

(b) The case k ∈ �{i ′1, . . . , i ′m}�ca is handled symmetrically.
(c) The case k ∈ � relevant a1 ω ∩ relevant a2 ω �ca : We have �a1[k]�ca = �a1[k]�c ′

a

and �a2[k]�ca = �a2[k]�c ′
a by construction. Then by induction hypothe-

sis, �(i1, v1, . . . , in , vn , i ′1, v ′
1, . . . i ′m , v ′

m)�ca = �(i1, v1, . . . , in , vn , i ′1, v ′
1, . . . i ′m , v ′

m)�c ′
a .

Thus, as E1[k] = E2[k] can be rewritten as an if-then-else combination of
a1[k], a2[k], i1, v1, . . . , in , vn , i ′1, v ′

1, . . . i ′m , v ′
m and all these elements are equal in both

contexts, we have �E1[k] = E2[k]�ca ≡ �E1[k] = E2[k]�c ′
a .

(d) The case k ∉ � relevant a1 ω ∪ relevant a2 ω �ca . In that case E1[k] = E2[k] ≡ a1[k] =
a2[k]. We prove that �a1[k] = a2[k]�ca ≡ �a1[k] = a2[k]�c ′

a by dividing into subcases.
Each subcase is the consequence of our construction of vars′ for non relevant indices:
a swap between a[k] and a′[k]. We use values x1 and x2 as general names for the values
of �a1[k]�ca and �a2[k]�ca .

�a1[k]�ca �a2[k]�ca �a1[k]�c ′a �a2[k]�c ′a �a1[k] = a2[k]�ca �a1[k] = a2[k]�c ′a

a[k] a[k] a′[k] a′[k] true true
a[k] a′[k] a′[k] a[k] a′[k] = a[k] a′[k] = a[k]
a[k] x2 ∉ {a[k], a′[k]} a′[k] x2 false false

a′[k] a[k] a[k] a′[k] a′[k] = a[k] a′[k] = a[k]
a′[k] a′[k] a[k] a[k] true true
a′[k] x2 ∉ {a[k], a′[k]} a[k] x2 false false

x1 ∉ {a[k], a′[k]} a[k] x1 a′[k] false false
x1 ∉ {a[k], a′[k]} a′[k] x1 a[k] false false
x1 ∉ {a[k], a′[k]} x2 ∉ {a[k], a′[k]} x1 x2 x1 = x2 x1 = x2

To show that these four portions cover all indices, we need to prove that ( relevant a1 ω −
{i ′1, . . . i ′m}) ⊆ relevant a2 ω , and, symmetrically, ( relevant a2 ω − {i1, . . . in}) ⊆
relevant a1 ω .
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This is because

relevant a2 ω

= ( relevant a2 ω )∪ ( relevant a2 ω )

⊇ ( relevant_impl ω [] a2 ω )∪ ( relevant_impl ω [] a2 ω )

As relevant_impl is increasing in its last argument

⊇ ( relevant_impl ω [] a2 ω )∪ ( relevant_impl ω [] a2 ωI )

As relevant_impl is decreasing in the vi si ted argument

⊇ ( relevant_impl ω [a1] a2 ω )∪ ( relevant_impl ω [] a2 ωI )

By unrolling relevant_impl on ωI

⊇ ( relevant_impl ω [a1] a2 ω )∪ (( relevant_impl ω [a2] a1 ω )− {i ′1, . . . i ′m})

⊇ (( relevant_impl ω [a1] a2 ω )∪ ( relevant_impl ω [a2] a1 ω ))− {i ′1, . . . i ′m}

As the difference between relevant_impl ω [] a1 ω and relevant_impl ω [a2] a1 ω

is the call to relevant_impl ω [a1] a2 ω .

⊆ ( relevant_impl ω [] a1 ω )− {i ′1, . . . i ′m}

= ( relevant a1 ω )− {i ′1, . . . i ′m}

The same reasoning applies for the symmetric case.

4. The other cases are straightforward by induction and mainly require to use that R does not
contain >.

Conclusion of the instantiation for cell abstraction. The completeness of a call to the instanti-
ation heuristic for cell abstraction highly depends on the context parameter, and more precisely,
on its relevant cells. The intuition is that we may have a complete call whenever the set of cells
of the abstracted array the context depends on is finite. In practice, this is safely approximated
in our instantiation heuristic by cases where > is not returned by the relevant algorithm. The
discussion on the impact on program verification is left to Chapter 6 as the result also depends on
the instantiation of combinators.

5.2 Instantiation for the foundation of the data-abstraction framework

In this section we show how to construct the instantiation heuristic for the foundation of the data-
abstraction framework, that is, the abstractions and combinators that allow us to combine and
expand theory specific abstractions. For example, in the case of the theory of arrays, using these
combinators, the instantiation heuristic for cell abstraction can be expanded into instantiation
heuristics for several interesting abstractions: abstractions of the form σCel l •σCel l •σi d to han-
dle multiple array variables and non array variables; abstractions of the form σn

Cel l •σCel l •σi d

to handle multiple cells and express invariants such as sortedness; but also abstractions such as
smashing and slicing using the composition combinator; and even more complex abstractions
such as those of Example 17 using the ⊕ combinator.

Creating abstraction heuristics for the combinators requires to use the instantiation heuristics
for the abstractions they combine. These abstraction heuristics take several parameters: P , the
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predicate being abstracted; abs, the abstraction that is used; expr , the abstracted value; and ct x,
the context. When calling the instantiation heuristic, we may need to create a new predicate to be
abstracted, adapt the abstraction abs to handle that new predicate, pass the subpart of expr that
corresponds to that abstraction, and mostly change ct x.

The main concern is preserving the completeness of the call to the instantiation heuristic: we
aim to provide instantiation heuristics for combinators such that, whenever the call to the instan-
tiation heuristics of the abstractions they combine are complete, then the call to the combinator
is also complete. The main way to achieve this is by using the correct ct x parameter in the calls
of the abstraction we combine: ct x is the parameter stating what must be kept during the trans-
formation of a possibly infinite conjunction into a finite conjunction. This may not be evident in
Equation 4.5 of the definition of a complete call to an instantiation heuristic which is not contra-
posed, but is made clear using the version of Equation 4.6 which is contraposed: the instantiation
heuristic may change var s into var s′, but that change must preserve ¬ct x. This is particularly
evident in our heuristic for Cell abstraction of Section 5.1.

In practice, to correctly combine instantiations for two abstractionσ1 andσ2, we usually need to
pick an order in which we instantiate: for example, for the pair abstraction σ1 •σ2, we can retrieve
the instantiation set for the first element of the pair using σ1 and then for the instantiation set
for the second element of the pair using σ2, or vice-versa. After picking an order, let us say σ1

before σ2, we usually need, in addition to ct x, to preserve values due to σ2 when instantiating σ1

and vice-versa: instantiation may change var s to var s′, and by doing so, the value of the second
element of the pair may be changed during the instantiation of the first.

The technique to preserve additional values is the following. If the value v to preserve is boolean,
we simply pass v → ct x as t he new context: thus using Equation 4.6 which is contraposed, we have
v → ct x which must stay false during the transformation from var s to var s′, and as ¬(v → ct x) is
equivalent to v ∧¬ct x, the valuation of v must stay true during the transformation from var s to
var s′. If the value v that needs to be preserved is not boolean, we introduce a fresh predicate Pany

and state that the boolean value Pany (v) must be kept. Thus we use as context Pany (v) → ct x.
As this must be true for all models, thus for any valuation of Pany , this ensures that the value v is
preserved.

This section is organized rather straightforwardly: we go through the abstractions and combina-
tors of the foundation of the data-abstraction framework and give the corresponding instantiation
heuristic and its proof of completeness. We remind the reader that the abstraction corresponding
to the current instantiation is given by abs(P ) and that Fσ[q] is used to handle existential quanti-
fiers in Fσ. As existential quantifiers within Fσ do not change the reasoning for our instantiations
heuristics, they are not discussed informally and are restricted to algorithms and proofs.
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5.2.1 Instantiating σi d and other finite abstractions

In this section, we give the instantiation heuristic for when abs(P ) is a finite abstraction, that is,
whenever abs(P ) is an abstraction σ such that for all a, σ(a) is finite. Among the finite abstrac-
tions, we mainly have the identity abstraction, but also many helper abstractions such as those of
Example 16.

Definition 28 (Finite abstractions). A data abstraction σ is said to be finite whenever for all a,
{(a#, q) | Fσ[q](a#, a)} is finite.

Instantiation amounts to transforming σ(a) into σ(a) ∩ I where I is the instantiation set, as
shown by Equations 4.7 and 4.8. Thus if σ(a) is finite, picking I such that σ(a) ⊆ I will enable
complete instantiation. All we need is to return a set of expression E(a) that returns such an I .
This idea is straightforward and one can use var s′ = var s of Equation 4.8. Thus, the instantiation
does not depend on the ct x parameter.

Algorithm 4 (Instantiation for σi d and other finite abstractions). Let E(a) be a set of expres-
sions such that ∀var s,�{(a#, q) | Fσ[q](a#, a)} ⊆ E(a)�var s . In the case of the identity abstraction,
E(a) = {(a, ())}.

(* If abs(P ) is finite *)
i nst sabs

P a ctx = E(a)

(* The specific case where abs(P ) =σi d *)
i nst sabs

P a ctx = {(a, ())}

Theorem 18 (Instantiation for finite abstraction). The instantiation heuristic of Algorithm 4 is com-
plete.

Proof . Introduce a,ct x. Assume ∀var s,�{(a#, q) | Fσ[q](a#, a)} ⊆ E(a)�var s . Let us
use Equation 4.6 to prove completeness. Assume the left hand side of the im-
plication where I = E(a) and let us show the right hand side with var s′ = var s.
for all (a#, q) we have, �(a#, q) ∈ I ∧Fabs(P )[q](a#, a)�var s ≡ �Fabs(P )[q](a#, a)�var s as
∀var s,�{(a#, q) | Fσ[q](a#, a)} ⊆ I �var s As this is the only difference between the left hand
side and the right hand side, we have the right hand side and the proof is finished.

5.2.2 Instantiating σ1 •σ2

In this section, we give the instantiation heuristic for when abs(P ) is the abstraction of pairs, that
is, σ1 •σ2. The main idea to create the instantiation of i nst sabs

P ((a1, a2),ct x) is to use the instanti-
ation heuristic for a1 to retrieve an instantiation set I1 and then the instantiation heuristic for a2

to retrieve a set I2 and simply use I1 × I2 as instantiation set for i nst sabs
P ((a1, a2),ct x). The goal is

that when both of those calls are complete, the call to i nst sabs
P ((a1, a2),ct x) is as well.

To call the instantiation heuristic for a1 – and similarly for a2– we need to figure out the param-
eters. We would like to use P as the predicate parameter, but this is not possible: P is not of the
right type. We thus create the new predicate P1 whose type is predicate over the type of a1. The
abstraction parameter must now account for P1 and we use abs1 which is the same as abs except
that abs1(P1) =σ1, as the abstraction for a1 is σ1. The last parameter to figure out is the context.

Let us use Equation 4.8 to understand the problem if we use ct x as the context parameter for
the calls to instantiation heuristic for a1 and a2: using the completeness of the call for a1, we will
obtain var s1 such that a1 is now instantiated by I1 and we have ¬ct x; and using the completeness
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of the call for a2, we will obtain var s2 such that a2 is now instantiated by I2 and we have ¬ct x.
The problem is that we need to unite var s1 and var s2 into to create var s′. This is not possible.

Therefore, the idea is to order our instantiations, for example, by first instantiating a1 which
gives us var s1, and then using var s1 to instantiate a2 yielding var s2. We basically need to track
three values: ct x which must stay false, a1 which starts at σ(a1) due to abstraction and is trans-
formed into σ(a1)∩ I1 after instantiation, and a2 which starts at σ(a2) due to abstraction and is
transformed into σ(a2)∩ I2 after instantiation. The following table attempts to summarize this.

Initial values After instantiation of a1 After instantiation of a2

Evaluation context var s var s1 var s2

a1 σ(a1) σ(a1)∩ I1 σ(a1)∩ I1

a2 σ(a2) σ(a2) σ(a2)∩ I2

¬ct x ¬ct x ¬ct x ¬ct x

The important thing is that each instantiation must not change the values of the other elements.
Thus, in addition to ct x,σ2 must not change during the instantiation of a1 andσ(a1)∩I1 must not
change during the instantiation of a2. The asymmetry is due to the ordering of the instantiations.
To keep those values intact, we preserve the value of a2 during the instantiation of a1 and the
values a1, I1 during the instantiation of a2. Note that this is not optimal but has the advantage of
being extremely simple and enough for all cases we have encountered. A better version would for
example use ite(Fσ(e1, a1),e1,⊥), . . . , ite(Fσ(en , a1),en ,⊥) as values to preserve for σ(a1)∩ I1, where
⊥ is any value and {e1, . . .en} = I1. The exact property for what is needed is given in the proof of
Theorem 5.

