On the error of Computing ab + cd using Cornea, Harrison and Tang's method - ENS de Lyon - École normale supérieure de Lyon
Pré-Publication, Document De Travail Année : 2013

On the error of Computing ab + cd using Cornea, Harrison and Tang's method

Résumé

In their book Scientific Computing on The Itanium, Cornea, Harrison and Tang introduce an accurate algorithm for evaluating expressions of the form ab + cd in binary floating-point arithmetic, assuming an FMA instruction is available. They show that if p is the precision of the floating-point (FP) format and if u = 2^(−p), the relative error of the result is of order u. We improve their proof to show that the relative error is bounded by 2u+7u^2 +6u^3. Furthermore, by building an example for which the relative error is asymptotically (as p → ∞ or, equivalently, as u → 0) equivalent to 2u, we show that our error bound is asymptotically optimal.

Domaines

Autre [cs.OH]
Fichier principal
Vignette du fichier
AnalysisCornea.pdf (105.31 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

ensl-00862910 , version 1 (17-09-2013)
ensl-00862910 , version 2 (24-09-2013)

Identifiants

  • HAL Id : ensl-00862910 , version 1

Citer

Jean-Michel Muller. On the error of Computing ab + cd using Cornea, Harrison and Tang's method. 2013. ⟨ensl-00862910v1⟩
375 Consultations
552 Téléchargements

Partager

More