Finding a Vector Orthogonal to Roughly Half a Collection of Vectors - ENS de Lyon - École normale supérieure de Lyon
Pré-Publication, Document De Travail Année : 2007

Finding a Vector Orthogonal to Roughly Half a Collection of Vectors

Résumé

Dimitri Grigoriev has shown that for any family of N vectors in the d-dimensional linear space E = (F_2)^d, there exists a vector in E which is orthogonal to at least N/3 and at most 2N/3 vectors of the family. We show that the range [N/3, 2N/3] can be replaced by the much smaller range [N/2 − √N /2, N/2 + √N /2] and we give an efficient, deterministic parallel algorithm which finds a vector achieving this bound. The optimality of the bound is also investigated.
Fichier principal
Vignette du fichier
vector.pdf (218.14 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

ensl-00153736 , version 1 (11-06-2007)

Identifiants

  • HAL Id : ensl-00153736 , version 1

Citer

Pierre Charbit, Emmanuel Jeandel, Pascal Koiran, Sylvain Perifel, Stéphan Thomassé. Finding a Vector Orthogonal to Roughly Half a Collection of Vectors. 2007. ⟨ensl-00153736⟩
152 Consultations
191 Téléchargements

Partager

More