Wavelet leaders in multifractal analysis
Abstract
The properties of several multifractal formalisms based on wavelet coefficients are compared from both mathematical and numerical points of view. When it is based directly on wavelet coefficients, the multifractal formalism is shown to yield, at best, the increasing part of the weak scaling exponent spectrum. The formalism has to be based on new multiresolution quantities, the wavelet leaders, in order to yield the entire and correct spectrum of Hölder singularities. The properties of this new multifractal formalism and of the alternative weak scaling exponent multifractal formalism are investigated. Examples based on known synthetic multifractal processes are illustrating its numerical implementation and abilities.
Origin | Files produced by the author(s) |
---|
Loading...