We now use the trick of modifying the context as described at the beginning of Section 5.2 to
ensure that those values are preserved, and thus we introduce two new predicates P 1

any and P 2
any

and modify abs1 and abs2 to abstract them with the identity abstraction. We formalize these ideas
in Algorithm 5 with both orders for the instantiations.

Algorithm 5 (Instantiation algorithm for the • combinator). Computation for i nst sabs
P (a,ct x)

when abs(P ) =σ1 •σ2.
We only give the left to right instantiation, but the right to left one is symmetric.

1. Create fresh predicates P1,P2,P 1
any ,P 2

any of the right type
2. Retrieve I1 using:

(a) Create abs1 such that abs1(P ′) = ite(P ′ = P1,σ1, ite(P ′ = P 1
any ,σi d , abs(P ′)))

(b) Create pr eser ve1 = a2

(c) Compute I1 = i nst sabs1
P1

(a1, (P 1
any (pr eser ve1) → ct x))

3. Retrieve I2 using:
(a) Create abs2 such that abs1(P ′) = ite(P ′ = P2,σ2, ite(P ′ = P 2

any ,σi d , abs(P ′)))
(b) Create pr eser ve2 = (a1,e1, . . . ,en) where {e1, . . . ,en} = I1

(c) Compute I2 = i nst sabs2
P2

(a2, (P 2
any (pr eser ve2) → ct x))

4. Return {((a#
1, a#

2), (q1, q2)) | (a#
1, q1) ∈ I1 ∧ (a#

2, q2) ∈ I2}

Theorem 19 (Completeness of the instantiation for the • combinator.). Let abs(P ) = σ1 •σ2, the
call to i nst sabs

P ((a1, a2),ct x) is complete whenever the calls to i nst sabs1
P1

and i nst sabs2
P2

are.

Proof . We use Equation 4.6. As this Equation has been created using contraposition, we first apply
the completeness of I2 and then of I1.

1. Introduce the left hand side of the implication and var s within it, and let us find var s′
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satisfying the right hand side. We have(∀((a#
1, a#

2), (q1, q2)) ∈ �i nst sabs
P ((a1, a2),ct x)�var s ,

�Fσ1•σ2 [(q1, q2)]((a#
1, a#

2), (a1, a2))�var s ⇒ (a#
1, a#

2) ∈ασ1•σ2 (M (P ))
)
∧¬�ct x�var s

α
Gσ

abs (M )

2. By reordering, expanding definitions and using notations of the algorithm, we get:(∀(a#
2, q2) ∈ �I2�var s ,Fσ2 [q2](a#

2,�a2�var s)

⇒ (∀(a#
1, q1) ∈ �I1�var s ,Fσ1 [q1](a#

1,�a1�var s) ⇒ (a#
1, a#

2) ∈ασ1•σ2 (M (P )))
)

∧¬�ct x�var s
α

Gσ
abs (M )

3. We use the completeness of I2 to remove the instantiation and obtain var s2 such that:(∀(a#
2, q2),Fσ2 [q2](a#

2,�a2�var s2 )

⇒ (∀(a#
1, q1) ∈ �I1�var s2 ,Fσ1 [q1](a#

1,�a1�var s2 ) ⇒ (a#
1, a#

2) ∈ασ1•σ2 (M (P )))
)

∧¬�ct x�var s2

α
Gσ

abs (M )

Proof:
(a) The Formula of Step 2 of this proof can be rewritten as:(∀(a#

2, q2) ∈ �I2�var s ,Fσ2 [q2](a#
2,�a2�var s)

⇒ a#
2 ∈ {x | ∀(a#

1, q1) ∈ �I1�var s ,Fσ1 [q1](a#
1,�a1�var s) ⇒ (a#

1, x) ∈ασ1•σ2 (M (P ))}
)

∧¬�ct x�var s
α

Gσ
abs (M )

(b) Which can be rewritten as(∀(a#
2, q2) ∈ �I2�var s ,Fσ2 [q2](a#

2,�a2�var s)

⇒ a#
2 ∈ασ2 ({x | ∀(a#

1, q1) ∈ �I1�var s ,Fσ1 [q1](a#
1,�a1�var s) ⇒ (a#

1, x) ∈ασ1•σi d (M (P ))})
)

∧¬�ct x�var s
α

Gσ
abs (M )

(c) Let M2 such that:
i. M2(P2) = {x | ∀(a#

1, q1) ∈ �I1�var s ,Fσ1 [q1](a#
1,�a1�var s) ⇒ (a#

1, x) ∈ασ1•σi d (M (P ))}
ii. M2(P 2

any ) = {�pr eser ve_2�var s}
iii. Otherwise M2(X ) =M (X )

(d) Rewriting using M2 yields (as P2 and P 2
any do not appear in ct x):(∀(a#

2, q2) ∈ �I2�var s ,Fσ2 [q2](a#
2,�a2�var s) ⇒ a#

2 ∈ασ2 (M2(P2))
)∧¬�ct x�var s

α
Gσ

abs2 (M2)

(e) Using that we have �P 2
any (pr eser ve_2)�var s

α
Gσ

abs2 (M2) by definition of M2(P 2
any ).(∀(a#

2, q2) ∈ �I2�var s ,Fσ2 [q2](a#
2,�a2�var s) ⇒ a#

2 ∈ασ2 (M2(P2))
)

∧¬�P 2
any (pr eser ve_2) → ct x�var s

α
Gσ

abs2 (M2)

(f) We can now apply the completeness of the call to I2 for M2 which yields var s2 such
that(∀(a#

2, q2),Fσ2 [q2](a#
2,�a2�var s2 ) ⇒ a#

2 ∈ασ2 (M2(P2))
)

∧¬�P 2
any (pr eser ve_2) → ct x�var s2

α
Gσ

abs2 (M2)
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(g) Unrolling ¬�P 2
any (pr eser ve_2) → ct x� gives us(∀(a#

2, q2),Fσ2 [q2](a#
2,�a2�var s2 ) ⇒ a#

2 ∈ασ2 (M2(P2))
)

∧�P 2
any (pr eser ve_2)�var s2

α
Gσ

abs2 (M2) ∧¬�ct x�var s2

α
Gσ

abs2 (M2)

(h) Expanding M2(P2) gives us:(∀(a#
2, q2),Fσ2 [q2](a#

2,�a2�var s2 )

⇒ a#
2 ∈ασ2 ({x | ∀(a#

1, q1) ∈ �I1�var s ,Fσ1 [q1](a#
1,�a1�var s) ⇒ (a#

1, x) ∈ασ1•σi d (M (P ))})
)

∧�P 2
any (pr eser ve_2)�var s2

α
Gσ

abs2 (M2) ∧¬�ct x�var s2

α
Gσ

abs2 (M2)

(i) But �P 2
any (pr eser ve_2)�var s2

α
Gσ

abs2 (M2) means that �pr eser ve_2�var s2 = �pr eser ve_2�var s

by construction of M2(P 2
any ).

Thus, ∀(a#
1, q1) ∈ �I1�var s ,Fσ1 [q1](a#

1,�a1�var s) is identical to ∀(a#
1, q1) ∈

�I1�var s2 ,Fσ1 [q1](a#
1,�a1�var s2 ) by definition of pr eser ve_2.

(j) Using that fact and removing �P 2
any (pr eser ve_2)�var s2

α
Gσ

abs2 (M2) means that we have:(∀(a#
2, q2),Fσ2 [q2](a#

2,�a2�var s2 )

⇒ a#
2 ∈ασ2 ({x | ∀(a#

1, q1) ∈ �I1�var s2 ,Fσ1 [q1](a#
1,�a1�var s2 ) ⇒ (a#

1, x) ∈ασ1•σi d (M (P ))})
)

∧¬�ct x�var s2

α
Gσ

abs2 (M2)

(k) Reversing Step 3b gives us:(∀(a#
2, q2),Fσ2 [q2](a#

2,�a2�var s2 )

⇒∀(a#
1, q1) ∈ �I1�var s2 ,Fσ1 [q1](a#

1,�a1�var s2 ) ⇒ (a#
1, a#

2) ∈ασ1•σ2 (M (P ))
)

∧¬�ct x�var s2

α
Gσ

abs (M )

Which is the desired result!
4. Similarly, we use the completeness of I1 to remove the instantiation and obtain var s1 such

that: (∀(a#
2, q2),Fσ2 [q2](a#

2,�a2�var s1 )

⇒ (∀(a#
1, q1),Fσ1 [q1](a#

1,�a1�var s1 ) ⇒ (a#
1, a#

2) ∈ασ1•σ2 (M (P )))
)

∧¬�ct x�var s1

α
Gσ

abs (M )

To prove this, follow the proof of Step 3 with the roles reversed.
5. Renaming var s1 into var s′ and reversing Step 2, we obtain the desired result, that is:(∀((a#

1, a#
2), (q1, q2)),

�Fσ1•σ2 [(q1, q2)]((a#
1, a#

2), (a1, a2))�var s′ ⇒ (a#
1, a#

2) ∈ασ1•σ2 (M (P ))
)
∧¬�ct x�var s′

α
Gσ

abs (M )

5.2.3 Instantiating the ¯ combinator

In this section, we give the instantiation heuristic for when abs(P ) is a composition of two ab-
stractions, that is, σ2 ¯σ1. The simplest way to construct the result of i nst sabs

P (a,ct x) is simply
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by running the data-abstraction algorithm with σ1 on the clause P (a) → ct x, yielding clauses C1,
then rerunning the data-abstraction algorithm with σ2 and C2 and finally rewriting C2 so that it
corresponds to a single run of the data-abstraction algorithm with the right instantiation set for
σ2 ¯σ1.

In this approach, we first call i nst sabs1
P (a,ct x) where abs1 is the modification of abs such that

abs1(P ) =σ1. This yields an instantiation set for I1. After the call to el i mi nate, the output clause
has multiple instances of the predicate P , one for each i # ∈ I1. These instances are ordered and,
as we do not use parallel instantiation, this order matters for the second run of the el i mi nate al-
gorithm: all orders work but yield different calls to the instantiation heuristic. The context of each
call is now huge as all other instances need to be passed into context, with the previous instances
being instantiated and the others not. The generated context for the calls is fairly horrible and has
been hidden for readability from Algorithm 6 by creating a variable I NV whose value is given in
the proof of Theorem 20.

The main difficulty is that the el i mi nate algorithm assumes the clauses to be normalized which
is not the case after the first run of the data-abstraction algorithm. Therefore, one needs to do
as if we had normalized the clause into several clauses, instantiated each one of them and then
managed to group back the clauses. This process is mainly syntactical and is not of great interest.

We prove the completeness result in Theorem 20. One of the major difficulties is correctly man-
aging the abstractions and in this version, we managed to remove all hypotheses, unlike the result
of our previous paper [BGM21]. In that version, we skipped Step 3.4 of the proof and required an
additional assumption.

Algorithm 6 (Instantiation algorithm for the ¯ combinator). Computation for i nst sabs
P (a,ct x)

when abs(P ) =σ2 ¯σ1.
1. Retrieve I1, the result of instantiation with σ1

(a) Create abs1 such that ∀P ′, abs1(P ′) = ite(P ′ = P,σ1, abs(P ′))
(b) Compute I1 = i nst sabs1

P (a,ct x)
2. Let I l

1 = I1.
3. Order I l

1
4. Create a new predicate P ′

5. While I l
1 6= ;

(a) Let (i , q) = mi n I l
1

(b) I l
1−= (i , q)

(c) Let I NVpr og be I NV of the proof of Theorem 20 where a# ∈α2 ◦α1(M (P )) is replaced by
P ′(a#).

(d) Let abs2(X ) = ite(X = P ′,σ2, abs(X ))
(e) I i

2 = i nst sabs2
P ′ (i , I NVpr og → ct x)

6. Return {(a#, (i #, q1, q2)) | (i #, q1) ∈ I1 ∧ (a#, q2) ∈ I i #

2 }

Theorem 20 (Completeness of the instantiation for the ¯ combinator.). Let abs(P ) =σ2 ¯σ1, the
call to i nst sabs

P (a,ct x) of Algorithm 6 is complete whenever all its calls to the instantiation heuristic
are.

Proof . We use the definition of completeness without contraposition of Equation 4.5 for the main
steps of the proof which we decompose in the following steps. Steps 3 and 4 are proven as separate
parts and use the definition of completeness of Equation 4.6.

