Pré-Publication, Document De Travail Année : 2022

Weak universality results for a class of nonlinear wave equations

Chenmin Sun
  • Fonction : Auteur
Weijun Xu
  • Fonction : Auteur

Résumé

We study the weak universality of the two-dimensional fractional nonlinear wave equation. For a sequence of Hamiltonians of high-degree potentials scaling to the fractional $\Phi_2^4$, we first establish a \emph{sufficient and almost necessary} criteria for the convergence of invariant measures to the fractional $\Phi_2^4$. Then we prove the convergence result for the sequence of associated wave dynamics to the (renormalized) cubic wave equation. Our constraint on the fractional index is independent of the degree of the nonlinearity. This extends the result of Gubinelli-Koch-Oh [Renormalisation of the two-dimensional stochastic nonlinear wave equations, Trans. Amer. Math. Soc. 370 (2018)] to a situation where we do not have a local Cauchy theory with highly supercritical nonlinearities.

Dates et versions

ensl-04829746 , version 1 (10-12-2024)

Identifiants

Citer

Chenmin Sun, Nikolay Tzvetkov, Weijun Xu. Weak universality results for a class of nonlinear wave equations. 2024. ⟨ensl-04829746⟩
5 Consultations
0 Téléchargements

Altmetric

Partager

More