Further analysis of Kahan's algorithm for the accurate computation of 2 x 2 determinants - ENS de Lyon - École normale supérieure de Lyon
Article Dans Une Revue Mathematics of Computation Année : 2013

Further analysis of Kahan's algorithm for the accurate computation of 2 x 2 determinants

Résumé

We provide a detailed analysis of Kahan's algorithm for the accurate computation of the determinant of a $2 \times 2$ matrix. This algorithm requires the availability of a fused multiply-add instruction. Assuming radix-$\beta$, precision-$p$ floating-point arithmetic with $\beta$ even, $p \geq 2$, and barring overflow or underflow we show that the absolute error of Kahan's algorithm is bounded by $(\beta+1)/2$ ulps of the exact result and that the relative error is bounded by $2u$ with $u=\frac{1}{2}\beta^{1-p}$ the unit roundoff. Furthermore, we provide input values showing that i) when $\beta/2$ is odd---which holds for $2$ and $10$, the two radices that matter in practice---, the absolute error bound is optimal; ii) the relative error bound is asymptotically optimal, that is, for such input the ratio (relative error)/$2u$ has the form $1-O(\beta^{-p})$. We also give relative error bounds parametrized by the relative order of magnitude of the two products in the determinant, and we investigate whether the error bounds can be improved when adding constraints: When the products in the determinant have opposite signs, which covers the computation of a sum of squares, or when Kahan's algorithm is used for computing the discriminant of a quadratic equation.
Fichier principal
Vignette du fichier
JeannerodLouvetMuller13.pdf (325.2 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

ensl-00649347 , version 1 (07-12-2011)
ensl-00649347 , version 2 (17-01-2012)
ensl-00649347 , version 3 (30-01-2012)
ensl-00649347 , version 4 (13-07-2013)

Identifiants

Citer

Claude-Pierre Jeannerod, Nicolas Louvet, Jean-Michel Muller. Further analysis of Kahan's algorithm for the accurate computation of 2 x 2 determinants. Mathematics of Computation, 2013, 82 (284), pp.2245-2264. ⟨10.1090/S0025-5718-2013-02679-8⟩. ⟨ensl-00649347v4⟩
1541 Consultations
1393 Téléchargements

Altmetric

Partager

More