Convergence of the solutions of the discounted equation: the discrete case - ENS de Lyon - École normale supérieure de Lyon Access content directly
Journal Articles Mathematische Zeitschrift Year : 2016

Convergence of the solutions of the discounted equation: the discrete case

Albert Fathi
  • Function : Author
  • PersonId : 995574

Abstract

We derive a discrete version of the results of Davini et al. (Convergence of the solutions of the discounted Hamilton–Jacobi equation. Invent Math, 2016). If M is a compact metric space, c:M×M→ℝ a continuous cost function and λ∈(0,1), the unique solution to the discrete λ-discounted equation is the only function uλ:M→ℝ such that∀x∈M,uλ(x)=miny∈Mλuλ(y)+c(y,x).We prove that there exists a unique constant α∈ℝ such that the family of uλ+α/(1−λ) is bounded as λ→1 and that for this α, the family uniformly converges to a function u0:M→ℝ which then verifies∀x∈X,u0(x)=miny∈Xu0(y)+c(y,x)+α.The proofs make use of Discrete Weak KAM theory. We also characterize u0 in terms of Peierls barrier and projected Mather measures.
Fichier principal
Vignette du fichier
1607.08295.pdf (199.41 Ko) Télécharger le fichier
Origin Publisher files allowed on an open archive

Dates and versions

ensl-01411575 , version 1 (13-03-2024)

Identifiers

Cite

Albert Fathi. Convergence of the solutions of the discounted equation: the discrete case. Mathematische Zeitschrift, 2016, ⟨10.1007/s00209-016-1685-y⟩. ⟨ensl-01411575⟩
45 View
2 Download

Altmetric

Share

Gmail Mastodon Facebook X LinkedIn More