Extensions of partial cyclic orders and consecutive coordinate polytopes - ENS de Lyon - École normale supérieure de Lyon
Article Dans Une Revue Annales Henri Lebesgue Année : 2020

Extensions of partial cyclic orders and consecutive coordinate polytopes

Résumé

We introduce several classes of polytopes contained in [0, 1] n and cut out by inequalities involving sums of consecutive coordinates , extending a construction by Stanley. We show that the normalized volumes of these polytopes enumerate the extensions to total cyclic orders of certains classes of partial cyclic orders. We also provide a combinatorial interpretation of the Ehrhart h *-polynomials of some of these polytopes in terms of descents of total cyclic orders. The Euler numbers, the Eulerian numbers and the Narayana numbers appear as special cases.
Fichier principal
Vignette du fichier
Cyclic orders and polytopes.pdf (486.04 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

ensl-01745941 , version 1 (28-03-2018)
ensl-01745941 , version 2 (29-06-2019)

Identifiants

Citer

Arvind Ayyer, Matthieu Josuat-Vergès, Sanjay Ramassamy. Extensions of partial cyclic orders and consecutive coordinate polytopes. Annales Henri Lebesgue, 2020, 3, pp.275-297. ⟨10.5802/ahl.33⟩. ⟨ensl-01745941v2⟩
139 Consultations
187 Téléchargements

Altmetric

Partager

More