1. Introduce M and assume

∀var s,�∀(a#, (i #, q1, q2)),Fσ2◦σ1 (a#, a) ⇒ a# ∈ασ2¯σ1 (M (P ))�var s ⇒�ct x�var s
α

Gσ
abs (M )
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2. Reorder and expand to obtain:

∀var s,�∀(i #, q1),∀(a#, q2), (Fσ1 [q1](i #, a)∧Fσ2 [q2](a#, i #)) ⇒ a# ∈ασ2 ◦ασ1 (M (P ))�var s

⇒ �ct x�var s
α

Gσ
abs (M )

3. Using the completeness of the call yielding I1, we have:

∀var s,�∀(i #, q1) ∈ I1,∀(a#, q2), (Fσ1 [q1](i #, a)∧Fσ2 [q2](a#, i #)) ⇒ a# ∈ασ2 ◦ασ1 (M (P ))�var s

⇒ �ct x�var s
α

Gσ
abs (M )

4. Using the completeness of the calls yielding I i
2 we show the following while loop invariant:

∀var s,
(�∀(i #, q1) ∈ I l

1,∀(a#, q2), (Fσ1 [q1](i #, a)∧Fσ2 [q2](a#, i #)) ⇒ a# ∈ασ2 ◦ασ1 (M (P ))�var s

∧�∀(i #, q1) ∈ I1−I l
1,∀(a#, q2) ∈ I i #

2 , (Fσ1 [q1](i #, a)∧Fσ2 [q2](a#, i #)) ⇒ a# ∈ασ2◦ασ1 (M (P ))�var s)
⇒ �ct x�var s

α
Gσ

abs (M )

5. Thus, as I l
1 =; at loop exit, we have:

∀var s,�∀(i #, q1) ∈ I1,∀(a#, q2) ∈ I i #

2 , (Fσ1 [q1](i #, a)∧Fσ2 [q2](a#, i #)) ⇒ a# ∈ασ2◦ασ1 (M (P ))�var s

⇒ �ct x�var s
α

Gσ
abs (M )

6. Which is the desired result:

∀var s,�∀(a#, (i #, q1, q2)) ∈ i nst sabs
P (a,ct x),Fσ2¯σ1 (a#, a) ⇒ a# ∈ασ2¯σ1 (M (P ))�var s

⇒ �ct x�var s
α

Gσ
abs (M )

Proof of Step 3
3.1 From Step 2, we have

∀var s,�∀(i #, q1),∀(a#, q2), (Fσ1 [q1](i #, a)∧Fσ2 [q2](a#, i #)) ⇒ a# ∈ασ2 ◦ασ1 (M (P ))�var s

⇒ �ct x�var s
α

Gσ
abs (M )

3.2 Which we can rewrite into

∀var s,�∀(i #, q1),Fσ1 [q1](i #, a) ⇒ i # ∈ {x | ∀(a#, q2),Fσ2 [q2](a#, x) ⇒ a# ∈ασ2◦ασ1 (M (P ))�}var s

⇒ �ct x�var s
α

Gσ
abs (M )

3.3 But {x | ∀(a#, q2),Fσ2 [q2](a#, x) ⇒ a# ∈ασ2 ◦ασ1 (M (P ))} is simply γσ2 ◦ασ2 ◦ασ1 (M (P )). Proof:

{x | ∀(a#, q2),Fσ2 [q2](a#, x) ⇒ a# ∈ασ2 ◦ασ1 (M (P ))}

= {x | ∀a#,Fσ2 (a#, x) ⇒ a# ∈ασ2 ◦ασ1 (M (P ))}

= {x | σ2(x) ⊆ασ2 ◦ασ1 (M (P ))}

= {x | x ∈ γσ2 ◦ασ2 ◦ασ1 (M (P ))}

= γσ2 ◦ασ2 ◦ασ1 (M (P ))

3.4 But γσ2 ◦ασ2 ◦ασ1 (M (P )) =α1(M (P )). Proof:

γσ2 ◦ασ2 ◦ασ1 (M (P )) =ασ1 (M (P ))

≡ασ2 ◦ασ1 (M (P )) =ασ2 ◦ασ1 (M (P )) Using item 3 of Definition 8

≡ tr ue
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3.5 Thus we have:

∀var s,�∀(i #, q1),Fσ1 [q1](i #, a) ⇒ i # ∈ασ1 (M (P ))�var s ⇒�ct x�var s
α

Gσ
abs (M )

3.6 Applying the completeness of the call to I1 yields:

∀var s,�∀(i #, q1) ∈ I1,Fσ1 [q1](i #, a) ⇒ i # ∈ασ1 (M (P ))�var s ⇒�ct x�var s
α

Gσ
abs (M )

3.7 Doing the rewrite of Steps 5 and 2 in reverse yields the desired result:

∀var s,�∀(i #, q1) ∈ I1,∀(a#, q2), (Fσ1 [q1](i #, a)∧Fσ2 [q2](a#, i #)) ⇒ a# ∈ασ2 ◦ασ1 (M (P ))�var s

⇒ �ct x�var s
α

Gσ
abs (M )

Proof of Step 4
4.1 Let I NV be the following, where (i , q) ∉ I l

1

∀(i #, q1) ∈ I l
1,∀(a#, q2), (Fσ1 [q1](i #, a)∧Fσ2 [q2](a#, i #)) ⇒ a# ∈ασ2 ◦ασ1 (M (P ))

∧∀(i #, q1) ∈ I1−I l
1−(i , q),∀(a#, q2) ∈ I i #

2 , (Fσ1 [q1](i #, a)∧Fσ2 [q2](a#, i #)) ⇒ a# ∈ασ2◦ασ1 (M (P ))

4.2 Proving the invariant amounts to assuming

∀var s,�I NV ∧∀(a#, q2), (Fσ1 [q](i , a)∧Fσ2 [q2](a#, i )) ⇒ a# ∈ασ2 ◦ασ1 (M (P ))�var s

⇒ �ct x�var s
α

Gσ
abs (M )

and proving

∀var s,�I NV ∧∀(a#, q2) ∈ I i
2, (Fσ1 [q](i , a)∧Fσ2 [q2](a#, i )) ⇒ a# ∈ασ2 ◦ασ1 (M (P ))�var s

⇒ �ct x�var s
α

Gσ
abs (M )

4.3 Reason by contraposition, and assume that there exists var s such that

�I NV ∧∀(a#, q2) ∈ I i
2, (Fσ1 [q](i , a)∧Fσ2 [q2](a#, i )) ⇒ a# ∈ασ2 ◦ασ1 (M (P ))�var s

∧¬�ct x�var s
α

Gσ
abs (M )

4.4 If �Fσ1 [q](i , a)�var s ≡ f al se, we directly obtain the result of Step 4.10 with var s′ = var s. Let
us continue with �Fσ1 [q](i , a)�var s ≡ tr ue

4.5 We thus have

�∀(a#, q2) ∈ I i
2,Fσ2 [q2](a#, i ) ⇒ a# ∈ασ2 ◦ασ1 (M (P ))�var s ∧¬�ct x�var s

α
Gσ

abs (M )

4.6 Let M ′ be the model such that:
(a) M ′(P ′) = {ασ1 (M (P ))}
(b) Otherwise M ′(X ) =M (X )

4.7 Using the definition of M ′(P ′) and the fact we have �I NV �var s from Step 4.3, we have
�I NVpr og �var s

α
Gσ

absi
2

(M ′). Thus, we have

�∀(a#, q2) ∈ I i
2,Fσ2 [q2](a#, i ) ⇒ a# ∈ασ2 (M ′(P ′))�var s

∧¬�I NVpr og → ct x�var s
α

Gσ
absi

2
(M ′)

4.8 Using the completeness of the call yielding I i
2, we have var s′ such that:

�∀(a#, q2),Fσ2 [q2](a#, i ) ⇒ a# ∈ασ2 (M ′(P ′))�var s′

∧¬�I NVpr og → ct x�var s′
α

Gσ
absi

2
(M ′)
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4.9 We thus have, �I NVpr og �var s′
α

Gσ
absi

2
(M ′), Thus, we have �I NV �var s′ .

4.10 We thus have, unwinding the definition of M ′

�I NV ∧∀(a#, q2), (Fσ1 [q](i , a)∧Fσ2 [q2](a#, i )) ⇒ a# ∈ασ2 ◦ασ1 (M (P ))�var s′

∧¬�ct x�var s′
α

Gσ
abs (M )

4.11 Reversing the initial steps (mainly contraposition), we obtain the desired result:

∀var s′,�I NV ∧∀(a#, q2) ∈ I i
2, (Fσ1 [q](i , a)∧Fσ2 [q2](a#, i )) ⇒ a# ∈ασ2 ◦ασ1 (M (P ))�var s′

⇒ �ct x�var s′
α

Gσ
abs (M )

5.2.4 Instantiating the ⊗ combinator

In this section, we give the instantiation heuristic for when abs(P ) is a product of two abstrac-
tions, that is, σ1 ⊗σ2. The simplest way to construct the result of i nst sabs

P (a,ct x) is to view it as

i nst sabs′
P ((a, a),ct x), where abs′(P ) = σ1 •σ2: the product combinator abstracts a single element

by a pair and keeps links between them. This is similar to abstracting a pair of two identical ele-
ments. This is how our algorithm is defined.

Expanding this definition means that we use the instantiation set I1 × I2 where I1 is the instan-
tiation set for a with abstraction σ1 and I1 is the instantiation set for a with abstraction σ2. The
computation of the values that need to be preserved are σ(a) during the first instantiation and
σ(a)∩ I1 during the second.

This approach can be refined in the case of the power combinator used to construct σn
Cel l ≡

σCel l ⊗ . . .⊗σCel l , n times. We thus refine the instantiation set for σ1 ⊗σ2 in the specific case of
σ1 = σ2, that we simply call σ. If we name I the instantiation of a with σ, we simply return I × I
without requiring any values to be preserved.

Algorithm 7 (Instantiation algorithm for the ⊗ combinator).

Listing 5.7 – The general case where abs(P ) =σ1 ⊗σ2

let i nst sabs
P a ctx =

let P’ = new_predicate () in
let abs ’ = fun X → if X = P’ then σ1 •σ2 else abs(X) in

i nst sabs′
P ′ ((a, a),ct x)

Listing 5.8 – The specific case where abs(P ) =σ⊗σ
let i nst sabs

P a ctx =
let abs ’ = fun X → if X = P then σ else abs(X) in

let I = i nst sabs′
P (a,ct x)

(* We basically return I × I *)
concat_map (fun (a#

1,q_1) → map (fun (a#
2,q_2) → (((a#

1 , a#
2), (q_1 , q_2))) I) I

Theorem 21 (Completeness of the instantiation for the ⊗ combinator.). Let abs(P ) =σ1 ⊗σ2, the
call to i nst sabs

P ((a,ct x) of Algorithm 7 is complete whenever all its calls to the instantiation heuris-
tic are.
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Proof of the general case. This proof is not of any interest and a simple unrolling of the definitions
of both completeness call yields the desired result.

Proof of the specific case. For simplicity, consider Equation 4.7. The proof for the case with quan-
tifiers with Fσ relies on the same result.

We have:
1. σ⊗σ(a) ≡σ(a)×σ(a)
2. ασ⊗σ(M (P )) =ασ(M (P ))×ασ(M (P ))
3. But σ(a)×σ(a) ⊆ασ(M (P ))×ασ(M (P )) is equivalent to: σ(a) ⊆ασ(M (P ))
4. Thus, σ⊗σ(a) ⊆ασ⊗σ(M (P )) is equivalent to σ(a) ⊆ασ(M (P ))
5. Using the same principle forσ(a)∩I ′, where I×I is the instantiation set returned by i nst sabs

P
and I ′×I ′ is its equivalent with the notations of Equation 4.7, we have: ((σ⊗σ(a))∩(I ′×I ′)) ⊆
ασ⊗σ(M (P )) is equivalent to (σ(a)∩ I ′) ⊆ασ(M (P ))

6. We have thus transformed both parts of Equation 4.7 for abs into their counterpart for abs′,
which is assumed complete. The proof is finished.

5.2.5 Instantiating the ⊕ combinator

In this section, we give the instantiation heuristic for when abs(P ) is a sum of two abstractions,
that is, σ1 ⊕σ2. The simplest way to construct the result of i nst sabs

P (a,ct x) is to view σ1 ⊕σ2(a)
as sometimes σ1(a) and sometimes σ2(a). Thus, we simply instantiate with the instantiation set
for σ1 when is should be viewed as σ1(a) and with the instantiation set for σ2 when it should be
viewed as σ2.

Algorithm 8 (Instantiation algorithm for the⊕ combinator).

let i nst sabs
P a ctx =

let (P_1 , P_2) = new_predicates () in
let abs_1 = fun X → if X = P_1 then σ1 else abs(X) in
let abs_2 = fun X → if X = P_2 then σ2 else abs(X) in

let I_1 = i nst sabs1
P1

(a,ct x) in

let I_2 = i nst sabs2
P2

(a,ct x) in

(* We basically return {T1(x) | x ∈ I1}∪ {T2(x) | x ∈ I2} *)
(map (fun (a#

1 , q1) → (T1(a#
1), (T ′

1(q1)))) I_1) @
(map (fun (a#

2 , q2) → (T2(a#
2), (T ′

2(q2)))) I_2)

Theorem 22 (Completeness of the instantiation for the ⊕ combinator.). Let abs(P ) =σ1 ⊕σ2, the
call to i nst sabs

P ((a,ct x) of Algorithm 7 is complete whenever all its calls to the instantiation heuris-
tic are.

Proof . This proof is not of any interest and a simple unrolling of the definitions of all complete-
ness call yields the desired result.

