On the K_4 group of modular curves - ENS de Lyon - École normale supérieure de Lyon Access content directly
Preprints, Working Papers, ... Year : 2020

On the K_4 group of modular curves

Sur le groupe K_4 des courbes modulaires

François Brunault
  • Function : Author
  • PersonId : 923270


We construct elements in the group K_4 of modular curves using the polylog-arithmic complexes of weight 3 defined by Goncharov and de Jeu. The construction is uniform in the level and makes use of new modular units obtained as cross-ratios of division values of the Weierstraß P-function. These units provide explicit triangulations of the Manin 3-term relations in K_2 of modular curves, which in turn gives rise to elements in K_4. Based on numerical computations and on recent results of Weijia Wang, we conjecture that these elements are proportional to the Beilinson elements defined using the Eisenstein symbol.
Fichier principal
Vignette du fichier
K4.pdf (406.12 Ko) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

ensl-03012466 , version 1 (18-11-2020)
ensl-03012466 , version 2 (22-09-2022)


  • HAL Id : ensl-03012466 , version 1


François Brunault. On the K_4 group of modular curves. 2020. ⟨ensl-03012466v1⟩
38 View
44 Download


Gmail Facebook X LinkedIn More