Pré-Publication, Document De Travail Année : 2021

$H^1$ scattering for mass-subcritical NLS with short-range nonlinearity and initial data in $\Sigma$

N. Burq
  • Fonction : Auteur
V. Georgiev
  • Fonction : Auteur
N. Visciglia
  • Fonction : Auteur

Résumé

We consider short-range mass-subcritical nonlinear Schr\"odinger equations and we show that the corresponding solutions with initial data in $\Sigma$ scatter in $H^1$. Hence we up-grade the classical scattering result proved by Yajima and Tsutsumifrom $L^2$ to $H^1$.We also provide some partial results concerning the scattering of the first order moments, as well as a short proof via lens transform of a classical result due to Tsutsumi and Cazenave-Weissler on the scattering in $\Sigma$.

Dates et versions

ensl-04829767 , version 1 (10-12-2024)

Identifiants

Citer

N. Burq, V. Georgiev, N. Tzvetkov, N. Visciglia. $H^1$ scattering for mass-subcritical NLS with short-range nonlinearity and initial data in $\Sigma$. 2024. ⟨ensl-04829767⟩
5 Consultations
0 Téléchargements

Altmetric

Partager

More