Journal Articles Probability Surveys Year : 2013

Planar percolation with a glimpse of Schramm-Loewner Evolution

Abstract

In recent years, important progress has been made in the field of two-dimensional statistical physics. One of the most striking achievements is the proof of the Cardy--Smirnov formula. This theorem, together with the introduction of Schramm--Loewner Evolution and techniques developed over the years in percolation, allow precise descriptions of the critical and near-critical regimes of the model. This survey aims to describe the different steps leading to the proof that the infinite-cluster density $\theta(p)$ for site percolation on the triangular lattice behaves like $(p-p_c)^{5/36+o(1)}$ as $p\searrow p_c=1/2$.
Fichier principal
Vignette du fichier
Florence.pdf (1.26 Mo) Télécharger le fichier
Origin Files produced by the author(s)
Loading...

Dates and versions

ensl-00605057 , version 1 (30-06-2011)
ensl-00605057 , version 2 (01-11-2011)
ensl-00605057 , version 3 (07-06-2013)

Identifiers

Cite

Vincent Beffara, Hugo Duminil-Copin. Planar percolation with a glimpse of Schramm-Loewner Evolution. Probability Surveys, 2013, 10, pp.1-50. ⟨10.1214/11-PS186⟩. ⟨ensl-00605057v3⟩
198 View
466 Download

Altmetric

Share

More