Extensions of partial cyclic orders, Euler numbers and multidimensional boustrophedons - ENS de Lyon - École normale supérieure de Lyon Access content directly
Journal Articles The Electronic Journal of Combinatorics Year : 2018

Extensions of partial cyclic orders, Euler numbers and multidimensional boustrophedons

Abstract

We enumerate total cyclic orders on {x1,. .. , xn} where we prescribe the relative cyclic order of consecutive triples (xi, xi+1, xi+2), with indices taken modulo n. In some cases, the problem reduces to the enumeration of descent classes of permutations, which is done via the boustrophedon construction. In other cases, we solve the question by introducing mul-tidimensional versions of the boustrophedon. In particular we find new interpretations for the Euler up/down numbers and the Entringer numbers .
Fichier principal
Vignette du fichier
Partial cyclic orders.pdf (520.68 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

ensl-01651041 , version 1 (28-11-2017)
ensl-01651041 , version 2 (02-12-2022)

Identifiers

  • HAL Id : ensl-01651041 , version 1

Cite

Sanjay Ramassamy. Extensions of partial cyclic orders, Euler numbers and multidimensional boustrophedons. The Electronic Journal of Combinatorics, 2018, 25 (1), Paper #P1.66. ⟨ensl-01651041v1⟩
72 View
71 Download

Share

Gmail Facebook X LinkedIn More