Overview and contribution within this chapter

In this chapter we constructed instantiation heuristics for cell abstraction and for the combinators
of the data-abstraction framework. Combining them gives us a full instantiation heuristic that we
can use for the programs of Chapter 2 and Chapter 3.
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The main concern is whether this definition of the instantiation heuristic allows its calls to be
complete. In the case of the combinators, it only depends on whether the abstractions they com-
bine are complete for a specific context whereas for cell abstraction, it all depends on the concept
of what we call relevant cells. Thus in practice not all instantiations are complete and the impact
on programs will be discussed in Chapter 6.

The main contributions of this chapter are:
1. Showing that existing techniques can be expressed as specific instances of an instantiation

heuristic.
2. Proving the completeness of the [MG16] heuristic.
3. Showing that the completeness of the instantiation heuristic for cell abstraction depends on

a concept called relevant cells.
4. Constructing the instantiation heuristic for cell abstraction using this concept. A big im-

provement compared to existing techniques [BMR13; MA15; MG16] and previous iterations
of this framework is the handling of array equalities [BG20; BGM21]. This is non-trivial as
array equalities involve an unbounded number of cells.

5. The construction of the instantiation heuristic for combinators such that completeness of
calls is preserved. Capturing the correct context and proving that completeness is preserved
is non-trivial and requires precise proof technique: the previous iteration [BGM21] had ad-
ditional hypothesis for the ¯ combinator due to a missing idea within the proof.
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6 Theoretical contribution: impact on program
verification

Our scheme to verify safety properties of programs consists in first transforming programs into
Horn clauses, then simplifying the unbounded data-structures of our Horn clauses using the data-
abstraction framework, and finally solving them using a Horn clause solver. The theoretical con-
tribution of this manuscript is the simplification process which is parameterized by a user-chosen
abstraction. One of the main focuses of this manuscript is to ensure that the data-abstraction
framework algorithm does not over-approximate the simplification induced by the abstraction
but exactly implements it.

In Chapter 3 we showed that if the data-abstraction framework algorithm implements the ab-
straction, then the Horn clauses constructed from a broad class of container algorithms could be
automatically simplified. Thus, the main issue is writing the data-abstraction framework algo-
rithm so that it implements the abstraction for the clauses encoding the programs we consider.

For a given abstraction, the implements the abstraction property of Chapter 3 classifies pro-
grams into two categories. The first category is programs that we say are properly handled, that
is, programs for which the data-abstraction framework algorithm implements the abstraction on
the set of Horn clauses that encode its verification problem, as described in Chapter 2. We hope to
prove that the container algorithms of Chapter 3 belong to that category of programs. The second
category is programs that we say are improperly handled, that is, programs for which the data-
abstraction framework algorithm may fail to implement the abstraction on the set of Horn clauses
that encode its verification problem.

Although the data-abstraction framework does not implement the abstraction on improperly
handled programs, they may still be simplified by the data-abstraction algorithm and used for
static verification purposes: soundness is still ensured and the only drawback is that the framework
may over-simplify as the relative completeness property may be loss. In many ways, for improperly
handled programs, the data-abstraction framework behaves like many other techniques: there is
no theoretical guarantee of how well it performs and one should use an experimental evaluation
to conclude.

However, properly handled programs have the additional property that if our verification scheme
fails to certify them, then the issue is not within the simplification due to the data-abstraction al-
gorithm. It is either that the program itself is buggy, or that the user-chosen abstraction was not
adapted, or that the back-end Horn clause solver was not powerful enough. Thus, if we prove that
the container algorithms of Chapter 3 belong to properly handled programs, and we assume we
have a perfect Horn solver for Horn clauses without data-structure invariants, then these algo-
rithms can be automatically proven.

As the data-abstraction algorithm operates on each clause independently, the characterization
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of properly and improperly handled programs depends on the individual Horn clauses that en-
code them. We thus extend the notion of properly and improperly handled to Horn clauses (re-
spectively program instructions), in such a way that programs that only contain properly handled
Horn clauses in their encoding instructions (respectively program instructions) are properly han-
dled.

Furthermore, the notion of properly or improperly handled depends on the abstraction. In this
manuscript, we focused on arrays and mainly abstractions that can be constructed by σCel l ab-
straction. In this chapter, we aim to classify program instructions on whether they are properly or
improperly handled for such abstractions.

In Section 6.1, we attempt to characterize the Horn clauses that are currently properly and im-
properly handled. In Section 6.2, we use the characterization of Section 6.1 to help characterize
program instructions that are currently properly and improperly handled. We show that this char-
acterization is not sufficient and improve on it. Then, in Section 6.3, we give possible extensions of
our current verification scheme such that additional program instructions may be properly han-
dled. Finally, in Section 6.4, we summarize for each type of program instruction the possible ex-
tensions that we believe are required to properly handle them.

6.1 Classifying the current handling of Horn clauses

In Section 4.3 we showed that Horn clauses that are properly handled correspond to clauses for
which all calls to i nst s are complete. The completeness of a call to i nst s depends on whether the
relevant algorithm of Listing 5.6 on page 102 returns a set containing >. Thus, the set of Horn

clauses that are properly handled, can just be defined as the set of clauses for which no calls to
relevant returns a set containing the element >.

Although this definition of the clauses we properly handle – i.e. Horn clauses for which no call
to relevant returns a set containing the element > – is not practical to work with, our attempts to
characterize those Horn clauses differently lead to a huge non-readable definition. Thus, in this
section we opt to give an intuition of that set by using examples.

In this section, we limit our discussion to abstractions that abstract tuples with the • combinator
where each individual element is abstracted by σi d if the element is not of array type and σn

Cel l if
the element is of array type. These abstractions represent the main current use of our framework
and the discussion for these abstractions should develop enough intuition for the other abstrac-
tions.

Furthermore, this discussion can be simplified by only considering σ1
Cel l instead of σn

Cel l : this is
because the only difference between i nst s for σ1

Cel l and σn
Cel l , as witnessed in Algorithm 7, is the

abs parameter which is unused in the relevant algorithm.
Let us now classify the Horn clauses depending on whether they generate a call to relevant that

returns a set containing >.
1. For Start Horn clauses, that is, Horn clauses with no predicates in their premises, there are

no calls to i nst s, thus, there are no calls to relevant that return a set containing >. An
example of such a clause is sor ted(a) → P (a).

2. For Horn clauses that use, in a manner that is linked to an array expression used in a predi-
cate within the premises, quantifiers or array theory constructors that are not reads, writes
or equalities, relevant may return a set containing >: currently the relevant algorithm is
not made to handle such cases.
Examples of such clauses are P (a)∧ sor ted(a) → P ′(a), P (a)∧ (∀i ,b[i ] = a[i +1]) → P ′(b),
P (a,n)∧BoundE q(a,b,0,n) → P ′(b), . . . However, this is not the case for
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P (a)∧BoundE q(b,Const Ar r ay(0),0,n) → P ′(b) as in this case the use of BoundE q
and Const Ar r ay are not linked to a.

3. For Horn clauses that constrain an infinite number of cells of an array in two different ways
in the premises, relevant may return a set containing >: there is no finite relevant set of
cells. The main cases where this occurs either by using quantifiers or complex array theory
operations, or more simply, when two similar array expressions are used as parameters to
predicates in the premises.
Examples of such clauses are P (a,b)∧a = b ∧a[i ] = 0 → P ′(a),
P (a)∧F (a,b) → P ′(b), P (a, a[i ← 3])∧a[i ] = 0 → P ′(a) , P (a)∧ sor ted(a) → P ′(a),
. . . but not P (a)∧a = b ∧a[i ] = 0 → P ′(a), P (a)∧F (b) → P ′(b) or
P (a, i , v)∧a′ = a[i ← v]∧a[i ] = 0 → P ′(a′).
In the latter case, the array equality a′ = a[i ← v] does not constrain the cells of a as the cells
of a′ are not constrained elsewhere in the premises; it is only used as a way to define a′.

6.2 Classifying the current handling of program instructions

In this section, the goal is to classify programs that are properly handled and programs that are
not.

A naive approach to this problem consists in using the discussion of Section 2.3 which links
categories of program instructions to types of Horn clauses and combine it with the results of
Section 6.1. This yields Table 6.1 that reproduces Table 2.3 and provides, for each category of
instructions, our first understanding of whether these types of program instructions are properly
handled.

However, we believe the results of Table 6.1 can be refined: the classification of Horn clauses
used in that table does not correctly capture the specificity of the clauses generated from pro-
grams. Thus, in this section, we revisit some of these results. The final results are available in Table
6.2.

Table 6.1 – Naive understanding of the current handling of program operations

Category Example Type Handled#

Simple prg transitions Loop block of merge_sorted linear, basic No1

Complex prg transitions b = sub_array(a, 0, middle) linear, complex No

Program point verification assert(sorted(res)); linear, assert, complex No2

Function verification Verifying merge_sorted linear, start, complex Yes*

linear, assert, complex No
Inline function call res= merge_sorted(b, c); linear, trivial No1

linear, trivial No1

Modular function call res= merge_sorted(b, c); linear, trivial No1

non-linear, trivial No
Summary function call res= merge_sorted(b, c); linear, assert, complex No2

linear, complex No

# Yes stands for properly handled and No stands for improperly handled.
1,2 These results are revised in the discussion of this section.
* A small additional discussion is provided in this section for start, complex Horn clauses.
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Revisiting the No1 results of Table 6.1. In Table 6.1, we claim not to handle clauses that are linear,
basic or even linear, trivial, and thus, even simple program transitions cannot be properly handled.
While it is true that some linear, trivial clauses, such as P (a, a) → P ′(a), are not properly handled,
we argue they do not occur in clauses generated by simple program transitions.

The clause P (a, a) → P ′(a) in fact represents the program instruction if(a==b) . . . : in the trans-
formation of programs into Horn clauses, each parameter of P represents a different program
variable. Thus, P (a, a) states that the second variable, here assumed to be named b, is equal to a.

As linear, basic Horn clauses that are not properly handled in Section 6.1 all share the property
that a is somehow linked to two different parameters of P , we believe these cases should not be
considered in the case of program instructions. This is also the case for linear, trivial clauses gen-
erated by both inline and modular function calls, and thus, all No1 results of Table 6.1 should be
updated to Yes.

Revisiting the No2 results of Table 6.1. In Table 6.1, we claim not to handle clauses that are lin-
ear, assert, complex, and thus, the verification of program points and functions cannot be prop-
erly handled. While it is true that some linear, assert, complex clauses, such as P (a, a) → e ′ and
P (a) → (∃i , a[i ] = 2), are not properly handled, we argue that they are not relevant to our programs.

First, the problem of clauses such as P (a, a) → e ′ has already been discussed in our revisiting of
the No1 results.

Secondly, assertion Horn clauses such as P (a) → (∃i , a[i ] = 2) express the safety property
∃i , a[i ] = 2. However such a property is not expressible by cell abstraction: as discussed in Sec-
tion 3.3.2, properties expressible by cell abstractions are of the form ∀k,P (k, a[k]). Furthermore
this safety property is also not expressible by abstractions created from cell-abstraction using our
combinators, that is, by abstractions discussed in this manuscript.

Thus, as this safety property is not expressible by the abstractions we consider, the transforma-
tion of this clause after the abstr act algorithm is unsatisfiable1. Thus whether or not el i mi nate
is complete for such clauses is not relevant to our current discussion.

Let us now discuss cases that correspond to safety properties expressible by the abstractions we
consider. That is, clauses of the form P (a, . . .) → (∀k1, . . . ,kn ,expr ) where expr uses only basic op-
erations. Such Horn clauses can be rewritten, while preserving semantics, into P (a, . . .) → expr , by
transforming the universal quantifiers into free variables. Such Horn clauses are properly handled,
and thus, all No2 results of Table 6.1 should be updated to Yes.

An additional discussion about start, complex clauses. Complex Horn clauses, as defined in
Chapter 2, use either additional quantifiers over non-predicate expressions or a broader theory to
manipulate arrays. During the execution of data-abstraction framework algorithm, more precisely
after the abstr act algorithm, we introduce additional quantifiers. These quantifiers are then re-
moved during the el i mi nate algorithm.

However, we do not remove quantifiers that were already present in the input clauses, as may be
the case for complex Horn clauses. These quantifiers may still be an issue for solvers although this
is not the fault of the data-abstraction framework. We explain that in most cases, after abstraction,
start, complex Horn clauses can be transformed into start, basic Horn clauses.

Similarly to our discussion for linear, assert, complex Horn clauses, the start, complex
Horn clauses that appear when using cell abstraction are expected to be of the form
(∀k1, . . . ,kn ,expr ) → P (a, . . .). As such, these Horn clauses can not be simplified. However, after

1This is not entirely true if we account for degenerate nodels such as the empty model. However, the next sentence
still holds.
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cell abstraction, they are equivalent to (∀k1, . . . ,kn ,expr ) → P #((a[ka],ka), . . .) and the quantifiers
in these clauses may be removed. This is because they belong in the array property fragment2 for
which a simplification algorithm already exists [BMS06]. Note that we gave the example for σ1

Cel l
but this also holds for σn

Cel l .
Note that this removal of quantifiers is only possible after abstraction: in

(∀k1, . . . ,kn ,expr ) → P (a, . . .), P is not abstracted and all properties about the array a can be
expressed, thus there is no complete instantiation for the quantifiers ∀k1, . . . ,kn , and the clause
cannot be simplified.

