Time-frequency learning machines - ENS de Lyon - École normale supérieure de Lyon
Pré-Publication, Document De Travail Année : 2006

Time-frequency learning machines

Résumé

Over the last decade, the theory of reproducing kernels has made a major breakthrough in the field of pattern recognition. It has led to new algorithms, with improved performance and lower computational cost, for non-linear analysis in high dimensional feature spaces. Our paper is a further contribution which extends the framework of the so-called kernel learning machines to time-frequency analysis, showing that some specific reproducing kernels allow these algorithms to operate in the time-frequency domain. This link offers new perspectives in the field of non-stationary signal analysis, which can benefit from the developments of pattern recognition and Statistical Learning Theory.
Fichier principal
Vignette du fichier
TFlearningmachines.pdf (766.9 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

ensl-00118896 , version 1 (07-12-2006)

Identifiants

  • HAL Id : ensl-00118896 , version 1

Citer

Paul Honeiné, Cédric Richard, Patrick Flandrin. Time-frequency learning machines. 2006. ⟨ensl-00118896⟩
171 Consultations
217 Téléchargements

Partager

More