Extensions of partial cyclic orders, Euler numbers and multidimensional boustrophedons - ENS de Lyon - École normale supérieure de Lyon
Article Dans Une Revue The Electronic Journal of Combinatorics Année : 2018

Extensions of partial cyclic orders, Euler numbers and multidimensional boustrophedons

Résumé

We enumerate total cyclic orders on {x1,. .. , xn} where we prescribe the relative cyclic order of consecutive triples (xi, xi+1, xi+2), with indices taken modulo n. In some cases, the problem reduces to the enumeration of descent classes of permutations, which is done via the boustrophedon construction. In other cases, we solve the question by introducing mul-tidimensional versions of the boustrophedon. In particular we find new interpretations for the Euler up/down numbers and the Entringer numbers .
Fichier principal
Vignette du fichier
Partial cyclic orders.pdf (520.68 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

ensl-01651041 , version 1 (28-11-2017)
ensl-01651041 , version 2 (02-12-2022)

Identifiants

  • HAL Id : ensl-01651041 , version 1

Citer

Sanjay Ramassamy. Extensions of partial cyclic orders, Euler numbers and multidimensional boustrophedons. The Electronic Journal of Combinatorics, 2018, 25 (1), Paper #P1.66. ⟨ensl-01651041v1⟩
83 Consultations
104 Téléchargements

Partager

More