Therefore, although the data-abstraction framework properly handles start, complex Horn
clauses, we believe that one may need to apply the method of [BMS06] for current solvers to have
a real chance at solving them.

Summary of the current handling of program instructions. In Table 6.2 we provide an updated
version of Table 6.1 that takes into account our discussion. The results are much more promising
and in fact, this shows that for programs for which the function calls are inlined, only use ba-
sic array operations, and with safety properties that are expressed with universal quantifiers and
basic array operations, the simplification scheme of the data-abstraction framework successfully
implements the abstraction.

With respect to Example 14 on page 49 giving examples of container algorithms, this means the
simplification of the data-abstraction framework successfully implements the abstraction on all
of them, except fold operations and algorithms that are written recursively, as may be the case for
merge-sort, quick-sort or binary-search. However, non-recursive versions of these algorithms can
still be handled, such as the non-recursive merge sort of Listing 2.10 or the binary search program
of Listing 1.2.

However, we are still unable to properly handle programs with complex transitions, or functions
calls that are handled using either summaries or the modular approach. Thus, in the current veri-
fication scheme, the user needs to make a choice between two solutions.

1. Using only simple program transitions and inlining function calls at the cost of simplic-
ity and scalability, but with the insurance that the simplification induced by the data-
abstraction framework will implement the abstraction.

2. Using possibly complex program transitions and using scalable techniques to handle func-
tion calls at the cost of losing all relative completeness guarantees about what the data-
abstraction framework may do. As discussed at the beginning of this chapter, many verifi-
cation techniques do not provide any relative completeness guarantees and fall within this
case. Therefore, this should not be seen as back-breaking.

In the next section, we aim to discuss extensions that would enable the simplification induced
by the data-abstraction framework to implement the abstraction, even on programs containing
complex program transitions and using scalable techniques to handle function calls. The exten-
sions we discuss are mainly work in progress and should be viewed as such.

6.3 Extending the current verification scheme

The current verification scheme does not properly handle complex program transitions, function
calls using summaries, and function calls using the modular approach. We have also mainly lim-
ited our discussion to abstractions that abstract non-array variables by the identity and array vari-

2A simplified definition of that fragment is given in Definition 26 on page 90.
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Table 6.2 – Current handling of program operations after discussion

Category Example Type Handled#

Simple prg transitions Loop block of merge_sorted linear, basic Yes

Complex prg transitions b = sub_array(a, 0, middle) linear, complex No

Program point verification assert(sorted(res)); linear, assert, complex Yes
Function verification Verifying merge_sorted linear, start, complex Yes*

linear, assert, complex No
Inline function call res= merge_sorted(b, c); linear, trivial Yes

linear, trivial Yes
Modular function call res= merge_sorted(b, c); linear, trivial Yes

non-linear, trivial No
Summary function call res= merge_sorted(b, c); linear, assert, complex Yes

linear, complex No

# Yes stands for properly handled and No stands for improperly handled.
* One should probably apply the array property fragment algorithm on the clause output by the data-abstraction

algorithm if we want current solvers to handle them.

ables with σn
Cel l . In this section, we discuss how the current verification scheme may be improved

to properly handle such program instructions and how other abstractions for arrays may be han-
dled.

Currently our limitation to properly handle some Horn clauses mainly comes from the require-
ment that relevant a ω of Listing 5.6 on page 102 must return a relevant set of cells for a in ω, as
defined in Definition 27 of page 98. In the current verification scheme, this property is not only
sufficient, but also necessary3. This is a consequence of the combination of Theorem 11 on page
73 that states that all calls to i nst s must be complete and of Theorem 16 on page 98 that states
that i nst s for cell abstraction is only complete if it uses a relevant set of indices.

Thus, we only see two ways to improve on this limitation. The first consists in improving the
relevant algorithm, and the second consists in changing some of the choices of the current veri-

fication scheme.

6.3.1 Improving the relevant algorithm

The goal of relevant a ω algorithm is to return a finite set of indices for the array a that is
said relevant for the expression ω, as in Definition 27 of page 98. To improve relevant a ω , we
first need for such a finite set to exist. Let us start by showing that such finite sets may not al-
ways exist by considering two clauses: P (a)∧ cond = (∀i , a[i ] = 0) → P ′(cond), encoding the in-
struction bool cond = is_zero_initialized(a) , and P (a)∧F (a,b) → P ′(b), encoding the instruc-
tion b = f(a); . But, before we do so, let us give an intuition of what are relevant sets. Note that
the full formalization of this idea is the focus of Section 5.1. The intuition is that for an array and
a clause, saying that the call to relevant due to that clause returns a relevant set for that array
simply means that it returns all the indices of that array that are constrained in multiple ways in
the premises of the clause.

Thus, in the clause P (a)∧ cond = (∀i , a[i ] = 0) → P ′(cond), there is no finite relevant set: all cells

3Formally, it is only almost necessary as shown by the additional hypothesis of Theorems 11 and 16, but we do not
believe the almost part to leave room for improvements that have significant impact.
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of a may be constrained by P , but all cells of a are also constrained by (∀i , a[i ] = 0). Thus, a rele-
vant set would have to contain all indices and cannot be finite. In the clause P (a)∧F (a,b) → P ′(b),
a similar problem happens: all cells of a may be constrained by P , but all cells of a may also be
constrained by F (a,b): F (a,b) may imply (∀i , a[i ] = 0) depending on the M . As the set returned
by relevant must be relevant for all models, we deduce that a relevant set would have to contain
all indices and cannot be finite.

These examples aim to show that proper handling of modular function calls is not within reach
of improvements to the relevant algorithm, nor are some summary handling of function calls.
However, we will show that some summary handling of function calls, even some involving an
unbounded number of cells of an array, are within reach. Therefore, in this section, our goal tack-
les simultaneously two problems: determining the types of clauses for which a finite relevant set
exists and improving the relevant algorithm so that, whenever such a set exists, it finds it.

This goal takes very different forms depending on what we aim to improve. In Section 6.3.1.1
we aim to improve the relevant algorithm on the abstraction that abstracts non-array variables
with the identity abstraction and array variables with σn

Cel l ; whereas in Section 6.3.1.2 we show
how improvements to the relevant algorithm may enable us to handle arrays of arrays, or even
the multiset abstraction of Example 17, so that we may verify that merge sort does not alter array
contents. Finally, we discuss the consequences of such extensions in Section 6.3.1.3.

6.3.1.1 Improvements targeting cell abstraction

Currently, we believe the handling of unquantified array reads, array writes and array equalities in
the relevant a ω algorithm of Listing 5.6 on page 102 is well tackled: our intuition is that when-
ever ω only contains such operations on arrays, then the existence of a relevant set implies that
relevant returns a relevant set. Formally, such a theorem cannot be stated, mainly due to degen-

erate cases such as P (a,b)∧ ( f al se → a = b) → P ′(a). However, we believe this intuition holds.
Thus, our goal is to improve the relevant algorithm when other types of operations are

used in these clauses, mainly when these operations involve an unbounded number of cells
of the array. We start by discussing how new constructors for the theory of arrays, such as
BoundE q, Inser t ,Er ase, may be handled. Then, as these constructors may be expressed with
quantified array reads, we attempt to generalize these ideas to quantified array reads. Throughout
this process, a distinction appears between program instructions that may be properly handled
through such improvements and program instructions that cannot be properly handled through
such improvements.

The ideas of this section are mostly generalization of the hard work we have done in the
relevant algorithm for array equalities: array equalities already are a form of operation that in-

volve an unbounded number of cells!

Handling of BoundE q. Our idea to handle BoundE q(a,b, l ower,upper ) expressions within ω
in the relevant algorithm mainly comes from array equalities: BoundE q represents bounded
array equalities. Our idea is that the set returned by relevant for expressions of the form
BoundE q(a,b, lower,upper ) should be the same as for expressions of the form a = b, except
that we restrict ourselves to elements within bounds.

However, we cannot statically determine whether an expression e verifies lower ≤ e < upper :
this depends on the evaluation context for the variables of the clause. Thus, our idea to discard
e when e is not within bounds is to transform e into the expression ite(lower ≤ e < upper,e,⊥),
where ⊥ may be any value of the same type as e, but semantically represents a value that should
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not be used.
To explain how this changes the code of the relevant algorithm, let us explain what happens

for the simple equality a = b when a and b are both variables. The generalization to when a
and b are expression containing array writes follows the same process in both cases. The current
code in the relevant algorithm to handle the array equality a = b can be described as: (1) re-
trieve relevant for b (2) retrieve the relevant cells of the other parameters of the expression – here
nothing (3) return the union of both The handling we suggest in the relevant algorithm for ar-
ray equality BoundE q(a,b, lower,upper ) can be described as: (1) retrieve relevant for b (2) for
each expression e of that set, transform it into ite(lower ≤ e < upper,e,⊥) (3) retrieve the relevant
cells of the other parameters to the expression – here lower and upper (4) return the union of
both

This technique allows one to properly handle clauses such as Clause 2.2 from the merge
sort example, and thus program instructions such as Array b=sub_array(a, lower, upper);

can now be properly handled . However, it does not allow one to handle clauses such as
P (a,b,n)∧BoundE q(a,b,0,n)∧a[i ] = 0 → P ′(a) for the same reason that we could not handle
P (a,b)∧a = b ∧a[i ] = 0 → P ′(a): the array a is constrained on a possibly infinite set of cells in two
different ways, first as the first argument of P , second as the second argument of P for the cells
between 0 and n.

In many ways, array instructions such as array equalities or bounded array equali-
ties can be properly handled in program statements that create a new variable, such as
Array b=sub_array(a, lower, upper); , but not when they are used within a complex branching

statements such as if(a==sub_array(b, 0, n)) . . . , which is the bounded equality counterpart to

if(a==b) . . . . We already see a distinction of the program instructions that may be properly han-
dled through improvements to the relevant algorithm and program instructions that cannot be
properly handled through such improvements.

Handling Inser t ,Er ase, . . . We introduced BoundE q in the theory of arrays to transform
program statements such as Array b=sub_array(a, lower, upper); without needing quanti-
fiers. One may introduce Inser t ,Er ase to the theory of arrays to similar transform
statements such as a.insert(i, v); . Inser t (a, i , v) is defined as the array a′ such that
∀k, a′[k] = ite(k < i , a[k], ite(k = i , v, a[k −1])). One may do the same for Er ase.

To handle the expressions such as a′ = Inser t (a, i , v) in the relevant algorithm, the main idea
is to view them as a′[i ] = v and a′ = a with a shift in some indices. This leads to the following
additional case in the relevant algorithm for the expression a′ = Inser t (a, i , v), when a′ is the
variable in which we are interested: First retrieve relevant for a. Secondly for each expression e of
that set, transform it into ite(e < i ,e,e +1). Then retrieve the relevant cells of the other parameters
to the expression – here i and v . Finally return the i and the union of both: i is added as it is as if
we had a′[i ] = v . The case where a is the variable in which we are interested is similar except that
the shift of indices is reversed and that i does not need to be added.

Again this allows us to properly handle clauses such as P (a, i , v)∧a′ = Inser t (a, i , v) → P ′(a′, i , v)
and P (a, i , v)∧b = Inser t (a, i , v) → P ′(a,b, i , v) which respectively represent the instructions that
modifies an array using insert , and the instruction that creates a new array b from the insertion
of the element v in a. However, branching statements such as if(a==insert(b, 0, n)) . . . cannot
be properly handled for the reasons as if(a==sub_array(b, 0, n)) . . . or if(a==b) . . . cannot.

Generalizing these ideas with quantifiers. Previously, we discussed cases where program in-
structions such as a.insert(i, v); or Array b=sub_array(a, lower, upper); , were transformed
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using new theory elements such as BoundE q and Inser t . Another approach it to transform these
instructions by using only reads and writes but within additional universal quantifiers. Thus, the
translation of a.insert(i, v); would use ∀k, a′[k] = ite(k < i , a[k], ite(k = i , v, a[k −1])) instead of
a′ = Inser t (a, i , v).

The approach using quantifiers has a major advantage and a major drawback. Without quan-
tifiers, new theory constructors are created for each specific program construction, and thus re-
quire to add specific subcases in the relevant algorithm. However, each specific subcase does
not seem to be very hard to write. When using quantifiers, the relevant algorithm does not need
to be modified for each specific program construction; however, it needs to handle a general set of
quantified expressions, and this seems much harder than adding specific cases. Here, we explain
how general is the set of quantified expressions that may be tackled.

Array equality can be expressed with quantifiers as ∀k, a[k] = b[k] and is currently already han-
dled in the relevant algorithm. To handle it, the relevant algorithm for a calls relevant for b.
We now discuss how our previous ideas to extend it can be generalized.

The expression BoundE q(a,b, l ower,upper ) can be expressed with quantifiers as
∀k, (lower ≤ k < upper ) → a[k] = b[k]. To handle it, our extension to the relevant al-
gorithm mainly transforms each expression e in the set returned by relevant for b by
ite(l ower ≤ e < upper,e,⊥).

