The Hilbert-Galton board - ENS de Lyon - École normale supérieure de Lyon
Journal Articles ALEA : Latin American Journal of Probability and Mathematical Statistics Year : 2018

The Hilbert-Galton board

Abstract

We introduce the Hilbert-Galton board as a variant of the classical Galton board. Balls fall into a row of bins at a rate depending on the bin, and at random times, each bin gets shifted one unit to the right and an empty bin is added to the left. We compute the stationary distribution of this Markov chain and show the existence of an enriched Markov chain on triangular arrays of numbers which projects down to the Hilbert-Galton board. We also define finite-ball projections of the Hilbert-Galton board, for which we compute the stationary distribution, the full spectrum and the grand coupling time.
Fichier principal
Vignette du fichier
CompositionsMarkov23November17.pdf (383.87 Ko) Télécharger le fichier
Origin Files produced by the author(s)
Loading...

Dates and versions

ensl-01651050 , version 1 (28-11-2017)
ensl-01651050 , version 2 (03-08-2018)

Identifiers

Cite

Arvind Ayyer, Sanjay Ramassamy. The Hilbert-Galton board. ALEA : Latin American Journal of Probability and Mathematical Statistics, 2018, 15 (2), pp.755-774. ⟨10.30757/ALEA.v15-28⟩. ⟨ensl-01651050v2⟩
230 View
144 Download

Altmetric

Share

More