The functions erf and erfc computed with arbitrary precision - ENS de Lyon - École normale supérieure de Lyon
Pré-Publication, Document De Travail Année : 2009

The functions erf and erfc computed with arbitrary precision

Résumé

The error function erf is a special function. It is widely used in statistical computations for instance, where it is also known as the standard normal cumulative probability. The complementary error function is defined as erfc(x)=erf(x)-1. In this paper, the computation of erf(x) and erfc(x) in arbitrary precision is detailed: our algorithms take as input a target precision t' and deliver approximate values of erf(x) or erfc(x) with a relative error bounded by 2^(-t'). We study three different algorithms for evaluating erf and erfc. These algorithms are completely detailed. In particular, the determination of the order of truncation, the analysis of roundoff errors and the way of choosing the working precision are presented. We implemented the three algorithms and studied experimentally what is the best algorithm to use in function of the point x and the target precision t'.
Fichier principal
Vignette du fichier
RR2009-04.lip.pdf (478.24 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

ensl-00356709 , version 1 (28-01-2009)
ensl-00356709 , version 2 (14-05-2009)
ensl-00356709 , version 3 (27-05-2010)

Identifiants

  • HAL Id : ensl-00356709 , version 1

Citer

Sylvain Chevillard. The functions erf and erfc computed with arbitrary precision. 2009. ⟨ensl-00356709v1⟩
2012 Consultations
11277 Téléchargements

Partager

More