We generalize this idea to quantified expressions of the form ∀k,cond → a[k] = b[k] by trans-
forming each expression e in the set returned by relevant for b by ite(cond [k ← e],e,⊥), where
cond [k ← e] is cond where all instances of k are replaced by e.

The expression a′ = Inser t (a, i , v) can be expressed with quantifiers as
a′[i ] = v ∧ (∀k 6= i , a′[k] = a[ite(k < i ,k,k −1])]). The handling of the quantified part, that is,
∀k 6= i , a′[k] = a[ite(k < i ,k,k −1])] was handled by transforming each expression e in the set
returned by relevant for a by ite(e < i ,e,e +1). The important thing to notice is that the function
that to e associates ite(e < i ,e,e + 1) is exactly the inverse function of the function that to k
associates ite(k < i ,k,k −1]).

We thus generalize this idea to quantified expressions of the form ∀k,cond → a[k] = b[ρ], where
ρ is an expression which represents an invertible function with respect to k. For such expression,
we first transform each expression e in the set returned by relevant for b by the inverse expression
of ρ before handling cond as previously.

Furthermore, we also wish to handle expressions with quantifiers such as ∀k, a[k] = b[k]+1.
For this expression, the relevant algorithm should return the same set of indices as for
∀k, a[k] = b[k]: the difference only affects values, not indices.

We thus generalize this idea to quantified expressions of the form ∀k,cond → a[k] =φ(b[ρ]),
where φ(b[ρ]) simply denotes an expression for which the only use of k is in b[ρ].

For such expressions, the relevant algorithm should be the same as for expressions of the form
∀k,cond → a[k] = b[ρ]: first retrieve relevant for b. Secondly for each expression e of that set,
transform it with the inverse of ρ. Thirdly,for each element of that new set, transform it with
ite(cond [k ← e],e,⊥) Then retrieve the relevant cells of the other parameters to the expression
– here the expressions cond and ρ. Finally return the union of both sets.

An important restriction which may not seem obvious is that we requireφ to be invertible. This
is because ∀k, a[k] = b[k]+1 returns the result of relevant for b whereas ∀k, a[k] = 0 constrains
all indices of the array a and thus relevant must return a set containing >. Ensuring that φ is
invertible is key to avoiding such problems.

Moreover, to handle symmetric cases, we also handle quantified expressions of the form
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∀k,cond →φ′(a[ρ′]) =φ(b[ρ]). We formalize these ideas with an additional case in the relevant

algorithm of Listing 5.6 on page 102 described in Listing 6.1, where we limited ourselves to the
case where φ and φ′ are the identity: this does not change the algorithm and avoids complicating
Listing 6.1.

We believe that this extension of the relevant algorithm still satisfies Theorem 17 and that the
proof of it should be similar: this extension mainly uses the same ideas as array equalities with the
following differences:

1. Bounds are added by using the condition cond . We believe this should not affect the proof
much.

2. Index permutations are possible by using the invertible function ρ. We believe this does not
impact the proof much as in Step 3 of the proof of Theorem 17, we show that forall values of
k, the value of a[k] = b[k] is preserved. Thus, we believe that we should now state that forall
values of k, the value a[ρ′] = b[ρ] is preserved.

3. Mapping the value of b[ρ] is possible using φ and φ′. We believe this should not affect the
proof much.

Listing 6.1 – Improvement of the handling of quantifiers in Listing 5.6.

let rec relevant_impl ω visited avar expr=
if avar ∈ vi si ted then [] (*We ignore visited variables *)
else
(

match expr with
| . . .
| ∀k,cond → avar [e1] = bvar [e2]

when (is_invertible k e1) and (is_invertible k e2) ->
let relevant_b = relevant_impl ω avar :: visited bvar ω in

let inv_2 = compute_inverse_expr k e_2 in
let relevant_k = map inv_2 relevant_b in
let relevant_cond_k =

map (fun e -> ite(( replace cond k e) e ⊥))
relevant_k in

let inv_1 = compute_inverse_expr k e_1 in
let relevant_a = map inv_1 relevant_cond_k in

let relevant_from_args = concat_map (relevant_impl ω visited avar )
[cond ,e1,e2] in

relevant_a @ relevant_from_args
| . . .

)

6.3.1.2 Improvements targeting other abstractions

Handling of arrays of arrays. To abstract arrays of arrays, one probably wishes to use the ab-
straction (σi d •σCel l )¯σCel l , or a several cell variant of it.

Calls to the relevant algorithm for such abstractions yield expressions containing array equali-
ties such as a = b[i ], where a is an array. Currently, the relevant algorithm adds > to the returned
set for such expressions.

To handle this, one would want to use the technique we used for array equalities and simply call
relevant for b[i ]. However, this is not possible: b[i ] is not a variable and the array it represents
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depends on the value of i . The idea is to take the union of the relevant set of all arrays b[expr ] that
appear in the expression for some expr .

Thus, the relevant_impl algorithm is expanded to take as parameter not only the array variable
a_var , but also a depth component. This variant of the algorithm is already implemented and we

redirect the reader towards the implementation which is described in Chapter 7.
This improvement to the relevant algorithm enables one to use abstractions such as (σi d •

σCel l )¯σCel l to abstract arrays of arrays and its n cell variant.

Handling complex primitives such as multiset. In Example 17 of page 54 we discussed com-
bining cell abstractions with abstractions that use the multiset of the elements of an array so that
properties such as sorting algorithms do not change the multiset of elements expressible by the ab-
straction. The problem with such abstractions, is that the Fσ formula needs to be written in a given
theory and the constructors of that theory must be handled by relevant . We suggest adding the
constructor Mul ti set such that a = Mul ti set (b) states that ∀k, a[k] = car d{i | b[i ] = k}.

Thus, we expand the relevant algorithm to handle the relevant set for a in spe-
cific cases where expressions of the form a′ = Mul ti set (b) are used. The main idea
is that the expression a = Mul ti set (b)∧b′ = b[i ← v]∧a′ = Mul ti set (b′) can be rewritten as
a′ = ite(b[i ] = v, a, a[v ← a[v]+1][b[i ] ← a[v]−1]) and thus we only need to retrieve the relevant
set for a, which now also contains v .

We have not yet implemented this extension, but we believe that the expression passed to
relevant that arise from the abstraction of Example 17 should be within reach of variations of

this technique.

6.3.1.3 Discussion of the extensions to the relevant algorithm

Should the improved relevant algorithm and proofs of the extensions we suggest work as ex-
pected, these extensions should improve our handling of linear, complex Horn clauses and open
up possibilities for more complex abstractions, such as abstracting arrays of arrays or abstractions
using constructors such as Mul ti set .

The main discovery during these attempts to improve the relevant algorithm is that not all
linear, complex Horn clauses are the same.

For the first category of linear, complex Horn clauses, such as those generated using function
summaries by the program instructions Array b=sub_array(a, i, n); or a.insert(i, v); , there
exists a finite relevant set of cells and our improvements to the relevant aim to compute them.
We call such Horn clauses linear, complex, bound-perm-map as our understanding is that they
mainly bound conditions, permute indices, and map array contents, as shown by our extension
for quantifiers. We believe such Horn clauses correspond to function calls using summaries – or
program instructions – that create or modify existing arrays. However, unlike the basic operations
that are limited to reads and writes, they may do so on an unbounded number of cells at once: in
fact, we believe they correspond to function or instructions whose return value may be expressed
through combinations of permutations, and the functional map and filter operations, though
this remains to be proven.

For the second category of linear, complex Horn clauses, such as those generated us-
ing function summaries by the program instructions if(a==sub_array(b, 0, n)) then . . . or

if(a==insert(b, 0, n)) then . . . , but also simply bool b=(a==sub_array(b, 0, n)); , no finite rele-
vant set of cells exists and no possible improvements to the relevant algorithm may help properly
handle them. We call such clauses linear, complex, collapsing : our understanding is that these
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clauses, instead of transferring properties to another array, collapse an unbounded number of
cells into a single boolean or possibly a single integer. We believe such Horn clauses mainly cor-
respond to function calls using summaries – or program instructions – that use function calls that
return non-array values and yet involve an unbounded number of cells: in the cases previously
mentionned, a==sub_array(b, 0, n) should in fact be viewed as is_sub_array(a, b, 0, n) which
is a function returning a boolean value.

However, we are as yet unsure how complete this categorization of Horn clauses and program
instructions is. This is still work in progress and we hope future work will improve the under-
standing of what may and may not be properly handled through improvements to the relevant

algorithm. One of the main remaining questions is to what extent, if we consider only clauses with
reads, writes and quantifiers, the improvement of Listing 6.1 is from exactly computing whether a
finite relevant set exists.

6.3.2 Modifying the verification scheme

In the previous section we discussed that non-linear clauses and clauses we call linear, complex,
collapsing cannot be properly handled through improvements of the relevant algorithm. In this
section, we discuss two ways the our verification scheme may be improved for such clauses.

6.3.2.1 Passing additional information to the context

In the el i mi nate algorithm, we chose that the only information the instantiation heuristic i nst s
should have is the current clause, expressed through P,expr and ct x parameters, and the cur-
rent abstraction abs. These choices seemed to be the only sensible choice considering what we
knew at the time as other options seemed to be passing the full set of Horn clauses, or passing
no context information or, . . . However, the understanding of the type of clauses we may properly
handle, and the limits that we encounter for a complete instantiation scheme may lead to specific
improvements in this regard.

For example, in non-linear function calls such as P (a)∧F (a,b) → P ′(b), the main problem for
a complete instantiation is that when considering only this clause, we have no information about
F (a,b). Should we know that F (a,b) should in fact be a = b, then this clause could be replaced by
P (a)∧F (a,b) → P ′(b) and we could properly handle it. Our idea to pass such information to the
instantiation heuristic is by constraining the models on which the definition of the completeness
of a call to i nst s must hold. For example, the fact that F (a,b) is a = b can be expressed by only
constraining the models to those that verify M (F ) = {(a, a)}.

In fact, we have already used this technique to limit ourselves to abstract models of the form
α

Gσabs (M ), and this enabled us to construct a complete instantiation heuristic for cell abstraction
on linear, basic clauses: as discussed in Section 5.1.1, without this restriction, we would never have
been able to avoid degenerate models.

Now that we have described what we believe is the correct way to pass on additional informa-
tion to help solving complex Horn clauses, the problem of finding out what is the important in-
formation to pass on and how to generate it still remains to be explained. Finding out the type of
information that will significantly help our instantiation heuristic i nst s to be complete, without
requiring full information as in providing M (F ) = {(a, a)} is an interesting path of research we wish
to explore. As to how to compute the information that may be passed, we have two ideas.

First, predicates encoding functions calls have a specific property of the models that satisfy
them: for any input, either there exists an output or the problem is already unsatisfiable without
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analyzing the function call (i.e. a precondition is not satisfied). In practice, this means we can dis-
card models such as those that imply ∀a, a[i ] = 0 for F (a,b). We do not yet know the importance
of such additional information, but we have two reasons to believe this may have an impact. First,
one of the main problems we have encountered is the degenerate non-empty model discussed
in Section 5.1.1. Second, one of the main differences between bound-perm-map and collapsing
Horn clauses discussed in Section 6.3.1.3 is whether functions collapse the array information into
a boolean or integer. However, we do not believe this idea alone to be sufficient.

Secondly, one may ask the user or use another automated tool to provide additional information
about the models we may need to consider. For example, there may be cases where providing even
a very under-specified summary of the function may be sufficient to construct a complete call for
the heuristic i nst s.

6.3.2.2 Pre-transforming the Horn clauses

Perhaps the most effective option to properly handle more complex Horn clauses may be to simply
transform, before we use the data-abstraction framework, a set of Horn clauses that contains them
into another simpler set of Horn clauses while preserving semantics.

We have already encountered this with inlining: the inlining technique we described to handle
function calls in programs has its counterpart on Horn clauses. This inlining technique for Horn
clauses transforms non-linear Horn clauses into linear Horn clauses and has the same drawbacks:
it does not work on all sets of Horn clauses, mainly those encoding recursive functions; and the
number of Horn clauses may drastically increase.

We suggest another transformation technique to properly handle linear, complex Horn clauses,
especially those that are linear, complex, collapsing that cannot be properly handled with im-
provements to the relevant algorithm. We give an example of how to transform the linear, com-
plex, collapsing clause P (a,b,n)∧ (∀i ,0 ≤ i < n → a[i ] = b[i ]) → P ′(a,b,n) encoding the instruc-
tion if(a==sub_array(b, 0, n)) then . . . into a set of linear, basic Horn clauses.

The main idea is to encode the quantifier by simulating a loop. This yields the following set of
Horn clauses:

P (a,b,n) → P1(a,b,n,0)

P1(a,b,n, i )∧ i < n ∧a[i ] = b[i ] → P1(a,b,n, i +1)

P1(a,b,n, i )∧ i = n → P ′(a,b,n)

We believe such an approach is possible for all kinds of linear, complex Horn clauses, and thus
enables us to fully properly handle function summaries. However, we feel this approach is less
satisfying than improvements within the data-abstraction framework; though we believe it is still
much better than inlining: the number of additional Horn clauses is much smaller as we do not
embed the full function. In practice, we expect at most to generate three additonal clauses for each
function call.

