Miquel dynamics for circle patterns - ENS de Lyon - École normale supérieure de Lyon
Journal Articles International Mathematics Research Notices Year : 2020

Miquel dynamics for circle patterns

Abstract

We study a new discrete-time dynamical system on circle patterns with the combinatorics of the square grid. This dynamics, called Miquel dynamics, relies on Miquel's six circles theorem. We provide a coordinatization of the appropriate space of circle patterns on which the dynamics acts and use it to derive local recurrence formulas. Isoradial circle patterns arise as periodic points of Miquel dynamics. Furthermore, we prove that certain signed sums of intersection angles are preserved by the dynamics. Finally, when the initial circle pattern is spatially biperiodic with a fundamental domain of size two by two, we show that the appropriately normalized motion of intersection points of circles takes place along an explicit quartic curve.
Fichier principal
Vignette du fichier
Miquel.pdf (1.52 Mo) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

ensl-01651045 , version 1 (28-11-2017)
ensl-01651045 , version 2 (27-10-2022)

Identifiers

Cite

Sanjay Ramassamy. Miquel dynamics for circle patterns. International Mathematics Research Notices, 2020, 2020 (3), pp.813-852. ⟨10.1093/imrn/rny039⟩. ⟨ensl-01651045v2⟩
136 View
148 Download

Altmetric

Share

More