The multiplicity problem for periodic orbits of magnetic flows on the 2-sphere
Abstract
We consider magnetic Tonelli Hamiltonian systems on the cotan-gent bundle of the 2-sphere, where the magnetic form is not necessarily exact. It is known that, on very low and on high energy levels, these systems may have only finitely many periodic orbits. Our main result asserts that almost all energy levels in a precisely characterized intermediate range (e 0 , e 1) possess infinitely many periodic orbits. Such a range of energies is non-empty, for instance, in the physically relevant case where the Tonelli Lagrangian is a kinetic energy and the magnetic form is oscillating (in which case, e 0 = 0 is the minimal energy of the system).
Domains
Mathematics [math]
Origin : Files produced by the author(s)