This transformation still needs to be automated, even though we believe that, when limited to
quantifiers, this should not be much of an issue.

6.4 Summary of the impact on the verification of programs

In this section, we summarize the cases for which we wrote in Table 6.2 that our current verifica-
tion scheme cannot handle, that is, for which the simplification it induces may not implement the
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abstraction.
1. For Horn clauses that are linear, assert, complex, we separated them into two categories

(a) Those that are bound-perm-map such as those encoded by
b = sub_array(a, 0, middle); or a.insert(i, v); that we expect to properly handle

with the improvements to the relevant algorithm of Section 6.3.1. Thus complex
program instruction or summary handling of function calls that are used to create a
new array or modify a current array are expected to be handled by this technique.

(b) Those that are potentially collapsing such as those encoded by
if(a==sub_array(b, 0, n)) then . . . , if(a==insert(b, 0, n)) then . . . , or

bool b=(a==sub_array(b, 0, n)); . We cannot properly handle these Horn clauses
through improvements of the relevant algorithm. Thus, we mainly suggest to use a
pre-transformation of Section 6.3.2.2 that transforms such complex Horn clauses into
basic clauses. Thus complex program instruction or summary handling of function
calls are expected to be properly handled by this technique.

2. For Horn clauses that are non-linear, trivial, such as P (a)∧F (a,b) → P ′(b), they are gener-
ated by modular handling of function calls. We currently suggest to avoid them by using
inlining or function summaries; perhaps future work improving our discussion of Section
6.3.2.1 might show how passing additional information to the i nst s heuristic enables to
properly handle them.

Therefore, we currently already properly handle the non-recursive version of the merge-sort al-
gorithm using inlining and we expect to properly handle the recursive version of merge sort in the
near future by using function summaries. Furthermore, we also discussed in Section 6.3.1.2 how
the relevant algorithm may be improved to properly handle other abstractions, mainly arrays of
arrays and the multiset abstraction of Example 17. We believe that these improvements should al-
ready enable us in theory4 to verify that the non-recursive merge-sort function using inlining not
only returns a sorted array, but also keeps the contents of the array intact; however, this still needs
to be implemented and validated.

4That is, if we have a perfect Horn solver for integer problems.
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7 Data-Abstraction: experiments

In Chapters 3, 4 and 5, we presented the theoretical goals, algorithms and results of the data-
abstraction framework. Our focus has been arrays, and more specifically, properties that can
be proven using cell abstraction. The full discussion on what cell abstraction with the data-
abstraction combinators may prove can be found in Chapter 3.

One of the main concerns was whether our algorithm would allow to prove all these properties,
that is, whether it would implement the abstraction. We showed this concern was highly depen-
dent on the instantiation heuristic, that we constructed in Chapter 5, and in Chapter 6 we justified
that the instantiation heuristic handles most of the cases discussed in Chapter 3, especially the
container algorithms of Example 14.

Therefore, one expects that in practice the data-abstraction algorithm should enable us to
automate the proof of these container algorithms. To confirm our expectations, we imple-
mented the data-abstraction algorithm in 2k lines of code in Ocaml and tested it on array al-
gorithms written in a toy java language. The code of the data-abstraction algorithm is pub-
licly available at https://github.com/vaphor/DataAbstraction/ and the array example at
https://github.com/vaphor/array-benchmarks. The full toolchain is as described in the Fig-
ure 1.1 of the introduction. We submitted the full toolchain in a docker container as a artefact
for SAS21 and it has been awarded the extensible badge. The docker container is available at
https://hub.docker.com/r/jbraine/data_abstraction_benchmarks.

However, the results were not as expected on these array benchmarks. Therefore, we did not
extend the toolchain to handle more complex examples such as those discussed in Example 17 as
most of our effort has been on improving the results of these simpler examples.

In this chapter, we first explain our choice of front-end and back-end tools of our toolchain;
then we give the experimental results and argue that the problems are not created by our data-
abstraction tool; finally, we discuss how the results can be improved.

7.1 Toolchain

The toolchain is composed of three parts: a front-end that transforms programs to Horn clauses,
the data-abstraction tool and a back-end Horn clauses solver.

Front-end. Horn clauses have become quite a popular format in the last decade and we had
several possible front-end tools. Among them, we can mostly name SeaHorn, JayHorn and Vaphor
[Gur+15; Kah+16; MG16].
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The SeaHorn tool transforms the LLVM representation of a program into a set of Horn clauses.
The main drawback of SeaHorn is the use of the LLVM representation: it introduces problems
that would not arise from a natural translation from programs. For example, cells for an integer
array are indexed at the byte level in the LLVM representation. Thus, as integer span over sev-
eral bytes, any invariant about the cells of that array requires handling modulo arithmetic. This
greatly complexifies invariants and we feared the back-end solver might find the modulo arith-
metic troublesome. Other problems of using the LLVM representation are optimizations that dis-
card undefined behaviors, . . . Furthermore, SeaHorn is perhaps the most mature of the three tools
and modifying it or handling the options correctly for our purposes felt complicated. However,
SeaHorn demonstrated that it could handle the parsing and transformation of most benchmarks
of the Static Verification Competition and thus was of great interest.

The JayHorn tool was in its infancy when I started my PhD and at the time it did not yet feel
reliable enough. Furthermore, it did not handle a set of already written interesting benchmarks
and thus did not present much benefit.

The Vaphor tool implements the [MG16] transformation discussed in Section 5.1.2.1 from
pseudo java programs to Horn clauses without arrays using a version of cell abstraction. It han-
dles a set of array benchmarks very relevant to cell-abstraction as the aim of the [MG16] paper was
similar. The main advantage of this tool is that the code is small and clear enough that it can be
modified to suit our purposes, and we were familiar with the implementation.

The Vaphor tool from [MG16] seemed almost perfect as a good testing ground for our purposes
and I started modifying the implementation so that it would transform programs into Horn clauses
without the cell abstraction of [MG16]. The aim was to use this tool to figure out what was really
necessary, and perhaps later move to SeaHorn in order to have access to the SV-comp benchmarks.
In practice this latter stage was never reached as the issues we encountered made SV-comp bench-
marks unnecessary. The modification of the Vaphor tool implements basic program transforma-
tion and Listing 7.1 taken from our paper [BGM21] should demonstrate the syntax it handles. The
modified Vaphor tool is available at https://github.com/vaphor/hornconverter.

Listing 7.1 – Example program from our SAS21 paper

class array_odd{

static int i,N, v;
static int a[] ;
static void main() {

N=Support.random ();//size of array
// Initialize array to only even values
i=0;
while(i<N)
{

v = Support.random ();
a[i] = v*2;
i=i+1;

}
// Increase each element by 1
i=0;
while(i<N)
{

a[i] = a[i]+1;
i=i+1;
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}
// Assert that all elements are odd
i=0;
while(i<N)
{

assert(a[i]%2==1);
i=i+1;

}
}

}

The data-abstraction tool. We implemented the data-abstraction framework in 2k lines of
Ocaml. The code is publicly available at https://github.com/vaphor/DataAbstraction/. The
code is structured in similar fashion to how the data-abstraction framework has been described in
this PhD. The code is fully extensible with other abstractions and the way to do so is described in
the Readme of the git repository.

Back-end solver. The solver we use as back-end is Z3. Initially, Z3 was an SMT solver and was not
equipped to handle Horn clauses. However, in the last decade, Z3 has been improved to handle
many kinds of problems, including Horn clauses. One of the technique Horn solvers are based on
is counterexample-guided abstraction refinement by using Craig interpolants. For Horn clauses
the technique amounts to

• Unroll a finite execution1 of the Horn clauses.
• Solve using the a SMT solver whether there is no path leading to a failed assertion on that

finite execution. If this is not the case, we have found a counter-example for that finite exe-
cution and thus, the set of Horn clauses is not satisfiable. Otherwise, continue.

• From the proof, attempt to generalize the reason why such a path does not exists. Formally,
this is called an interpolant but more simply put, this is an invariant for that finite execution.

• Check whether that invariant is inductive, that is, works for all executions: we know it works
for that finite execution, but we need to prove it works for any execution.

• If it is, the proof is done. Otherwise, add another finite execution and hope that the inter-
polant generated from the proof of all checked finite execution is inductive.

This technique does not necessarily finish as we may never find an inductive interpolant. The key
part when using this technique is thus the generalization step. We have also considered other
solvers such as Eldarica based on possibly other techniques, but the results have been much
worse.

7.2 Experimental results

We have tested our toolchain on benchmarks mostly adapted from [MG16]. However, as discussed
in Chapter 2, one of the major differences is that we have rewritten the safety properties by us-
ing while loops instead of a random index check. Thus, unlike the [MG16] experimentation, our
benchmarks require real quantified invariants, which explains why our results are drastically dif-
ferent. These benchmarks are available at https://github.com/vaphor/array-benchmarks,
and the full executable toolchain with reproducible results is available as a Docker container at

1This is similar to unrolling loops in programs. In Horn clauses these are chain of Horn clauses that go from a given
predicate to that same predicate.
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https://hub.docker.com/r/jbraine/data_abstraction_benchmarks. Documentation on
how to use and modify these tools is available on their respective readme files.

The abstraction used on these benchmarks are σi d , σ1
Cel l for all arrays and σ2

Cel l for all arrays.
The purpose of i d is to show the results given by the back-end solver without any meaningful
transformation, and they perfectly match with what the solver outputs on the Horn clauses with-
out any transformation. The results of the solver may be Buggy, stating that the Horn clauses
are unsatisfiable; Certified, stating that the Horn clauses are satisfiable; Timeout, stating that the
time limit has been reached without an answer; Unknown, stating that the Horn solver believes
it can not solve the problem. In practice, the Unknown answer seems to occur when the solver’s
attempts to find an inductive invariant loops on the same non-inductive invariant; whereas the
Timeout answer seems to occur when the solver’s attempts to find an inductive invariant succes-
sively improves the invariant but without ever making it inductive. The results have been run with
several random seeds for the back-end solver on a desktop computer with a 10 minute time limit
and the results are summarized in Table 7.1. We do not believe the hardware or the time limit to
be of importance.

Table 7.1 – Experimental results

Example type Abstraction Result
Buggy examples all Buggy in < 2s

Expressible by Cel l 1 or Cel l 2 id mostly Unknown, sometimes Timeout
Expressible by Cel l 1 Cel l 1 or Cel l 2 mostly Timeout, sometimes Unknown

Expressible only by Cel l 2 Cel l 1 Buggy in < 2s
Expressible by Cel l 2 Cel l 2 mostly Timeout, sometimes Unknown

Our results are extremely disappointing: there is no Certified benchmark! However, we still have
the following. First, the solver returns Buggy on exactly the examples on which it should, that is,
programs that are initially bugged and programs for which we used an abstraction that cannot
express its invariants. Secondly, using the data-abstraction tool has not made results worse: the
solver already only returned Unknown or Timeout on the non-buggy examples. Thirdly, we may
see what can be considered a slight improvement: we have cases for which the solver returns
Unknown with the i d abstraction that become Timeout with Cell abstraction. Fourthly, we were
concerned about how our toolchain was so much worse than the one of [MG16], but launching
the [MG16] tool on our modified benchmarks yielded the same result. Lastly, we do not have
any wrong answer, but only answers for which the solver returns Unknown or Timeout instead of
Certified.

Our main concern was whether the data-abstraction tool was working properly. We address this
concern by checking two properties: first, that the predicates of the Horn clauses we generate are
of the appropriate type, mainly that they do not use arrays; secondly, that the generated Horn
clauses are satisfiable for the cases on which the solver returned Unknown or Timeout. If both
these properties are satisfied, this indicates that our data-abstraction tool is functioning properly
and that the problem is that the Horn clauses, even after abstraction, are still too complex for the
back-end solver.

We checked the first property by hand, and for the second property our goal was to help the
solver find a model that satisfies the generated Horn clauses, thus proving them satisfiable. Our
idea consisted in adding additional assertion clauses to the Horn problem, thus constraining the
Horn problem so that the interpolants generated by the Horn solver have a better chance of being
inductive. Note that if the Horn problem with an additional clause is satisfiable by a model, so is
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the Horn problem without the additional clause.
However, instead of writing these additional assertion clauses by hand in the Horn problem af-

ter transformation by the data-abstraction tool, we opted to automatically generate them from
hints that could be added in programs. We modified our front-end to handle such hints and in
Listing 7.2, we show how hints are written in programs and the additional clauses they generate.
These generated additional assertion clauses are added to the set of Horn clauses given to the
data-abstraction tool and are transformed by it, thus yielding abstract hints. By using hints and
playing with the random seed, we managed to prove all Unknown and Timeout answers into Cer-
tified ones; thus, our data-abstraction tool achieves its purpose, but this is not enough for current
state of the art solvers.

