Arithmetic circuits: the chasm at depth four gets wider - ENS de Lyon - École normale supérieure de Lyon
Pré-Publication, Document De Travail Année : 2012

Arithmetic circuits: the chasm at depth four gets wider

Résumé

In their paper on the ''chasm at depth four'', Agrawal and Vinay have shown that polynomials in m variables of degree O(m) which admit arithmetic circuits of size 2^o(m) also admit arithmetic circuits of depth four and size 2^o(m). This theorem shows that for problems such as arithmetic circuit lower bounds or black-box derandomization of identity testing, the case of depth four circuits is in a certain sense the general case. In this paper we show that smaller depth four circuits can be obtained if we start from polynomial size arithmetic circuits. For instance, we show that if the permanent of n*n matrices has circuits of size polynomial in n, then it also has depth 4 circuits of size n^O(sqrt(n)*log(n)). Our depth four circuits use integer constants of polynomial size. These results have potential applications to lower bounds and deterministic identity testing, in particular for sums of products of sparse univariate polynomials. We also give an application to boolean circuit complexity, and a simple (but suboptimal) reduction to polylogarithmic depth for arithmetic circuits of polynomial size and polynomially bounded degree.
Fichier principal
Vignette du fichier
depth4.revised.pdf (228.93 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

ensl-00494642 , version 1 (23-06-2010)
ensl-00494642 , version 2 (21-07-2010)
ensl-00494642 , version 3 (26-07-2010)
ensl-00494642 , version 4 (22-03-2012)

Identifiants

Citer

Pascal Koiran. Arithmetic circuits: the chasm at depth four gets wider. 2012. ⟨ensl-00494642v4⟩
231 Consultations
401 Téléchargements

Altmetric

Partager

More