On the spectral characterization of Besse and Zoll Reeb flows
Abstract
A closed contact manifold is called Besse when all its Reeb orbits are closed, and Zoll when they have the same minimal period. In this paper, we provide a characterization of Besse contact forms for convex contact spheres and Riemannian unit tangent bundles in terms of $S^1$-equivariant spectral invariants. Furthermore, for restricted contact type hypersurfaces of symplectic Euclidean spaces, we give a sufficient condition for the Besse property via the Ekeland-Hofer capacities.
Origin : Files produced by the author(s)