Highly Undecidable Problems about Recognizability by Tiling Systems
Résumé
Altenbernd, Thomas and Wöhrle have considered acceptance of languages of infinite two-dimensional words (infinite pictures) by finite tiling systems, with usual acceptance conditions, such as the Büchi and Muller ones [1]. It was proved in [9] that it is undecidable whether a Büchi-recognizable language of infinite pictures is E-recognizable (respectively, A-recognizable). We show here that these two decision problems are actually $\Pi_2^1$-complete, hence located at the second level of the analytical hierarchy, and ``highly undecidable". We give the exact degree of numerous other undecidable problems for Büchi-recognizable languages of infinite pictures. In particular, the non-emptiness and the infiniteness problems are $\Sigma^1_1$-complete, and the universality problem, the inclusion problem, the equivalence problem, the determinizability problem, the complementability problem, are all $\Pi^1_2$-complete. It is also $\Pi^1_2$-complete to determine whether a given Büchi recognizable language of infinite pictures can be accepted row by row using an automaton model over ordinal words of length $\omega^2$.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...