On p-adic absolute Hodge cohomology and syntomic coefficients, I. - ENS de Lyon - École normale supérieure de Lyon
Article Dans Une Revue Commentarii Mathematici Helvetici Année : 2018

On p-adic absolute Hodge cohomology and syntomic coefficients, I.

Frédéric Déglise
Wieslawa Niziol

Résumé

We interpret syntomic cohomology defined in [49] as a p-adic absolute Hodge cohomology. This is analogous to the interpretation of Deligne-Beilinson cohomology as an absolute Hodge cohomol-ogy by Beilinson [8] and generalizes the results of Bannai [6] and Chiarellotto, Ciccioni, Mazzari [15] in the good reduction case. This interpretation yields a simple construction of the syntomic descent spectral sequence and its degeneration for projective and smooth varieties. We introduce syntomic coefficients and show that in dimension zero they form a full triangulated subcategory of the derived category of potentially semistable Galois representations. Along the way, we obtain p-adic realizations of mixed motives including p-adic comparison isomor-phisms. We apply this to the motivic fundamental group generalizing results of Olsson and Vologodsky [55], [69].
Fichier principal
Vignette du fichier
avec-fred12.pdf (468.01 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

ensl-01420349 , version 1 (20-12-2016)

Identifiants

Citer

Frédéric Déglise, Wieslawa Niziol. On p-adic absolute Hodge cohomology and syntomic coefficients, I.. Commentarii Mathematici Helvetici, 2018, 93 (1), pp.71-131. ⟨10.4171/CMH/430⟩. ⟨ensl-01420349⟩
189 Consultations
150 Téléchargements

Altmetric

Partager

More