Perturbation Analysis of the QR Factor R in the Context of LLL Lattice Basis Reduction
Résumé
In 1982, Arjen Lenstra, Hendrik Lenstra Jr. and László Lovász introduced an efficiently computable notion of reduction of basis of a Euclidean lattice that is now commonly referred to as LLL-reduction. The precise definition involves the R-factor of the QR factorisation of the basis matrix. A natural mean of speeding up the LLL reduction algorithm is to use a (floating-point) approximation to the R-factor. In the present article, we investigate the accuracy of the factor R of the QR factorisation of an LLL-reduced basis. Our main contribution is the first fully rigorous perturbation analysis of the R-factor of LLL-reduced matrices under column-wise perturbations. Our results should be very useful to devise LLL-type algorithms relying on floating-point approximations.
Origine | Fichiers produits par l'(les) auteur(s) |
---|