Listing 7.2 – Hints on the example program from our paper [BGM21]

class array_odd{

static int i,N, v;
static int a[] ;
static void main() {

N=Support.random ();//size of array
// Initialize array to only even values
i=0;
while(i<N)
{

//hint forall k, (0<=k && k<i) -> (a[k] %2 == 0);
/* If we call this program point P1, this generates the clause:

P1(a, i , N , v)∧ (0 ≤ k ∧k < i ) → a[k]%2 = 0 */

v = Support.random ();
a[i] = v*2;
i=i+1;

}
// Increase each element by 1
i=0;
while(i<N)
{

//hint forall k, (0<=k && k<i) -> (a[k] %2 == 1);
/* If we call this program point P2, this generates the clause:

P2(a, i , N , v)∧ (0 ≤ k ∧k < i ) → a[k]%2 = 1 */

a[i] = a[i]+1;
i=i+1;

}
// Assert that all elements are odd
i=0;
while(i<N)
{

//hint forall k, (0<=k && k<N) -> (a[k] %2 == 1);

/* If we call this program point P3, this generates the clause:
P3(a, i , N , v)∧ (0 ≤ k ∧k < N ) → a[k]%2 = 1 */

assert(a[i]%2==1);
i=i+1;

}
}

}
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7.3 Improving the results

Even though we showed that the data-abstraction tool experimentally achieves its purpose, this
does not enable the automatic verification of even simple array programs. The cause is the back-
end solver, and in our implementation of the data-abstraction tool, we have attempted to improve
the generated Horn clauses so that the solver may succeed in the following ways:

Fully removing arrays. In our generated Horn clauses, predicates do not have any array argu-
ments as those have been abstracted. However, clauses still use arrays to express the abstract
transition relation. In theory, such arrays should not impact the Horn solver much: the steps used
by Horn solvers based on counterexample-guided abstraction refinement using Craig interpolants
can be reproduced with these arrays as the SMT solver handles the array theory.

However, we were unsure whether the generalization step currently handles such arrays cor-
rectly and we decided to fully eliminate arrays from our Horn clauses by using the Ackermanni-
sation process described in Section 5.1.2.1. This process is only used to ensure that this is not
the cause of struggle for the Horn solver, otherwise it should be avoided: Ackermannisation intro-
duces a quadratic blowup in the number of array reads that an SMT avoids in most cases by only
lazily considering the relevant cases2.

Trivial simplification. The Horn clauses we generate from the data-abstraction tool are huge,
mainly because our scheme is general and introduces trivial expressions. For example, the data-
abstraction tool used with the identity abstraction introduces the expression ∀i #, i # = i → P #(i #)
during the abstr act algorithm, which is then transformed into i = i → P #(i ) by the el i mi nate
algorithm. To address this problem and transform that expression into P #(i ), we wrote a rewritting
system that simplifies trivial expressions.

Reducing the size of the instantiation set. In the case of σn
Cel l , for n > 1, the abstraction and in-

stantiation is not optimal: consider the trivial clause P (a) → P ′(a). This clause after σ2
Cel l abstrac-

tion and slight simplification becomes (∀k1,k2,P #(k1, a[k1],k2, a[k2])) → P ′#(k ′
1, a[k ′

1],k ′
2, a[k ′

2]).
Because the semantics of that clause is pass to P ′ the information I have on P , we would ex-
pect the clause after elimination to be: P #(k ′

1, a[k ′
1],k ′

2, a[k ′
2]) → P ′#(k ′

1, a[k ′
1],k ′

2, a[k ′
2]). However,

our current scheme instantiates k1 and k2 by the relevant set {k ′
1,k ′

2}, thus yielding the clause
(P #(k ′

1, a[k ′
1],k ′

1, a[k ′
1])∧P #(k ′

2, a[k ′
2],k ′

1, a[k ′
1])∧P #(k ′

1, a[k ′
1],k ′

2, a[k ′
2])∧P #(k ′

2, a[k ′
2],k ′

2, a[k ′
2]))

→ P ′#(k ′
1, a[k ′

1],k ′
2, a[k ′

2]), which is much more complex.
Our solution to this problem is to define Cel l 2 not as Cel l 1⊗Cel l 1, but to introduce an ordering.

We do this by introducing a new combinator σ<n which is the generalization of σ<2 defined as
σ<2(a) = {(e1,e2) | e1 ∈ σ(a)∧ e2 ∈ σ(a)∧ e1 < e2}. This new combinator is just as expressive as
σn and its goal is to reduce the size of the instantiation set. The instantiation set for that new
combinator is computed by taking the order of the instantiation set for the σ⊗σ combinator: if
we call S the instantiation set for σ, the instantiation set for σ⊗σ is S × S, whereas for σ<2, the
instantiation set is {(e1,e2) | e1 ∈ S ∧ e2 ∈ S ∧ e1 < e2}. Of course, one cannot compute the ordering
e1 < e2 during the instantiation process, and thus the ordering must be embedded as expressions:
for S = {k ′

1,k ′
2}, this yields {(i te(k ′

1 < k ′
2,k ′

1,k ′
2), i te(k ′

1 < k ′
2,k ′

2,k ′
1))} which contains only a single

element.

2The goal of an SMT solver compared to a SAT solver is to remove the need for expansive preprocessing by lazily
handling the theory.
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Applying Cel l<2 abstraction on our previous example yields the clause
(P #(i te(k ′

1 < k ′
2,k ′

1,k ′
2), a[i te(k ′

1 < k ′
2,k ′

1,k ′
2)], i te(k ′

1 < k ′
2,k ′

2,k ′
1), a[i te(k ′

1 < k ′
2,k ′

2,k ′
1)])∧k ′

1 < k ′
2)

→ P ′#(k ′
1, a[k ′

1],k ′
2, a[k ′

2]) which with the simplifier can be simplified into
(P #(k ′

1, a[k ′
1],k ′

2, a[k ′
2])∧k ′

1 < k ′
2) → P ′#(k ′

1, a[k ′
1],k ′

2, a[k ′
2]).

Using Cel l<n instead of Cel l n reduces an instantiation set from size |S|n to the size
(|S|

n

)
, where

|S| is the size of the relevant set – i.e. the size for Cel l 1. However, it introduces more complex
expressions which must then either be handled by a theory of ordering in the solver or through
greedy preprocessing. In our case, we do the latter, but most of these expressions simplify them-
selves as in our example.

Results of improvement & discussion The results of these improvements are still disappointing:
without hints, we are still unable to certify any of the benchmarks. However, results with these
simplifications for hinted problems are slightly improved: the proportion of random seeds for
which we certify the problem has slightly increased. This is not a great improvement and we do
not suggest attempting to further simplify the generated Horn problems as this demonstrates that
Z3 currently has drastic limitations that first need to be addressed.

Note that, during this process, we also noted that changing the names of our predicates in the
Horn clauses impacts the solver. This is probably due to sorting on the predicate names at some
point within the Horn solver which impacts the proofs that the calls to the SMT solver return, and
thus the generalization step. These problems demonstrate how dependent on syntax Z3 is and
how difficult it is to work with current Horn solvers and why having a theoretical guarantee on our
technique is so important.

Techniques based on interpolation highly depend on heuristics to generate inductive invariants
for Horn problems. We believe that the heuristics within Z3 have been optimized for Horn clauses
coming from direct transformation from programs and perhaps a few other types of problems, but
not for the type of Horn problems we generate after the data-abstraction tool. We have not studied
the exact technique Z3 implements and it is extremely hard to determine whether adapting the
current heuristic for our problems has not been done because it is hard or simply because there
were no such problems. In either case, our work may lead to improvements within Horn solvers
by providing examples on which they struggle.

Perhaps another interesting path for future work is to solve our Horn clauses by using abstract
interpretation instead of interpolants. The problem with that approach is that the invariants we
need are disjunctive, for example ka < i → va = 0, and to our knowledge there are no good dis-
junctive abstract domain for integers. However, in our examples, the variables used in each part of
the conjunction may barely overlap – usually, the left-hand side of the implication is about indices
whereas the right-hand side is about values– and thus, using such a specificity, perhaps a good ab-
stract domain can be constructed. Such an abstract domain would have to handle relations, and
thus, perhaps what we need is a form of disjunctive octogonal abstract domain, or something even
more expressive [BM18]. This would not only enable to more reliably – especially if the widening
is perfect – solve our Horn problems, but also generate summaries.
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8 Conclusion

In this manuscript we tackled the problem of verifying programs with unbounded data-structures
by using a transformation on Horn clauses. The goal of that transformation is to simplify using
abstraction the data-structures within those Horn clauses so that another back-end solver can be
used on the simplified problem. Our focus has been on the predictability of the transformation’s
results and this has led us to investigate a property called relative completeness, which is a measure
of the information loss during the simplification. This is the main difference compared to most
existing approaches [BMR13; GSV18; Ish+20].

Furthermore, instead of directly defining transformations for specific abstractions, we created a
framework to create such transformations by combining basic abstractions together. We believe
the advantages of such a framework have been demonstrated in several manners: in Chapter 3
we show that it enables more flexibility in the abstractions that are used and to discuss previous
approaches [GRS05; CCL11] as combinations of simple abstractions; in Chapter 4 the framework
enables us to give a general structure of the algorithms for any abstraction of data and also en-
ables us to frame what relative completeness means for each abstraction; Chapter 5 demonstrates
that the separation of the abstraction in several blocks enables us to focus on exactly what each
abstraction must handle and by doing so, we prove results on previous abstraction-based tech-
niques [MA15; MG16]; obviously, all chapters show that this approach enables future abstractions
to be written and implemented much more straightforwardly.

The data-abstraction algorithm is parameterized by the chosen abstraction. In practice, this
means that two parameters need to be provided: a formula Fσ encoding by what a concrete value
should be abstracted and a heuristic i nst s that helps the data-abstraction algorithm instantiate
quantifiers for that abstraction. Any definition of i nst s leads to a sound data-abstraction algo-
rithm that may be used for static verification purposes; however, in order to have the predictabil-
ity property of relative completeness, i nst s needs to be well tailored as described in Chapter 4.
Properly defining i nst s such that it enables relative completeness is the main issue for using the
data-abstraction framework. In this manuscript, our work focused on arrays and, more specifi-
cally, on abstractions that can be defined by combining the cell abstraction [MG16] of Chapter 3
with other basic abstractions of our framework.

Such abstractions are of interest for many container algorithms, including efficient sorting al-
gorithms such as the merge sort algorithm of Chapter 2. In Chapter 5 we give what we believe to
be a good definition of i nst s for such array abstractions. However, this definition has limitations
on the program instructions it may handle. In Chapter 6, we show that these limitations do not
impact programs where functions calls are handled with inlining and written in a language where
the basic array operations are read and write. Thus, on this class of programs, our simplification
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satisfies relative completeness; and on other programs, the simplification only verifies soundness,
that is, the property that is usually used in the field [BMR13; GSV18; Ish+20].

Furthermore, in Chapter 6, we discussed possible extensions so that relative completeness is
achieved for a broader class of programs. We mainly expect these extensions to drastically improve
the handling of complex array instructions and the handling of function calls using summaries.
However, the handling of modular function calls, as defined in Chapter 2, seems much harder and
may require more work. We believe that if the formalization of these extensions demonstrates that
function calls using summaries are indeed well-handled, then not only do we have a framework
for verifying container algorithms, but our verification scheme may scale and be applied to large
code-bases.

Finally, in Chapter 7, we discussed our implementation of this framework and the results on
container algorithms using a back-end solver. The implementation we propose for the data-
abstraction simplification algorithm on Horn clauses is available, extensible, and can use a cus-
tom abstraction. We experimentally confirm using container algorithms that the simplification
may indeed fully eliminate arrays from the Horn clauses and that it satisfies relative completeness
while doing so. However, even if the resulting Horn clauses are only over booleans and integers,
it seems that, Z3, the back-end solver we use, is unable to automatically find the required inte-
ger invariants. Thus, currently, this framework cannot be used impactfully to automatically verify
programs; however, the issue is not within the framework, but within the capabilities of current
state of the art integer Horn solvers.

We believe future work should go in multiple directions. First, in order for the data-abstraction
framework to be of any practical use, improvements on integer Horn solvers for the type of clauses
we generate is required. Secondly, we limited ourselves to abstractions that are defined mainly by
using cell-abstraction. Although that abstraction is quite expressive, it is ill-suited for some array
manipulating programs such as fold operations. We believe other abstractions for arrays need to
be considered and hope that our work for cell-abstraction can help construct them. Thirdly, we
discussed extensions of the framework for abstractions based on cell-abstraction. We explained
most of these extensions in Chapter 6; however, they still need to be formalized and the rela-
tive completeness results still need to be proven. However, doing so has been made much easier
through the general results proven for the data-abstraction framework. Furthermore, there are
two unsolved questions in this manuscript: completeness of parallel instantiation of Conjecture
1, and whether the relevant algorithm is optimal, for the definition of optimality discussed in Sec-
tion 6.3.1.1. Lastly, in this manuscript, we mainly focused on arrays. However, the goal of this
framework is to be general enough to handle many kinds of unbounded data-structures, and we
hope in the future to define abstractions for trees and perhaps even graphs.
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