On the spectral characterization of Besse and Zoll Reeb flows - ENS de Lyon - École normale supérieure de Lyon Access content directly
Journal Articles Annales de l'Institut Henri Poincaré C, Analyse non linéaire Year : 2020

On the spectral characterization of Besse and Zoll Reeb flows

Viktor L. Ginzburg
  • Function : Author
Basak Z. Gurel
  • Function : Author

Abstract

A closed contact manifold is called Besse when all its Reeb orbits are closed, and Zoll when they have the same minimal period. In this paper, we provide a characterization of Besse contact forms for convex contact spheres and Riemannian unit tangent bundles in terms of $S^1$-equivariant spectral invariants. Furthermore, for restricted contact type hypersurfaces of symplectic Euclidean spaces, we give a sufficient condition for the Besse property via the Ekeland-Hofer capacities.
Fichier principal
Vignette du fichier
S0294144920300767.pdf (570.97 Ko) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

ensl-02352680 , version 1 (10-03-2023)

Licence

Attribution - NonCommercial - CC BY 4.0

Identifiers

Cite

Viktor L. Ginzburg, Basak Z. Gurel, Marco Mazzucchelli. On the spectral characterization of Besse and Zoll Reeb flows. Annales de l'Institut Henri Poincaré C, Analyse non linéaire, 2020, ⟨10.1016/j.anihpc.2020.08.004⟩. ⟨ensl-02352680⟩
29 View
1 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More