Time-Frequency Learning Machines For NonStationarity Detection Using Surrogates - ENS de Lyon - École normale supérieure de Lyon
Communication Dans Un Congrès Année : 2009

Time-Frequency Learning Machines For NonStationarity Detection Using Surrogates

Résumé

Testing stationarity is an important issue in signal analysis and classification. Recently, time-frequency analysis has been investigated to detect the nonstationarity of a given signal, by constructiing from it a set of surrogate, stationarized signals. Time-frequency features are extracted to test the stationarity. Our paper is a further contribution by exploring the powerful framework of time-frequency learning machines. We show that one can relate stationarity to the structure of surrogates spectrograms and detect nonstationarity using a one-class classification approach. The proposed method does not suffer from any prior knowledge for extracting features, since it uses the entire time-frequency information. Using spherical multidimensional scaling technique, we illustrate the relevance of the proposed approach with simulation results.
Fichier principal
Vignette du fichier
94400.pdf (577.91 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

ensl-00420575 , version 1 (29-09-2009)

Identifiants

Citer

Hassan Amoud, Paul Honeine, Cédric Richard, Pierre Borgnat, Patrick Flandrin. Time-Frequency Learning Machines For NonStationarity Detection Using Surrogates. SSP'09 (IEEE/SP 15th Workshop on Statistical Signal Processing 2009), IEEE/SP, Aug 2009, Cardiff, United Kingdom. pp.565-568, ⟨10.1109/SSP.2009.5278514⟩. ⟨ensl-00420575⟩
142 Consultations
361 Téléchargements

Altmetric

Partager

More